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Abstract 

We study the asset allocation of a quadratic loss-averse (QLA) investor and derive 
conditions under which the QLA problem is equivalent to the mean-variance (MV) and 
conditional value-at-risk (CVaR) problems. Then we solve analytically the two-asset problem 
of the QLA investor for a risk-free and a risky asset. We find that the optimal QLA investment 
in the risky asset is finite, strictly positive and is minimal with respect to the reference point 
for a value strictly larger than the risk-free rate. Finally, we implement the trading strategy of 
a QLA investor who reallocates her portfolio on a monthly basis using 13 EU and US assets. 
We find that QLA portfolios (mostly) outperform MV and CVaR portfolios and that 
incorporating a conservative dynamic update of the QLA parameters improves the 
performance of QLA portfolios. Compared with linear loss-averse portfolios, QLA portfolios 
display significantly less risk but they also yield lower returns. 
 

Keywords 
Quadratic loss aversion, prospect theory, portfolio optimization, MV and CVaR portfolios, 
investment strategy 

JEL Classification 
D03, D81, G11, G15, G24 

  



Comments 
This research was supported by funds of the Oesterreichische Nationalbank (Anniversary Fund, Grant 
No. 13768). 



Contents 

1 Introduction 1 

2 Portfolio optimization under quadratic loss aversion 3 
2.1 Quadratic loss-averse utility versus mean-variance and conditional value-at-Risk   ....   4 
2.2 Analytical solution for one risk-free and one risky asset   .............................................   8 
2.3 Numerical solution   ....................................................................................................   19 

3 Empirical application 20 

4 Conclusion 31 

Appendix A 33 

Appendix B 38 

References 43 
 





1 Introduction

Loss aversion, which is a central finding of Kahneman and Tversky’s (1979) prospect theory,1

describes the fact that people are more sensitive to losses than to gains, relative to a given reference

point. More specifically returns are measured relative to a given reference value, and the decrease

in utility implied by a marginal loss (relative to the reference point) is always greater than the

increase in utility implied by a marginal gain (relative to the reference point).2 The simplest form

of such loss aversion is linear loss aversion, where the marginal utility of gains and losses is fixed.

The optimal asset allocation decision under linear loss aversion has been extensively studied, see,

for example, Gomes (2005), Siegmann and Lucas (2005), He and Zhou (2011), and Fortin and

Hlouskova (2011a). It has been argued, however, that real investors may put an increasing rather

than a fixed marginal penalty on losses, i.e., investors could be more averse to larger than to small

losses. Thus a quadratic form of loss aversion, where the objective is linear in gains and quadratic

in losses, may be more adequate. Quadratic loss aversion differs from the originally introduced

(S-shaped) loss aversion in that it displays risk-aversion in both domains of gains and losses, while

prospect theory (S-shaped) utility captures a risk-averse behavior in the domain of gains and a

risk-seeking behavior in the domain of losses. Under quadratic loss aversion, investors face a trade-

off between return on the one hand and quadratic shortfall below the reference point on the other

hand. Interpreted differently, the utility function contains an asymmetric or downside risk measure,

where losses are weighted differently from gains. Compared with linear loss aversion, large losses

are punished more severely than small losses under quadratic loss aversion. The penalty on losses

under quadratic loss aversion is also referred to as quadratic shortfall (see Siegmann and Lucas,

2005; Siegmann, 2007; and Lucas and Siegmann, 2008). Very recently, the analysis of optimal

investment with capital income taxation under loss-averse preferences was conducted in Hlouskova

and Tsigaris (2012). Some results indicate that it could be possible for a capital income tax increase

not to stimulate risk taking even if the tax code provides the attractive full loss offset provisions.

However, risk taking can be stimulated if the investor interprets part of the tax as a loss instead of

as a reduced gain.

1Sometimes the different versions of prospect theory are classified as three generations of prospect theory. The
first generation builds on the original model introduced in Kahneman and Tversky (1979), the second generation
(cumulative prospective theory) features cumulative individual probabilities (see, e.g., Tversky and Kahneman, 1992),
and the third generation treats the reference point as being uncertain (see Schmidt, Starmer and Sugden, 2008).

2This is also referred to as the first-order risk aversion (see Epstein and Zin, 1990).
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Asymmetric – or rather downside – risk measures are extremely popular in applied finance,

where their use has been promoted by banking supervisory regulations which specify the risk of

proprietary trading books and its use in setting risk capital requirements. The measure of risk used

in this framework is value-at-risk (VaR), which explicitly targets downside risk, see the Bank for

International Settlements (2006, 2010). VaR has been developing into one of the industry stan-

dards for assessing the risk of financial losses in risk management and asset/liability management.

Another risk measure, which is closely related to VaR but offers additional desirable properties

like information on extreme events, coherence and computational ease, is conditional value-at-risk

(CVaR).3 Computational optimization of CVaR is readily accessible through the results in Rock-

afellar and Uryasev (2000).

The purpose of this paper is to investigate the asset allocation decision under quadratic loss aver-

sion, both theoretically and empirically, and compare it to more traditional portfolio optimization

methods like mean-variance and conditional value-at-risk as well as to the recent asset allocation

problem under linear loss aversion. Our theoretical analysis of the problem under quadratic loss

aversion is related to Siegmann and Lucas (2005) who mainly explore optimal portfolio selection

under linear loss aversion and include a brief analysis on quadratic loss aversion.4 Their setup, how-

ever, is in terms of wealth (while our analysis is based on returns) and they characterize the solution

in a different way than we do. We contribute to the existing literature along different lines. First, we

investigate theoretically how the optimization problems of quadratic loss aversion, mean-variance

and CVaR relate to each other. Second, we analytically solve the portfolio selection problem of

a quadratic loss-averse investor and compare the results to those implied by linear loss aversion.

Third, we contribute to the empirical research involving loss-averse investors by investigating the

portfolio performance under the optimal investment strategy, where the portfolio is reallocated on

a monthly basis using 13 European and 13 US assets from 1985 to 2010. In addition to using fixed

parameters in the loss-averse utility, we employ time-changing trading strategies which depend on

previous gains and losses to better reflect the behavior of real investors. As opposed to a number of

other authors, we do not consider a general equilibrium model but examine the portfolio selection

problem from an investor’s point of view.5

3See Artzner et al. (1999).
4Siegmann and Lucas (2005) refer to what we call linear and quadratic loss aversion as linear and quadratic

shortfall, respectively.
5See, for example, De Giorgi and Hens (2006) who introduce a piecewise negative exponential function as the

loss-averse utility to overcome infinite short-selling and to guarantee the existence of market equilibria and Berkelaar
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The remaining paper is organized as follows. In Section 2 we first derive conditions under which

the quadratic loss-averse (QLA) utility maximization problem is equivalent to the traditional mean-

variance (MV) and conditional value-at-risk (CVaR) problems for the general n-asset case, under

the assumption of normally distributed asset returns. Then we explore the two-asset case, where

one asset is risk-free, and derive properties of the optimal weight of the risky asset under the

assumption of binomially and (generally) continuously distributed returns, both for the case when

the reference point is equal to the risk-free rate and for the case when it is not. We additionally

contrast the derived results with those implied by linear loss aversion (LLA). In Section 3 we

implement the trading strategy of a quadratic loss-averse investor, who reallocates her portfolio on

a monthly basis, and study the performance of the resulting optimal portfolio. We also compare

the optimal QLA portfolio to the optimal LLA portfolio and to the more traditional optimal MV

and CVaR portfolios. Section 4 concludes.

2 Portfolio optimization under quadratic loss aversion

Under quadratic loss aversion investors are characterized by a utility of returns, g(·), which is linear

in gains and quadratic in losses, where gains and losses are defined relative to a given reference

point. Formally, g(y) = y − λ([ŷ − y]+)2, where y is the (portfolio/asset) return, λ ≥ 0 is the loss

aversion – or penalty – parameter, ŷ ∈ R is the reference point that defines gains and losses, and

[t]+ denotes the maximum of 0 and t. See Figure 1 for a graphical illustration of the quadratic

loss-averse utility. Compared with linear loss aversion, large losses are punished more severely than

small losses under quadratic loss aversion.

We start by studying the optimal asset allocation behavior of a quadratic loss-averse investor.

This behavior depends on the reference return ŷ and, in particular, on whether this reference return

is below, equal to, or above the (requested lower bound on the) expected portfolio return or some

threshold value that is larger than the risk-free interest rate. Investors maximize their expected

utility of returns as

max
x

{

E
(

r′x− λ ([ŷ − r′x]+)2
)

∣

∣

∣Ax ≤ b
}

(2.1)

and Kouwenberg (2009) who analyze the impact of loss-averse investors on asset prices.
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where x = (x1, . . . , xn)
′, with xi denoting the proportion of wealth invested in asset i,6 i = 1, . . . , n,

and r is the n−dimensional random vector of returns, subject to the usual asset constraints Ax ≤ b,

where A ∈ R
m×n, b ∈ R

m. Note that in general the proportion invested in a given asset may be

negative or larger than one due to short-selling.

ŷ

return y

utility g(y)

gainslosses

Figure 1: Quadratic loss-averse utility function

2.1 Quadratic loss-averse utility versus mean-variance and conditional value-

at-risk

In this section we show the relationship between the quadratic loss-averse utility maximization prob-

lem (2.1) and both the MV and the CVaR problems, under the assumption of normally distributed

asset returns.7

Let Z be a continuous random variable describing the stochastic portfolio return and fZ(·) and
FZ(·) be its probability density and cumulative distribution functions. Then we define the expected

quadratic loss-averse utility of return Z, given the penalty parameter λ ≥ 0 and the reference point

6Throughout this paper, prime (′) is used to denote matrix transposition and any unprimed vector is a column
vector.

7For presentations of the MV and CVaR optimizations, see Markowitz (1952) and Rockafellar and Uryasev (2000),
respectively.
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ŷ ∈ R, as8

QLAλ,ŷ(Z) = E
(

Z − λ([ŷ − Z]+)2
)

= E(Z)− λE
(

[ŷ − Z]+)2
)

= E(Z)− λE
(

(ŷ − Z)2 |Z ≤ ŷ
)

P (Z ≤ ŷ)

= E(Z)− λ

∫ ŷ

−∞
(ŷ − z)2fZ(z)dz (2.2)

≤ E(Z)

As
∫ ŷ
−∞(ŷ − z)2fZ(z)dz ≥ 0, the loss-averse utility of the random variable Z is its mean reduced

by some positive quantity, where the size of the reduction depends positively on the values of

the penalty parameter λ and the reference point ŷ. The expected quadratic loss-averse utility

QLAλ,ŷ(·) is thus a decreasing function in both the penalty parameter and the reference point.

Let the conditional value-at-risk CVaRFz(ŷ)(Z) be the conditional expectation of Z below ŷ; i.e.

CVaRFz(ŷ)(Z) = E(Z|Z ≤ ŷ). If Z is normally distributed such that Z ∼ N(z̄, σ2) then it can be

shown using (2.2) that

QLAλ,ŷ(Z) = z̄ − λσ2

[

(

ŷ − z̄

σ

)2

F

(

ŷ − z̄

σ

)

+ 2
ŷ − z̄

σ
f

(

ŷ − z̄

σ

)

+

∫ ŷ−z̄
σ

−∞
y2f(y)dy

]

(2.3)

CVaR
F ( ŷ−z̄

σ
)
(Z) = z̄ − σ

f( ŷ−z̄
σ )

F ( ŷ−z̄
σ )

(2.4)

where f(·) and F (·) are the probability density and the cumulative probability functions of the

standard normal distribution. Note that if ŷ = z̄ then based on (2.3) and (2.4) QLAλ,ŷ(Z) =

z̄ − λσ4/2 and CVaR
F ( ŷ−z̄

σ
)
(Z) = z̄ − σ

√

2/π.

If asset returns are normally distributed (i.e., r ∼ N(µ,Σ), where µ, r ∈ R
n and Σ ∈ R

n×n such

that covariance matrix Σ is positive definite) then the portfolio return is also normally distributed

(i.e., r′x ∼ N(µ′x, x′Σx), where x ∈ R
n). Thus, using our formulation of quadratic loss aversion

given normal returns, see (2.3), we introduce the following quadratic loss-averse utility maximization

8Note that QLAλ,ŷ already accounts for the expectation of utility.
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problem9

maximizex : QLAλ,ŷ(r
′x) = µ′x− λx′Σx

[

(ŷ−µ′x)2

x′Σx F
(

ŷ−µ′x√
x′Σx

)

+ 2 ŷ−µ′x√
x′Σx

f
(

ŷ−µ′x√
x′Σx

)

+
∫

ŷ−µ′x√
x′Σx

−∞ y2f(y)dy

]

subject to : Ax ≤ b

µ′x = R̄



























(2.5)

Under the same assumptions, the MV problem can be stated as

min
x

{

var(r′x) = x′Σx
∣

∣

∣
Ax ≤ b, µ′x = R̄

}

(2.6)

and, based on (2.4), the CVaR problem can be written as

max
x







CVaR
F
(

ŷ−µ′x√
x′Σx

)(r′x) = µ′x−
√
x′Σx

f
(

ŷ−µ′x√
x′Σx

)

F
(

ŷ−µ′x√
x′Σx

)

∣

∣

∣Ax ≤ b, µ′x = R̄







(2.7)

We can now state the two main theorems of equivalence, which describe how the QLA problem is

related to the more traditional MV and CVaR problems.

Theorem 2.1 Let
{

x |Ax ≤ b, µ′x = R̄
}

6= ∅, r ∼ N(µ,Σ) and λ > 0. Then the QLA problem

(2.5) and the MV problem (2.6) are equivalent, i.e., they have the same optimal solution, if either

(i) ŷ = R̄ or (ii) λ = 1/F

(

ŷ−R̄√
(x∗)′Σx∗

)

and ŷ > R̄, where x∗ is the optimal portfolio of (2.6).

Proof. (i) If ŷ = R̄ and λ > 0 then QLAλ,ŷ(r
′x) = ŷ−λ(x′Σx)2/2. This and the fact that x′Σx > 0

(for any x 6= 0) imply the equivalence between (2.5) and (2.6).

(ii) If ŷ > R̄, µ′x = R̄, and λ = 1/F
(

ŷ−R̄√
x′Σx

)

then the objective functions of (2.5) can be stated

as

QLA
1/F

(

ŷ−R̄√
x′Σx

)

,ŷ
(r′x) = R̄− (ŷ − R̄)2 −

2
√
x′Σx(ŷ − R̄)f

(

ŷ−R̄√
x′Σx

)

+ x′Σx
∫

ŷ−R̄√
x′Σx

−∞ y2f(y)dy

F
(

ŷ−R̄√
x′Σx

)

Maximizing this is equivalent to minimizing the variance x′Σx over the same set of feasible solutions,

9Note that as in Barberis and Xiong (2009) and Hwang and Satchell (2010), we use an objective probability
density function rather than a subjective weight function to calculate the loss-averse utility function.
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which follows from the fact that F (·) is an increasing function, f(z) is decreasing for z ≥ 0,

ŷ > R̄, and u(z) ≡ z
∫

ŷ−R̄√
z

−∞ y2f(y)dy is increasing for z > 0. The latter follows from the fact that
du(z)
dz = u1(z)− u2(z) > 0 for z > 0 and ŷ > R̄, where10

u1(z) =

∫ ŷ−R̄√
z

−∞
y2f(y)dy

u2(z) =
(ŷ − R̄)3

2 z
√
z

f

(

ŷ − R̄√
z

)

This concludes the proof. �

Theorem 2.2 Let
{

x |Ax ≤ b, µ′x = R̄
}

6= ∅, r ∼ N(µ,Σ) and λ > 0. Then the QLA problem

(2.5) and the CVaR problem (2.7) are equivalent, i.e., they have the same optimal solution, if either

(i) ŷ = R̄ or (ii) λ = 1/F

(

ŷ−R̄√
(x∗)′Σx∗

)

and ŷ > R̄, where x∗ is the optimal portfolio of (2.7).

Proof. (i) If ŷ = R̄ and λ > 0 then QLAλ,ŷ(r
′x) = ŷ − λx′Σx/2 and CVaRF (0)(r

′x) = R̄ −
√
x′Σx f(0)/F (0). This, the fact that x′Σx > 0 (for any x 6= 0) and the fact that

√
z is increasing

for z > 0 imply the equivalence between (2.5) and (2.7).

(ii) If λ = 1/F
(

ŷ−R̄√
x′Σx

)

then problems (2.5) and (2.7) can be written as

QLA
1/F

(

ŷ−R̄√
x′Σx

)

,ŷ
(r′x) = R̄− (ŷ − R̄)2 −

2
√
x′Σx(ŷ − R̄)f

(

ŷ−R̄√
x′Σx

)

+ x′Σx
∫

ŷ−R̄√
x′Σx

−∞ y2f(y)dy

F
(

ŷ−R̄√
x′Σx

)

and

CVaR
F ( ŷ−µ′x√

x′Σx
)
(r′x) = R̄−

√
x′Σx

f
(

ŷ−R̄√
x′Σx

)

F
(

ŷ−R̄√
x′Σx

)

and the statement of the theorem can be shown in an analogous way as in Theorem 2.1. �

Theorem 2.1 states the conditions under which the QLA and MV problems are equivalent

provided returns are normally distributed: they are equivalent (i) when the reference point is equal

to the mean of the portfolio return at the optimum, or (ii) when the reference point is strictly larger

than the mean of the portfolio return and the loss aversion parameter is equal to some specific value

(depending on the reference point and on the optimal solution). In the latter case, the loss aversion

10The statement u1(z) > u2(z) for z > 0, ŷ > R̄ can be verified by, first, showing that u1(z) is a decreasing function
with values above 0.5, and, second, showing that a maximum of u2(z) is strictly smaller than 0.5.
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parameter yielding equivalence is smaller for larger reference points. The equivalence of the QLA

and CVaR problems, stated in Theorem 2.2, is established under the same conditions.11

2.2 Analytical solution for one risk-free and one risky asset

To better understand the attitude with respect to risk of quadratic loss-averse investors, we consider

a simple two-asset world, where one asset is risk-free and the other is risky, and analyze what

proportion of wealth is invested in the risky asset under quadratic loss aversion.

Let r0 be a certain (deterministic) return of the risk-free asset and let r be the (stochastic)

return of the risky asset. Then the portfolio return is R(x) = xr + (1 − x)r0 = r0 + (r − r0)x,

where x is the proportion of wealth invested in the risky asset, and the maximization problem of

the quadratic loss-averse investor is

max
x

{QLAλ,ŷ(R(x)) = E

(

R(x)− λ
(

[ŷ −R(x)]+
)2
)

= E(r0 + (r − r0)x)− λE
(

(

[ŷ − r0 − (r − r0)x]+
)2
)

|x ∈ R} (2.8)

where λ ≥ 0, ŷ ∈ R and [t]+ = max{0, t}. The following two cases present characterizations of

the optimal solution when the risky asset’s return is binomially distributed (discrete distribution)

and when it is (generally) continuously distributed. We shall see that the main properties of the

optimal solution and its sensitivity with respect to the loss aversion parameter and the reference

point do not depend on the distributional assumptions.

The risky asset is binomially distributed

First we assume for the sake of simplicity and because in this case we can show a number of

results analytically, that the return of the risky asset follows a binomial distribution. We assume

two states of nature: a good state of nature which yields return rg such that rg > r0 and which

occurs with probability p and a bad state of nature which yields return rb such that rb < r0

and which occurs with probability 1 − p. In the good state of nature the portfolio thus yields

return Rg(x) = r0 + (rg − r0)x with probability p, in the bad state of nature it yields return

11The condition µ′x = R̄, which is required in both theorems, can be interpreted as setting a lower bound on the
portfolio return, R̄ ≤ µ′x, which is binding at the optimum.
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Rb(x) = r0 + (rb − r0)x with probability 1− p. Note that

E(r) = prg + (1− p)rb = p(rg − rb) + rb, (2.9)

E(R(x)) = E
(

r0 +
(

r − r0
)

x
)

= p
(

r0 +
(

rg − r0
)

x
)

+ (1− p)
(

r0 +
(

rb − r0
)

x
)

= r0 +
[

p(rg − rb)− r0 + rb
]

x = r0 + E(r − r0)x, (2.10)

[ŷ −Rg(x)]
+ =







ŷ − r0 −
(

rg − r0
)

x, for x ≤ ŷ−r0

rg−r0

0, for x > ŷ−r0

rg−r0

(2.11)

[ŷ −Rb(x)]
+ =







0, for x ≤ r0−ŷ
r0−rb

ŷ − r0 −
(

rb − r0
)

x, for x > r0−ŷ
r0−rb

(2.12)

Thus, based on (2.8), the loss-averse utility of the two-asset portfolio including the risk-free asset

and the binomially distributed risky asset is

QLAλ,ŷ(R(x)) = r0 + E
(

r − r0
)

x− λ
(

p
(

[ŷ −Rg(x)]
+
)2

+ (1− p)
(

[ŷ −Rb(x)]
+
)2
)

(2.13)

The next proposition presents the analytical solution of the loss-averse utility maximization

problem (2.8) for the binomially distributed risky asset with respect to a certain threshold value of

the loss aversion parameter λ.

Theorem 2.3 Let rb < r0 < rg, E(r − r0) > 0, λ > 0, x∗ be the optimal solution of (2.8) and

λ̂ ≡ (rg − r0)E(r − r0)

2(1 − p)(ŷ − r0)(r0 − rb)(rg − rb)
for ŷ > r0 (2.14)

where the risky asset’s return r is binomially distributed with rg (rb) being the return in the good

(bad) state of nature, which occurs with probability p (1− p). Then the following holds:

(i) If ŷ ≤ r0 then x∗ = r0−ŷ
r0−rb

+ E(r−r0)
2λ(1−p)(r0−rb)2

> 0

(ii) If ŷ > r0 and λ ≤ λ̂ then x∗ = r0−ŷ
r0−rb

+ E(r−r0)
2λ(1−p)(r0−rb)2

> 0

(iii) If ŷ > r0 and λ > λ̂ then x∗ =
( 1
2λ

+ŷ−r0)E(r−r0)

E(r−r0)2 > 0

9



Proof. See Appendix A.

Under quadratic loss aversion the optimal investment in the risky asset is thus always positive

and finite, for any given degree of loss aversion and any given reference point.12 For the case when

the reference point is larger than the risk-free rate, the analytical form of the solution depends on

the investor’s loss aversion, more precisely, it depends on the loss aversion parameter being below or

above some threshold value. This threshold value is a function of the reference point, and thus the

assumption with respect to the loss aversion parameter (λ ≤ λ̂, λ > λ̂), for the case when ŷ > r0,

can be translated into an assumption with respect to the reference point: λ ≤ (>)λ̂ ⇔ ŷ ≤ (>)ŷmin,

where ŷmin =
(rg−r0)(µ−r0)

2λ(1−p)(r0−rb)(rg−rb)
+ r0 > r0.13 Using this latter assumption we can combine cases

(i) and (ii) of Theorem 2.3 to require ŷ ≤ ŷmin. The next corollary describes the sensitivity of the

optimal solution with respect to the penalty parameter and the reference point.

Corollary 2.1 Let rb < r0 < rg, E(r− r0) > 0 and λ > 0. Then the optimal solution of (2.8), x∗,

has the following properties

dx∗

dλ
< 0 (2.15)

and

dx∗

dŷ
=







< 0, if ŷ < ŷmin

> 0, if ŷ > ŷmin

(2.16)

where

ŷmin =
(rg − r0)(µ − r0)

2λ(1 − p)(r0 − rb)(rg − rb)
+ r0 > r0 (2.17)

Proof. Property (2.15) follows directly from Theorem 2.3 which implies also

dx∗

dŷ
=



























< 0, if ŷ < r0

if ŷ > r0 and λ ≤ λ̂

> 0, if ŷ > r0 and λ > λ̂

12Note that under linear loss aversion the investor has to be sufficiently loss averse to yield a finite investment in
the risky asset.

13The next corollary will explain why we call this threshold the minimum reference point.
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The statement of the corollary follows then from this and the fact that

λ ≤ λ̂ ⇔ ŷ ≤ ŷmin

where ŷmin is given by (2.17). �

The corollary implies that the optimal solution as a function of the reference point is U-shaped,

where the minimum (which is strictly positive) is attained for a reference point that is strictly larger

than the risk-free rate. This reference point, which we call the minimum reference point, depends

on the loss aversion parameter and can be stated explicitly, see equation (2.17).

Table 1 summarizes and contrasts the optimal investments into the risky asset for the linear and

the quadratic loss-averse investor (for more details see Fortin and Hlouskova, 2011a). An analogous

summary including the case for binomial and continuous returns as well as the sensitivities of the

optimal solution with respect to the penalty parameter λ and the reference point ŷ, is presented in

Table 2.

assumptions solutions

ŷ ≤ r0, λ > λLLA +∞ > x∗1 = x∗QLA > x∗LLA = r0−ŷ
r0−rb

≥ 0

ŷ > r0, λLLA < λ < λQLA +∞ > x∗1 = x∗QLA > x∗LLA = ŷ−r0

rg−r0
> 0

ŷ > r0, λ > λQLA (> λLLA) 0 < x∗2 = x∗QLA < x∗LLA = ŷ−r0

rg−r0

ŷ ∈ R, λ < λLLA 0 < {x∗1, x∗2} ∋ x∗QLA < x∗LLA = +∞

Table 1: Overview of optimal solutions under linear and quadratic loss aversion.
We assume that E(r − r0) > 0 and λ > 0. The threshold values of the loss aversion parameter

are λLLA = E(r−r0)
(1−p)(r0−rb)

under linear loss aversion and λQLA = λLLA
rg−r0

2(ŷ−r0)(rg−rb)
for ŷ > r0 under

quadratic loss aversion. x∗1 and x∗2 correspond to the optimal solutions given in (i) and (iii) of
Theorem 2.3. Note that λ < λQLA ⇔ ŷ < ŷmin, where ŷmin is given by (2.17).

First of all, x∗QLA, which is the optimal investment in the risky asset under quadratic loss-

averse preferences, is always strictly positive, while the optimal investment in the risky asset of a

sufficiently loss-averse investor under linear loss-averse preferences, x∗LLA, is zero when the reference

point coincides with the risk-free rate. Second, the optimal investment in the risky asset of a QLA

11



investor never explodes, while this can be the case (x∗LLA = +∞) for an LLA investor who is

not sufficiently loss-averse (λ < λLLA). This then is also referred to as an ill-posed problem. In

addition, if the investor is sufficiently loss averse to guarantee a finite solution under linear loss

aversion (λ > λLLA), then the optimal investment in the risky asset of a QLA investor is strictly

larger than the optimal investment of an LLA investor for all reference points below the minimum

reference point, and it is strictly smaller for all reference points above the minimum reference point.

When comparing the sensitivity analysis of the optimal investment in the risky asset with respect

to changes of the loss aversion parameter and the reference point under QLA and LLA preferences

(see Table 2) then one can see the following: while the investment in the risky asset decreases

with an increasing degree of loss aversion under QLA preferences, it remains unchanged under

LLA preferences. On the other hand, the sensitivity of the optimal investment in the risky asset

with respect to the reference point is similar for both types of investors when they are sufficiently

loss-averse (λ > λLLA), i.e., the optimal investment in the risky asset decreases when the reference

point is below some threshold value and increases when it is above the same threshold. Under

linear loss aversion this threshold is equal to the risk-free interest rate, while under quadratic loss

aversion this threshold (which depends on the loss aversion parameter) is strictly larger than the

risk-free rate. The situation is different for investors who are less loss-averse (λ < λLLA): while

under quadratic loss aversion it is identical to the one just described, the LLA investment in the

risky asset is not affected by the reference point. However, in this case the optimal investment is

always infinite.

The risky asset is continuously distributed

Let us now assume that the risky asset’s return is continuously distributed with probability density

function fr(·) and expected return E(r) = µ such that the expected excess return (risk premium)

is positive, i.e., E(r − r0) > 0 (or µ > r0). Then the expected loss-averse utility can be formulated

as

QLAλ,ŷ(R(x)) =























r0 + (µ − r0)x− λ
∫∞

ŷ−r0

x
+r0

(

ŷ − r0 −
(

r − r0
)

x
)2

fr(r)dr, x < 0

r0 − λ
(

[

ŷ − r0
]+
)2

, x = 0

r0 + (µ− r0)x− λ
∫

ŷ−r0

x
+r0

−∞
(

ŷ − r0 −
(

r − r0
)

x
)2

fr(r)dr, x > 0























(2.18)
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We consider two cases, first the case when the reference point does not coincide with the risk-

free rate (ŷ 6= r0) and second the case when it does (ŷ = r0). The latter is the case more often

considered in the literature. One reason for investigating ŷ = r0 is that the risk-free rate seems to

be a natural choice for the reference point. Another reason may be that the corresponding analysis

is often more straightforward. Let us use the term zero excess reference return to describe the

case ŷ = r0 and positive (negative) excess reference return to describe the case ŷ > r0 (ŷ < r0).14

For the latter we also use the term non-zero excess reference return. Another interpretation of the

negative and positive excess reference returns can be seen from writing down the portfolio return

net of the reference point for the case when the investor stays out of the market (x = 0)

R(x)− ŷ|x=0 = r0 + (r − r0)x− ŷ|x=0 = r0 − ŷ

Thus, if the residual of the relative portfolio return with respect to the reference point ŷ with zero

risky investment is positive, ŷ < r0, i.e., the investor is modest in setting her return goals, then

even when she stays out of the market she will be in her comfort zone. On the other hand if the

investor is more ambitious in setting her goals, ŷ > r0, then the residual of the relative portfolio

return with respect to the reference point with zero risky investment is negative and thus if she

stays out of the market she will be not that well off and be in her discomfort zone.

The following theorem characterizes the solution to the asset allocation decision under quadratic

loss aversion, see (2.8). For the special case when ŷ = r0, the solution can be stated explicitly,

which is shown in the subsequent corollary.

Theorem 2.4 Let E(r − r0) > 0 and λ > 0. Then problem (2.8) has a unique solution x∗ > 0

which satisfies

µ− r0 + 2λ

∫ ŷ−r0

x∗ +r0

−∞

(

ŷ − r0 − (r − r0)x∗
)

(r − r0)fr(r)dr = 0 (2.19)

Proof. See Appendix A.

Corollary 2.2 Let E(r − r0) > 0, λ > 0 and ŷ = r0. Then the solution to problem (2.8), as

14In the wealth setup the case corresponding to ŷ > r0 (ŷ < r0, ŷ = r0) is called the negative (positive, zero)
surplus case.

13



characterized by Theorem 2.4, can be stated explicitly as

x∗ =
µ− r0

2λ
∫ r0

−∞(r − r0)2fr(r)dr
(2.20)

Proof. Note that for ŷ = r0 the first order condition (2.21) simplifies to

µ− r0 − 2λx∗
∫ r0

−∞
(r − r0)2fr(r)dr = 0 (2.21)

which immediately yields (2.20). �

Note that both for the non-zero excess reference point (ŷ 6= r0) and the zero excess reference

point (ŷ = r0) the existence of a positive bounded solution does not depend on the degree of loss

aversion. This is in contrast to linear loss aversion, where the investor needs to be sufficiently

loss-averse to guarantee a bounded solution (see Table 2 or, e.g., Fortin and Hlouskova, 2011a;

and Siegmann and Lucas, 2005).15 If the linear loss-averse investor displays a low degree of loss

aversion (i.e., a small penalty parameter) then she would invest an infinite amount in the risky

asset (x∗ = +∞). He and Zhou (2011) refer to this as an ill-posed problem. In that sense, the

investment problem under quadratic loss aversion is always well-posed: for both the non-zero and

the zero excess reference point, a unique positive solution exists for any given penalty parameter.

Another fundamental difference between linear and quadratic loss aversion is that for a zero excess

reference point the LLA investor stays out of the market (x∗ = 0) while the QLA investor always

buys a strictly positive amount of the risky asset (x∗ > 0). This difference is a direct consequence

of the quadratic penalty. A large penalty parameter drives the risky investment to zero, however.

From a normative point of view it might be undesirable to see positive investments in the risky

asset if the reference point is equal to the risk-free rate. This has been found especially concerning

given the use of quadratic down-side risk measures in financial planning (see Siegmann and Lucas,

2005).

The following two corollaries summarize properties of the optimal solution with respect to the

degree of loss aversion and the level of the reference point, for the non-zero and the zero excess

reference points.

15Also for S-shaped loss aversion, a bounded solution depends on the degree of loss aversion, see Fortin and
Hlouskova (2011b).
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Corollary 2.3 Let E(r − r0) > 0, ŷ 6= r0 and λ > 0. Then the solution of problem (2.8) has the

following properties

dx∗

dλ
= − µ− r0

2λ2
∫

ŷ−r0

x∗ +r0

−∞ (r − r0)2fr(r)dr

< 0

(2.22)

dx∗

dŷ
=

∫

ŷ−r0

x∗ +r0

−∞ (r − r0)fr(r)dr

∫

ŷ−r0

x∗ +r0

−∞ (r − r0)2fr(r)dr







< 0, if ŷ < ŷmin

> 0, if ŷ > ŷmin

where ŷmin = argmin{x∗(λ, ŷ) | ŷ} such that r0 < ŷmin < +∞ and ŷmin solves
∫

ŷmin−r0

x∗ +r0

−∞ (r −
r0)2fr(r)dr = µ−r0

2λx∗ .

Proof. The proof is based on implicit function differentiation and Theorem 2.4. Let

G(λ, ŷ, x) ≡ µ− r0 + 2λ

∫ ŷ−r0

x
+r0

−∞

(

ŷ − r0 − (r − r0)x
)

(r − r0)fr(r)dr = 0

then

dx

dλ
= −∂G/∂λ

∂G/∂x
and

dx

dŷ
= −∂G/∂ŷ

∂G/∂x
(2.23)

where ŷ is fixed in the first case and λ is fixed in the second case, and

(∂G/∂λ)x=x∗ = 2

∫ ŷ−r0

x∗ +r0

−∞

(

ŷ − r0 − (r − r0)x∗
)

(r − r0)fr(r)dr

= −µ− r0

λ
< 0

(∂G/∂ŷ)x=x∗ = 2λ

∫
ŷ−r0

x∗ +r0

−∞
(r − r0)fr(r)dr

(∂G/∂x)x=x∗ = −2λ

∫ ŷ−r0

x∗ +r0

−∞
(r − r0)2fr(r)dr

This and (2.23) imply expressions for dx∗

dλ and dx∗

dŷ as stated in (2.22). Positive equity premium,
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E(r − r0) > 0, and the expression for dx∗

dλ imply that dx∗

dλ < 0. Regarding dx∗

dŷ , (2.21) gives

∫ ŷ−r0

x∗ +r0

−∞
(r − r0)fr(r)dr =

1

ŷ − r0



x∗
∫ ŷ−r0

x∗ +r0

−∞
(r − r0)2fr(r)dr −

µ− r0

2λ





which implies, in addition to (2.22), that

dx∗

dŷ
=

∫

ŷ−r0

x∗ +r0

−∞ (r − r0)fr(r)dr

∫

ŷ−r0

x∗ +r0

−∞ (r − r0)2fr(r)dr



























< 0, if ŷ < r0

if ŷ > r0 and λ < λ̂

= 0, if ŷ > r0 and λ = λ̂

> 0, if ŷ > r0 and λ > λ̂



























(2.24)

where λ̂ = µ−r0

2x∗ ∫

ŷ−r0

x∗ +r0

−∞ (r−r0)2fr(r)dr

. As

lim
ŷ→+∞

dx∗

dŷ
=

∫ +∞
−∞ (r − r0)fr(r)dr
∫ +∞
−∞ (r − r0)2fr(r)dr

=
µ− r0

∫ +∞
−∞ (r − r0)2fr(r)dr

> 0

lim
ŷ→(r0)+

dx∗

dŷ
=

∫ r0

−∞(r − r0)fr(r)dr
∫ r0

−∞(r − r0)2fr(r)dr
< 0

dλ̂

dŷ
= − (µ− r0)(ŷ − r0)2

2(x∗)4
(

∫

ŷ−r0

x∗ +r0

−∞ (r − r0)2fr(r)dr

)2 fr

(

ŷ − r0

x∗
+ r0

)

< 0

then this and (2.24) imply the U-shape of the optimal solution x∗ with respect to the reference

point ŷ as stated by (2.22). This concludes the proof. �

The corollary implies that the optimal solution as a function of the reference point is U-shaped,

displaying its minimum for a reference point that is strictly larger than the risk-free interest rate

(minimum reference point). This threshold value depends on the loss aversion parameter and

cannot be stated explicitly.16 There will thus be investors with positive excess reference points who

take on less risk than an investor with a zero excess reference point. This is also interesting from

a normative point of view and is clearly different from the case of linear loss aversion, where the

minimum degree of risk (in fact zero risk) is always attained for a zero excess reference point. The

behavior of the optimal solution with respect to the reference point is similar for sufficiently loss-

16It can, however, be computed numerically for a given loss aversion parameter and a given distribution.
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averse investors under linear loss aversion, except for the level of the threshold (minimum reference

point). Under linear loss aversion, the threshold that yields the minimum investment in the risky

asset, is equal to the risk-free interest rate.

Corollary 2.4 Let E(r − r0) > 0, ŷ = r0 and λ > 0. Then the solution of problem (2.8) has the

following properties

dx∗

dλ
= −x∗

λ
< 0 (2.25)

Proof. The statement can be shown by differentiating x∗, as given in (2.20), with respect to λ. �

Thus, the optimal fraction invested in the risky asset decreases with an an increasing degree of

the penalty parameter λ, both for non-zero and zero excess reference points. This behavior coincides

with the one of a linear loss-averse investor for a non-zero excess reference point. For the case of

a linear loss-averse investor with a zero excess reference point the optimal fraction invested in the

risky asset does not depend on the penalty parameter. Table 2 summarizes the properties of the

optimal solution under linear and quadratic loss aversion and lists the corresponding sensitivities

of the optimal risky asset’s weight with respect to the loss aversion parameter and with respect to

the reference point. For continuously distributed returns, the comparison of optimal investments

under linear and quadratic loss aversion is not so straightforward as for binomial returns. What

we can say, however, is that the optimal investment of an QLA investor exceeds that of an LLA

investor in a neighborhood of the zero excess reference point (since the former is strictly positive

and the latter is equal to zero).
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binomial continuous

linear loss aversion (LLA)

ŷ 6= r0, λ > λLLA x∗ > 0 (expl.) x∗ > 0
ŷ = r0, λ > λLLA x∗ = 0 x∗ = 0
λ < λLLA x∗ = +∞ x∗ = +∞

dx∗/dλ, ŷ 6= r0, λ > λLLA = 0 < 0
ŷ = r0 or λ < λLLA = 0 = 0

dx∗/dŷ, ŷ < r0, λ > λLLA < 0 < 0
ŷ > r0, λ > λLLA > 0 > 0
λ < λLLA =0 =0

quadratic loss aversion (QLA)

ŷ 6= r0 x∗ > 0 (expl.) x∗ > 0
ŷ = r0 x∗ > 0 (expl.) x∗ > 0 (expl.)

dx∗/dλ < 0 < 0

dx∗/dŷ, ŷ < ŷmin < 0 < 0
ŷ > ŷmin > 0 > 0

Table 2: Overview of optimal solutions under linear and quadratic loss aversion.
We assume that E(r − r0) > 0 and λ > 0. The threshold values of the loss aversion parameter

are λLLA = E(r−r0)
(1−p)(r0−rb)

for the binomial case under linear loss aversion, λQLA = λLLA
rg−r0

2(ŷ−r0)(rg−rb)

for the binomial case under quadratic loss aversion with ŷ > r0, λLLA = E(r−r0)
∫ r0

∞ (r0−r)fr(r)dr
for the

continuous case under linear loss aversion, and λQLA = E(r−r0)

2x∗ ∫

ŷ−r0

x∗ +r0

−∞ (r−r0)2fr(r)dr

for the continuous

case under quadratic loss aversion with ŷ > r0. ŷmin =
(rg−r0)(µ−r0)

2λ(1−p)(r0−rb)(rg−rb)
+ r0 for the binomial

case and ŷmin solves
∫

ŷmin−r0

x∗ +r0

−∞ (r − r0)2fr(r)dr = µ−r0

2λx∗ for the continuous case.
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Let us now look at a concrete example of optimal investment under quadratic and linear loss

aversion. Table 3 presents the optimal investments in the risky assets for investors under both

linear and quadratic loss-averse preference, for different values of the reference point, ŷ ∈ {3%,

5%, 7%}, and the penalty parameter, λ ∈ {1, 2, 3}. We assume that the risky asset is normally

distributed with a mean of 10% and a sigma of 20%, and that the risk-free rate is 5%. First, under

QLA the optimal investment into the risky asset is always positive, even when the reference point

is equal to the risk-free rate, while the risky investment under LLA is zero for the case when ŷ = r0

(for a sufficiently high degree of loss aversion). This reflects our theoretical results.17 Second, the

optimal investment in the risky asset is smaller under QLA than under LLA if the reference point is

sufficiently far away from the risk-free rate,18 which is a consequence of the quadratic shortfall. We

thus expect QLA optimal portfolios to exhibit a clearly smaller risk than LLA optimal portfolios

in empirical applications. This conjecture will be confirmed in our empirical study, see Section

3. Third, the investment in the risky asset decreases with an increasing value of λ, for a given

reference point, under both QLA and LLA preferences. On the other hand, the investment in the

risky asset decreases (increases) with an increasing reference point, for a given penalty parameter,

provided the reference point is below (above) the threshold value. This threshold is equal to r0

for the LLA investor and equal to ŷQLA
min for the QLA investor. This again reflects our theoretical

results.19

2.3 Numerical solution

In empirical applications or simulation experiments, the quadratic loss-averse utility maximization

problem (2.1) has to be solved numerically. We thus reformulate the original problem as the

following parametric problem of n−variables

max
x

{

1

S

S
∑

s=1

(

r′sx− λ
(

[ŷ − r′sx]
+
)2
) ∣

∣

∣
Ax ≤ b

}

(2.26)

17See Theorem 2.2 and Proposition 5 in Fortin and Hlouskova (2011a), and the summary of results in Table 2.
18What “sufficiently far away” means, depends on the specific distribution assumed as well as on the loss aversion

parameter. In our example, the neighborhoods around r0, in which x∗
QLA > x∗

LLA, are (4.72, 5.11), (3.93, 5.10) and
(3.51, 5.08) for λ = 1, 2, 3. The neighborhood is thus not symmetric around the risk-free rate, it includes a larger
interval below the risk-free rate.

19See Corollary 2.3 and Proposition 6 in Fortin and Hlouskova (2011a), and the summary of results in Table 2.
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λ = 1 λ = 2 λ = 3

ŷ/ŷQLA
min 3 5 = r0 5.30 7 3 5 = r0 5.15 7 3 5 = r0 5.10 7

x∗
LLA 0.2162 0.0000 0.0350 0.2336 0.0850 0.0000 0.0080 0.1061 0.0691 0.0000 0.0046 0.0925

x∗
QLA 0.0871 0.0190 0.0109 0.0294 0.0712 0.0095 0.0055 0.0265 0.0645 0.0063 0.0036 0.0255

Table 3: Optimal share in the risky asset.
The table reports the optimal risky asset’s weight of a linear loss-averse (LLA) and a quadratic
loss-averse (QLA) investor. The risky asset’s return is assumed to be normally distributed, r ∼
N(10, 202), and r0 = 5 (units in percent or percentage points). The LLA investor is sufficiently loss
averse (λ > λ̂ = 0.8731) in order to show a bounded investment in the risky asset. ŷQLA

min (the value
to the right of the risk-free rate) is the reference point yielding the minimum QLA investment in
the risky asset.

where λ, x, ŷ, A and b are defined as in (2.1), and rs is the n−vector of observed returns, s =

1, . . . , S.

It can be shown that (2.26) is equivalent to the following (n + S)−dimensional quadratic pro-

gramming problem

max
x,y−

{

µ̂′x− λ

S
(y−)′y−

∣

∣

∣
Ax ≤ b, Bx+ y− ≥ ŷe, y− ≥ 0

}

(2.27)

where µ̂ = (µ̂1, . . . , µ̂n)
′ is the vector of estimated expected returns, i.e., µ̂i =

1
S

∑S
s=1 rsi, e is an

S−vector of ones, B′ = [r1, r2, . . . , rS ] and y− ∈ R
S is an auxiliary variable. The equivalence should

be understood in the sense that if x∗ is the x portion of an optimal solution for (2.27), then x∗

is optimal for (2.26). On the other hand, if x∗ is optimal for (2.26) then ((x∗)′, (y−)′)′ is optimal

for (2.27) where y−s = [ŷ − (rs)
′x∗]+, s = 1, . . . , S. Thus, the utility function of problem (2.27)

maximizes the expected return of the portfolio penalized for cases when its return drops below the

reference value ŷ.

3 Empirical application

In this section we investigate the performance of an optimal asset portfolio constructed by a

quadratic loss-averse investor. We study the benchmark scenario, where the penalty parameter

is constant and the reference point is equal to zero percent, as well as five modified versions of the

benchmark scenario. The first modification uses the risk-free interest rate as the reference point

(risk-free scenario), the remaining four modifications employ time-changing versions of the penalty
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parameter and the reference point, which depend on previous gains and losses. The second and

third modifications of the risk-free scenario describe the usual conservative loss-averse investor who

becomes even more loss-averse after losses (dynamic scenarios), while the forth and fifth modifica-

tions describe a risk-seeking investor who becomes less loss-averse after losses and accepts further

risk and gambles which offer a chance to break even (break-even scenarios). The setup of the

dynamic scenarios follow Barberis and Huang (2001) while that of the break-even scenarios follow

Zhang and Semmler (2009).

Let dt = rB/rt be a state variable describing the investor’s sentiment with respect to prior

gains or losses, which depends on the prior benchmark return rB = 1/T
∑T

i=1 rt−i and the current

portfolio return rt. The benchmark return, which is the average value of the latest T realized

portfolio returns, is compared with the current portfolio return. If dt ≤ 1, then the current portfolio

return is greater than or equal to the benchmark return, making the investor feel that her portfolio

has performed well and that she has accumulated gains. If dt > 1, then the current portfolio return

is lower than the benchmark return, making the investor feel she has experienced losses. We take

T = 1 because in general investors seem to be most sensitive to the most recent loss. The current

portfolio return is thus compared to the previous period’s portfolio return.

The dynamic scenario 1 is modeled as follows. If the investor has experienced gains, then her

penalty parameter is equal to the pre-specified λ while her reference point is lower than the risk-free

interest rate due to the investor’s decreasing loss aversion. On the other hand, if the investor has

experienced losses, then her loss aversion and thus her penalty parameter increases. At the same

time her reference point is equal to the risk-free interest rate. The quadratic loss-averse utility

function adjusted for a time-changing penalty parameter and reference point is

g(rt) =







rt, rt ≥ ŷt

rt − λt(ŷt − rt)
2, rt < ŷt

where

λt =







λ, rt ≥ rt−1 (gain)

λ+
(

rt−1

rt
− 1
)

, rt < rt−1 (loss)
ŷt =







rt−1

rt
r0t , rt ≥ rt−1 (gain)

r0t , rt < rt−1 (loss)

and r0t is the risk-free interest rate at time t. Note that λt ≥ λ and ŷt ≤ r0t , where higher values of

the loss aversion parameter and the reference point reflect a higher degree of loss aversion.
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The dynamic scenario 2 is again designed for a conservative investor and in that sense is similar

to the dynamic scenario 1. If the investor has experienced recent gains, her loss aversion and thus

the penalty parameter decreases while her reference point is equal to the risk-free interest rate.

On the other hand, if the investor has experienced recent losses, her penalty parameter is equal

to the pre-specified λ while her reference point is bigger than the risk-free interest rate due to the

investor’s increasing loss aversion. Thus, the time-changing penalty parameter and reference point

are

λt =







λ+
(

rt−1

rt
− 1
)

, rt ≥ rt−1 (gain)

λ, rt < rt−1 (loss)
ŷt =







r0t , rt ≥ rt−1 (gain)

rt−1

rt
r0t , rt < rt−1 (loss)

The forth and fifth modifications are based on the “break-even” effect as described in Zhang

and Semmler (2009) and we refer to it as the break-even scenario 1 and the break-even scenario

2. The main idea is that sometimes people become more risk-seeking after losses in order to make

up for previous losses. In other words, even if they have experienced losses in the previous period,

investors may be ready to incur further risks and accept gambles which offer them a chance to

break even. In both scenarios the case of the losses is modeled in the same way, namely, the

penalty parameter decreases and the reference point becomes smaller than the risk-free interest

rate due to the investor’s increased risk-seeking. The gains in the first break-even scenario are

modeled as in the risk-free scenario while in the second break-even scenario they are modeled as

if the investor was risk-averse, namely, the penalty parameter increases and the reference point

becomes larger than the risk-free interest rate. The time-changing penalty parameter and reference

point are then

λt =







λ, rt ≥ rt−1 (gain)

λ+
(

rt
rt−1

− 1
)

, rt < rt−1 (loss)
ŷt =







r0t , rt ≥ rt−1 (gain)

rt
rt−1

r0t , rt < rt−1 (loss)

for the first break-even scenario and

λt = λ+

(

rt
rt−1

− 1

)

, ŷt =
rt
rt−1

r0t ,

for both prior gains and losses for the second break-even scenario.

To summarize the different investors Figure 2 shows plots of the four different types of time-
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changing quadratic loss-averse utility we consider. In particular the different utility functions for

gains and losses in the two dynamic and the two break-even scenarios are shown. As a reference the

utility for the risk-free scenario is also plotted. In the dynamic scenarios (top row) the investor’s

loss aversion increases after losses, while it decreases after gains. The dotted line (losses) thus

reflects a higher penalty and the dashed line (gains) reflects a lower penalty than in the risk-free

scenario. In the break-even scenarios, on the other hand, the investor’s loss aversion decreases after

losses, since the investor feels she has to make up for the recent losses. We will see that the specific

form of the utility affects the performance of the optimal portfolio.

ŷ = ŷlŷg
return y

utility g(y)

gain
loss

dynamic scenario 1

ŷ = ŷg ŷl
return y

utility g(y)

gain
loss

dynamic scenario 2

ŷ = ŷgŷl
return y

utility g(y)

loss gain

break-even scenario 1

ŷŷl ŷg
return y

utility g(y)

loss gain

break-even scenario 2

Figure 2: Dynamic and break-even scenarios
The plot shows quadratic loss-averse utility for gains (dashed line) and losses (dotted line) in
the modified scenarios and the loss-averse utility in the risk-free scenario (solid line). ŷ denotes
the reference point in the risk-free scenario, ŷg and ŷl denote the reference point in the modified
scenarios for the case of gains and losses, respectively.

In the empirical analysis we consider two geographical markets, the European and the US mar-
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kets, each including different types of financial assets among which the investor may select. These

assets include sectoral stock indices, government bonds and the two commodities gold and crude

oil, yielding a total of 13 assets. Tables 7 and 8 in Appendix B report the summary statistics of the

considered European and US financial assets. In general, the stock indices exhibit comparatively

high risk and return, the government bonds show a low risk and return, and gold exhibits moderate

risk and a low return while crude oil shows high risk and a moderate return. For additional infor-

mation we report the overall stock market index as a benchmark portfolio. Returns are computed

as rt = pt/pt−1 − 1, where pt is the monthly closing price at time t. All prices are extracted from

Thomson Reuters Datastream from January 1982 to December 2010. The overall stock market

indices for the EMU and the US are as calculated by Datastream. The sectoral stock indices follow

the Datastream classification for EMU and US stock markets and cover the following 10 sectors:

oil and gas, basic materials, industrials, consumer goods, health care, consumer services, telecom,

utilities, financials, and technology. We use Brent and WTI crude oil quotations for the European

and US markets, respectively. Prices in the European markets are quoted in, or transformed to,

Euro; prices in the US markets are quoted in US dollar, hence we consider European and US

investors who completely hedge their respective currency risk.20

The investor is assumed to re-optimize her portfolio once a month using monthly closing prices

and an optimization sample of 36 months, i.e., three years. This yields an out-of-sample evalua-

tion period from February 1985 until December 2010. We have experimented with other, longer

optimization samples, e.g., five years, but the performance of the resulting optimal QLA portfolio

is generally better for shorter periods indicating that changing market conditions should be taken

into immediate account.

We use different values of λ in all scenarios to allow for different degrees of loss aversion.

Specifically, we let the penalty parameter be equal to 0.5, 1, 1.25, 1.5 and 2. The value λ = 1.25

is the one estimated by Kahneman and Tversky (λ = 2.25 in their set-up) when dealing with

the prospect theory (S-shaped) utility function.21 For the European and US quadratic loss-averse

investors we report optimization results for different scenarios, as described above. In particular, we

present descriptive statistics including mean, standard deviation, downside volatility, CVaR, and

20The gold price, which is quoted in US dollar, is transformed to Euro for the European investor. Differences
between the descriptive statistics of the US and the European gold price are thus entirely due to fluctuations in the
USD/EUR exchange rate.

21It makes sense to use this value, as we compare the performance of QLA investment with that of LLA investment
which is a reasonable approximation of prospect theory investment.
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various risk-adjusted performance measures of the optimal quadratic loss-averse portfolio return

as well as the average optimal portfolio weights. Risk-adjusted performance measures include the

Sharpe and Sortino ratios and the Omega measure.22 The downside volatility, the Sortino ratio

and the Omega measure are calculated with respect to two targets, the risk-free interest rate and

the overall stock market index. To be able to compare the new quadratic loss-averse portfolio

optimization to more standard approaches, we also report optimization results for the MV and

CVaR methods, and for the linear loss-averse (LLA) investor.

As the empirical results are very similar for the two constant scenarios, for the two dynamic

scenarios and for the two break-even scenarios, respectively, we only report results for one at a

time. We thus report results for the benchmark scenario, where the loss aversion parameters are

constant and the reference point is equal to zero, for the dynamic scenario 2, where loss aversion

increases after losses, and for the break-even scenario 2, where loss aversion decreases after losses.

We first discuss the results for the EU investor.

Considering the benchmark scenario (see Table 4), we note that the optimal QLA portfolios

generally display a higher expected return and a higher median, but also a higher risk (in terms of

standard deviation, downside volatility with respect to the risk-free rate and conditional value-at-

risk, except for the downside volatility with respect to the benchmark portfolio) than the optimal

MV and CVaR portfolios. The reported risk-adjusted performance measures (Sharpe and Sortino

ratios as well as the Omega measure) of most QLA portfolios are significantly larger than those

of the MV or CVaR portfolios, suggesting a clear outperformance of QLA portfolios over the MV

and CVaR portfolios. In addition, also the downside volatilities (with respect to the market index)

of QLA portfolios are significantly smaller than those of the MV and CVaR portfolios. When

comparing the performance of QLA portfolios to LLA portfolios, the risk (standard deviation and

downside volatility) is significantly smaller for QLA portfolios while the return is only a bit smaller.

In total, however, the reported risk-adjusted performance measures are slightly smaller for QLA

portfolios. Still, QLA investment seems to be an acceptable compromise between relatively safe

(but less profitable) MV and CVaR investment and relatively risky (but also more profitable) LLA

investment. Over the past 10 years (2001-2010), QLA investment would have produced the highest

realized returns (compared to MV, CVaR and LLA investment). For an investor with λ = 1.25,

22The Sortino ratio is a modified version of the Sharpe ratio which uses downside volatility with respect to a target
return (instead of standard deviation) as the denominator. The Omega measure is a ratio of upside potential of
portfolio return relative to its downside potential with respect to a target return (see Shadwick and Keating, 2002).
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QLA investment would have led to an average yearly return of 6.95%, while MV, CVaR and LLA

investment would have lead to 5.99%, 4.60% and 5.55%, respectively.

Turning to the discussion of the results for the dynamic scenario 2 (see Table 5), the main

observations of QLA investment as compared to MV, CVaR and LLA investment in the benchmark

scenario are still true. I.e., QLA investment is much more profitable, yet also more risky (except

for the downside volatility with respect to the market index) than MV and CVaR investment, but

clearly outperforms MV and CVaR investment with respect to risk-adjusted performance measures;

and QLA investment is considerably less profitable, yet also less risky than LLA investment, but is

slightly dominated by LLA investment with respect to risk-adjusted performance measures. Over

the past 10 years (2001-2010), QLA investment would have yielded a higher realized return than

MV and CVaR investment, but a slightly smaller return than LLA investment (for most values

of the loss aversion parameter). For an investor with λ = 1.25, QLA investment would have

lead to an average yearly return of 6.96%, while MV, CVaR and LLA investment would have led

to 5.99%, 4.60% and 4.65%, respectively. Compared to the benchmark scenario, time-changing

QLA investment seems to be more profitable and slightly more risky in the dynamic scenario,

and it clearly outperforms constant QLA investment (benchmark scenario) in terms of the risk-

adjusted performance measures. Thus it seems to be important that the investment behavior takes

recent market developments into account. This is also in line with the observation that shorter

optimization samples tend to yield better QLA portfolios.

Even though the investment behavior of the risk-seeking investor in the break-even scenario

(loss aversion decreases after losses) is inherently different from that of the conservative investor

in the dynamic scenario (loss aversion increases after losses), the two sets of empirical results are

very similar (see Table 6 for the results in the break-even scenario 2). In general, risk-seeking

QLA investment (break-even scenario) seems to perform marginally worse than conservative QLA

investment (dynamic scenario), in terms of return, risk and risk-adjusted performance measures.

Also, the risk-seeking QLA investor (break-even scenario) would have realized a slightly lower return

than the conservative QLA investor (dynamic scenario) over the past 10 years (2001-2010). For

an investor with λ = 1.25, QLA investment would have led to an average yearly return of 4.09%,

while MV, CVaR and LLA investment would have lead to 5.99%, 4.60% and 4.04%, respectively.

Comparing different types of investors, the results are similar as in the risk-free and the dynamic

scenarios: QLA investment is more profitable and more risky (except for the downside volatility
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with respect to the market index) than MV and CVaR investment but in total yields a higher

risk-adjusted performance. In addition, QLA investment is considerably less profitable and less

risky than LLA investment, and it shows a slightly lower risk-adjusted performance.

The results for the US markets are roughly similar to those for the European markets apart from

two main issues. First, QLA portfolios do not outperform MV portfolios in terms of risk-adjusted

performance measures. Second, risk-seeking QLA investment (break-even scenario 2) does not

outperform constant QLA investment (benchmark scenario), while conservative QLA investment

(dynamic scenario 2) still does. See Tables 9, 10, and 11 in Appendix B.

For both the EU and the US markets, we verify the robustness of our empirical results in the

presence of transaction costs, namely 0.3% of turnover. Obviously, the absolute performance in all

scenarios is reduced due to the transaction costs. Apart from that, however, the results remain

qualitatively the same.
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Risk-free Market MV CVaR Linear loss-averse (LLA), λ Quadratic loss-averse (QLA), λ
Index 0 0.50 1.00 1.25 1.50 2.00 0.50 1.00 1.25 1.50 2.00

Performance of 1-month returns (in percent p.a.)
Mean 4.15 11.78 6.49 5.40 20.09 19.11 15.33 14.43 13.02 12.95 9.91 8.82 8.61 8.42 7.93
Median 3.64 18.30 7.35 6.43 15.88 16.37 15.96 14.72 13.27 12.59 10.88 9.84 9.33 9.45 9.02
Std.Dev. 0.68 17.46 5.07 6.13 29.56 22.26 19.30 17.91 16.63 15.28 11.98 9.41 8.85 8.49 7.94
Std.Dev.riskfree 11.01 2.97 3.83 16.12 11.88 10.60 9.59 9.10 8.36 7.29 5.97 5.62 5.40 5.09
Std.Dev.market index 9.86 9.24 9.12 15.50 10.21 9.03 8.18 7.96 7.79 7.91 7.90 8.01 8.10 8.24
CVaR 0.10 -79.39 -28.31 -36.13 -90.61 -80.84 -77.30 -73.65 -71.75 -67.59 -59.97 -50.14 -47.89 -46.41 -44.30
Minimum 0.00 -93.99 -43.53 -58.80 -97.67 -96.20 -94.97 -94.97 -94.91 -94.53 -94.59 -92.85 -91.59 -90.64 -89.02
Sharpe’s (in percent) 41.88 43.73 19.43 51.80 64.48 55.62 55.05 51.15 55.21 45.98 47.45 48.09 47.99 45.48
Sortino (risk-free) 66.69 75.70 31.39 95.24 121.30 101.60 103.27 93.90 101.40 76.04 75.37 76.28 75.98 71.53
Sortino (market index) -69.80 -51.68 -63.08 48.44 64.83 35.60 29.28 14.16 13.64 -21.33 -33.76 -35.76 -37.44 -42.12
Omega (risk-free) 11.26 4.13 2.05 36.20 64.59 36.41 33.81 25.19 29.93 11.55 9.48 9.07 8.59 7.18
Omega (market index) 0.09 0.17 0.11 7.33 8.99 3.33 2.53 1.57 1.53 0.50 0.34 0.32 0.30 0.25

Total realized return (in percent p.a.)
Last 10 Years 0.22 0.68 5.99 4.60 2.91 5.49 3.28 5.55 6.50 8.93 7.06 6.85 6.95 6.94 6.66
Last 5 Years 0.21 0.19 4.49 2.92 8.79 12.43 7.40 9.39 10.99 12.74 9.75 8.27 8.30 8.12 7.39
Last 3 Years 0.15 -8.74 5.93 3.67 6.60 5.20 -2.62 -1.21 -0.96 1.29 -0.03 1.53 1.81 1.87 2.29
Last Year 0.04 5.60 7.60 5.77 36.61 37.60 10.97 11.57 10.40 11.52 10.21 7.97 7.43 7.03 6.79

Percentiles
5 0.39 -63.87 -21.70 -25.43 -79.18 -66.70 -58.53 -58.43 -55.35 -51.03 -45.05 -35.47 -33.81 -32.29 -30.01
10 0.93 -43.94 -15.30 -18.43 -61.00 -50.07 -42.01 -39.17 -38.50 -35.26 -29.94 -25.10 -23.10 -22.35 -20.70
25 2.64 -19.11 -3.26 -6.36 -25.68 -18.91 -13.79 -12.07 -10.55 -7.37 -9.62 -7.56 -6.11 -5.96 -6.12
50 3.64 18.30 7.35 6.43 15.88 16.37 15.96 14.72 13.27 12.59 10.88 9.84 9.33 9.45 9.02
75 4.99 58.00 17.36 21.20 99.36 64.74 47.88 42.91 38.74 39.01 33.50 27.00 26.36 25.63 23.42
90 8.33 107.03 30.19 32.92 252.69 160.83 116.78 99.83 89.21 81.37 69.23 50.99 50.07 47.79 45.66
95 9.13 153.49 40.26 46.34 431.78 283.52 190.21 190.21 136.90 124.76 95.47 77.40 74.11 69.70 65.71

Mean allocation (in percent)
OIL 0.70 3.65 7.40 8.44 7.80 6.24 5.04 4.30 3.43 3.18 3.17 3.19 3.13
BASICMAT 1.52 1.06 5.47 5.86 4.78 3.86 3.27 2.87 3.11 2.57 2.12 1.84 1.46
INDUS 0.62 0.14 1.93 0.83 0.12 0.15 0.27 0.44 0.21 0.18 0.19 0.21 0.24
CONSGDS 1.14 1.46 0.32 0.98 1.20 1.14 1.22 1.18 0.61 0.47 0.42 0.39 0.37
HEALTH 3.64 3.99 3.54 3.87 5.81 5.82 5.48 5.21 3.29 3.46 3.49 3.44 3.80
CONSSVS 0.91 0.49 0.00 0.36 0.54 0.73 1.09 1.56 2.01 2.14 2.25 2.35 2.40
TELE 0.54 1.79 5.79 4.88 5.49 6.28 6.62 6.44 5.17 3.51 3.17 2.90 2.59
UTIL 3.23 6.21 4.82 13.20 18.22 19.40 19.64 18.56 17.88 14.41 13.36 12.53 10.86
FIN 0.20 1.91 0.64 2.25 3.23 3.42 3.50 3.45 2.54 1.15 0.92 0.82 0.83
TECH 0.45 0.67 36.66 31.14 21.51 17.77 13.77 9.52 7.09 4.39 3.82 3.43 2.87
BOND 74.52 63.91 4.82 12.85 21.74 26.55 31.65 37.93 44.03 52.11 53.99 55.37 57.34
GOLD 9.61 10.85 9.00 8.15 5.21 4.61 4.57 4.78 6.42 8.77 9.57 10.06 10.68
CRUDEOIL 2.92 3.86 19.61 7.19 4.34 4.01 3.87 3.75 4.21 3.65 3.54 3.49 3.44

Table 4: Out-of-sample evaluation of EU portfolios: Benchmark scenario

The table reports statistics of a monthly reallocated optimal linear loss-averse portfolio based on an optimization period of 36

months as well as the average of the optimal asset weights. The benchmark scenario assumes a constant loss-averse parameter

λ and a zero reference point. The evaluation period covers February 1985 to December 2010. Statistics are calculated on the

basis of monthly returns and then annualized assuming discrete compounding. The annual standard deviation is computed as

σpa =
√
12σpm.
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Risk-free Market MV CVaR Linear loss-averse (LLA), λ Quadratic loss-averse (QLA), λ
Index 0 0.50 1.00 1.25 1.50 2.00 0.50 1.00 1.25 1.50 2.00

Performance of 1-month returns (in percent p.a.)
Mean 4.15 11.78 6.49 5.40 20.09 19.17 20.67 15.56 17.06 15.46 9.74 9.92 9.56 9.16 8.96
Median 3.64 18.30 7.35 6.43 15.88 19.75 18.33 14.95 15.51 14.82 11.17 9.56 9.35 9.54 9.21
Std.Dev. 0.68 17.46 5.07 6.13 29.56 19.72 19.55 19.09 18.37 17.13 11.27 9.59 9.25 9.18 8.45
Std.Dev.riskfree 11.01 2.97 3.83 16.12 10.36 9.72 10.18 9.47 9.02 6.96 5.70 5.54 5.63 4.91
Std.Dev.market index 9.86 9.24 9.12 15.50 8.15 8.70 8.72 7.84 8.11 7.89 7.92 8.03 8.05 8.21
CVaR 0.10 -79.39 -28.31 -36.13 -90.61 -75.29 -73.56 -75.85 -72.29 -71.21 -57.91 -48.35 -48.01 -48.56 -42.53
Minimum 0.00 -93.99 -43.53 -58.80 -97.67 -95.19 -95.04 -94.97 -94.88 -94.57 -94.49 -92.48 -91.27 -90.34 -88.64
Sharpe’s (in percent) 41.88 43.73 19.43 51.80 73.04 81.19 57.38 67.40 63.34 47.42 57.51 55.97 52.18 54.40
Sortino (risk-free) 66.69 75.70 31.39 95.24 139.66 163.78 107.99 131.26 120.84 77.32 97.38 94.12 85.77 94.44
Sortino (market index) -69.80 -51.68 -63.08 48.44 81.93 92.41 39.25 60.83 41.05 -23.33 -21.20 -24.86 -29.31 -30.94
Omega (risk-free) 11.26 4.13 2.05 36.20 94.35 159.45 39.81 64.87 50.49 11.60 16.10 14.33 12.09 12.11
Omega (market index) 0.09 0.17 0.11 7.33 14.15 21.31 3.87 6.58 3.70 0.47 0.51 0.45 0.39 0.37

Total realized return (in percent p.a.)
Last 10 Years 0.22 0.68 5.99 4.60 2.91 10.55 9.77 4.65 8.40 7.91 7.36 6.99 6.96 7.58 6.45
Last 5 Years 0.21 0.19 4.49 2.92 8.79 10.81 11.41 13.99 14.36 11.46 10.17 8.34 7.77 8.35 6.58
Last 3 Years 0.15 -8.74 5.93 3.67 6.60 7.39 3.34 8.16 8.63 0.57 0.53 1.36 0.53 2.30 2.78
Last Year 0.04 5.60 7.60 5.77 36.61 20.55 27.69 17.04 33.68 23.87 9.89 7.95 7.58 7.31 8.18

Percentiles
5 0.39 -63.87 -21.70 -25.43 -79.18 -59.86 -58.51 -59.40 -58.55 -54.92 -42.89 -33.18 -32.51 -30.67 -27.60
10 0.93 -43.94 -15.30 -18.43 -61.00 -44.08 -42.66 -45.01 -42.10 -36.57 -28.29 -22.86 -21.15 -21.14 -20.33
25 2.64 -19.11 -3.26 -6.36 -25.68 -16.94 -12.54 -14.62 -15.20 -12.75 -9.18 -6.54 -5.41 -5.51 -5.17
50 3.64 18.30 7.35 6.43 15.88 19.75 18.33 14.95 15.51 14.82 11.17 9.56 9.35 9.54 9.21
75 4.99 58.00 17.36 21.20 99.36 61.07 63.24 49.41 51.70 45.85 33.64 26.50 25.59 24.87 23.15
90 8.33 107.03 30.19 32.92 252.69 123.97 115.18 107.15 124.88 89.78 62.13 52.98 52.72 50.71 44.16
95 9.13 153.49 40.26 46.34 431.78 227.74 241.84 160.28 194.39 158.64 86.08 76.14 70.69 68.06 64.95

Mean allocation (in percent)
OIL 0.70 3.65 7.40 7.66 7.05 7.33 7.07 6.11 3.15 2.91 3.14 2.97 2.97
BASICMAT 1.52 1.06 5.47 7.17 5.77 6.27 5.74 4.88 3.14 2.59 2.19 1.85 1.42
INDUS 0.62 0.14 1.93 4.33 2.84 2.42 2.09 1.66 0.22 0.21 0.20 0.21 0.25
CONSGDS 1.14 1.46 0.32 3.86 3.00 2.78 2.35 2.28 0.55 0.42 0.45 0.37 0.37
HEALTH 3.64 3.99 3.54 5.72 6.56 6.39 6.67 7.16 3.33 3.77 3.70 3.96 4.28
CONSSVS 0.91 0.49 0.00 3.65 2.70 2.59 2.55 2.16 2.12 1.93 2.07 2.17 2.16
TELE 0.54 1.79 5.79 6.52 7.08 7.39 7.04 6.57 4.87 3.38 2.93 2.95 2.38
UTIL 3.23 6.21 4.82 9.16 11.95 13.21 14.40 15.85 17.19 13.58 12.60 11.76 10.26
FIN 0.20 1.91 0.64 4.15 3.77 3.64 3.82 3.43 2.26 0.93 0.75 0.72 0.74
TECH 0.45 0.67 36.66 22.03 20.03 19.46 17.60 15.50 6.04 4.30 3.87 3.44 3.34
BOND 74.52 63.91 4.82 9.43 12.52 14.97 17.00 22.73 47.11 54.09 55.71 56.87 59.01
GOLD 9.61 10.85 9.00 8.15 7.36 6.35 6.43 5.30 6.21 8.42 8.90 9.32 9.55
CRUDEOIL 2.92 3.86 19.61 8.55 9.37 7.20 7.24 6.38 3.82 3.46 3.50 3.42 3.27

Table 5: Out-of-sample evaluation of EU portfolios: Dynamic scenario 2

The table reports statistics of a monthly reallocated optimal linear loss-averse portfolio based on an optimization period of 36

months as well as the average of the optimal asset weights. The dynamic scenario 2 assumes a smaller λ and a reference point

equal to the risk-free rate for prior gains, and a constant λ and a higher reference point for prior losses. The evaluation period

covers February 1985 to December 2010. Statistics are calculated on the basis of monthly returns and then annualized assuming

discrete compounding. The annual standard deviation is computed as σpa =
√
12σpm.
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Risk-free Market MV CVaR Linear loss-averse (LLA), λ Quadratic loss-averse (QLA), λ
Index 0 0.50 1.00 1.25 1.50 2.00 0.50 1.00 1.25 1.50 2.00

Performance of 1-month returns (in percent p.a.)
Mean 4.15 11.78 6.49 5.40 20.09 17.68 17.76 15.78 16.37 15.10 9.60 9.56 8.77 8.25 8.37
Median 3.64 18.30 7.35 6.43 15.88 17.34 16.13 16.71 16.80 12.99 11.35 9.78 9.93 9.56 9.24
Std.Dev. 0.68 17.46 5.07 6.13 29.56 19.11 19.43 19.24 19.22 17.67 11.77 9.91 9.85 10.12 9.07
Std.Dev.riskfree 11.01 2.97 3.83 16.12 10.44 10.82 11.07 10.33 9.30 7.23 5.93 6.45 6.83 5.71
Std.Dev.market index 9.86 9.24 9.12 15.50 10.07 8.73 8.95 8.23 8.56 8.11 7.97 8.09 8.11 8.17
CVaR 0.10 -79.39 -28.31 -36.13 -90.61 -77.28 -77.84 -78.77 -75.70 -70.92 -58.68 -50.33 -53.91 -55.09 -49.72
Minimum 0.00 -93.99 -43.53 -58.80 -97.67 -95.19 -97.34 -97.22 -94.37 -93.90 -94.48 -91.60 -89.68 -96.20 -90.64
Sharpe’s (in percent) 41.88 43.73 19.43 51.80 67.85 67.15 57.96 61.01 59.44 44.29 52.26 44.95 38.84 44.61
Sortino (risk-free) 66.69 75.70 31.39 95.24 124.86 121.19 101.24 113.96 113.33 72.49 87.81 68.94 57.86 71.13
Sortino (market index) -69.80 -51.68 -63.08 48.44 52.95 61.96 40.41 50.42 35.01 -24.27 -25.15 -33.52 -39.23 -37.62
Omega (risk-free) 11.26 4.13 2.05 36.20 66.89 71.08 40.14 50.78 41.83 9.94 12.56 9.00 7.25 8.25
Omega (market index) 0.09 0.17 0.11 7.33 8.48 8.46 4.05 5.03 3.27 0.45 0.45 0.34 0.28 0.29

Total realized return (in percent p.a.)
Last 10 Years 0.22 0.68 5.99 4.60 2.91 8.73 7.94 4.04 4.28 4.41 6.06 6.52 4.09 4.43 4.46
Last 5 Years 0.21 0.19 4.49 2.92 8.79 13.22 11.73 7.65 2.37 7.34 9.55 8.18 7.14 6.11 4.71
Last 3 Years 0.15 -8.74 5.93 3.67 6.60 3.62 5.26 -2.31 -5.94 -4.19 0.05 0.12 0.06 -0.97 -0.35
Last Year 0.04 5.60 7.60 5.77 36.61 23.08 7.76 10.28 2.99 12.87 10.34 8.23 7.39 7.16 6.82

Percentiles
5 0.39 -63.87 -21.70 -25.43 -79.18 -56.48 -59.28 -58.52 -57.05 -57.60 -44.77 -36.40 -35.86 -33.96 -31.36
10 0.93 -43.94 -15.30 -18.43 -61.00 -42.13 -39.53 -44.73 -44.60 -44.34 -32.98 -24.80 -21.51 -21.41 -22.48
25 2.64 -19.11 -3.26 -6.36 -25.68 -14.61 -12.56 -13.43 -13.67 -12.62 -9.88 -7.92 -6.76 -6.36 -6.30
50 3.64 18.30 7.35 6.43 15.88 17.34 16.13 16.71 16.80 12.99 11.35 9.78 9.93 9.56 9.24
75 4.99 58.00 17.36 21.20 99.36 61.15 57.36 52.82 52.58 43.10 34.28 29.20 28.25 26.76 24.78
90 8.33 107.03 30.19 32.92 252.69 112.41 115.25 121.30 113.91 99.73 71.93 53.27 53.80 50.36 46.34
95 9.13 153.49 40.26 46.34 431.78 204.05 252.49 226.02 179.91 169.12 92.54 83.16 79.76 70.29 67.53

Mean allocation (in percent)
OIL 0.70 3.65 7.40 7.03 7.24 6.80 7.82 5.90 3.53 3.50 3.20 3.02 3.00
BASICMAT 1.52 1.06 5.47 5.90 5.54 5.76 4.85 3.71 3.57 2.85 2.20 1.97 1.65
INDUS 0.62 0.14 1.93 4.25 2.59 2.14 1.73 1.58 0.26 0.19 0.16 0.29 0.29
CONSGDS 1.14 1.46 0.32 4.00 3.38 2.90 2.52 2.15 0.53 0.36 0.35 0.50 0.50
HEALTH 3.64 3.99 3.54 5.63 6.20 5.66 5.43 6.19 3.31 3.81 3.85 3.52 3.95
CONSSVS 0.91 0.49 0.00 3.29 2.45 2.38 1.88 2.02 1.79 2.12 2.17 2.39 2.46
TELE 0.54 1.79 5.79 7.33 6.30 7.06 5.92 6.36 5.71 3.92 3.46 3.44 2.72
UTIL 3.23 6.21 4.82 10.55 10.35 11.26 13.69 15.46 17.48 14.17 13.41 12.66 11.04
FIN 0.20 1.91 0.64 4.15 3.26 3.16 3.02 3.21 2.47 1.16 0.91 0.85 0.85
TECH 0.45 0.67 36.66 17.47 20.32 18.56 18.00 16.32 7.63 4.73 4.42 4.02 3.70
BOND 74.52 63.91 4.82 13.67 17.55 19.40 21.92 25.97 43.22 51.22 53.00 54.25 56.77
GOLD 9.61 10.85 9.00 7.05 6.47 7.35 6.14 5.89 5.93 8.22 8.81 9.24 9.52
CRUDEOIL 2.92 3.86 19.61 9.68 8.03 7.57 7.08 5.24 4.58 3.73 4.05 3.86 3.54

Table 6: Out-of-sample evaluation of EU portfolios: Break-even scenario 2

The table reports statistics of a monthly reallocated optimal linear loss-averse portfolio based on an optimization period of 36

months as well as the average of the optimal asset weights. The break even scenario assumes a risk-seeking behavior after prior

losses. The evaluation period covers February 1985 to December 2010. Statistics are calculated on the basis of monthly returns

and then annualized assuming discrete compounding. The annual standard deviation is computed as σpa =
√
12σpm.
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4 Conclusion

A large body of experimental evidence suggests that loss aversion plays an important role in the

asset allocation decision. In this paper we investigate the quadratic loss-averse utility maximization

problem along different dimensions. First we examine the theoretical relationship between the

optimal asset allocation under quadratic loss aversion and more traditional asset allocation methods;

i.e., the MV and CVaR methods. We formulate assumptions under which the QLA, MV and

CVaR problems are equivalent, provided that portfolio returns are normally distributed. Then we

investigate the two-asset case, involving one risky and one risk-free asset, and analytically derive

the optimal risky asset’s weight, under the assumption of binomially and (generally) continuously

distributed returns of the risky asset. We consider both the zero excess reference point case, where

the reference point is equal to the risk-free rate, and the non-zero excess reference point case, where

the reference point is different from the risk-free rate. One reason for investigating the zero excess

reference point case is that the risk-free rate seems to be a natural candidate for the reference point

and it is also mostly used in the literature; another reason may be that the corresponding analysis

is more straightforward and analytical solutions can typically be provided in an explicit form. In

both cases, the optimal QLA investment in the risky asset is always finite and strictly positive.

This is different from investment under linear loss aversion, where, first, the investor would invest

an infinite amount in the risky asset if she displayed a low degree of loss aversion (small penalty

parameter) and, second, she would completely stay out of the market for a zero excess reference

point. We find that under QLA the minimum risk allocation with respect to the reference point is

attained for some value strictly larger than the risk-free rate, while under LLA the portfolio risk is

minimal (actually zero) for the zero excess reference point.

Then we implement the trading strategy of a quadratic loss-averse investor (as well as of a

linear loss-averse investor) who reallocates her portfolio on a monthly basis in the period 1985 to

2010. In addition to the benchmark QLA scenario, which uses a constant penalty parameter and

a constant reference point, we introduce time-changing QLA scenarios, where we update both the

penalty parameter and the reference point conditional on previous gains and losses. The considered

trading strategies/scenarios are either conservative, where loss aversion increases after losses, or

risk-seeking, where loss aversion decreases after losses. The assets available for portfolio selection

include sectoral stock indices, government bonds as well as the two commodities gold and crude

oil, yielding a total of 13 assets, and we consider a European and a US investor.
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Our empirical results suggest that – independent of the loss aversion parameter’s value – the

optimal QLA portfolio outperforms the optimal MV and CVaR portfolios, when we use the Sharpe

ratio, the Sortino ratio or the Omega measure as performance measures. Among the different

QLA scenarios, the conservative time-changing method achieves the highest performance measures,

which indicates that investors reacting to changing market conditions perform better than investors

behaving the same all the time. In this context, it seems to be important, however, in which form

investors update their investment strategy. Increasing loss aversion after losses (conservative QLA

investment) usually seems to be a wiser choice than decreasing loss aversion after losses (risk-seeking

QLA investment).

When comparing QLA and LLA portfolios, we find that the risk (standard deviation and down-

side volatility) is significantly smaller for QLA portfolios while the return is only a bit smaller. In

total, however, risk-adjusted performance measures are slightly smaller for QLA portfolios. Still,

QLA investment seems to be an acceptable compromise between relatively safe (but less profitable)

MV and CVaR investment and relatively risky (but also more profitable) LLA investment.

An interesting topic for further research would be to consider the S-shaped form of loss-averse

(prospect theory type) utility, and to investigate the properties and performance of the correspond-

ing optimal portfolios with respect to the loss aversion parameter and the reference point. Another

interesting topic would be to examine more closely the effect of investment under (quadratic) loss

aversion for different market climates, e.g., to answer the question whether QLA investment per-

forms fundamentally different in bearish and bullish markets.
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Appendix A

Proof of Theorem 2.3. We show that QLAλ,ŷ(R(x)) is (a) increasing in I1 ≡
(

−∞,min
{

ŷ−r0

rg−r0
, r0−ŷ
r0−rb

}]

;

(b) increasing in I2 ≡
[

min
{

ŷ−r0

rg−r0
, r0−ŷ
r0−rb

}

,max
{

ŷ−r0

rg−r0
, r0−ŷ
r0−rb

}]

for ŷ < r0 and increasing in

I2 also for ŷ > r0 and λ ≤ λ̂, but having a global maximum x∗ =
( 1
2λ

+ŷ−r0)E(r−r0)

E(r−r0)2
> 0 in

I2 for ŷ > r0 and λ > λ̂; (c) having a global maximum x∗ = r0−ŷ
r0−rb

+ E(r−r0)
2λ(1−p)(r0−rb)2

> 0 in

I3 ≡
[

max
{

ŷ−r0

rg−r0 ,
r0−ŷ
r0−rb

}

,+∞
)

for ŷ ≤ r0 and also for ŷ > r0 and λ ≤ λ̂ but decreasing in I3 for

ŷ > r0 and λ > λ̂. The statement of the theorem then follows from (a)-(c).

It follows from (2.11), (2.12) and (2.13) that for x ∈ I1

QLAλ,ŷ(R(x)) = r0 + E(r − r0)x− λp
[

ŷ − r0 − (rg − r0)x
]2

thus

dQLAλ,ŷ(R(x))

dx
= E(r − r0) + 2λp

[

ŷ − r0 − (rg − r0)x
]

(rg − r0) > 0

as x ≤ ŷ−r0

rg−r0 , E(r − r0) > 0, λ > 0 and QLAλ,ŷ(R(x)) is thus increasing in I1. This finishes the

proof of part (a).

For ŷ < r0 is I2 =
[

ŷ−r0

rg−r0
, r0−ŷ
r0−rb

]

and thus for x ∈ I2, is QLAλ,ŷ(R(x)) = r0 +E(r− r0)x, which

implies that
dQLAλ,ŷ(R(x))

dx = E(r − r0) > 0 and thus QLAλ,ŷ(R(x)) is increasing in I2.

For ŷ > r0 is I2 =
[

r0−ŷ
r0−rb

, ŷ−r0

rg−r0

]

and thus for x ∈ I2

QLAλ,ŷ(R(x)) = r0 + E(r − r0)x− λ
[

p
(

ŷ − r0 − (rg − r0)x
)2

+ (1− p)
(

ŷ − r0 − (rb − r0)x
)2
]

implying

dQLAλ,ŷ(R(x))

dx
=

= E(r − r0) + 2λ
[

p
(

ŷ − r0 − (rg − r0)x
)

(rg − r0)− (1− p)
(

ŷ − r0 + (r0 − rb)x
)

(r0 − rb)
]

= E(r − r0) + 2λ
[

p(rg − r0)− (1− p)(r0 − rb)
]

(ŷ − r0)− 2λ
[

p
(

rg − r0
)2

+ (1− p)
(

r0 − rb
)2
]

x

= [1 + 2λ(ŷ − r0)]E(r − r0)− 2λE
(

(

r − r0
)2
)

x
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QLAλ,ŷ(R(x)) is concave in I2 for ŷ > r0 as

d2QLAλ,ŷ(R(x))

dx2
= −2λE

(

(

r − r0
)2
)

< 0

As
dQLAλ,ŷ(R(x))

dx = 0 for x = x∗1 ≡ ( 1
2λ

+ŷ−r0)E(r−r0)

E((r−r0)2)
> 0, then based on this and concavity

QLAλ,ŷ(R(x)) reaches its global maximum in I2 at x∗1 if x∗1 < ŷ−r0

rg−r0 . However, on the other

hand, if x∗1 ≥ ŷ−r0

rg−r0 then QLAλ,ŷ(R(x)) reaches its maximum in I2 for x = ŷ−r0

rg−r0 . Note that

x∗1 ≥
ŷ − r0

rg − r0
⇔ −

(

rg − r0
)

E
(

r − r0
)

≤ 2λ
(

ŷ − r0
)

[

(

rg − r0
)

E
(

r − r0
)

− E

(

(

r − r0
)2
)]

(4.28)

As

(

rg − r0
)

E
(

r − r0
)

− E

(

(

r − r0
)2
)

= −(1− p)(rg − rb)
(

r0 − rb
)

then based on this (4.28) boils down to

x∗1 ≥
ŷ − r0

rg − r0
⇔ λ ≤ λ̂ (4.29)

Based on concavity of QLAλ,ŷ(R(x)) in I2 when r0 < ŷ and (4.29) it follows that QLAλ,ŷ(R(x)) is

increasing in I2 if λ ≤ λ̂ and it has a global maximum in I2 if λ > λ̂ (as then x∗1 < ŷ−r0

rg−r0 ). This

finishes the proof of part (b).

For x ∈ I3 is

QLAλ,ŷ(R(x)) = r0 + E
(

r − r0
)

x− λ(1− p)
[

ŷ − r0 +
(

r0 − rb
)

x
]2

and thus

dQLAλ,ŷ(R(x))

dx
= E

(

r − r0
)

− 2λ(1− p)
[

ŷ − r0 +
(

r0 − rb
)

x
] (

r0 − rb
)

d2QLAλ,ŷ(R(x))

dx2
= −2λ(1− p)

(

r0 − rb
)2

< 0

which implies the concavity for QLAλ,ŷ(R(x)) in I3. As
dQLAλ,ŷ(R(x))

dx = 0 for x = x∗2 ≡ r0−ŷ
r0−rb

+

E(r−r0)
2λ(1−p)(r0−rb)2

then based on concavity, QLAλ,ŷ(R(x)) reaches its global maximum in I3 at x∗2
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if x∗2 > max
{

ŷ−r0

rg−r0
, r0−ŷ
r0−rb

}

. On the other hand, if x∗2 ≤ max
{

ŷ−r0

rg−r0
, r0−ŷ
r0−rb

}

then QLAλ,ŷ(R(x))

reaches its glomal maximum in I3 for x = max
{

ŷ−r0

rg−r0
, r0−ŷ
r0−rb

}

. Note that for ŷ ≤ r0 is x∗2 >
r0−ŷ
r0−rb

=

max
{

ŷ−r0

rg−r0
, r0−ŷ
r0−rb

}

and thus in this case the global maximum in I3 is reached for x∗2. Finally, as

in case (b), it can be shown that for ŷ > r0 QLAλ,ŷ(R(x)) reaches its global maximum in I3; i.e.,

x∗2 > ŷ−r0

rg−r0
, if λ ≤ λ̂ and is decreasing in I3; i.e., x

∗
2 ≤ ŷ−r0

rg−r0
, if λ > λ̂. This finishes the proof of

part (c) and thus of the whole theorem. �

Proof of Theorem 2.4. The expected loss-averse utility (2.18) is continuous as

lim
x→0+

QLAλ,ŷ(R(x)) = lim
x→0−

QLAλ,ŷ(R(x)) = r0 − λ
(

[ŷ − r0]+
)2

(4.30)

The derivative of QLAλ,ŷ(R(x)) with respect to x is

d

dx
QLAλ,ŷ(R(x)) =











µ− r0 + 2λ
∫∞

ŷ−r0

x
+r0

(

ŷ − r0 − (r − r0)x
)

(r − r0)fr(r)dr, x < 0

µ− r0 + 2λ
∫

ŷ−r0

x
+r0

−∞
(

ŷ − r0 − (r − r0)x
)

(r − r0)fr(r)dr, x > 0











(4.31)

Thus, the expected loss-averse utility function QLAλ,ŷ(R(x)) is increasing for x < 0, µ − r0 > 0,

and ŷ > r0 since

d

dx
QLAλ,ŷ(R(x)) = µ− r0 + 2λ

∫ ∞

ŷ−r0

x
+r0

(

ŷ − r0 − (r − r0)x
)

(r − r0)fr(r)dr

≥ µ− r0 + 2λ(ŷ − r0)

∫ ∞

−∞
(r − r0)fr(r)dr + 2λ(−x)

∫ ∞

ŷ−r0

x
+r0

(r − r0)2fr(r)dr

= (1 + 2λ(ŷ − r0))(µ − r0) + 2λ(−x)

∫ ∞

ŷ−r0

x
+r0

(r − r0)2fr(r)dr

> 0 (4.32)

The expected loss-averse utility function QLAλ,ŷ(R(x)) is also increasing for x < 0, µ− r0 > 0,

and ŷ < r0 since

d

dx
QLAλ,ŷ(R(x)) = µ− r0 + 2λ

∫ ∞

ŷ−r0

x
+r0

(

ŷ − r0 − (r − r0)x
)

(r − r0)fr(r)dr

> 0 (4.33)

as ŷ − r0 − (r − r0)x ≥ 0 and r − r0 ≥ 0 for r ≥ ŷ−r0

x + r0.
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Finally, the expected loss-averse utility function QLAλ,ŷ(R(x)) is also increasing for x < 0,

µ− r0 > 0, and ŷ = r0 since

d

dx
QLAλ,ŷ(R(x)) = µ− r0 − 2λx

∫ ∞

r0
(r − r0)2fr(r)dr

> 0 (4.34)

as x < 0 and the integrand is non-negative for each r.

For x > 0 it holds that

lim
x→0+

d

dx
QLAλ,ŷ(R(x)) = µ− r0 + 2λ

∫ ∞

−∞
(ŷ − r0)(r − r0)fr(r)dr

= µ− r0 + 2λ(ŷ − r0)(µ− r0)

=
(

1 + 2λ(ŷ − r0)
)

(µ− r0)

> 0, if µ− r0 > 0, ŷ > r0, λ > 0 (4.35)

lim
x→0+

d

dx
QLAλ,ŷ(R(x)) = µ− r0 + 2λ

∫ −∞

−∞
(ŷ − r0)(r − r0)fr(r)dr

= µ− r0

> 0, for µ− r0 > 0, ŷ < r0 (4.36)

lim
x→0+

d

dx
QLAλ,ŷ(R(x)) = µ− r0 − 2λ

∫ ∞

r0
(r − r0)2fr(r)dr × lim

x→0+
x

= µ− r0

> 0, for µ− r0 > 0, ŷ = r0 (4.37)

and

lim
x→+∞

d

dx
QLAλ,ŷ(R(x))

= µ− r0 + 2λ

(

(ŷ − r0)

∫ r0

−∞
(r − r0)fr(r)dr −

∫ r0

−∞
(r − r0)2fr(r)dr × lim

x→+∞
x

)

= −∞ < 0, if λ > 0 (4.38)

Finally, QLAλ,ŷ(R(x)) is strictly concave for x > 0 and λ > 0 since

d2

dx2
QLAλ,ŷ(R(x)) = −2λ

∫
ŷ−r0

x
+r0

−∞
(r − r0)2fr(r)dr < 0 (4.39)
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It follows then from (4.30)-(4.39) that for λ > 0 there exists a unique positive solution x∗ > 0 of

(2.8) such that (2.21) is satisfied. This concludes the proof of the theorem. �

37



Appendix B

OIL BASICMAT INDUS CONSGDS HEALTH CONSSVS TELE UTIL FIN TECH BOND GOLD CRUDEOIL

Performance of 1-Month Returns (in percent p.a.)
Mean 16.99 16.10 14.10 13.95 15.12 13.92 15.64 14.19 12.14 20.42 7.73 5.58 9.90
Std.dev. 18.34 19.15 20.07 21.12 14.50 18.31 23.56 14.44 20.30 29.96 5.73 16.70 36.59
VaR -61.25 -60.92 -63.52 -64.40 -51.81 -61.00 -67.22 -51.95 -64.39 -81.36 -22.57 -56.91 -86.37
CVaR -73.54 -80.50 -83.10 -82.48 -66.39 -78.02 -82.41 -66.43 -84.22 -90.63 -30.70 -69.12 -94.48

Percentiles (in percent p.a.)
5 -61.25 -60.92 -63.52 -64.40 -51.81 -61.00 -67.22 -51.95 -64.39 -81.36 -22.57 -56.91 -86.37
10 -44.53 -47.74 -47.70 -52.92 -39.46 -44.79 -58.93 -40.39 -47.43 -65.28 -16.89 -47.51 -76.89
25 -21.80 -18.79 -22.26 -22.94 -10.15 -19.54 -28.48 -14.50 -19.27 -27.39 -5.43 -24.36 -45.80
50 20.74 20.97 18.41 14.49 19.87 19.00 18.57 17.85 16.72 17.21 9.98 1.83 8.61
75 70.64 70.17 74.50 72.08 54.81 62.02 82.00 58.62 58.76 107.56 22.13 43.41 116.30
90 137.34 141.05 145.36 161.02 101.93 117.00 183.15 99.82 137.34 263.20 37.48 103.16 272.38
95 194.08 205.18 192.01 249.85 139.30 171.95 241.39 138.00 212.31 524.24 48.22 167.75 466.34

Table 7: Summary statistics for European data (February 1982 - December 2010)
Statistics are calculated on the basis of monthly returns and then annualized using discrete compounding. The annualized
standard deviation is calculated by multiplying the monthly standard deviation with

√
12.
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OIL BASICMAT INDUS CONSGDS HEALTH CONSSVS TELE UTIL FIN TECH BOND GOLD CRUDEOIL

Performance of 1-month returns (in percent p.a.)
Mean 15.05 15.45 15.11 13.18 15.49 14.00 12.33 12.33 14.48 16.11 9.58 6.17 9.76
Std.dev. 18.65 21.54 18.91 19.30 15.34 18.73 19.61 14.81 20.24 25.82 7.03 16.13 33.77
VaR -60.56 -63.49 -57.62 -63.88 -53.64 -63.75 -68.30 -52.28 -61.30 -78.11 -28.09 -52.19 -82.37
CVaR -75.51 -81.37 -78.95 -78.83 -68.84 -76.19 -78.14 -67.29 -81.66 -87.82 -34.56 -67.20 -93.47

Percentiles (in percent p.a.)
5 -60.56 -63.49 -57.62 -63.88 -53.64 -63.75 -68.30 -52.28 -61.30 -78.11 -28.09 -52.19 -82.37
10 -42.45 -49.15 -47.76 -49.88 -37.18 -48.01 -55.64 -44.15 -46.91 -59.84 -19.63 -43.29 -72.90
25 -21.88 -27.61 -19.22 -19.36 -14.27 -21.05 -24.36 -16.54 -22.46 -31.94 -5.61 -24.99 -45.66
50 12.68 16.98 19.19 11.98 17.70 15.98 17.71 15.93 17.98 19.97 8.76 -0.39 11.34
75 70.92 78.19 66.28 69.88 57.54 66.05 65.19 52.97 68.40 102.25 27.22 42.22 109.95
90 136.61 161.49 145.75 139.79 110.88 143.09 129.73 99.58 149.24 231.65 46.78 104.88 248.88
95 204.10 252.49 192.91 195.17 158.45 206.43 183.27 126.29 217.12 347.20 63.25 158.53 402.57

Table 8: Summary statistics for US data (February 1982 - December 2010)
Statistics are calculated on the basis of monthly returns and then annualized using discrete compounding. The annualized
standard deviation is calculated by multiplying the monthly standard deviation with

√
12.
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Risk-free Market MV CVaR Linear loss-averse (LLA), λ Quadratic loss-averse (QLA), λ
Index 0 0.50 1.00 1.25 1.50 2.00 0.50 1.00 1.25 1.50 2.00

Performance of 1-month returns (in percent p.a.)
Mean 4.47 12.40 7.59 6.24 15.92 14.07 10.82 10.32 10.75 9.81 7.79 8.04 7.79 7.64 7.38
Median 5.19 18.54 6.94 6.73 21.31 18.57 12.33 11.76 10.69 10.83 10.60 10.73 9.93 10.52 10.34
Std.Dev. 0.71 15.86 5.92 7.12 27.36 20.03 16.59 15.15 14.37 12.62 11.88 9.58 9.07 8.64 7.99
Std.Dev.riskfree 9.98 3.22 4.36 15.74 11.77 10.37 9.54 9.03 7.84 7.67 5.80 5.58 5.36 4.99
Std.Dev.market index 8.83 8.26 8.66 15.12 9.64 8.37 8.00 7.72 7.50 7.93 7.82 7.82 7.84 7.82
CVaR 0.08 -74.31 -32.15 -40.09 -89.82 -81.07 -76.78 -72.86 -69.79 -64.20 -62.80 -53.00 -51.65 -50.68 -47.93
Minimum 0.00 -93.86 -55.82 -78.07 -97.93 -94.05 -94.05 -94.05 -94.20 -91.61 -91.23 -75.38 -71.89 -70.44 -69.10
Sharpe’s (in percent) 48.08 50.02 23.63 40.15 46.04 36.81 37.05 41.98 40.64 26.83 35.79 35.02 35.22 34.90
Sortino (risk-free) 76.37 92.92 38.88 69.90 78.34 58.83 58.86 66.86 65.41 41.55 59.12 57.08 56.83 56.03
Sortino (market index) -80.70 -52.33 -63.94 20.90 15.51 -16.95 -23.44 -19.21 -31.03 -52.27 -50.12 -53.04 -54.56 -57.64
Omega (risk-free) 14.36 6.08 2.64 13.86 15.58 8.54 8.13 10.35 8.52 4.05 5.26 4.88 4.73 4.39
Omega (market index) 0.07 0.19 0.11 2.41 1.70 0.56 0.46 0.54 0.37 0.17 0.19 0.18 0.17 0.15

Total realized return (in percent p.a.)
Last 10 Years 0.21 2.07 6.55 5.26 8.93 6.83 3.28 4.26 5.28 5.98 4.13 4.63 4.92 5.09 5.29
Last 5 Years 0.22 3.04 6.38 4.47 15.12 10.54 5.16 5.40 6.84 7.19 3.99 4.15 4.48 4.63 4.82
Last 3 Years 0.09 -2.15 4.18 1.12 15.07 3.25 -1.39 -1.15 1.20 0.76 -2.08 -0.31 0.38 0.51 1.10
Last Year 0.02 16.54 10.46 10.09 27.74 24.44 12.30 11.94 12.74 12.11 10.68 10.18 10.08 10.02 10.02

Percentiles
5 0.25 -62.13 -22.22 -26.12 -76.76 -64.21 -54.13 -54.03 -47.86 -41.59 -41.84 -36.33 -35.30 -34.86 -33.35
10 0.42 -42.51 -14.72 -17.95 -63.15 -51.47 -42.01 -39.17 -35.05 -34.01 -32.00 -26.85 -25.22 -23.51 -21.32
25 2.46 -17.84 -4.18 -7.11 -33.06 -23.18 -18.56 -16.20 -13.76 -12.10 -12.69 -10.01 -9.36 -8.06 -6.83
50 5.19 18.54 6.94 6.73 21.31 18.57 12.33 11.76 10.69 10.83 10.60 10.73 9.93 10.52 10.34
75 6.06 61.30 20.22 21.78 102.98 70.90 54.05 48.57 43.78 37.83 35.26 32.30 29.08 27.95 26.63
90 7.94 112.89 33.46 36.16 213.89 150.36 110.27 94.90 95.76 79.23 71.81 55.94 52.18 49.75 44.46
95 8.50 135.33 42.68 45.68 335.25 214.54 158.05 144.82 130.74 111.14 95.07 82.10 73.62 70.40 63.55

Mean allocation (in percent)
OIL 0.60 2.09 7.42 10.31 5.20 3.95 3.83 3.44 5.33 4.34 4.10 3.94 3.73
BASICMAT 0.30 1.86 1.29 1.90 2.24 2.01 1.86 1.63 1.84 1.77 1.74 1.74 1.68
INDUS 2.22 0.75 0.00 0.02 1.11 1.40 1.64 2.01 1.87 1.93 1.73 1.64 1.52
CONSGDS 1.71 1.32 4.84 2.28 2.01 1.91 1.86 1.68 1.00 1.00 1.16 1.20 1.22
HEALTH 4.17 5.69 14.19 17.37 15.72 15.04 14.03 12.86 10.89 9.22 8.91 8.62 8.13
CONSSVS 3.63 4.48 0.00 0.00 0.23 0.25 0.38 0.70 0.53 0.65 0.73 0.86 1.11
TELE 0.82 2.80 4.19 5.18 7.74 7.83 8.21 6.88 6.12 4.27 3.69 3.31 2.87
UTIL 1.15 4.24 0.32 4.77 8.56 9.27 9.09 8.88 7.66 6.06 5.54 5.15 4.62
FIN 0.80 3.41 9.68 10.65 8.64 7.80 6.81 5.34 5.55 4.73 4.63 4.59 4.44
TECH 2.03 2.22 24.19 20.13 15.52 13.77 12.41 10.52 9.08 7.09 6.44 5.97 5.36
BOND 62.42 47.06 1.29 7.62 18.40 22.89 25.95 31.39 34.52 42.73 44.84 46.27 48.14
GOLD 14.80 18.14 12.90 11.77 8.39 7.94 8.17 8.90 9.50 10.02 10.29 10.55 11.06
CRUDEOIL 5.35 5.94 19.68 8.00 6.24 5.92 5.76 5.76 6.09 6.18 6.19 6.15 6.12

Table 9: Out-of-sample evaluation of US portfolios: Benchmark scenario

The table reports statistics of a monthly reallocated optimal linear loss-averse portfolio based on an optimization period of 36

months as well as the average of the optimal asset weights. The benchmark scenario assumes a constant loss-averse parameter

λ and a zero reference point. The evaluation period covers February 1985 to December 2010. Statistics are calculated on the

basis of monthly returns and then annualized assuming discrete compounding. The annual standard deviation is computed as

σpa =
√
12σpm.
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Risk-free Market MV CVaR Linear loss-averse (LLA), λ Quadratic loss-averse (QLA), λ
Index 0 0.50 1.00 1.25 1.50 2.00 0.50 1.00 1.25 1.50 2.00

Performance of 1-month returns (in percent p.a.)
Mean 4.47 12.40 7.59 6.24 15.92 13.28 14.18 12.21 12.60 12.03 8.50 8.32 7.92 8.25 7.32
Median 5.19 18.54 6.94 6.73 21.31 14.22 17.66 14.37 16.53 14.61 10.56 8.56 9.26 9.44 9.39
Std.Dev. 0.71 15.86 5.92 7.12 27.36 15.54 17.27 18.44 16.09 15.14 10.94 8.99 8.85 8.40 8.82
Std.Dev.riskfree 9.98 3.22 4.36 15.74 8.54 9.95 10.14 9.46 9.19 6.75 5.38 5.33 4.99 5.86
Std.Dev.market index 8.83 8.26 8.66 15.12 7.45 8.17 8.73 8.04 7.33 7.81 7.78 7.90 7.86 9.06
CVaR 0.08 -74.31 -32.15 -40.09 -89.82 -68.35 -73.64 -75.44 -71.39 -71.34 -58.33 -50.99 -50.50 -48.49 -52.33
Minimum 0.00 -93.86 -55.82 -78.07 -97.93 -91.77 -94.14 -91.35 -87.34 -87.29 -82.99 -70.82 -69.15 -68.15 -90.58
Sharpe’s (in percent) 48.08 50.02 23.63 40.15 54.50 53.93 40.27 48.38 47.85 35.40 41.07 37.40 43.09 30.87
Sortino (risk-free) 76.37 92.92 38.88 69.90 99.01 93.73 73.25 82.55 79.02 57.36 68.66 62.17 72.71 46.63
Sortino (market index) -80.70 -52.33 -63.94 20.90 10.53 19.49 -2.04 2.18 -4.57 -44.87 -47.14 -50.98 -47.50 -50.42
Omega (risk-free) 14.36 6.08 2.64 13.86 21.52 23.62 12.14 15.28 13.95 5.75 6.29 5.33 6.53 4.19
Omega (market index) 0.07 0.19 0.11 2.41 1.42 1.93 0.93 1.08 0.86 0.23 0.22 0.19 0.22 0.16

Total realized return (in percent p.a.)
Last 10 Years 0.21 2.07 6.55 5.26 8.93 5.96 7.70 5.89 9.92 9.99 4.84 5.36 5.50 5.51 5.54
Last 5 Years 0.22 3.04 6.38 4.47 15.12 6.14 4.95 5.49 11.73 10.87 4.88 4.91 4.95 4.79 4.68
Last 3 Years 0.09 -2.15 4.18 1.12 15.07 -1.95 0.50 1.61 11.33 8.63 -0.09 0.52 0.57 0.28 0.22
Last Year 0.02 16.54 10.46 10.09 27.74 38.81 11.01 20.36 27.56 13.84 11.85 9.93 9.99 9.96 9.95

Percentiles
5 0.25 -62.13 -22.22 -26.12 -76.76 -51.37 -53.73 -63.40 -56.63 -54.86 -38.49 -35.16 -37.52 -34.58 -34.27
10 0.42 -42.51 -14.72 -17.95 -63.15 -36.28 -42.02 -43.85 -44.04 -42.35 -31.47 -23.31 -24.00 -22.31 -21.52
25 2.46 -17.84 -4.18 -7.11 -33.06 -19.25 -19.03 -21.11 -18.77 -13.85 -10.88 -8.12 -7.79 -6.58 -6.27
50 5.19 18.54 6.94 6.73 21.31 14.22 17.66 14.37 16.53 14.61 10.56 8.56 9.26 9.44 9.39
75 6.06 61.30 20.22 21.78 102.98 52.01 56.77 53.57 57.22 50.78 35.03 30.59 28.13 27.25 26.55
90 7.94 112.89 33.46 36.16 213.89 98.66 118.27 114.23 113.67 107.03 66.58 52.79 48.69 47.18 41.80
95 8.50 135.33 42.68 45.68 335.25 150.41 190.23 168.11 158.97 150.26 91.09 79.97 73.77 69.22 63.04

Mean allocation (in percent)
OIL 0.60 2.09 7.42 7.18 7.41 6.83 6.56 5.58 4.71 3.88 3.67 3.59 3.37
BASICMAT 0.30 1.86 1.29 4.46 4.25 3.94 3.60 2.86 1.43 1.48 1.45 1.46 1.42
INDUS 2.22 0.75 0.00 4.18 3.12 2.92 2.52 2.51 1.96 2.08 1.91 1.80 1.63
CONSGDS 1.71 1.32 4.84 6.00 4.16 3.91 3.28 3.37 1.18 1.09 1.05 1.06 1.05
HEALTH 4.17 5.69 14.19 9.83 12.11 12.05 12.89 13.79 10.52 9.65 9.25 8.75 8.25
CONSSVS 3.63 4.48 0.00 4.27 3.19 2.57 2.37 2.23 0.66 0.78 0.89 0.97 1.20
TELE 0.82 2.80 4.19 6.29 5.99 6.80 7.98 8.03 5.88 3.66 3.32 2.90 2.72
UTIL 1.15 4.24 0.32 5.33 6.21 7.12 6.56 7.86 7.50 5.71 5.28 5.13 4.66
FIN 0.80 3.41 9.68 8.63 7.74 8.03 8.62 7.25 5.09 4.06 4.16 3.93 3.67
TECH 2.03 2.22 24.19 13.88 14.66 13.68 14.19 13.15 8.13 6.31 6.18 5.58 5.34
BOND 62.42 47.06 1.29 7.93 10.76 11.59 13.32 16.48 37.46 45.18 46.74 48.31 49.17
GOLD 14.80 18.14 12.90 12.14 10.55 10.31 8.81 8.78 9.46 10.04 10.14 10.55 11.12
CRUDEOIL 5.35 5.94 19.68 9.86 9.84 10.24 9.30 8.10 6.02 6.07 5.96 5.97 6.42

Table 10: Out-of-sample evaluation of US portfolios: Dynamic scenario 2

The table reports statistics of a monthly reallocated optimal linear loss-averse portfolio based on an optimization period of 36

months as well as the average of the optimal asset weights. The dynamic scenario 2 assumes a smaller λ and a reference point

equal to the risk-free rate for prior gains, and a constant λ and a higher reference point for prior losses. The evaluation period

covers February 1985 to December 2010. Statistics are calculated on the basis of monthly returns and then annualized assuming

discrete compounding. The annual standard deviation is computed as σpa =
√
12σpm.

41



Risk-free Market MV CVaR Linear loss-averse (LLA), λ Quadratic loss-averse (QLA), λ
Index 0 0.50 1.00 1.25 1.50 2.00 0.50 1.00 1.25 1.50 2.00

Performance of 1-month returns (in percent p.a.)
Mean 4.47 12.40 7.59 6.24 15.92 11.07 12.33 9.54 12.74 11.93 7.50 7.98 7.55 7.41 6.76
Median 5.19 18.54 6.94 6.73 21.31 16.41 14.13 13.04 15.19 12.50 11.57 10.44 10.40 10.19 10.56
Std.Dev. 0.71 15.86 5.92 7.12 27.36 15.67 17.78 17.24 16.52 15.04 12.09 10.44 9.94 9.50 8.99
Std.Dev.riskfree 9.98 3.22 4.36 15.74 10.08 9.81 11.32 9.88 9.19 7.92 6.75 6.55 6.26 6.10
Std.Dev.market index 8.83 8.26 8.66 15.12 7.91 8.49 9.52 8.97 8.24 8.06 7.91 7.96 8.00 8.20
CVaR 0.08 -74.31 -32.15 -40.09 -89.82 -74.71 -73.10 -79.29 -74.94 -72.30 -64.47 -57.90 -56.66 -55.31 -55.16
Minimum 0.00 -93.86 -55.82 -78.07 -97.93 -94.42 -92.20 -97.93 -94.42 -94.13 -92.68 -89.36 -88.41 -86.98 -83.05
Sharpe’s (in percent) 48.08 50.02 23.63 40.15 40.45 42.38 28.21 48.03 47.76 24.06 32.21 29.68 29.71 24.35
Sortino (risk-free) 76.37 92.92 38.88 69.90 62.86 77.01 43.04 80.43 78.01 36.71 49.88 45.13 45.16 36.01
Sortino (market index) -80.70 -52.33 -63.94 20.90 -15.16 -0.74 -26.97 3.38 -5.12 -54.64 -50.29 -54.77 -55.98 -61.86
Omega (risk-free) 14.36 6.08 2.64 13.86 10.74 12.87 5.46 16.58 15.04 3.56 4.86 4.19 4.07 3.08
Omega (market index) 0.07 0.19 0.11 2.41 0.58 0.97 0.35 1.13 0.84 0.16 0.19 0.16 0.15 0.12

Total realized return (in percent p.a.)
Last 10 Years 0.21 2.07 6.55 5.26 8.93 5.24 7.64 5.39 7.63 4.83 3.73 5.32 4.80 5.06 5.20
Last 5 Years 0.22 3.04 6.38 4.47 15.12 3.99 3.65 8.82 13.42 11.79 3.70 4.94 5.19 6.25 6.36
Last 3 Years 0.09 -2.15 4.18 1.12 15.07 -4.81 -5.30 4.16 8.64 5.14 -1.63 0.28 0.99 2.37 2.18
Last Year 0.02 16.54 10.46 10.09 27.74 17.57 10.22 25.99 20.79 11.86 10.69 10.33 10.21 10.09 10.12

Percentiles
5 0.25 -62.13 -22.22 -26.12 -76.76 -49.25 -54.23 -57.92 -56.70 -47.78 -43.05 -36.58 -39.31 -34.81 -33.35
10 0.42 -42.51 -14.72 -17.95 -63.15 -37.29 -42.51 -42.42 -37.66 -34.20 -31.52 -28.15 -27.25 -26.57 -24.59
25 2.46 -17.84 -4.18 -7.11 -33.06 -14.10 -20.92 -18.51 -17.89 -15.81 -13.08 -10.56 -8.17 -7.88 -7.68
50 5.19 18.54 6.94 6.73 21.31 16.41 14.13 13.04 15.19 12.50 11.57 10.44 10.40 10.19 10.56
75 6.06 61.30 20.22 21.78 102.98 46.19 49.41 56.31 46.29 44.08 35.40 31.94 29.58 27.97 26.90
90 7.94 112.89 33.46 36.16 213.89 92.37 129.05 109.17 121.80 108.88 66.85 61.10 55.21 52.56 48.13
95 8.50 135.33 42.68 45.68 335.25 130.10 190.97 167.86 185.55 150.91 91.52 82.81 74.41 72.15 68.93

Mean allocation (in percent)
OIL 0.60 2.09 7.42 7.43 6.77 7.79 6.98 4.75 5.08 4.44 4.23 4.22 3.65
BASICMAT 0.30 1.86 1.29 5.01 4.19 3.84 3.02 3.30 1.61 1.67 1.75 1.76 1.87
INDUS 2.22 0.75 0.00 4.35 3.64 2.63 2.71 2.48 1.73 1.94 1.81 1.71 1.50
CONSGDS 1.71 1.32 4.84 5.39 4.76 4.40 3.42 2.44 1.00 0.97 1.18 1.04 1.09
HEALTH 4.17 5.69 14.19 9.60 11.34 11.62 12.81 14.46 11.79 10.77 10.46 9.88 8.94
CONSSVS 3.63 4.48 0.00 4.24 3.38 2.79 2.44 1.68 0.61 0.79 0.83 0.84 1.13
TELE 0.82 2.80 4.19 7.03 7.11 6.07 6.56 7.04 6.17 4.18 3.76 3.51 3.24
UTIL 1.15 4.24 0.32 6.65 6.18 5.68 6.19 8.19 7.83 6.52 5.88 5.36 4.78
FIN 0.80 3.41 9.68 8.33 6.80 7.95 6.63 7.05 5.53 5.03 4.88 4.87 4.58
TECH 2.03 2.22 24.19 11.65 14.74 14.80 14.02 13.47 9.24 7.15 6.67 6.46 6.50
BOND 62.42 47.06 1.29 11.71 10.84 13.17 16.48 19.66 33.88 40.28 42.62 44.04 46.04
GOLD 14.80 18.14 12.90 9.48 9.52 9.59 10.01 8.54 9.14 9.91 9.75 10.15 10.57
CRUDEOIL 5.35 5.94 19.68 9.12 10.74 9.65 8.71 6.95 6.39 6.35 6.17 6.17 6.12

Table 11: Out-of-sample evaluation of US portfolios: Break-even scenario 2

The table reports statistics of a monthly reallocated optimal linear loss-averse portfolio based on an optimization period of 36

months as well as the average of the optimal asset weights. The break even scenario assumes a risk-seeking behavior after prior

losses. The evaluation period covers February 1985 to December 2010. Statistics are calculated on the basis of monthly returns

and then annualized assuming discrete compounding. The annual standard deviation is computed as σpa =
√
12σpm.
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