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Abstract 

We study the benefits of forecast combinations based on forecast-encompassing tests rela-
tive to uniformly weighted forecast averages across rival models. For a realistic simulation 
design, we generate multivariate time-series samples of size 40 to 200 from a macroeco-
nomic DSGE-VAR model. Constituent forecasts of the combinations are formed from four 
linear autoregressive specifications, one of them a more sophisticated factor-augmented 
vector autoregression (FAVAR). The forecaster is assumed not to know the true data-gener-
ating model. Results depend on the prediction horizon. While one-step prediction fails to 
support test-based combinations at all sample sizes, the test-based procedure clearly domi-
nates at prediction horizons greater than two. 
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1 Introduction

Forecast combination is often used to improve forecast accuracy. A linear combination

of two or more predictions often yields more accurate forecasts than a single prediction

when useful and independent information is taken into account (see Bates and Granger,

1969; Clemen, 1989; Timmermann, 2006). In this paper we evaluate the gains in terms of

predictive accuracy that can be achieved by combining forecasts on the basis of a multiple

encompassing test developed by Harvey and Newbold (2000) as compared to combinations

based on simple uniform weights. We focus on predicting real gross domestic product

(GDP), the output variable of central interest in macroeconomic analysis. A novelty of

this paper is that we use a DSGE-VAR model as the generating mechanism for our data.

This hybrid model builds on the DSGE (dynamic stochastic general equilibrium) model

suggested by Smets and Wouters (2003) and fuses it to a VAR (vector autoregressive)

model following Del Negro and Schorfheide (2004).

Forecast comparisons are often conducted for samples of accounts data taken from

databases for several countries. Costantini and Kunst (2011) use French and U.K. data

in order to investigate whether and to what extent combined forecasts with weights de-

termined by multiple encompassing tests help in improving prediction accuracy. Results

show some benefits for test-based weighting in one of their two data sets. This approach,

however, has some limitations as the data-generating mechanism remains unknown and

the performance of prediction methods may be affected by sample-specific features such

as extraordinary recessions and booms or abrupt policy changes. For this reason, Monte
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Carlo simulations play a crucial role in assessing the empirical value of forecast techniques.

Unlike empirical applications, comparisons based on simulations are immune to sampling

variation, their precision is limited by the number of replications only. Simulation designs,

however, must be carefully chosen if the results are to be relevant for typical empirical sit-

uations. Linear vector autoregressions (VAR), as they were used as designs in parametric

bootstraps by Costantini and Kunst (2011), may miss important aspects of the complex

dynamic interaction at work in actual economies. To address this point, the present paper

simulates data from a DSGE-VAR structure that builds on a DSGE model, which in turn

has been suggested for Euro area data by Smets and Wouters (2003).

Our interest in using a DSGEmodel for generating data arises from the ubiquitous usage

of this modelling approach in current macroeconomic practice, which makes it plausible

to view designs of this type as approximating a realistic macroeconomic world. Over the

past two decades, these so-called New Keynesian models have been spreading out in the

macroeconomic literature, varying in their levels of complexity as well as in the specific

focus of application. For example, customized models are used nowadays by virtually every

central bank in the world. These institutions are mainly interested in empirical policy

analysis (see, e.g., Smets and Wouters 2003), forecasting (see, e.g., Smets and Wouters

2004), or both. In those applications of DSGE models, Bayesian estimation techniques

play a major role (see An and Schorfheide, 2007, for a survey).

In contrast to previous work (Costantini et al., 2010), we here rely on a hybrid DSGE-

VAR specification due to Del Negro and Schorfheide (2004), as it has evolved that these

DSGE-VAR models attain a more realistic representation of actual data than the pure
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DSGE variant. We also outline the differences between the results from the two variants.

Our forecasting evaluation assumes that the forecaster has no knowledge of the underly-

ing DSGE or DSGE-VAR model. She considers four time-series specifications as potential

approximations to the generating mechanism: a univariate autoregression; two bivariate

autoregressions that contain the target variable and one of two main indicator variables,

the (nominal) interest rate and the rate of inflation; and a factor-augmented VAR (FAVAR)

model that adds two or three estimated common factors to output in order to form a three-

or four-dimensional VAR.

The question whether VAR models mimic the dynamic behavior of DSGE models is

not completely settled in the literature. Among others, Kascha and Mertens (2009) show

that vector autoregressions can be good approximations to the dynamic behavior of DSGE

models, while Ravenna (2007) criticizes the quality of this approximation. Boivin and

Giannoni (2006) interpret the FAVAR as the reduced form of a DSGE model in the context

of short-run forecasting. Gupta and Kabundi (2011) forecast South African data using

a DSGE model and FAVAR variants as rival models and find that the FAVAR models

outperform the DSGE model. We emphasize, however, that we do not address the issue

of DSGE as a prediction device—which is a topic of current interest in the forecasting

literature—but we rather use the DSGE-type structures as realistic simulation designs.

From the four models, the forecaster is assumed to form weighted averages for the

target variable of output. To this aim, forecast-encompassing regressions (see Section 2)

are run in all directions, encompassed models are eliminated as determined by F-statistics

and a specific significance level, and the surviving models are averaged uniformly. The
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multiple encompassing test of Harvey and Newbold (2000) is also considered by Costantini

and Pappalardo (2010), who use it to corroborate their hierarchical procedure for forecast

combinations that is based on a simple encompassing test of Harvey et al. (1998). By

contrast, the procedure considered here attains complete symmetry with respect to all

rival forecasting models, as the multiple encompassing test is run in all directions.

We evaluate the forecasts for various sample sizes ranging from 40 to 200 observations,

i.e. for a range that may be typical for macroeconomic forecasting, on the basis of the

traditional moment-based criteria MSE (mean squared error) and MAE (mean absolute

error) and also by the incidence of better predictions. For the test procedure, we consider

significance levels ranging in 1% steps from 0—which corresponds to uniform weighting—to

10%. The results support testing at sharp levels, mainly at 1%. We also find that simple

uniform weighting is difficult to beat and that sample sizes of 200 or more may be needed to

firmly establish the relative merits of test-based weighting in single-step prediction. Results

in favor of uniform weighting relative to more sophisticated methods are well in line with

the forecasting literature (see de Menezes and Bunn, 1993; Clements and Hendry, 1998;

Timmermann, 2006). At larger horizons, however, our results tend to support test-based

weighting even in smaller samples.

In summary, our experiment is of interest with regard to two aspects: first, it assesses

the value of forecast combinations based on multiple encompassing in a realistic DSGE-

VAR design; second it assesses the effects on forecast accuracy by dimension reduction in

the spirit of FAVAR models.

The plan of this paper is as follows. Section 2 outlines all methods: the forecast-
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encompassing test, the weighting scheme based on that test, and the rival prediction models

that are to be combined. Section 3 details the DSGE-VAR model specification and the

simulation design. Section 4 presents the results of the prediction evaluation. Section 5

concludes.

2 Methodology

2.1 Encompassing test procedure for forecasting combination

This section presents the encompassing test procedure used to determine the weights in

the combination forecast. The procedure is based on the multiple forecast encompassing

F–test developed by Harvey and Newbold (2000).

Consider M forecasting models that deliver out-of-sample prediction errors e
(k)
t , k =

1, . . . ,M for a given target variable Y , with t running over an evaluation sample that is

usually a portion of the sample of available observations. Then, the encompassing test

procedure uses M encompassing regressions:

e
(1)
t = a1(e

(1)
t − e

(2)
t ) + a2(e

(1)
t − e

(3)
t ) + . . .+ aM−1(e

(1)
t − e

(M)
t ) + u

(1)
t ,

e
(2)
t = a1(e

(2)
t − e

(1)
t ) + a2(e

(2)
t − e

(3)
t ) + . . .+ aM−1(e

(2)
t − e

(M)
t ) + u

(2)
t ,

. . .

e
(M)
t = a1(e

(M)
t − e

(1)
t ) + a2(e

(M)
t − e

(2)
t ) + . . .+ aM−1(e

(M)
t − e

(M−1)
t ) + u

(M)
t . (1)

These homogeneous regressions yield M regression F statistics. A model k is said to
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forecast-encompass its rivals if the F statistic in the regression with dependent variable

e
(k)
t is insignificant at a specific level of significance. Following the evidence of the forecast-

encompassing tests, weighted average forecasts are obtained according to the following rule.

If F–tests reject or accept their null hypotheses in all M regressions, a new forecast will

be formed as a uniformly weighted average of all model-based predictions. If some, say

m < M , F–tests reject their null, only those M −m models that encompass their rivals

are combined. In this case, each of the surviving models receives a weight of (M −m)−1.

2.2 The forecasting models

Forecasts are based on four classes of time-series models and on combinations of represen-

tatives from these four classes that have been estimated from the data by least squares

after determining lag orders by information criteria. As information criteria, we employ

the AIC criterion by Akaike and the BIC criterion by Schwarz (see Lütkepohl, 2005).

The first model class (model #1) is a univariate autoregressive model for the targeted

output series. The second and third model are two bivariate vector autoregressive models

(VAR). Model #2 contains output and inflation, and model #3 contains output and the

nominal interest rate. This choice of added variables has been motivated by the fact that

inflation and the interest rate are often viewed as main economic business-cycle indicators

and they are also more often reported in the media than the remaining variables of the

DSGE system.

The fourth and last model class (model #4) is a factor-augmented VAR (FAVAR)
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model. Suppose that Yt is the target variable to be predicted (GDP), while Ft is a vector

of unobserved factors that are assumed as related to a matrix of observed variables X by

the linear identity F = XΛ with unknown Λ, such that the column dimension of F is

considerably smaller than that of X . A FAVAR model can be described as follows:

Φ(L)









Yt

Ft









= εt, (2)

where Φ(L) = I − Φ1L − . . .− ΦpL
p is a conformable lag polynomial of finite order p. L

denotes the lag operator, and I denotes the identity matrix. Equation (2) defines a VAR

in (Yt, F
′

t )
′. This system reduces to a standard univariate autoregression for Yt if the terms

in Φ(L) that relate Yt to Ft−j , j = 1, . . . , p are all zero. Equation (2) cannot be estimated

directly, as the factors Ft are unobserved.

The proper estimation of the models requires the use of factor analysis (see Stock and

Watson, 1998, 2002). The estimation procedure consists of two steps. In the first step,

the factors F are estimated using principal component analysis. The minimum of the

BIC(3) criterion developed by Bai and Ng (2002) determines the number of factors, i.e.

the dimension of F . In the second step, the FAVAR model is estimated by a standard VAR

method with Ft replaced by the estimate F̂t that is available from the first step.

Thus, in our forecast experiments, the FAVAR forecasts rely on VAR models for the tar-

get output series and two or three additional factors that have been selected automatically

from combinations of the nine remaining observable variables of the DSGE system that is
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detailed in Section 3. The choice of the numbers two and three has been motivated by the

fact that it is customary not to use more than a maximum of three factors if nine series

are available. In fact, we use two or three as upper bounds on the factor dimension but

the information criterion BIC(3) always selects the maximum dimension. This indicates

that the variables in the DSGE system are quite heterogeneous and that the information

in the system cannot be easily condensed to a low dimension.

It follows that the FAVAR formed using this procedure has a dimension of three or four.

On the whole, we consider four variants of our simulation design: AIC and BIC selection

of lag orders and two or three additional factors in the FAVAR.

The four rival model classes are incompletely nested, with models #2 to #4 representing

generalizations of model #1 and models #2 and #3 representing special cases of #4. Due

to the lag selection that tends to choose larger lag orders for the univariate model, however,

the general situation is to be seen as non-nested.

For a given considered sample size of N , all models are estimated for samples of size

3N/4 to N − h − 1 using expanding windows, with h = 1, . . . , 4 denoting the prediction

horizon. Then, the next observation at position t = 3N/4 + h, . . . , N − 1 is forecasted. In

the following, these prediction experiments will be referred to as the predictions using the

basic rival models. Note that an original sample of size N = 200 yields one-step forecasts

based on 150 observations up to 198 observations. Thus, the reported accuracy measures

average estimates of different quality. However, our design represents the action taken

by a forecaster who observes 199 data points and targets the forecast for the observation

at N = 200 by optimizing her combinations of the basic rival forecasts to this aim. In
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other words, the report of the forecasts from the basic rival models is to be seen as an

intermediate step.

For each replication, we consider combinations of forecasts based on weighted averages

of the four basic rival models for the observations at time points t = N . These combinations

are determined by the forecast-encompassing tests outlined above. For the F tests, we

consider significance levels of k ∗ 0.01 with k = 0, . . . , 10. Note that k = 0 corresponds to

a uniform average, as no F statistic can be significant at the 0% level and hence models

always encompass all other models. By contrast, k = 10 corresponds to a significance

level of 10%. At sharp levels, forecast encompassing remains often unrejected, and many

combinations will be uniform. At looser levels, rejections become more common, and some

models will be excluded from the average. At extreme levels, no model will encompass and

weights will again tend to be uniform. We do not consider levels beyond 10%, however, as

these are unlikely to be of practical use, and some unreported experiments insinuate that

they do not improve predictive accuracy.

3 The data-generating process

3.1 A medium-scale DSGE model

Smets and Wouters (2003) originally developed a medium-scale DSGE model of the Euro

area and estimated it based on quarterly data and Bayesian techniques. Our objective,

however, is to use this closed-economy model in order to create artificial data.
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We decided for the model by Smets and Wouters (2003) due to the following two prop-

erties. First, the model remains present in the empirical DSGE literature. Besides its

original application for policy analysis and forecasting in the Euro area (see Smets and

Wouters, 2003, 2004), it was also successfully adapted to US data (see Smets and Wouters,

2005, 2007). Second, it achieves an attractive level of complexity, as it concentrates on the

main features of a realistic macroeconomy and avoids being too country-specific. Onatski

and Williams (2010) investigate the effects of introducing an assumption of prior uncer-

tainty. While parameter estimates differ from the original values, many of the qualitative

features of the Smets and Wouters (2003) model remain intact.

The subsequent ten expectational difference equations constitute the log-linear repre-

sentation of this fully micro-founded model. For a detailed derivation of these equations

see Smets and Wouters (2003). All variables are given in percentage deviations from the

non-stochastic steady state, denoted by hats. The endogenous variables are consumption

Ĉ, real wage ŵ, capital K̂, investment Î, real value of installed capital Q̂, output Ŷ , labor

L̂, inflation π̂, rental rate of capital r̂k, and gross nominal interest rate R̂. For a description

of all model parameters appearing below see Table 1.

The economy is inhabited by a continuum of measure 1 of infinitely-lived households

who maximize the present value of expected future utilities. The optimal intertemporal

allocation of consumption characterized by external habit formation is given by:

Ĉt =
h

1 + h
Ĉt−1 +

1

1 + h
Et{Ĉt+1} −

1− h

(1 + h)σc
{R̂t − Et(π̂t+1)}+

1− h

(1 + h)σc
εbt . (3)
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Households are monopolistically competitive suppliers of labor and face nominal rigidities

in terms of Calvo (1983) contracts when resetting their nominal wage. These assumptions

imply a New Keynesian Phillips curve for the real wage, which is characterized by partial

indexation:

ŵt =
β

1 + β
Et(ŵt+1) +

1

1 + β
ŵt−1 +

β

1 + β
Et(π̂t+1)−

1 + βγw
1 + β

π̂t +
γw

1 + β
π̂t−1

−
1

1 + β

(1− βξw)(1− ξw)

{1 + (1+λw)σl

λw
}ξw

{ŵt − σlL̂t −
σc

1− h
(Ĉt − hĈt−1) + εlt}+ ηwt . (4)

Capital is also owned by households and accumulates according to:

K̂t = (1− τ)K̂t−1 + τ Ît−1. (5)

Investment, which is subject to adjustment costs, evolves as follows:

Ît =
1

1 + β
Ît−1 +

β

1 + β
Et(Ît+1) +

ϕ

1 + β
Q̂t + εit. (6)

The corresponding equation for the real value of installed capital reads:

Q̂t = −{R̂t − Et(π̂t+1)}+
1− τ

1− τ + r̄k
Et(Q̂t+1) +

r̄k

1− τ + r̄k
Et(r̂

k
t+1) + ηqt . (7)

Moreover, there is also a continuum of measure 1 of monopolistically competitive inter-

mediate goods producers who maximize the present value of expected future profits while
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facing the subsequent production function:

Ŷt = φεat + φαK̂t−1 + φαψr̂kt + φ(1− α)L̂t. (8)

Their labor demand equation is therefore given by:

L̂t = −ŵt + (1 + ψ)r̂kt + K̂t−1. (9)

Similar to households, intermediate goods producers face nominal rigidities in terms of

Calvo (1983) contracts when resetting their price. These assumptions imply the standard

New Keynesian Phillips curve, which again is characterized by partial indexation:

π̂t =
β

1 + βγp
Et{π̂t+1}+

γp
1 + βγp

π̂t−1

+
1

1 + βγp

(1− βξp)(1− ξp)

ξp
{αr̂kt + (1− α)ŵt − εat }+ ηpt . (10)

Using data from 13 OECD countries, Korenok et al. (2010) showed that this way of

modelling firms’ price-setting behaviour—sticky prices in combination with indexation—

represents actually observed behaviour quite well.

The goods market equilibrium condition reads:

Ŷt = (1− τky − gy)Ĉt + τky Ît + εgt . (11)

Finally, monetary policy is assumed to be implemented by the following Taylor-type
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interest-rate rule:

R̂t = ρR̂t−1+(1−ρ){π̄t+ rπ(π̂t−1− π̄t)+ryŶt}+ r∆π(π̂t− π̂t−1)+r∆y(Ŷt− Ŷt−1)+η
r
t . (12)

Differing from the original article, we assume that the interest-rate rule depends on actual

output only, but not on hypothetical potential output.

Equations (3)–(12) contain six macroeconomic shocks that are assumed to follow in-

dependent stationary AR(1) processes of the form εt = ρεt−1 + ηt with ρ ∈ (0, 1) and η

i.i.d. ∼ N(0, ς2η ). More specifically, there is a consumption preference shock εb in equation

(3), a labor supply shock εl in equation (4), an investment shock εi in equation (6), a

productivity shock εa in equation (10), a government spending shock εg in equation (11),

and an inflation objective shock π̄ in equation (12).

In addition, there are four shocks assumed to follow i.i.d. processes ∼ N(0, ς2η ): there

is a real-wage mark-up shock ηw in equation (4), an equity-premium shock ηq in equation

(7), a price mark-up shock ηp in equation (10), and an interest-rate shock ηr in equation

(12).

The parameter values given in Table 1 correspond to the modes of the posterior distri-

butions of the parameters in case those were estimated in Smets and Wouters (2003) or,

otherwise, to the values that were kept fixed during Bayesian estimation. All parameter

values guarantee that the Blanchard and Kahn (1980) conditions are satisfied, which means

that there are six eigenvalues of the coefficient matrix of the equation system (3)–(12) larger

than 1 in modulus for its six forward-looking variables (Ĉ, ŵ, Î, Q̂, π̂, r̂k). Hence, there is
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a unique stationary solution to the equation system (3)–(12).

3.2 The DSGE-VAR simulation design

Smets and Wouters (2003) originally developed a medium-scale DSGE model of the Euro

area and estimated it based on quarterly data and Bayesian techniques. At first sight,

this closed-economy model has the two desirable properties for creating artificial data that

we mentioned above, i.e. relevance in macroeconomics due to widespread usage and an

attractive level of complexity.

Nonetheless, whereas Smets and Wouters (2003) find that their DSGE models attain a

higher marginal likelihood than VARs—which would promise a better out-of-sample pre-

dictive performance—Del Negro et al. (2007) warned that such findings crucially hinge on

the observation sample. Even relatively sophisticated DSGE models are not robust against

small changes in the sample period, hence a non-negligible degree of misspecification in

DSGE models is apparent. In consequence, policy recommendations and forecasts based

on this model class could be biased, and the empirical plausibility of artificial data gen-

erated by such a model may be impaired. Moreover, Smets and Wouters (2007) find that

the estimates for some of the model parameters differ considerably between the ‘Great

Inflation’ (1966Q1–1979Q2) and ‘Great Moderation’ (1984Q1–2004Q4) subsamples in US

data, which casts doubt on the validity of approximating the actual economy by a DSGE

model with time-constant parameters.

One way of addressing this misspecification issue is to replace the pure DSGE data-
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generating process by a hybrid DSGE-VAR that is known to be much less sensitive to

changes in the observation period and also typically attains a higher marginal likelihood

than both VAR and DSGE specifications (see Del Negro et al., 2007). The DSGE-VAR

developed by Del Negro and Schorfheide (2004) and Del Negro et al. (2007) is a Bayesian

VAR (BVAR) that uses the information provided by a DSGE model as an informative

prior for BVAR estimation. The impact of the DSGE information relative to the actual

sample information is measured by some hyper-parameter ℵ ∈ (0,∞], which can either be

kept fixed during estimation or estimated together with the DSGE model parameters (see

Adjemian et al., 2008). A value of ℵ close to 0 corresponds to an unrestricted VAR at the

one extreme, whereas a value of ℵ equal to ∞ corresponds to the VAR approximation of

the DSGE model at the other extreme (see Del Negro et al., 2007).

The misspecification of the DSGE model class also shows in the optimal weight of the

DSGE information for constructing the DSGE-VAR prior of ℵ∗ = 1.25 for the sample

from 1974Q2–2004Q1 in Del Negro et al. (2007), which reflects an optimal impact of the

information provided by the DSGE model of around 55% for DSGE-VAR estimation. For

the derivation of the DSGE-VAR prior and posterior distributions as well as for a more

technical description of the DSGE-VARmethodology, see Del Negro and Schorfheide (2004)

and Del Negro et al. (2007).

Our aim is to generate artificial data that are empirically plausible across countries

and sample periods. We therefore apply the subsequent three-step DSGE-VAR procedure

while employing the Dynare preprocessor for Matlab, which is downloadable in its current

version from http://www.dynare.org:
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Step 1. We generate 2,000 time series, each of length 1,100, for ten key macroeconomic

variables (consumption Ĉ, real wage ŵ, capital K̂, investment Î, real value of installed

capital Q̂, output Ŷ , labor L̂, inflation π̂, rental rate of capital r̂k, and gross nominal

interest rate R̂) from the original Smets and Wouters (2003) model as laid out in Section

3.1.

Step 2. Discarding the first 100 observations of each of the 2,000 time series as burn-

in draws, the remaining T = 1, 000 observations serve as the data sample for estimating

a DSGE-VAR of lag order p = 2 via Bayesian techniques. The posterior distribution

of a DSGE-VAR model cannot be determined analytically, hence a Monte-Carlo Markov

chain sampling algorithm has to be invoked to simulate the distribution of the vector of

DSGE-VAR model parameters (for a survey on Bayesian inference in DSGE models see An

and Schorfheide, 2007). In particular, we adopt a Metropolis-Hastings algorithm with two

parallel Monte-Carlo Markov chains, each consisting of 55,000 draws. The first half of the

draws are discarded before computing the posterior simulations. A desirable acceptation

rate of draws according to Roberts et al. (1997) of about one third is met across simulations.

The DSGE model used for constructing the DSGE-VAR prior again is the model by

Smets and Wouters (2003) as given by equations (3)–(12). Due to the computational

burden associated with 2,000 full-fledged Metropolis-Hastings simulations, we declare our

target variable of interest (Ŷ ), the two additional variables used in the bivariate VAR

forecast models (R̂, π̂), and two auxiliary variables (ŵ, r̂k) as the only observed variables,

i.e. there are m = 5 observed variables altogether. We further restrict the number of free

parameters to those listed in Table 2. Concerning the prior probability density functions
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as well as the prior means and standard deviations of the DSGE model parameters, we

again follow Smets and Wouters (2003).

In line with Adjemian et al. (2008), we choose to estimate the hyper-parameter ℵ along

with the deep parameters of the DSGE model. Similar to Adjemian et al. (2008), we

assume a uniform distribution for the hyper-parameter between ℵ = 0.1, corresponding

to an impact of the DSGE model information of about 10%, and ℵ = 10, corresponding

to an impact of the DSGE model information of about 90% (note that, as in Adjemian

et al., 2008, the minimum value to obtain a proper prior ℵmin ≥ (mp + m)/T = 0.015

is satisfied). All other parameters listed in Table 1 are kept fixed at the indicated values

during estimation.

Step 3. After retrieving the posterior distributions of the model parameters for each

of the 2,000 replications, we generate time series of length 1,100 for the ten macro variables

using the pure perturbation algorithm of Schmitt-Grohé and Uribe (2004). In this step,

parameter values are set at the means of the posterior distributions.

This step is repeated 2,000 times to obtain 2,000 new time series of artificial data.

Whereas the first 100 observations of each time series are discarded as starting values,

the remaining 1,000 observations are separated into shorter non-overlapping time series.

Thus, the number of replications depends on the sample size. For the largest sample size

of N = 200, 10,000 replications are available for our forecasting experiments. At the

other extreme, for the smallest considered sample size of N = 40, the number of available

replications increases to 50,000. The sample size N is varied over 20∗ j for j = 2, 3, . . . , 10.

Samples smaller than N = 40 would admit no useful forecasting evaluation, due to the
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relatively high dimension of the system.

4 Results

This section consists of three parts. First, we focus on the relative forecasting performance

of the four basic rival models. The second subsection looks at the weights that these

rival models obtain in the test-based forecast combinations. The third part considers the

performance of the combined forecast in detail.

4.1 Performance of the rival models

Based on the evaluation of mean squared errors, Figure 1 shows that the factor VAR model

dominates at larger sample sizes in all designs, that is for AIC as well as BIC and for two

as well as three factors. Unreported control experiments have shown that this is not true

for FAVAR variants that do not explicitly include the predicted variable as an additional

factor. In other words, the factor search is unable to locate the most important variable for

forecasting, the target variable itself, as it concentrates on variance contributions. However,

it is successful in adding factors to the list, while we do not have proof that this choice is

optimal with regard to prediction.

The two or three factors identified by the FAVAR algorithm vary considerably across

replications. A rough inspection of the average weights of observed variables shows that

the first factor tends to incorporate investment I and the capital stock K. Even the second

factor tends to assign large weights to I and to K, with some contributions from wages W
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and the rental rate rk. The third factor focuses on consumption C and on wages W , with

some further contributions from the labor force L and the real value of capital Q.

In small samples, the univariate autoregression dominates but it loses ground as the

sample size increases. Among the two bivariate VAR models, a clear ranking is recogniz-

able. Model #3 with output and nominal interest rate achieves a more precise prediction

for output than model #2 with output and inflation. This ranking is due to the structure

of the DSGE model that assumes stronger links between output and the interest rate than

between output and inflation. In fact, model #3 is pretty good for intermediate samples

and can compete with the FAVAR specification at all but the largest samples, particularly

in the AIC variants.

By contrast, the FAVAR performance is extremely poor in small samples, with the

worst impression for AIC and three factors. This is the most profligate specification, with

the largest number of free parameters to be estimated. For BIC order selection, FAVAR

overtakes its rivals for good around N = 100, whereas slightly larger samples are needed

for the AIC cases.

All four graphs use a common scale, which admits a rough comparative visual assess-

ment of the four variants. An obvious feature is the inferior performance of the combination

of AIC and three factors in small samples, due to parameter profligacy. In large samples,

AIC and BIC perform similarly for the FAVAR model, with three-factor specifications

overtaking two-factor specifications. BIC selection, however, becomes less attractive for its

less informative rival models that would need longer lags for optimizing their predictions.

Figure 1 restricts attention to single-step prediction. Results for longer horizons are

19



qualitatively similar and are not reported. They are available upon request.

4.2 Weights in the combination forecasts

The univariate model is best for small samples, the FAVAR is best for large samples. Thus,

one may expect that the FAVAR model receives a stronger weight in the encompassing-test

weighting procedure, as the samples get larger.1 Figure 2 shows that this is indeed the

case. There are slight differences between the AIC and BIC search. AIC implies a share of

FAVAR of less than the proportional 25% for N = 40, meaning that the FAVAR is often

encompassed. BIC, on the other hand, chooses the proportional share even for N = 60 and

N = 80. While for BIC order selection the less informative rivals outperform the FAVAR

model in small samples with respect to the MSE criterion (see Figure 1), this behavior

does not entail forecast encompassing, due to the heavily penalized and thus typically low

lag orders. Otherwise, reaction is fairly monotonic in the sense that the FAVAR share

increases with rising N and also with looser significance level.

As the significance level increases, weights diverge from the uniform pattern. We note,

however, that even at 10% and N = 200 the weight allotted to the FAVAR model hardly

exceeds 40%. This value is an average over many replications with uniform weighting and

comparatively few where weights of 1/3, of 1/2, or even of one are allotted to FAVAR.

Whereas the weights for the univariate model and the bivariate VAR with inflation

monotonically decrease with increasing N , weights for the bivariate model #3 with the

1Ericsson (1992) showed that the null hypothesis of the forecast encompassing test is a sufficient con-
dition for forecast MSE dominance.
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interest rate peak for intermediate samples and are overtaken by FAVAR as N exceeds

120. Contrary to the FAVAR weights, they rise fast at small significance levels and then

level out. Model #3 captures the essence of the DSGE-VAR dynamics at reasonable

sample sizes well, and if it wins the encompassing tournament it does so typically at

sharp significance levels. Figure 3 provides a summary picture of the weight allotted to

model #3 and demonstrates that this model remains competitive in larger samples, with

weights decreasing only slowly as N approaches 200, particularly in the AIC variant, thus

confirming the impression from Figure 1.

When the prediction horizon grows, the main features of Figure 2 and 3 continue to hold,

with one noteworthy exception. For larger samples, Figure 2 shows a smooth increase of

the weight allotted to the FAVAR model with rising significance level. At larger horizons,

this slope steepens, such that even at the 1% level a considerable weight is assigned to

FAVAR. The larger weight allotted to FAVAR coincides with a lesser weight assigned

to the bivariate model #3. This stronger discrimination among rival models affects the

accuracy comparison to be reported in the next subsection.

4.3 Performance of test-based weighting

In order to evaluate the implications of the test-based method for forecasting, we use three

criteria: the mean squared error (MSE), the mean absolute error (MAE), and the winning

incidence. Generally, the MAE yields similar qualitative results as the MSE and we do not

show the MAE results in detail. The qualitative coincidence of MAE and MSE naturally
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reflects the normal distribution used in the simulation design.

Figures 4 to 7 shows ratios of the MSE achieved by the test-based weighting relative

to the benchmark of a uniformly weighted forecast, depending on the sample size. Values

below one indicate an advantage for the test-based procedure. In order not to overload

the graphs, they contain results for N ∈ {40, 80, 120, 160, 200} only, while all simulation

results are available for N = 40 + k ∗ 20, k = 0, . . . , 8. The intermediate values always

correspond to roughly interpolated curves, so little information is lost here.

For single-step prediction (see Figure 4), differences among models are small and remain

in the range of 2% at the maximum values. For the smallest sample size N = 40, testing

at strict levels is competitive with uniform weighting, while testing at looser levels is not.

For sample sizes 60 ≤ N ≤ 100, uniform weighting outperforms the test-based weighting

scheme. Performance at N = 80 is even monotonic in the sense that a looser significance

level and thus a greater divergence from uniformity implies further deterioration. We note,

referring to Figure 2, that these differences to uniformity are small. At larger samples,

test-based weighting becomes again preferable, with optimum significance levels at 1% or

occasionally 2%. The experiments with two factors are slightly more friendly to the test-

based rules than those with three factors, while there is hardly any difference between the

AIC and BIC versions.

Costantini et al. (2010) reported simulations for a pure DSGE rather than a DSGE-

VAR design. Generally, test-based weighting has a better relative performance in the

hybrid model investigated here. Even at N = 200, uniform weighting dominates test-

based weighting for one-step predictions if data stem from a pure DSGE model, while
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the DSGE-VAR—which we view as the empirically more relevant and realistic one—shows

small but clear advantages for test-based weighting.

The non-monotonic reaction, with test-based weighting preferable for very small and

for large samples and inferior for the empirically quite relevant intermediate range, asks for

an explanation. For N = 40, test-based weighting tends to hardly deviate from uniform

weighting, and, if it does, it tends to eliminate the FAVAR structure. This relatively

complex FAVAR, however, incurs a larger prediction error than its simple rivals, thus it

pays to eliminate it at N = 40. As the sample size grows, the weight of the FAVAR

model increases, while poorer models are more often eliminated, which however becomes

profitable only when this decision is reliable. To this aim, relatively large samples are

needed.

If the step size increases, the occurrence of ties among the procedures becomes less

prominent. This, in turn, leads to a clearer separation with regard to the accuracy ensuing

from prediction models. The weight allotted to the best model, in large samples the FAVAR

model, increases.

The graphs for the case of two-step predictions, Figure 5, show that this stronger

emphasis on the FAVAR model now leads to an improvement in accuracy for most sample

sizes, with N = 80 constituting the only exception. Whereas one-step prediction shows

a window between small samples—where any elimination of inferior models is helpful—

and large samples—where the best prediction models are properly recognized, this window

nearly closes if the prediction horizon is extended to two. The optimum significance level

remains mostly at 1%, with only few cases of minima at 2% or 3%.
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The impression that larger step sizes benefit the test-based procedure is confirmed for

the three-step prediction that yields the graphs given as Figure 6. Test-based weighting

dominates uniform weights at all sample sizes and specifications. The significance level of

1%, i.e. the sharpest level, is clearly supported over the looser levels for the encompassing

test. These features are confirmed and slightly enhanced by the four-step predictions

summarized in Figure 7. Again, test-based weighting dominates in all four variants for all

sample sizes. Advantages for test-based weighting are most pronounced in the smallest

and largest samples. Relative gains in precision attain around 3%.

The criteria MAE and MSE are summary statistics, and they are based on moments

of the error distributions. A lower MSE may be attained by a forecast that is actually

worse in many replications but wins few of them at a sizeable margin. Therefore, we also

consider the direct ranking of absolute errors across significance levels. The incidence of

a minimum among all levels could indicate which level is more likely to generate the best

forecast. There are many ties among these significance levels, however, so we only report

the direct comparison between the 1% test-based weighting and the uniform benchmark

in more detail. Figure 8 shows the frequencies of each of these two models of generating

the smaller prediction error. Among others, Chatfield (2001) advocated the usage of the

winning incidence as a measure of predictive accuracy.

For one-step forecasts, Figure 8 demonstrates that the differences in MSE reported

above are due to comparatively few replications. Ties are many even for large samples

(around 70%) and are the rule for small samples (around 90%). At small samples, no

advantage for the test-based scheme is recognizable. At large samples, test-based weighting
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gains some margin over its uniform rival but fails to impress.

In line with the MSE graphs, also the ‘winning frequency’ for the test-based scheme

improves at larger forecast horizons. At two steps, the two schemes are still comparable.

There is a slight advantage for the encompassing test in the BIC versions, while uniform

weighting is remarkably strong in the AIC versions. At three and four steps, however, the

test-based procedure gains a sizeable margin. Also note that ties become less frequent and

their frequency falls to around 30% at horizon four and larger samples.

In summary, at larger prediction horizons test-based weighting becomes increasingly

attractive. At short horizons, the merits of test-based weighting are most pronounced for

very small samples, where the accuracy of prediction is low, and at larger samples, where

weighting becomes reliable. Many empirical samples may belong to the intermediate region,

where the prediction horizon must exceed two in order to provide a clear support for weights

based on the encompassing test.

5 Conclusion

Our forecast evaluations generally confirm the traded wisdom in the forecasting literature

that uniform weighting of rival model forecasts is difficult to beat in typical forecasting

situations. Large sample sizes are needed to reliably eliminate inferior rival models from

forecasting combinations. In many situations of empirical relevance, the information con-

tained in slightly worse predictions as marked by individual MSE performance may still

be helpful for increasing the precision of the combination.
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Forecast-encompassing tests imply a reasonable weighting of individual models in our

experiments. Univariate models yield the best forecasts in small samples, and sophisti-

cated higher-dimensional models receive a small weight. With increasing sample size, our

experiments clearly show that the factor-augmented VAR achieves superior predictive ac-

curacy and thus it receives the largest weights in test-based combinations. The benefits

with respect to an optimized combination forecast, however, turn out to be more difficult

to exploit. At the one-step horizon, the test-based combination forecast fails to show a

clear dominance over a simple uniform weighting procedure in the range of N = 60 to

N = 120 that is of strong empirical relevance. Only at horizons of three and beyond does

the dominance of test-based weighting become convincing. A noteworthy general result is

that, for the encompassing test, the sharpest significance level of 1% often yields the best

results.
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Table 1: Parameters of the DSGE model and their values.

Parameter Value Description

β 0.99 Intertemporal discount factor
τ 0.025 Depreciation rate of capital
α 0.3 Capital output ratio
ψ 1/0.169 Inverse elasticity of capital utilization cost
γp 0.469 Degree of partial indexation of price
γw 0.763 Degree of partial indexation of real wage
λw 0.5 Mark-up in real wage setting
ξp 0.908 Degree of Calvo price stickiness
ξw 0.737 Degree of Calvo real-wage stickiness
σl 2.4 Inverse elasticity of labor supply
σc 1.353 Coefficient of relative risk aversion in consumption
h 0.573 Degree of habit formation in consumption
φ 1.408 1 + share of fixed cost in production
ϕ 1/6.771 Inverse of investment adjustment cost
r̄k 1/β − 1 + τ Steady-state rental rate of capital
invy 0.22 Share of investment to output
ky invy/τ Share of capital to output
cy 0.6 Share of consumption to output
gy 1− cy − invy Share of government spending to output
rπ 1.684 Inflation coefficient
r∆π 0.14 Inflation growth coefficient
ry 0.099 Output coefficient
r∆y 0.159 Output growth coefficient
ρ 0.961 Degree of interest-rate smoothing
ρεl 0.889 Autocorrelation coefficient for labor supply shock
ρεa 0.823 Autocorrelation coefficient for productivity shock
ρεb 0.855 Autocorrelation coefficient for consumption preference shock
ρεg 0.949 Autocorrelation coefficient for government spending shock
ρπ̄ 0.924 Autocorrelation coefficient for inflation objective shock
ρεi 0.927 Autocorrelation coefficient for investment shock
ςηl 3.52 Standard deviation of labor supply shock
ςηa 0.598 Standard deviation of productivity shock
ςηb 0.336 Standard deviation of consumption preference shock
ςηg 0.325 Standard deviation of government spending shock
ςηπ̄ 0.017 Standard deviation of inflation objective shock
ςηi 0.085 Standard deviation of investment shock
ςηr 0.081 Standard deviation of interest-rate shock
ςηp 0.16 Standard deviation of price mark-up shock
ςηw 0.289 Standard deviation of real-wage mark-up shock
ςηq 0.604 Standard deviation of equity-premium shock
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Table 2: DSGE-VAR prior information.

Parameter Domain Prior PDF Prior Mean Prior Std. Dev.

γp [0, 1) Beta 0.75 0.15
γw [0, 1) Beta 0.75 0.15
ξp [0, 1) Beta 0.75 0.05
ξw [0, 1) Beta 0.75 0.05
rπ (−∞,+∞) Normal 1.7 0.1
r∆π (−∞,+∞) Normal 0.3 0.1
ry (−∞,+∞) Normal 0.125 0.05
r∆y (−∞,+∞) Normal 0.0625 0.05
ρ [0, 1) Beta 0.8 0.1
ρεl [0, 1) Beta 0.85 0.1
ρεa [0, 1) Beta 0.85 0.1
ρεb [0, 1) Beta 0.85 0.1
ρεg [0, 1) Beta 0.85 0.1
ρπ̄ [0, 1) Beta 0.85 0.1
ρεi [0, 1) Beta 0.85 0.1
ςηl [0,+∞) Inv. Gamma-1 1 +∞
ςηa [0,+∞) Inv. Gamma-1 0.4 +∞
ςηb [0,+∞) Inv. Gamma-1 0.2 +∞
ςηg [0,+∞) Inv. Gamma-1 0.3 +∞
ςηπ̄ [0,+∞) Inv. Gamma-1 0.02 +∞
ςηi [0,+∞) Inv. Gamma-1 0.1 +∞
ςηr [0,+∞) Inv. Gamma-1 0.1 +∞
ςηp [0,+∞) Inv. Gamma-1 0.15 +∞
ςηw [0,+∞) Inv. Gamma-1 0.25 +∞
ςηq [0,+∞) Inv. Gamma-1 0.4 +∞
ℵ [0.1, 10] Uniform
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Figure 1: MSE for the four competing forecast models in single-step prediction. Solid curve
stands for FAVAR, dashed for the univariate AR model, dotted and dash-dotted for bivariate
VAR models. Left graphs for AIC search, right graphs for BIC search, top graphs for two factors
FAVAR, bottom row for three factors.
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Figure 2: Weights allotted to the FAVAR model in dependence of the sample size and of the
significance level for the encompassing test in single-step prediction. Arrangement of graphs as
in Figure 1.
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Figure 3: Weights allotted to the bivariate model with interest rate in dependence of the sample
size and of the significance level for the encompassing test in single-step prediction. Arrangement
of graphs as in Figure 1.
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Ordering of graphs see Figure 1. Solid curve for N = 40, short dashes for N = 80, dotted curve
for N = 120, dash-dotted for N = 160, long dashes for N = 200.
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Figure 5: Ratios of test-based weighting MSE to MSE from uniform weighting in two-step
prediction. Ordering of graphs see Figure 1. Solid curve for N = 40, short dashes for N = 80,
dotted curve for N = 120, dash-dotted for N = 160, long dashes for N = 200.
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Figure 6: Ratios of test-based weighting MSE to MSE from uniform weighting in three-step
prediction. Ordering of graphs see Figure 1. Solid curve for N = 40, short dashes for N = 80,
dotted curve for N = 120, dash-dotted for N = 160, long dashes for N = 200.
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Figure 7: Ratios of test-based weighting MSE to MSE from uniform weighting in four-step
prediction. Ordering of graphs see Figure 1. Solid curve for N = 40, short dashes for N = 80,
dotted curve for N = 120, dash-dotted for N = 160, long dashes for N = 200.
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Figure 8: Frequency of a smaller absolute forecast error due to uniform weighting (gray curves)
or 1% test-based weighting (black curves). Forecasts at horizons one (solid), two (dashed), three
(dotted), and four (dash-dotted). Ordering of graphs see Figure 1.
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