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Abstract 

Estimators of spatial autoregressive (SAR) models depend in a highly non-linear way on the 

spatial correlation parameter and least squares (LS) estimators cannot be computed in 

closed form. We first compare two simple LS estimators by distance and covariance 

properties and then we study the local sensitivity behavior of these estimators using matrix 

derivatives. These results allow us to calculate the Taylor approximation of the least squares 

estimator in the spatial autoregression (SAR) model up to the second order. Using 

Kantorovich inequalities, we compare the covariance structure of the two estimators and we 

derive efficiency comparisons by upper bounds. Finally, we demonstrate our approach by an 

example for GDP and employment in 239 European NUTS2 regions. We find a good 

approximation behavior of the SAR estimator, evaluated around the non-spatial LS 

estimators. These results can be used as a basis for diagnostic tools to explore the 

sensitivity of spatial estimators. 

 

Keywords 
Spatial autoregressive models, least squares estimators, sensitivity analysis, Taylor 

Approximations, Kantorovich inequality 

JEL Classification 
C11, C15, C52, E17, R12 

  



 

 



Contents 

1 Introduction 1 

2 LS estimators in the SAR model 2 

3 Local SAR sensitivity analysis 5 
3.1 Sensitivity analysis for the spatial filter estimator br   ....................................................   5 

3.2 First order sensitivity analysis for the estimator bz   ......................................................   6 

3.3 Second order sensitivity analysis for bz   ......................................................................   8 

3.4 Efficiency comparisons   .............................................................................................   10 

4 Taylor approximation for the SAR estimator 13 

5 Example: European NUTS2 regional data 14 

6 Conclusions 18 

References 19 
 





1 Introduction

Spatial autoregression (SAR) models for the error covariance structure have
been studied and applied to a wide range of areas in e.g. economics, demogra-
phy, geography, biology, epidemiology, statistics and scientific modeling. See
e.g. Anselin (1988, 1999), LeSage (1997, 1998), LeSage and Pace (2004, 2009),
LeSage and Polasek (2008) and Polasek, Sellner and Llano (2009). On the
other hand, sensitivity analysis for least-squares (LS) estimators in several
models has been established in recent years. One of the approaches for such
results is to use Taylor series to approximate the estimator under study, as
used e.g. in a repeated multivariate sampling model by Wang et al. (1994).
To our knowledge, however, a sensitivity analysis for LS estimators in spatial
models has not been reported.

Spatial models have become popular in recent decades, but classical estima-
tors even for a simple SAR model can suffer from numerical computation
problems especially for large dimensional problems. For large cross sections
the introduction of a spatial lag requires the inversion of the large spread ma-
trix R = In − ρW (see below), which is of the dimension n, the number of
observations. Thus it would be desirable to examine if simple approximations
of spatial estimators can be found without inverting the spread matrix. Also,
for Bayesian MCMC estimation such approximations can be used in case we
have to use a proposal density in a Metropolis step.

In the present paper, we consider a spatial model of order 1, the SAR(1) model,
for the error covariance structure, and we are interested in the sensitivity anal-
ysis of the LS estimators in this model. We will use a Taylor approximation
with respect to the spatial correlation parameter ρ, similar to the approach
of the repeated sampling model with unequal sample size that was studied
by Wang et al. (1994). The variance matrix of the LS estimator of the SAR
model has a variance matrix that is a non-linear function of the spatial au-
tocorrelation parameter ρ. In this respect the SAR models are different from
the repeated sampling models, where the LS estimator is a linear function
of the additional correlation parameter. The numerical disadvantage in the
estimation of SAR models is that the spread matrix R (which is a function
of the large spatial neighborhood matrix W) depends on ρ and needs to be
inverted, which can be time consuming. The question is if the inversion can
be avoided and do good approximations exist, and if so, what estimators and
what approaches should be used?

First we propose the ’pseudo’ LS estimator and we show that be expanded in a
Taylor series around the non-spatial LS estimator of a linear regression model.
Then we discuss how to measure the distance between the LS estimator and
the 1st or 2nd order Taylor approximation of the pseudo LS estimator. Also,
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we discuss how these covariance matrix of these estimators can be evaluated
by the Kantorovich inequality.

The structure of the next sections of the paper is as follows. In section 2
we introduce the SAR model and the possible estimators. We continue with
making sensitivity analysis and efficiency comparisons in section 3. The Taylor
approximations of the estimators are established in section 4. The results
are illustrated by a spatial estimation example involving European regional
economic data in section 5. Finally some concluding remarks are made in
section 6.

2 LS estimators in the SAR model

Let us consider here the following notation for SAR models, i.e. for the n× 1
cross-sectional observations y of the form

y = ρWy +Xβ + u, u ∼ N [0, σ2In], (1)

where ρ is the spatial autocorrelation parameter (a scalar), W is a n×n spatial
weight matrix normalized with row sums 1, β is a n× 1 parameter vector, In
is a n×n identity matrix, u is a n×1 error vector and follows a normal distri-
bution with a n×1 mean vector centered at 0 and a n×n variance matrix σ2In.

The SAR model (1) can be written for known spatial autocorrelation ρ in the
spatial filter (SF) form

Ry = Xβ + u, u ∼ N(0, σ2In). (2)

By inversion of the spread matrix R = In−ρW we get the reduced form (RF)
of the SAR model

y=R−1Xβ +R−1u = Zβ + v, v ∼ N [0, σ2Σ(ρ) = σ2(R′R)−1], (3)

where the reduced form (RF) can be also written by the following transformed
variables of the SAR model:

Z = R−1X, v = R−1u. (4)

The RF implies a heteroskedastic model with covariance matrix Cov(y) =
Cov(v) = σ2Σ(ρ) = σ2(R′R)−1. Obviously, the variance matrix of the reduced
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form Σ = Σ(ρ) is a non-linear function of the spatial correlation parameter ρ.

In the following we list LS estimators for the β coefficients in the SAR models,
that follow from these different ways of looking at the SAR model.

1. First, we get the ordinary LS (OLS) estimator of β if we set ρ = 0 in the
SAR model (1), i.e. the SAR(ρ = 0) model is just the linear regression model
y = Xβ + u and is given by

b0 = (X ′X)−1X ′y. (5)

The covariance matrix of this LS estimate is the same as in the ordinary
regression model.

Cov(b0) =Cov[(X ′X)−1X ′y]

=σ2(X ′X)−1X ′Cov(y)X(X ′X)−1

=σ2(X ′X)−1. (6)

2. Second, conditionally on a known ρ ∈ (−1, 1) for row-normalized W, we find
the spatial filter (SF) form (2) also known as the SF model Ry ∼ N [Xβ, σ2In]
and we obtain the LS estimator br for β or in brief the SF-LS estimator

br = (X ′X)−1X ′Ry. (7)

This estimator br differs from the OLS estimator b0 only by the spatial filter
transformation Ry, which replaces the dependent variable y. The covariance
matrix of this estimator is

Cov(br) =Cov[(X ′X)−1X ′Ry]

= (X ′X)−1X ′Cov(Ry)X(X ′X)−1

=σ2(X ′X)−1X ′RR′X(X ′X)−1 (8)

Note that br = br(ρ) also reduces to the OLS estimator b0 = br(0) for ρ = 0,
because R = I.

3. Third, we consider a ’pseudo’ LS estimator bz of β for the reduced form
model (3), ignoring the covariance structure

bz = (Z ′Z)−1Z ′y = H−1h (9)
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with the transformed (spatially filtered) regressors Z = R−1X (but untrans-
formed y) and we define the 2 components

H = Z ′Z = X ′(RR′)−1X, h = Z ′y = X ′R′−1y. (10)

The covariance matrix of this ’pseudo’ LS estimator is

Cov(bz) =Cov[(Z ′Z)−1Z ′y]

= (Z ′Z)−1Z ′Cov(y)Z(Z ′Z)−1

=σ2(Z ′Z)−1Z ′ΣZ(Z ′Z)−1, (11)

where we have used the correct covariance Cov(y) = σ2Σ. In case of Σ = In
we have the result

Cov(bz) = σ2(Z ′Z)−1.

Note that bz = bz(ρ) also reduces to b0 for ρ = 0.

In addition, for the reduced form (RF) model (3) the correct GLS estimator
bGLS of β is given by

bGLS = (Z ′Σ−1Z)−1Z ′Σ−1y = [Z ′(R′R)Z]−1Z ′(R′R)y

= (X ′X)−1X ′Ry

= br, (12)

which is the same as the LS of the SF model in (7). The covariance matrix of
the GLS estimator is therefore

Cov(bGLS) =Cov(br) = σ2(X ′X)−1

=σ2(Z ′Σ−1Z)−1 (13)

It is clear that ρ plays an important role for spatial modeling and estimation.
The behavior of the estimators when the value of ρ changes around zero or
the relationship between the estimators should be important information for
spatial models. Therefore the sensitivity of the estimators with respect to ρ is
studied in the next section.
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3 Local SAR sensitivity analysis

For the local sensitivity analysis for the SAR models we will use the following
estimators, which we summarize with their corresponding regression models:

• b0 = bOLS is the LS estimator in the model y = Xβ + u, u ∼ N [0, σ2In].
The covariance matrix is Cov(b0) = σ2(X ′X)−1.
• b1 is the LS estimator in the spatial lag-1 model Wy = Xβ + u, u ∼
N [0, σ2In], the basic linear regression model explaining the spatial lag Wy.
The covariance matrix is the same as before: Cov(b1) = σ2(X ′X)−1.
• br is the LS (or SF-LS) estimator in the spatial filter (SF) model Ry =
Xβ + u, u ∼ N [0, σ2In], the linear regression model explaining the spatial
filter Ry, where y is ’filtered’ by the spread matrix R = In − ρW . The
covariance matrix is Cov(br) = σ2(X ′X)−1.
• bz is the ’pseudo’ LS estimator in the reduced form (RF) model y = Zβ+ v

with Z = R−1X and instead of v ∼ N [0, σ2Σ] we impose the uncorrelated er-
ror matrix Σ = In. The covariance matrix is Cov(bz) = σ2(Z ′Z)−1Z ′ΣZ(Z ′Z)−1 =
σ2(Z ′Z)−1.

3.1 Sensitivity analysis for the spatial filter estimator br

For the spatial filter (SF-LS) estimator br we find a simple linear relationship,
which shows the difference to the LS estimator b0.

Theorem 1 (The SF-LS estimator br) The spatial filter (SF) estimator
in the SAR model (conditional on ρ) can be expressed as linear combination
of two simpler LS estimators

br = b0 − ρ(X ′X)−1X ′Wy = b0 − ρb1, (14)

and therefore the squared distance of br to the LS estimator b0 is given by

||br − b0||2 = ρ2b′1b1 = ρ2y′W ′X(X ′X)−2X ′Wy.

Proof 1 For br we can make the following substitutions

br = (X ′X)−1X ′Ry

= (X ′X)−1X ′(I − ρW )y

= (X ′X)−1X ′y − ρ(X ′X)−1X ′Wy

= b0 − ρ(X ′X)−1X ′Wy = b0 − ρb1.
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We see that the difference between the OLS and the SF-LS estimator b0−br =
ρb1 is proportional to the spatial parameter ρ and the 1st order spatial lag-1
LS estimator b1. Next, we want to find the derivative of br with respect to
ρ, which measures actually the sensitivity of br upon a small change of ρ.
For analytical and mathematical convenience, we use the differential notation
which is mathematically equivalent to the derivative. The notation of the
matrix calculus follows Magnus and Neudecker (1988/1999).

Theorem 2 (The derivative of the SF estimator br) The derivative of the
spatial filter br in (7) with respect to ρ is the negative LS estimator in the linear
model for explaining the 1st order spatial lag:

∂br/∂ρ = −(X ′X)−1X ′Wy = −b1. (15)

Proof 2 Using the result br = b0 − ρb1 in (14), we get the differential of the
br estimator with respect to ρ:

dbr =−b1dρ = −(X ′X)−1X ′Wydρ.

By rearranging terms, we establish the derivative.

We can interpret this remarkable result that the direction of the first order
correction is the OLS estimator with respect to the spatial neighbors. This
results follows from the presence of the spread matrix R in the br estimator.
The spread matrix can be interpreted as a correction of the identity matrix
with respect to the neighborhood structure W of the cross section model. It
is the direction of this ’ covariance correction’ that we get as the result of the
differencing operation. Thus, a spatial lag-1 model explains the direction of
the correction in a SAR model and is estimated by b1. The spatial ρ is just
the length of this direction.

For the pseudo LS estimator bz we cannot get results that can be presented
in a similar simple way. However, we will use the matrix differential technique
and the Taylor approximation to get a similar result, as it is shown in the next
subsection.

3.2 First order sensitivity analysis for the estimator bz

This section gives the sensitivity of the pseudo LS estimator of the reduced
form of the SAR model (3).

Theorem 3 (Sensitivity analysis of the pseudo LS estimator bz) The deriva-
tive of bz with respect to ρ takes into account the transformed variables of the
estimator
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∂bz/∂ρ=H−1[∂h/∂ρ− (∂H/∂ρ)bz)]

=H−1[X ′R′−1W ′R′−1y − (X ′R′−1(W ′R′−1 +R−1W )R−1X)bz]

=H−1[hr −Hrbz]

=P (16)

with H given in (10) and we define the two auxiliary quantities

hr =X ′R′−1W ′R′−1y and

Hr =X ′R′−1(W ′R′−1 +R−1W )R−1X.

Proof 3 For the sensitivity analysis of bz = H−1h, we need the differential of
bz with respect to ρ:

d bz = (d H−1)h+H−1(d h)

=−H−1(d H)H−1h+H−1d h

=H−1[d h−H−1(dH)H−1h] (17)

where we used differentials and partial derivatives that are given by

dR=−Wdρ

dR−1 =R−1WR−1dρ

dR′−1 =R′−1W ′R′−1dρ

dH = d(X ′R′−1R−1X) = X ′(dR′−1)R−1X +X ′R′−1(dR−1)X

=X ′R′−1(W ′R′−1 +R−1W )R−1Xdρ

∂H/∂ρ=X ′R′−1(W ′R′−1 +R−1W )R−1X

dh=X ′R′−1W ′R′−1ydρ

∂h/∂ρ=X ′R′−1W ′R′−1y (18)

with the spread matrix R = In − ρW .

Next we evaluate the derivatives at ρ = 0. Because R(ρ = 0) = In, we get
H(ρ = 0) = X ′X and

hr(ρ = 0) =X ′R′−1W ′R′−1y = X ′W ′y = hr0
Hr(ρ = 0) =X ′R′−1(W ′R′−1 +R−1W )R−1X = X ′(W ′ +W )X = Hr

0 .

Note that W ′ +W is symmetric and takes the role of a precision matrix.

Corollary 1 As a special case we get the derivative in the uncorrelated case,
denoted by P (ρ = 0) = P0, which leads to the following expression:
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P0 =H−1[hr −Hrbz]

= (X ′X)−1[X ′W ′y −X ′(W ′ +W )Xb0]. (19)

Theorem 4 (Distance between the estimators bz and b0) The distance
between the pseudo LS estimator bz and the OLS estimator b0 is given by

||bz − b0||2 = y′V y, (20)

where we have defined bz = Z+y, b0 = X+y, V = Z ′+Z+ +X ′+X+−Z ′+X+−
X ′+Z+, Z+ = (Z ′Z)−1Z ′, and X+ = (X ′X)−1X ′.

Proof 4 This follows by simplifications using the definitions of the estimators
bz in (9) and b0.

3.3 Second order sensitivity analysis for bz

The second order local sensitivity derivative of the pseudo LS estimator (9) of
the reduced form of the SAR model (3) is given in the next theorem.

Theorem 5 (2nd order sensitivity of the pseudo RF-LS estimator bz)
For the peudo LS estimator bz = H−1h in the RF model (3) we find

Q= ∂2bz/∂ρ
2

=−H−1(∂H/∂ρ)H−1[∂h/∂ρ− (∂H/∂ρ)bz]

+H−1[(∂2h/∂ρ2)− (∂2H/∂ρ2)bz − (∂H/∂ρ)(∂bz/∂ρ)]

=−H−1(∂H/∂ρ)H−1[∂h/∂ρ− (∂H/∂ρ)bz]

+H−1[(∂2h/∂ρ2)− (∂2H/∂ρ2)bz]

+H−1(∂H/∂ρ)H−1[(∂H/∂ρ)bz − ∂h/∂ρ]

=−H−1HrH
−1[hr −Hrbz]

+H−1[hrr −Hrrbz]

+H−1HrH
−1[Hrbz − hr] (21)

with the 2nd derivatives hrr = ∂2h/∂ρ2 and Hrr = ∂2H/∂ρ2.

Proof 5 We compute the first differential dbz (of the pseudo LS estimator
bz = H−1h) in (9) of Theorem 3 and get
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d2bz =−H−1(dH)H−1[(dh)− (dH)H−1h]

+H−1[(d2h)− (d2H)H−1h− (dH)dbz]

=−H−1(dH)H−1[(dh)− (dH)bz]

+H−1[(d2h)− (d2H)bz]

+H−1(dH)H−1[(dH)bz − (dh)]. (22)

From the differentials in (22) and dh, dH and db, we establish the derivative
results with hr = ∂h/∂ρ and Hr = ∂H/∂ρ as given above. Now we find

∂2h/∂ρ2 = 2X ′W ′2R′−2y

=hrr,

∂2H/∂ρ2 = 2X ′[W ′2R′−3R−1 +W ′R′−2R−2W +R′−1R−3W 2]X

=Hrr, (23)

where the last two equalities are obtained by taking the differentials of dh and
dH, which are given in (18) above.

A simplified version of the second derivative for the ρ = 0 case is found in the
following way: We compute the simplified second derivatives in (23) by

hrr(ρ = 0) = 2X ′W ′2y

Hrr(ρ = 0) = 2X ′[W ′2 +W ′W +W 2]X

= 2X ′W⊕X (24)

with the extended ’second order’ weight matrix W⊕ = W ′2 + W ′W + W 2,
which is symmetric.

Corollary 2 With the simplified first order derivatives in (19) we get
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Q0 =Q(ρ = 0)

=−H−1HrH
−1[hr −Hrbz]

+H−1[hrr −Hrrbz]

+H−1HrH
−1[Hrbz − hr]

=H−1[hrr −Hrrbz]

+H−1HrH
−1[−hr +Hrbz +Hrbz − hr]

=H−1[hrr −Hrrbz]

+2H−1HrH
−1[Hrbz − hr]

= (X ′X)−1[hrr −Hrrb0]

+2(X ′X)−1Hr(X
′X)−1[Hrb0 − hr]

= 2(X ′X)−1[X ′W ′2y −X ′W⊕Xb0]

+2(X ′X)−1X ′(W ′ +W )X(X ′X)−1[X ′(W ′ +W )Xb0 −X ′W ′y].(25)

3.4 Efficiency comparisons

The results of the next theorem allow to make the main comparison between
the estimators bz and br.

Theorem 6 (Kantorovich inequality for bz and br) The covariance ma-
trices of the two estimators bz in (9) and br in (8) can be compared and estab-
lish the efficiency of bz in terms of the covariance matrix of the br estimator:

Cov(br) ≤ Cov(bz)≤ k1Cov(br),

k1 =
(λ1 + λn)2

4λ1λn
; (26)

ΣD = Cov(bz)− Cov(br)≤ k2σ2(Z ′Z)−1,

k2 = (
√
λ1 −

√
λn)2; (27)

|Cov(bz)[Cov(br)]
−1| ≤ k3,

k3 =
n∏

j=1

(λj + λn−j+1)
2

4λjλn−j+1

; (28)

tr Cov(bz)[Cov(br)]
−1≤ k4,

k4 =
n∑

j=1

(λj + λn−j+1)
2

4λjλn−j+1

, (29)

where λ1 ≥ ... ≥ λn > 0 are the eigenvalues of R′R.
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Note that the constant k1 can be interpreted as least squares inefficiency, since
it compares the RF estimator with the SAR spatial filter model, and k2 is the
upper bound or a size constant for the difference between the two covariance
matrices of bz and br. The constant k3 is the upper bound for the ratio of
determinants while k4 is a bound for the trace of the ’ratio’ of covariance
matrices.

Proof 6 The covariance matrices of the two estimators are given by Cov(bz) =
σ2(Z ′Z)−1Z ′ΣZ(Z ′Z)−1 as in (11) and Cov(br) = σ2(Z ′Σ−1Z)−1 as in (8),
where the transformed variables of the reduced form are given in (3). Compar-
ing them we find Cov(br) ≤ Cov(bz) due to the Cauchy-Schwarz inequality

(Z ′Σ−1Z)−1 ≤ (Z ′Z)−1Z ′ΣZ(Z ′Z)−1,

and Cov(bz) ≤ k1Cov(br) due to the Kantorovich inequality

(Z ′Z)−1Z ′ΣZ(Z ′Z)−1 ≤ k1(Z
′Σ−1Z)−1,

where the constant k1 is given in (26). This constant k1 was derived by using
V = Z(Z ′Z)−1/2 and V ′ΣV ≤ k1(V

′Σ−1V )−1, for V ′V = I; see e.g. Proposi-
tion 1 of Liu (1995, page 48).

The difference between the covariance matrices of the pseudo RF-LS and the
SF-LS estimators can be derived in closed form by

Cov(bz)− Cov(br) = σ2(Z ′Z)−1Z ′ΣZ(Z ′Z)−1 − σ2(Z ′Σ−1Z)−1

= σ2(Z ′Z)−1/2[(Z ′Z)−1/2Z ′ΣZ(Z ′Z)−1/2

−((Z ′Z)−1/2Z ′Σ−1Z(Z ′Z)−1/2)−1](Z ′Z)−1/2

≤M = k2σ
2(Z ′Z)−1

and we get the constant k2 from V ′ΣV − (V ′Σ−1V )−1 ≤ k2I, for V ′V = I with
V = Z(Z ′Z)−1/2, see Liu and Neudecker (1994). Note that the difference is
non-negative definite and the upper bound comes with k2.

The other 2 constants k3 and k4 can be obtained in the following way:
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Cov(bz)[Cov(br)]
−1 = (Z ′Z)−1Z ′ΣZ(Z ′Z)−1Z ′Σ−1Z,

|Cov(bz)[Cov(br)]
−1|= |(Z ′Z)−1Z ′ΣZ(Z ′Z)−1Z ′Σ−1Z|

= |(Z ′Z)−1/2Z ′ΣZ(Z ′Z)−1Z ′Σ−1Z(Z ′Z)−1/2|
≤ k3, (30)

trCov(bz)[Cov(br)]
−1 = tr(Z ′Z)−1Z ′ΣZ(Z ′Z)−1Z ′Σ−1Z

= tr(Z ′Z)−1/2Z ′ΣZ(Z ′Z)−1Z ′Σ−1Z(Z ′Z)−1/2

≤ k4. (31)

The results in (30) and (31) rely on the following inequalities |V ′ΣV V ′Σ−1V | ≤
k3 and tr(V ′ΣV V ′Σ−1V ) ≤ k4, for V ′V = I, and these inequalities were shown
e.g. in Theorem 1 in Liu (2000).

Furthermore, we can derive an inequality for the difference of the covariance
matrices of the pseudo and ordinary LS point predictions, i.e. yz = Zbz and
yr = Zbr:

Cov(Zbz)− Cov(Zbr)≤ k2σ2Z(Z ′Z)−1Z ′

≤ k2σ2In, (32)

where k2 is the same constant as given above and Z(Z ′Z)−1Z ′ ≤ I is known
from linear regression theory. Thus, the increase in uncertainty or efficiency
loss also turns over to the same type of efficiency loss if it comes to predictions
with the pseudo RF or SF estimator that are based on the SAR model.

Note that the constants k1 and k2 depend on the minimum and maximum
eigenvalues of R′R, and therefore on the spread matrix R, which implies on ρ
and the neighborhood matrix W . The dependence on W increases if the eigen-
values of W start dominating the size of ρ. In fact, the constant k1 depends
on (c+ 1)2/4c, where c = λ1/λn is the condition number of R′R.

Therefore any R′R matrix that increases the condition number will increase
the constant k1. We see that the covariance matrix of bz can be almost as good
as the one of br (and therefore bz can be ’almost as good’ as br) if k1 is close
enough to one. In particular, the variances on the main diagonal of Cov(bz)
have upper bounds by k1 times the variances on the main diagonal of Cov(br):

V ar(bz(i)) ≤ k1V ar(br(i)) for i = 1, ..., k, (33)

where bz(i) and br(i) are the elements of the vectors bz and br.

Furthermore, we conclude that the covariance matrix of the pseudo LS esti-
mator bz can be almost as good as that one of br if the constant k2 is close
enough to zero. In particular, the differences of the variances on the main
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diagonal of Cov(bz) and Cov(br) are upper bounded by k2 times the main
diagonal of (Z ′Z)−1 (besides σ2). Equivalently, the main diagonal of the dif-
ference of Cov(Zbz) and Cov(Zbr) is upper bounded by k2, apart from σ2.
In other words, the efficiency loss of the point predictors is measured by the
covariance matrices of the predictors and is at most k2.

Since the difference is positive for all type of comparisons we conclude that
the pseudo RF estimator comes (necessarily) with more uncertainty than the
SF-LS estimator in the spatial filter model. Knowing that ρ can reduce the
uncertainty of all the estimated regression coefficients, the result is indepen-
dent of the way efficiency comparison is made. The unknown ρ blows up the
correlation structure of the residuals, and this property creates additional het-
eroskedasticity and does not reduce the uncertainty in the covariance matrix.

We are interested how the above findings of the approximate SAR estimators
can translate into the questions as how good are predictions that are made
by approximate SAR estimators. Let z be a vector of known regressor values
where we make the prediction with the estimator b of β by ŷ = z′b then we
have V ar(ŷ) = V ar(z′b) = z′Cov(b)z, and we look at the difference of the
covariance matrices of the predictions made by bz and br

Cov(z′bz)− Cov(z′br) = z′Cov(bz)z − z′Cov(br)z

= z′[Cov(bz)− Cov(br)]z

≤ z′Mz, (34)

where M = k2σ
2(Z ′Z)−1 is the upper bound matrix of the difference ΣD =

Cov(bz)− Cov(br).

4 Taylor approximation for the SAR estimator

Based on the first and second order derivative results for the pseudo LS esti-
mator bz of the SAR model from the previous section we find for the Taylor
expansion of the LS estimator around the OLS location b0 = bz(ρ = 0) by
the mean value theorem of calculus (see Magnus and Neudecker 1988/1999,
p. 113). The twice differentiable functions are:

φ(c+ u) = φ(c) + dφ(c;u) + d2φ(c+ θu;u)/2 for 0 < θ < 1

, where the first derivative is dφ(c;u) = (dbz)ρ and the second derivative is
d2φ(c+ θu;u) = (d2bz)ρ

2. In our case c denotes the point of the OLS location
(ρ = 0) and u is the value of the ρ parameter around 0.
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bz(ρ) = b0 + (dbz/dρ)ρ+ (d2bz/dρ)ρ2θ/2, for 0 < θ < 1, (35)

and the first and second order differentials, dbz and d2bz, are given in Theorems
3 and 5, respectively.

4.1 First and second order Taylor approximation for SAR models

This section develops the Taylor approximation for the SAR model.

Theorem 7 (First and second order Taylor approximation ) The first
order Taylor approximation of the bz(ρ) estimator around b0 = β̂ is:

bz(ρ) = b0 + P0ρ+O(ρ2) (36)

with P0 given in (19). The 2nd order Taylor approximation for the SF-OLS
estimator bz around the OLS location b0 = β̂ is given by

bz(ρ) = b0 + P0ρ+Q0ρ
2/2 +O(ρ3), (37)

where the vectors P0 and Q0 are as given in (19) and (25), respectively. They
are the first and second order derivatives (obtained in Theorems 3 and 5),
evaluated at the uncorrelated case ρ = 0.

Proof 7 : The result is obtained by plugging (16) and (21) into (35).

5 Example: European NUTS2 regional data

In this section we demonstrate our approach by a numerical example. We
make simulations by setting ρ to range from -0.3 to 0.3 in steps of 0.05 from
the SAR model

y= ρWy +Xβ + u, u ∼ N(0, σ2).

and we apply their SAR sensitivity analysis to an empirical regional example
with data from Europe (Eurostat). We estimate an simple GDP - employment
relationship for 239 European NUTS2 1 regions. Our variable of interest is

1 The Nomenclature of Territorial Units for Statistics (NTUS), for the French
nomenclature d’unités territoriales statistiques) is a geocode standard for referenc-
ing the subdivisions of countries for statistical purposes. The standard is developed
and regulated by statistical office of the European Union, Eurostat.
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the log of GDP in the year 2005 and as regressors we use the log of employ-
ment in 2005 and the population density. All data are taken from the Eurostat
regional database. The spatial weight matrix W is row-normalized and con-
structed by the inverse distances between the regions. As distances we have
used car travel times in minutes between the main locations of the NUTS2
regions, whereas we define the spatial cut-off point by 300 minutes. So if the
car travel time between two regions exceeds 300 minutes, those regions are not
defined as neighbors. The results of the SAR estimation program using the
spatial-econometrics library in Matlab (see: www.spatial-econometrics.com) is
shown in Table 1.

Table 1
SAR estimation results

Dependent Variable: logGDP2005

coef estimate (SD) t-stat p-prob

constant 4.241 (0.370) 11.468 0.0000

log employment2005 0.869 (0.050) 17.470 0.0000

log populationdensity2005 0.200 (0.036) 5.562 0.0000

ρ 0.062 (0.020) 3.172 0.0015

R2 0.6300

R̄2 0.6269

observations 239

log-likelihood -139.677

We have used the ρ of the estimation above as a comparison value and con-
structed the measures. The results given in Figures 1, 5 and 6 indicate the
second-order approximation value is better than the first-order approximation
and the approximation error is close to zero.

Figure 1 shows the Euclidean 2 distance between bz and the OLS estimator
and the Taylor series approximations as function of ρ’s in the interval -0.3 to
0.3. Interestingly, the graphs are quite symmetric and diverge quadratically at
both sides. While the first order approximation is only a good for very small
ρ’s (less than .1), the second-order approximation is good up to a rho value
of 0.25, then it quickly deteriorates. The difference of the constants k1 and k2

2 The values have been transformed for clarity of the depiction. First the distances
have been multiplied by 1E9 and then logs have been taken, whereas the zero values
have been set to the non-transformed value, which is zero.
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lies in the fact that k2 is the constant for the difference between 2 estimators
where the upper bound matrix are quite different for these 2 cases.

Fig. 1. Distances (log transformation) between bz and the OLS estimator and the
Taylor series approximations for different ρ’s

Figure 2 shows the behavior of the coefficient estimates in dependence of ρ.
The SAR estimates of the model is about histogram at the ρ = 0.05 value
of the chart. Moreover, all curves show a monotonic decreasing trend and the
coefficient population density, which is the smallest, has also the flattest slope
(least sensitive to ρ). The standard deviation of the employment coefficient is
0.05 and this is the change in the SAR estimate if we move say from ρ = 0.2
to ρ = 0.1.

Fig. 2. bz for different ρ’s

Figure 3 plots the Kantorovich constants k1 and k2 for different ρ’s. Both
curves are symmetric around 0 and show a quadratic behavior. Both curves
show an increase of (efficiency loss) about 50% when rho approaches +/−0.3.

Figure 4 displays the Kantorovich constants k3 and k4 for different ρ’s.
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Fig. 3. The Kantorovich constants k1 and k2 for different ρ’s

Fig. 4. The constants k3 and k4 for different ρ’s

Fig. 5. NUTS2 example: The first order derivative (P ) for different ρ’s

Figures 5 and 6 show the first and second order derivatives of the bz estimator
of the regional NUTS2 example, respectively.
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Fig. 6. NUTS2 example: Second order derivative (Q) for different ρ’s

6 Conclusions

In this paper we have derived several results for the sensitivity analysis of the
LS estimators in the spatial autoregressive (SAR) model. We used new results
on the Kantorovich inequality to examine the quality of the approximation
with respect to the difference of the covariance matrices. The main goal was
to find the Taylor approximation with respect to ρ in the SAR model and to
measure the difference of the LS estimator, which is non-linear function in ρ,
from the ordinary LS estimator. In an empirical example involving regional
economic data in Europe we have shown that the Taylor approximation of the
LS estimator of the SAR model gives good approximation results for small ρ’s,
say up to +/−0.4. The efficiency loss according to the Kantorovich inequality
is about 50% when ρ approaches +/ − 0.3. These values were found in an
example involving regional economic growth in Europe.

There is an interesting result that needs further research: The Taylor approx-
imation based on the pseudo OLS estimator bz gives better results than for
the spatial filter estimator br, as was shown in Figure 1. While the reason for
this result is given in Theorems 1 and 4, this is rather surprising since br is
more efficient than bz. Thus, for approximating non-linear estimators it can
be sometimes useful to look for simpler estimators that can be better approx-
imated by a Taylor series. The approximation results are encouraging since
they allow good first step approximations for non-linear LS methods or can be
used as a proposal densities in the Metropolis step of a MCMC algorithm. An
open question is if other or better approximations can be found for medium
or large ρ values. In a further research paper, we intend to show that these
approximations results can be applied to a larger class of spatial models.
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