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Abstract 

The purpose of this paper is to explore how the concept of a Drèze equilibrium can be 
extended to multiperiod production economies with incomplete markets. Constrained 
efficiency cannot serve as a basis for such an extension because multiperiod models tend to 
violate even weak constrained efficiency requirements. We show by means of examples how 
the difficulties that arise in the case of sequential trade can be taken into account. Finally, we 
employ the concept of minimal efficiency, which has been introduced by Dierker et al. (2005) 
in a two-period model, to derive a natural extension of the Drèze rule. This is possible 
because minimal efficiency relies on a planner who can choose the production plan but who 
cannot interfere with future consumption otherwise. 
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1 Introduction.
Drèze (1974) extends General Equilibrium Theory to the realistic case of incom-
plete markets with production. When markets are incomplete missing prices tend
to make it impossible to define profits in an objective manner and different share-
holders of a firm rank its production plans differently. This leads to the question
of how one can define the goal of a firm. We address this question from a purely
normative perspective. The resulting model presents a benchmark case based
on welfare and efficiency considerations. We do not aim to analyze the power
struggle among the members of a firm’s control group.

When markets are complete and every agent acts as a price taker equilibrium
allocations are Pareto efficient according to the first theorem of welfare economics.
Drèze equilibria aim at efficiency in two-period models with incomplete markets
and price taking behavior. Consider a planner who can choose the production
plan of every firm, allocate shareholdings, and redistribute consumption in the
initial period 0. An allocation is constrained efficient if this planner is unable to
achieve a Pareto improvement. Drèze equilibria can be characterized by the fact
that they satisfy the first order condition for constrained efficiency.

The difficulty to extend Drèze’s approach to multiperiod economies with pro-
duction arises in the consumption sector because price taking behavior fails to
organize the consumption sector efficiently when trade is sequential. More pre-
cisely, consider another planner who is weaker than the previous planner. The
second planner takes the production plans as given and intervenes only at the
initial date t = 0 by reallocating the shares ϑi

0 carried over from t = 0 to t = 1
and by redistributing the initial consumption xi

0. We say that an allocation is
slightly (constrained) efficient, or slightly efficient for short, if the second, weaker
planner cannot achieve a Pareto improvement.1 We will provide simple examples
in single good models without spot markets that show that the first order condi-
tion for slight efficiency is still too demanding to lend itself to a useful definition
of the objective of a firm in multiperiod models.

The fundamental conclusion drawn in this paper is the following. In the mul-
tiperiod case, an appropriate efficiency concept must take into account that price
taking behavior tends to entail a distribution of the shares ϑi

0 acquired at t = 0
that prevents the efficient organization of the consumption sector. As a conse-
quence, we consider a third planner who is unable to affect future consumption
other than by choosing production plans. In particular, the third planner cannot
redistribute any shares. This planner can only redistribute the total consumption
at t = 0 among consumers to compensate them for changes in production. The
compensation takes place after the stock market is closed so that the changes
in initial consumption do not affect consumers’ investments [cf. Section 5]. An
allocation is called minimally (constrained) efficient, or minimally efficient for

1We speak of slight rather than weak efficiency because weakly constrained efficiency has
another meaning in the literature.
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short, if the third planner cannot find a Pareto improvement.2
Such a planner has been introduced before in a two-period model for another

reason. Dierker et al. (2002) have presented an example of a finance economy in
a two-period model with a unique, but constrained inefficient Drèze equilibrium.
In the example, the inefficiency is caused by strong income effects. To cut the
link between t = 0 and future consumption, Dierker et al. (2005) introduce the
concept of minimal efficiency in a two-period model and show that the unique,
constrained inefficient Drèze equilibrium in the example is minimally efficient. In
Section 5 we present a definition of minimal efficiency in a multiperiod model in
order to derive a generalized Drèze rule from efficiency considerations.

We are going to recall, in a brief and simplified fashion, the traditional theory
for the two-period case. Throughout the paper, we aim at simplicity rather than
generality in order to enhance the understanding of the fundamental issues and
conceptual difficulties.

Suppose that there are only the time periods t = 0 and t = 1. The state s = 0
has been realized at t = 0, but it is unknown which of the states s = 1, . . . , S will
occur at t = 1. We assume that there is only one (perishable) good at each state
which is interpreted as state dependent income. Hence, there is no need for spot
markets. Spot markets are known to entail constrained inefficiency generically
[cf. Geanakopos et al. (1986) and Geanakopos et al. (1990)].

We follow §31 of Magill and Quinzii (1996), or MQ for short, that deals with
partnership economies in a two-period model. In particular, consumers are not
endowed with exogenously given initial shares. The only shares in the two-period
partnership model are acquired at t = 0 on the stock market and carried over
to t = 1 where they expire after the payment of dividends in the form of the
firm’s state dependent output. Furthermore, MQ assume that production in a
partnership economy exhibits constant returns to scale.

Consider, for simplicity’s sake, an economy with a single firm which produces
y = (y0, y+) = (y0, y1, . . . , yS) ∈ R− × RS

+ and let ϑi be i′s optimal share in the
firm and πi be the gradient of i’s quasilinear utility function x0 +V i(x1, . . . , xS).3
Throughout the paper, the index + refers to all states after t = 0. Then πi

s =
∂sV

i(xi
+) represents i’s present value of one (infinitesimal) additional unit of

income in state s ≥ 1. That is to say, i is indifferent between receiving the
additional unit at state s or πi

s units of good 0. The vector πi = (1, πi
1, π

i
2, . . . , π

i
S)

is called consumer i’s state price system or vector of i’s stochastic discount rates.
The firm maximizes profits with respect to a price system π which is linked to

the individual state price systems πi as follows. Suppose the production plan y
is changed such that ys is increased by one infinitesimal unit where s ≥ 1. Then
the benefit which i obtains from his dividend at t = 1 increases by πi

s if i holds all
2The term minimally efficient is a bit misleading because the third planner can alter the

production plan, the second cannot.
3If the utility function is not quasilinear one needs to normalize the utility gradient such

that the marginal utility of good 0 equals 1.
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shares. Since i’s share of the firm is ϑi his marginal benefit equals πi
sϑ

i. Here we
use the fact that i’s shares can be kept fixed according to the envelope theorem.4
In total, the economy gains

∑
i π

i
sϑ

i in terms of future benefits and has to cover the
marginal cost πs of the additional unit of good s. If the difference, the marginal
social surplus, does not vanish the original production plan is not socially optimal.
When shareholders can make transfers in units of good 0 then the winners of the
change can compensate the losers so that a unanimous agreement can be reached
to change the production of good s marginally. The marginal social surplus
vanishes iff πs =

∑
i π

i
sϑ

i for any s ≥ 1, that is to say, π =
∑

i π
iϑi.

This argument suggests that, in a model with several firms, each firm j should
choose its production plan so as to maximize profits with respect to the price
system πj =

∑
i π

iϑi
j where ϑi

j denotes consumer i’s shares in firm j. We call
this objective the Drèze rule. For a precise and more general statement and a
proof not based on quasilinear utility functions see MQ, §31, 31.5 Proposition. A
Drèze equilibrium obtains in a two-period framework if the stock market clears,
i.e.

∑
i ϑ

i
j = 1 for all firms j, and every firm acts according to the Drèze rule.

This can be interpreted as follows: At a Drèze equilibrium, the marginal cost of
good s ≥ 1 equals the marginal social benefit

∑
i π

i
sϑ

i
j for each firm j. Our goal is

to extend this idea to the multiperiod case.
If there are only two periods then the shares cannot be sold after the dividends

have been paid at t = 1 because there is no future. The step from two to
three time periods makes a decisive difference. MQ point out on p. 423: “In a
multiperiod setting, shares will always be traded after a production decision is
made, so that the shareholders must take into account the influence of production
decisions not only on the firm’s subsequent dividends but also of the subsequent
capital value of its shares.”

Stochastic discount rates or state price systems have been used to form con-
jectures about market values of future income streams. A prominent example is
Grossman and Hart (1979) where this approach is applied to a multiperiod setting
in which a firm aims to act in the interest of its group O of original sharehold-
ers. In their model, the original owners of a firm are endowed with exogenously
given initial shares δi, determine the production plan before shares are traded,
and pay the production costs. They make the assumption of competitive price
perceptions according to which each original shareholder i, who does not know
how a change of the output vector impacts its price, feels that his induced utility
change is exactly offset by the associated price change.5 That is to say, i uses
his own state price system πi = (πi

s)s=0,...,S for future benefits in order to assess
changes of the firm’s capital value. As a consequence, the firm maximizes profits

4The fact that the induced consumption changes can be disregarded entails a huge difference
between two-period and multiperiod models where stocks are traded at intermediate dates so
that the envelope theorem does no longer apply.

5Strictly speaking, Grossman and Hart consider a model in which the input and not the
output is chosen.
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with respect to the price system π =
∑

i∈O πiδi.
Bonnisseau and Lachiri (2004) avoid the use of subjective perceptions and

suggest to generalize the Drèze rule as follows. They consider a setting with a
finite number of time periods, in which uncertainty evolves gradually in the form
of a finite tree as described in chapter 4 of MQ, and derive first order conditions
for constrained Pareto optimality in a multi-commodity framework with stock
and spot markets. As pointed out by MQ, it is not obvious how one can define
constrained Pareto optimality appropriately in a multiperiod model. Loosely
speaking, Bonnisseau and Lachiri (2004) use several versions which entail the
same conclusion. Bonnisseau and Lachiri (2006) is more closely related to our
setting because it uses a finance model with a single good at each event. We refer
to both papers as BL.

BL’s pricing rule evolves sequentially in a piecewise fashion along the date-
event tree. A node in the tree is a date-event ξ = (t, s) where t = 0, 1, . . . , T
and s = 0, 1, . . . , S. Roughly speaking, the basic idea is that one proceeds,
at each non-terminal node, in the same way as the Drèze rule does at node 0.
Consider the simplest case with T = 2 future periods and suppose the initial node
branches out into k immediate successor nodes at t = 1. Altogether there are
k + 1 stock markets, one at each non-terminal node. The price π0 of the initial
good is normalized to 1. The prices associated with the immediate successors
ξ+
0 of the initial node ξ0 are given by a convex combination of the corresponding
coordinates of the individual state prices weighted with the shares ϑi

0 carried over
from ξ0. That is to say, the firm’s price of good s is given by πs =

∑
i π

i
sϑ

i
0 where

s = 1, . . . , k. Thus, the first step of BL’s inductive description coincides with the
classical Drèze formula applied to the tree truncated at t = 1.

The same principle is used again starting from each of the k nodes at t = 1.
Pick any such node ξ = (1, s), s = 1, . . . , k, and assume that ξ′ = (2, s′) is a
terminal node that follows ξ. Then the firm’s price of good s′ is πs′ =

∑
i π

i
s′ϑ

i
s,

where ϑi
s denotes the amount of shares i carries over from ξs. To determine the

firm’s price system π for all goods in the case of T = 2, one uses the classical
Drèze formula k + 1 times.6

For any finite tree, the price system π can be computed by the same principle.
The price of good 0 is normalized to 1. The prices of the immediate successors
ξ+ of each non terminal node ξ equal the convex combination of the individual
state prices associated with ξ+ with weights equal to the shares carried from ξ
to ξ+.

Pricing rules such as the Drèze or the BL rule share the following property.
Let ξ be a non-terminal node and denote the set of immediate successors of ξ by
ξ+. Then the amount of shares i carries over from ξ to ξ+ serves simultaneously
as weight for those coordinates of i’s utility gradient which correspond to some
node in ξ+. In a multiperiod model, the nodes in ξ+ need not be final and

6This procedure will be illustrated by means of numerical examples in subsequent sections.
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can have active stock markets. At these stock markets, i adjusts his portfolio
and faces capital gains or losses which affect i’s utility typically in different,
state dependent ways. Pricing rules which assign prices to the nodes in ξ+ that
are convex combinations of the corresponding coordinates of consumers’ utility
gradients are too rigid to capture these effects. A generalization of the Drèze rule
to multiperiod models has to differ substantially from the traditional Drèze rule.

We show that constrained inefficiency prevents the use of the BL rule and
entails that all individual stock transactions and the induced utility changes as
well as the consequences of production plan variations must be taken into account.
Although the examples analyzed in the following sections are chosen such that
they can be solved numerically with modest effort, they show that the simplicity
of the original Drèze formula and its intuitive appeal are lost as soon as one
considers three instead of two time periods.

Drèze equilibria and their generalization to multiperiod models have a nor-
mative character. They deserve to be investigated as valuable benchmark cases.
The theory is static and all decisions are made at the initial period t = 0. This
is in line with Debreu (1959), p.50, who characterizes the role of a consumer as
follows: “His role is to choose (and to carry out) a consumption plan made now
for the whole future, i.e., a specification of the quantities of all his inputs and all
his outputs.”

Since the notion of constrained efficiency does not provide a sound basis for
the analysis of multiperiod models we adopt a framework in which social welfare
maximization is well defined. We begin with examples in which good 0 can be
used to transfer utility, cf. Sections 2 and 3. In this case, the firm aims to
maximize the social surplus measured in units of good 0. In Subsection 3.2,
we modify the example from section 2 such that costs are paid at all non-final
states. In the final example in Section 4, quasilinearity is violated and no good is
additively separated from the others. Section 5 derives a generalized Drèze rule
from the first order condition for minimal efficiency. Section 6 concludes.

2 Surplus maximization in an economy with
additively separable, quasilinear utilities.

We consider a setting with three periods, t = 0, 1, 2, a single firm and a single
good per state. There are no assets other than the firm’s shares. Each non-
terminal node has two immediate successors. The initial node ξ0 is followed by
the intermediate nodes ξ1 and ξ2. The successors of node ξ1 are the final nodes
ξ3 and ξ4, those of ξ2 are the final nodes ξ5 and ξ6. Altogether the tree has
seven nodes. The good at node ξj is called good j. There are two versions of
the example. In the first, costs are only paid at the initial node. In the second,
there is a cost at every non-terminal node. The second version will be presented
in Subsection 3.2 because the model is no longer additively separable.

5



At t = 0, the production of the output y+ = (y1, y2, . . . , y6) requires the input

y0 = −C(y1, . . . , y6) = −
(√

y2
1 + y2

2 +
√

y2
3 + y2

4 +
√

y2
5 + y2

6

)
. (1)

No consumer is endowed with initial shares. Consumer i can obtain shares ϑi
0 at

the initial node ξ0 by contributing to the cost C = −y0 in proportion to the size
of ϑi

0. At the intermediate nodes ξs, s = 1, 2, shares ϑi
s are traded against good

s at the market clearing price qs. At a stock market equilibrium, all three stock
markets clear, that is to say,

∑
i ϑ

i
s = 1 for s = 0, 1, 2.

There are two consumers, i = A,B, with the quasilinear and additively sepa-
rable, concave utility functions

UA(x0, x1, . . . , x6) = x0 + 1 log(x1) + 2 log(x2) + 3 log(x3)

+ 4 log(x4) + 5 log(x5) + 6 log(x6)

UB(x0, x1, . . . , x6) = x0 + log(x1) + log(x2) + log(x3)

+ log(x4) + log(x5) + log(x6),

(2)

respectively. For simplicity, consumer i has no initial endowment ei
s except at

node ξ0 and consumes ei
0 + ϑi

0y0 at t = 0. To be specific, let eA
0 = 25, eB

0 = 15.
The consumption at an intermediate node ξs is xi

s = qs(ϑ
i
s− − ϑi

s) + ϑi
s−ys at

t = 1, where ξs− is the immediate predecessor of ξs. If ξs is a terminal node then
i consumes xi

s = ϑi
s−ys.

Let y+ À 0 be given and assume that the consumers know the costs C(y+)
and foresee the market clearing share prices q1(y+) and q2(y+). Consumer A
maximizes his utility by choosing ϑA

0 = 21/C, ϑA
1 = 147(q1 + y1)/(8q1C), ϑA

2 =
231(q2 + y2)/(13q2C) where we have dropped the variable y+. For Consumer B
we obtain ϑB

0 = 6/C, ϑB
1 = 4(q1 + q2)/(q1C), ϑB

2 = 4(q2 + y2)/(q2C).
There are three market clearing equations. Solving those for markets 1 and 2

we obtain q1 = 179 y1/(−179+8 C) and q2 = 283 y2/(−283+13 C). The market
clearing of the initial stock market entails that the costs are identically equal to
27 for all stock market equilibria.

Let ŷ = (y1, . . . , y5). The last component y6 can be written as g(ŷ) where g
is implicitly defined by

√
y2

1 + y2
2 +

√
y2

3 + y2
4 +

√
y2

5 + (g(ŷ))2 = 27. (3)

When we put y(ŷ) = (ŷ, g(ŷ)) then every function depending on y becomes
indirectly a function of ŷ. To simplify the notation, we shall often write ϑi

s(ŷ)
instead of ϑi

s(y(ŷ)) as long as there is no danger of a confusion. The same slight
abuse of language is also used for other functions such as the stock prices qj.

In this notation, the stock market equilibria are parameterized by ŷ and lie in

E = {y+ ∈ R6
++ |

∑
i

ϑi
s(ŷ) = 1 for s = 0, 1, 2}.
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The choice of the parametrization is arbitrary and has no significance.
As in the two-period case, E has one dimension less than the output vector.

This reflects the fact that the firm operates at the output level desired by the
consumers. In the Walrasian tradition, the firm is instructed to sell its production
plan at t = 0 at marginal (=unit) costs.

We write, dropping the variable ŷ, the consumption of i = A,B as

xi = (ei
0 − ϑi

0C, q1(ϑ
i
1 − ϑi

0) + ϑi
0y1, q2(ϑ

i
2 − ϑi

0) + ϑi
0y1, ϑ

i
1y3, ϑ

i
1y4, ϑ

i
2y5, ϑ

i
2g). (4)

Let ui(ŷ) = U i(xi(ŷ)) be the utility i obtains if ŷ is chosen. Due to quasilinearity,
we can write

ui(ŷ) = xi
0(ŷ) + vi(ŷ) = U i(xi(ŷ)) = xi

0(ŷ) + V i(xi(ŷ)). (5)

Social welfare is given by

W(ŷ) = xA
0 (ŷ) + vA(ŷ) + xB

0 (ŷ) + vB(ŷ). (6)

To find a generalized Drèze equilibrium in the example, we solve the first
order condition DW(ŷ) = 0 for welfare maximization numerically and obtain the
solution ŷ∗ ≈ (3.162, 3.873, 6, 6.708, 8.832). The last coordinate of the production
plan y∗ is y∗6 = g(ŷ∗) ≈ 9.539. A consumes xA(y∗) ≈ (9, 1.79, 2.39, 4.93, 5.51, 7.21,
7.79) and B consumes xB(y∗) ≈ (24, 1.37, 1.48, 1.07, 1.20, 1.62, 1.75).

The firm sells its output y∗+ at marginal costs. That is to say, the firm acts
as if it maximizes profits with respect to the price system (1, DC(ŷ∗)) = π(ŷ∗).
We ask the question of whether coordinates 1 and 2 of π(ŷ∗) = (1, π+)(ŷ∗),
which correspond to the two intermediate nodes, are a convex combination of the
corresponding coordinates of A’s and B’s utility gradients.

The utility gradients, the firm price system π(ŷ∗), and the Bonnisseau-Lachiri
or BL price system πBL at the generalized Drèze equilibrium are, respectively,

DUA(ŷ∗) = πA(ŷ∗) ≈ (1, 0.557, 0.836, 0.609, 0.726, 0.694, 0.771)

DUB(ŷ∗) = πB(ŷ∗) ≈ (1, 0.731, 0.675, 0.932, 0.834, 0.616, 0.571)

(1, DC(ŷ∗)) = π(ŷ∗) ≈ (1, 0.632, 0.775, 0.667, 0.745, 0.679, 0.734)

πBL(ŷ∗) ≈ (1, 0.596, 0.800, 0.667, 0.745, 0.679, 0.734).

(7)

The BL prices (π1, π2)BL = ϑA
0 (ŷ∗)(0.557, 0.836) + ϑB

0 (ŷ∗)(0.731, 0.675) ≈
(0.596, 0.8) differ from the correct values (0.632, 0.775). Therefore, the equi-
librium at ŷ∗ does not satisfy the first order condition for constrained efficiency
in the sense of BL. However, the BL prices of goods 3 to 6, which are associated
with the terminal nodes, coincide with the corresponding coordinates of π(ŷ∗).
One might conjecture that this is a general property. We shall explain in the
following section why this conjecture is false.

Concerning the two intermediate nodes ξ1 and ξ2, we search for a γ such that
γ(0.557, 0.836) + (1 − γ)(0.731, 0.675) = (0.632, 0.775). However, it is easy to
check that the equation has no solution.
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Proposition 1. Suppose the firm maximizes profits with respect to some price
system π such that (π1, π2) is a convex combination of the corresponding coor-
dinates of A’s and B’s utility gradient. Then the firm fails to maximize social
welfare.

Proposition 1 shows that, in spite of the simplicity of the example, public
knowledge of every consumer’s stochastic discount factors and shareholdings does
not suffice to define a pricing rule that prevents the firm to waste resources. To
clarify the nature of the efficiency failure that underlies Proposition 1 we pose
the following definition.

Definition 1. Consider a stock market equilibrium with production y∗ = (y∗0, y
∗
+).

The stock market equilibrium is slightly constrained efficient, or slightly efficient
for short, iff a planner P cannot achieve a Pareto improvement in the following
way. Nobody including P can change the production plan. First, P assigns the
shares ϑ̄i

0 to every consumer i under the condition that
∑

i ϑ̄
i
0 = 1. Then, given

their consumption ei
0 + ϑ̄i

0y
∗
0, consumers choose their future shares optimally on

every stock market held after t = 0 at market clearing prices. Finally, P redis-
tributes the total consumption

∑
i e

i
0 + y∗0 at t = 0 among the consumers while

their consumption at t ≥ 1 remains unaltered.

Proposition 2. The stock market equilibrium at ŷ∗ in the example does not
satisfy the first order condition for slight efficiency.

We describe the feedback effect underlying the inefficiency . Since both con-
sumers have quasilinear utility functions, income effects at t = 0 cannot play any
role. Instead, the feedback effect works through the impact of ϑ̄i

0 on future share
prices.

The planner P maximizes social welfare under the condition that consumers
take the shares ϑ̄A

0 = ϑ̄0 and ϑ̄B
0 = 1− ϑ̄0 at t = 0 as given and react optimally.

Consumers foresee the market clearing prices q1 and q2 associated with ϑ̄0 and
choose their future shares optimally. Given ϑ̄0, markets clear if q1 = (16 +
5ϑ̄0)y1/(8 − 5ϑ̄0) and q2 = (26 + 7ϑ̄0)y2/(13 − 7ϑ̄0). A’s demand for shares is
ϑA

1 = 7ϑ̄A
0 (q1 + y1)/(8q1) and ϑA

2 = 11ϑ̄A
0 (q2 + y2)/(13q2) and B’s demand is

ϑB
1 = 21ϑ̄B

0 (q1 + y1)/(3q1) and ϑB
2 = 2ϑ̄B

0 (q2 + y2)/(3q2).
Observe that planner P can manipulate the equilibrium prices via ϑ̄0. There-

fore, P ’s decision has a long lasting impact on the equilibrium allocation. This
feedback effect is ignored by the consumers because they act as price takers.

P ’s welfare WP (ϑ̄0) is the total utility resulting from the responses of the
consumption sector to his choice ϑ̄0. Because y∗ is fixed and transfers leave WP

invariant, WP depends only on ϑ̄0. WP takes its maximum at ϑ̄0 ≈ 0.77815.
However, if consumers can choose their shares freely on the initial stock market,
A chooses ϑA

0 (ŷ∗) = 7/9 = 0.777.... The derivative of WP at ϑA
0 (ŷ∗) = 7/9 is

8



about 0.055 > 0. Therefore, P achieves a first order Pareto improvement by
raising ϑA

0 above the level of 7/9.7
The underlying intuition is as follows. Consider an infinitesimal increase of ϑA

0

at ϑA
0 = 7/9. Then consumer A’s infinitesimal utility loss of about 1.139 is more

than compensated by B’s utility gain of about 1.195. It is a rare coincidence that
the marginal utility gains and losses caused by infinitesimal changes ∆ϑi

0 with∑
i ∆ϑi

0 = 0 happen to cancel out. In general, these changes or the changes in
the opposite direction entail a Pareto improvement.

We conclude that the concept of constrained efficiency should be combined
with the requirement that the planner cannot exploit feedback effects to overrule
future consequences of decisions made by consumers on the basis of their charac-
teristics including their initial endowments before transfers. That is to say, the
planner should only be allowed to choose the output vector and to redistribute
good 0 after all market transactions have been determined.

This efficiency concept has been introduced in Dierker et al. (2005) in a two-
period model under the name of minimal (constrained) efficiency.8 In a two-
period model, the first order conditions for constrained efficiency and for minimal
efficiency coincide. This ceases to be true if there are more than two periods
because of the feedback effect between the shares ϑi

0 and future shareholdings.
The concept of minimal efficiency takes all market transactions explicitly into
account. For the multiperiod case, see Section 5.

We are now going to compute the firm’s state price vector π(ŷ∗) with the aid
of the state prices of the consumers. First, we focus on the intermediate node ξ1

with an active stock market. An infinitesimal change of y1 changes the stock price
q1. The resulting utility changes need to be taken into account on the individual
level because of market incompleteness.

We consider infinitesimal output changes tangent to E and insert the equi-
librium value of C ≡ 27 into the definitions of q1 and q2 so that we have
q1 = 179q1/37 and q2 = 283y2/68.

When we differentiate xA
+(ŷ, g(ŷ)) at ŷ∗ with respect to y1 we obtain the vector

(21/37, 0, 0, 0, 0,−0.704). The first coordinate measures the direct effect, the last
coordinate represents the indirect effect through ∂1g(ŷ∗). We evaluate the con-
sumption changes coordinatewise with A’s stochastic discount factors DV A(ŷ∗) ≈
(0.557, 0.836, 0.609, 0.726, 0.694, 0.771) and obtain (0.316, 0, 0, 0, 0,−0.542).

Similarly, we use DV B(ŷ∗) ≈ (0.731, 0.675, 0.932, 0.834, 0.616, 0.571) to eval-
uate B′s consumption changes (16/37, 0, 0, 0, 0,−0.158) and obtain B′s evalua-
tion (0.316, 0, 0, 0, 0,−0.09). The sum 0.632 of the first coordinates of A’s and
of B’s evaluations is the firm’s state price π∗1. The last coordinate −0.632 is
∂1g(ŷ∗)π6(ŷ

∗). Thus π6(ŷ
∗) ≈ 0.632/0.862 ≈ 0.734. The sum 0.632–0.632 of all

six coordinates vanishes because ∂1W ŷ∗ = 0 and the cost is constant on E .
7I am particularly thankful to Larry Blume and Klaus Ritzberger for valuable discussions

about this feedback effect.
8A formal definition for the multiperiod case will be given in Section 5.

9



In the example, the cost C stays constant on E . Hence, marginal costs vanish
and the first order condition for welfare maximization reduces to

πs(ŷ
∗) + π6(ŷ

∗)∂sg(ŷ∗) = 0 for s = 1, . . . , 5. (8)

Because π6 ≈ 0.734 and Dg(ŷ∗) ≈ (−0.862,−1.056,−0.909,−1.016,−0.926), the
firm’s stochastic discount factors are given by

π(y∗) ≈ (1, 0.632, 0.775, 0.667, 0.745, 0.679, 0.734),

which is in accordance with (7).
In the two-period model, the firm’s state prices are given by πs =

∑
i π

i
sϑ

i

and first order changes in the consumption of good s can be ignored. This is
no longer correct if there is sequential trade. In the example, one has to replace
πs =

∑
i π

i
sϑ

i by
πs(ŷ

∗) =
∑

i=A,B

πi
s(ŷ

∗) ∂sx
i
s(ŷ

∗) (9)

for s = 1, 2 where portfolios are readjusted. However, as in the two-period model,
πs(ŷ) does not involve changes in the consumption of goods other than s.

For comparison, we determine the Walrasian equilibrium in the example un-
der the assumption of complete markets as in Chapter 7 of Debreu (1959).9
At a Walrasian equilibrium, the firm maximizes profits with respect to marginal
cost prices and consumers maximize utility with respect to the same price sys-
tem. In this example, the Walrasian equilibrium price system coincides with the
firm’s state price system π(ŷ∗) as listed in (7). Therefore, the production plans
are equal but the consumption plans are different. A’s Walrasian equilibrium
consumption is (approximatively) equal to (4, 1.581, 2.582, 4.5, 5.366, 7.360, 8.177)
and B’s equilibrium consumption equals (9, 1.581, 1.291, 1.5, 1.342, 1.472, 1.363).
The associated utility levels are 40.176 for A and 11.109 for B so that social
welfare becomes 51.285.

Recall that the initial endowments of good 0 are eA
0 = 25, eB

0 = 15. If
one evaluates the consumption plans in the incomplete market case with the
Walrasian price system one obtains the value 24.9904 < eA

0 = 25 for A and
15.0096 > eB

0 = 15 for B which amounts to a redistribution from A to B.
The redistribution in favor of B entails that B prefers incomplete over com-

plete markets although social welfare increases when markets become complete.
In the incomplete market model, A reaches a utility level of 40.130 and B of
11.003 so that social welfare becomes 51.133.

9I am grateful to Leopold Sögner for the suggestion to illustrate the difference between the
complete and the incomplete market case with the aid of numerical examples.
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3 Departures from additive separability.
The state price formula (8) has the property that the price for state s does only
involve i’s marginal utility of good s and i’s changes in consumption of good s.
When one gives up additive separability, cross effects between goods come into
play. The goal of this section is to illustrate how the analysis changes. This
will be done with the aid of two examples. The first and simpler one connects
the goods at ξ1 and its successor ξ3 in A’s utility function in a non additively
separable way. The second example leaves both utility functions of Section 2
unaltered but assumes that costs are not only paid at the initial node but also at
the intermediate nodes 1 and 2.

3.1 A not additively separable utility function.
We use the following utility functions

UA(x0, x1, . . . , x6) = x0 + log(x1 + x3) + log(x2)

+ log(x4) + log(x5) + log(x6)

UB(x0, x1, . . . , x6) = x0 + log(x1) + log(x2) + log(x3)

+ log(x4) + log(x5) + log(x6),

(10)

where UA is no longer additively separable. The initial endowments are eA =
eB = (30, 0, . . . , 0). For simplicity’s sake, the cost of producing y+ = (y1, . . . , y6)
is defined as

C = −y0 = y1 + · · ·+ y6. (11)

Observe that the vector (1, 1, . . . , 1) is perpendicular to the technology at every
y+ À 0 and cannot help to locate the optimal production plan.

As before, consumers can obtain shares ϑi
0 at t = 0 by contributing ϑi

0C to
the firm’s cost. Furthermore, they anticipate the market clearing prices q1 and
q2 prevailing at the intermediate nodes. Consumer A maximizes his utility by
choosing ϑA

0 = 5/C, ϑA
1 = 5(q1+y1)/(2C(q1−y3)), and ϑA

2 = 10(q2+y2)/(3Cq2).10
Consumer B chooses ϑB

0 = 6/C, ϑB
1 = 4(q1+y1)/(Cq1), and ϑB

2 = 4(q2+y2)/(Cq2).
As in Section 2, we use the equilibrium values of the production cost in the

calculations. When we insert C = 5 + 6 = 11 we obtain

q1 =
1

18
(13y1 + 14y3 +

√
169y2

1 + 76y1y3 + 196y2
3) and q2 = 2y2. (12)

Observe that y1 and y3 play similar roles in the determination of q1.
We use y6 = g(ŷ) = 11 − (y1 + · · · + y5) and (4), (5), and (6) to define the

welfare function W(ŷ), solve the first order condition DW(ŷ) = 0 for welfare
maximization numerically, and obtain y∗+ ≈ (0.989, 2, 2.011, 2, 2, 2).

10Note that y3 enters into the denominator of ϑA
1 due to the term log(x1 + x3) in A’s utility

function.
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Proposition 3. The stock market equilibrium at y∗ in the example does not
satisfy the first order condition for slight efficiency.

The proof is an adaptation of the proof of Proposition 2 to the present exam-
ple. The assignment of ϑA = ϑ̄0 and ϑB = 1− ϑ̄0 at t = 0 causes a feedback effect
at t ≥ 1 which entails ϑA

1 = ϑ̄0(q1 + y1)/(2(q1 − y3)) for A and ϑA
2 = 2ϑ̄0(q2 +

y2)/(3q2) and ϑB
1 = 2(1− ϑ̄0)(q1 + y1)/(3q1) and ϑB

2 = 2(1− ϑ̄0)(q2 + y2)/(3q2) for
B. The market clearing prices q1 = (ϑ̄0(y1 − 2y3) + 2y3)/(2− 3ϑ̄0) and q2 = 2y2

depend on planner P ’s choice of ϑ̄0. The derivative of WP at ϑA
0 (ŷ∗) = 5/11

equals 0.357. That is to say, P wants to move shares ϑi
0 from B to A.

The equilibrium utility gradients are
DUA(ŷ∗) = πA(ŷ∗) ≈ (1, 0.860, 11/10, 0.860, 0.910, 11/10, 11/10)

DUB(ŷ∗) = πB(ŷ∗) ≈ (1, 1.074, 11/12, 1.103, 1.109, 11/12, 11/12).
(13)

The BL price system (1, 0.977, 1, 0.970, 1, 1, 1) differs from π(ŷ∗) = (1, 1, . . . , 1)
not only at the intermediate node ξ1 but also at the final node ξ3 because q1

depends on y1 and y3 due to the term log(x1 +x3) in A’s utility function. The BL
price of node ξ2 equals 1 because there is no trade at ξ2, that is to say, ϑi

0 = ϑi
2

for i = A,B due to the special nature of the utility functions.
In the context of the previous, additively separable example, we have obtained

equation (8) according to which the firm’s state price πs(ŷ
∗) involves only the

consumption changes ∂sx
i
s(ŷ

∗) occurring at ξs. When additive separability is
violated as in the present example, however, the state prices πs(ŷ

∗) tend to involve
consumption changes of goods other than s.

It is instructive to compute the state price π1(ŷ
∗) step by step. A’s consump-

tion changes of goods 1 to 6 at ŷ∗ that are induced by an infinitesimal increase of
y1 (without the induced change of y6) are about (0.613, 0,−0.129,−0.129, 0, 0),
those of B are (0.387, 0, 0.129, 0.129, 0, 0). If one evaluates these changes coor-
dinatewise with the corresponding state prices of the consumers, one obtains
for A the utility changes (0.527, 0,−0.111,−0.117, 0, 0). The values for B are
(0.416, 0, 0.143, 0.143, 0, 0). Therefore A’s marginal benefit of an infinitesimal in-
crease of y1 amounts to 0.527−0.111−0.117 = 0.299 and B’s to 0.416−2·0.1425 =
0.701 when one ignores the indirect effect via y6 = g(ŷ). The firm’s state price is
π1(ŷ

∗) =
∑

i=A,B

∑6
σ=1 πi

σ∂1x
i
σ = 0.299 + 0.701 = 1.

More generally, consider the production plan y+(ŷ∗) = (ŷ, g(ŷ)) and let xi∗ =
xi(y+(ŷ∗)). Consumer i’s marginal benefit of a change of ys, s = 1, . . . , 5, depends
on his utility gradient DU i(xi∗)) = (1, πi∗

1 , . . . , πi∗
6 ) and the induced consumption

changes. When we differentiate xi
σ(ŷ, g(ŷ)) with respect to ys, we obtain ∂sx

i
σ +

∂6x
i
σ ∂sg, where σ = 1, . . . , 6 and s = 1, . . . , 5. Therefore, i’s marginal benefit

equals
∑6

σ=1 πi
σ(∂sx

i
σ + ∂6x

i
σ ∂sg) and the marginal social benefit of a change of

ys combined with the corresponding change of y6 is
∑

i

∑6
σ=1 πi

σ(∂sx
i
σ +∂6x

i
σ ∂sg)

where s = 1, . . . , 5. The direct effect of an infinitesimal increase of ys, s = 1, . . . , 5,
on social benefit is

πs =
∑

i

∂sv
i =

∑
i

6∑
σ=1

πi
σ∂sx

i
σ (14)
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and the indirect effect via g(ŷ) is π6 ∂sg =
∑

i

∑6
σ=1 πi

σ∂6x
i
σ ∂sg. Altogether, the

total marginal social benefit is given by πs + π6 ∂sg.
In the example, the first order condition for welfare maximization requires

that πs + π6 ∂sg = 0 for s = 1, . . . , 5, because the cost is constant on E .
This leads us to the question of how much information is required in the

multiperiod case. In the two-period case, the Drèze rule is formulated without
reference to E . Its generalization to multiperiod models requires at least local
information about E at ŷ∗ and this is encapsulated in Dg(ŷ∗) as in equation (3).

3.2 Costs at intermediate nodes cause a wedge between the
evaluations of the consumers and the producer.

In the complete market case, costs can occur at different time periods. When
markets are incomplete there is also no need to assume that all costs are borne
in the initial period. Therefore, we modify the example from Section 2 such that
costs are paid at all non-final nodes. We denote the costs paid additionally at
the intermediate nodes ξs, s = 1, 2, by Cs.

We rename the initial cost as C0 = −y0. Then i = A,B consumes (ei
0 −

ϑi
0C0, ϑ

i
0y1 + (ϑi

0−ϑi
1)q1−ϑi

1C1, ϑ
i
0y2 + (ϑi

0−ϑi
2)q2−ϑi

2C2, ϑ
i
1y3, ϑ

i
1y4, ϑ

i
2y5, ϑ

i
2y6).

Consumer A’s shares are given by

ϑA
0 =

21

C0

, ϑA
1 =

147(q1 + y1)

8C0(q1 + C1)
, ϑA

2 =
231(q2 + y2)

13C0(q2 + C2)
.

Consumer B’s shares are

ϑB
0 =

6

C0

, ϑB
1 =

4(q1 + y1)

C0(q1 + C1)
, ϑB

2 =
4(q2 + y2)

C0(q2 + C2)
.

The market clearing share prices are

q1 =
179y1 − 8C0C1

8C0 − 179
, q2 =

283y2 − 13C0C2

13C0 − 283
.

To be specific, we assume

C1 =
√

y2
3 + y2

4 and C2 =
1

2

√
y2

5 + y2
6.

and choose eA
0 = 25, eB

0 = 15 in the numerical example. As before, social welfare
W is defined by equation (6). We solve the first order condition DW(ŷ) = 0
for welfare maximization and obtain ŷ∗ ≈ (8.279, 8.865, 3.566, 3.987, 6.468). The
last coordinate of the production plan y∗ is y∗6 = g(ŷ∗) ≈ 6.986. The consump-
tion plans are xA(ŷ∗) ≈ (4, 1.663, 2.535, 2.929, 3.274, 5.280, 5.703) and xB(y∗) ≈
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(9, 1.267, 1.569, 0.638, 0.713, 1.188, 1.284). We distinguish between the gross pro-
duction plan and the net production plan which are, respectively,

y∗gross =(y0, y1, y2, . . . , y6)(ŷ
∗)

≈(−27, 8.279, 8.865, 3.566, 3.987, 6.468, 6.986)

y∗net =(y0, y1 − C1, y2 − C2, . . . , y6)(ŷ
∗)

≈(−27, 2.930, 4.105, 3.566, 3.987, 6.468, 6.986).

(15)

The stochastic discount factors of the consumers are given by

πA(ŷ∗) ≈ (1, 0.601, 0.789, 1.024, 1.222, 0.947, 1.052)

πB(ŷ∗) ≈ (1, 0.789, 0.637, 1.569, 1.403, 0.841, 0.779).
(16)

We do not intend to replicate the analysis of the feedback effect in the previous
subsection. Instead we want to shed light on the novelty of this subsection, that
is to say, the difference between gross and net production.

A short calculation shows that A’s as well as B’s evaluation of the net pro-
duction plan vanish. That is to say,

πA(ŷ∗) y∗net = πB(ŷ∗) y∗net = 0. (17)

We use formula (14) to compute the firm’s state prices. When one differenti-
ates the social benefit vA + vB with respect to y1, . . . , y6 one obtains the vector
(0.683, 0.731, 0.667, 0.745, 0.679, 0.734). The social benefit takes the costs C1 and
C2 into account. Optimality requires that the social benefit accruing at t ≥ 1 is
equal to the marginal cost DC0(y

∗
+) paid at t = 0. A simple calculation shows

that this is the case. The firm’s state price system is

π(ŷ∗) ≈ (1, 0.683, 0.731, 0.667, 0.745, 0.679, 0.734). (18)

Concerning the two intermediate nodes ξ1 and ξ2 we search for a γ such that
γ(0.601, 0.789) + (1 − γ)(0.789, 0.637) = (0.683, 0.731). One checks easily that
the equation has no solution. Therefore, Proposition 1 applies also to the present
case.

The firm’s evaluation of the gross production plan vanishes, that is to say

π(ŷ∗) y∗gross = 0, (19)

whereas π(ŷ∗) y∗net is negative. Equations (17) and (19) show:

Proposition 4. The costs C1 and C2 at the intermediate nodes act like a tax that
introduces a wedge between the evaluations of the consumers and the producer.

The intuition behind Proposition 4 can be described as follows. We have
interpreted C1(y

∗
+) and C2(y

∗
+)) as technologically unavoidable costs. Suppose,

however, that only C0(y
∗
+) is actually needed to produce the output y∗+ and that

14



C1(y
∗
+) and C2(y

∗
+) are the amounts of the intermediate goods that a foreign

owner of the firm extracts from the economy for personal consumption in his own
country. Both interpretations explain a loss of social benefit. The consumers
are left with the net production plan whereas the firm has to provide the gross
production plan. Because the costs C1 and C2 are not available for consumption,
they are accounted for in the social benefit and should be disregarded by the firm.

As at the end of Section 2, we look at a Walras equilibrium in the case of
complete markets. The firm’s technology is given by all net production plans
η = (η0, η1, . . . , η6) ∈ R− × R6

+ such that η0 ≤ C0(y+), η1 ≤ y1 − C1(y+), η2 ≤
y2−C2(y+), and ηs = ys for s ≥ 3 for some gross output y+ ≥ 0. The technology
is convex because −C0,−C1 and −C2 are concave functions.

The firm aims to maximize profits with respect to a price system which is equal
to the utility gradient of each consumer in equilibrium. Using A’s utility gradient,
we define C = C0+(1/xA

1 )C1+(2/xA
2 )C2. Because consumers’ utility gradients are

equal in a Walras equilibrium, that is to say xB
1 = xA

1 , xB
2 = xA

2 /2, . . . , xB
6 = xA

1 /6,
we can eliminate every xB

s from the market clearing conditions for goods 1 to 6
and solve for the output vector y+. This leads to

y1 = 2xA
1 +

√
16(xA

3 )2

9
+

25(xA
4 )2

16
, y2 =

1

2

(
3xA

2 +

√
36(xA

5 )2

25
+

49(xA
6 )2

36

)

and y3 = 4xA
3 /3, y4 = 5xA

4 /4, y5 = 6xA
5 /5, y6 = 7xA

6 /6. When this substitution
is used the derivative DC(y+) of the total cost function becomes a function of
xA

1 , . . . , xA
6 .

In a Walras equilibrium, (1, DC(y+)) equals A’s utility gradient. Solving this
condition numerically we obtain that A’s equilibrium consumption is given by
(1, 1.465, 2.737, 2.675, 3.190, 5.390, 5.988). The associated price system is

p∗ = (1, 0.683, 0.731, 1.122, 1.254, 0.928, 1.002) (20)

and the profit maximizing production plan η∗ equals y∗net in (15). It is easy to
check that p∗y∗net = 0 so that y∗net maximizes profits given p∗.

For comparison, in the incomplete market case the firm’s price system in
(18) is (1, 0.683, 0.731, 0.667, 0.745, 0.679, 0.734). Observe that prices of goods 1
and 2 are the same in (18) and (20). However, when markets are complete the
equilibrium prices of goods 3 and 4 are 68.3% and those of goods 5 and 6 are
36.5% higher than the corresponding prices in (18).

The underlying reason is as follows. The firm’s prices in (18) are the marginal
costs C0 paid at t = 0 because C1 and C2 are taken into account by the marginal
benefit. When markets are complete equilibrium prices can be used to aggregate
all cost components into one total cost. Therefore, the Walrasian prices in (20)
are the derivative of the total cost C = C0 + p∗1 C1 + p∗2 C2 at η∗ = y∗net. The
price ratios of the final goods in (20) and in (18) correspond to

(
∂3C

∂3C0

,
∂4C

∂4C0

,
∂5C

∂5C0

,
∂6C

∂6C0

)
(y∗net) ≈ (1.683, 1.683, 1.365, 1.365).
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4 Welfare maximization without additive separa-
bility and quasilinearity.

In the quasilinear examples considered above, it is natural to maximize social
surplus measured in units of good 0. Social surplus maximization presents an
example of the maximization of a utilitarian welfare function that is based on the
principle that one additional unit of good 0 raises the welfare by an amount that
is independent of the person that receives this unit.

In this section, we analyze an example in which consumer A does not possess
a quasilinear utility function. This can be taken into account in the same way
as in the two-period model. To convert i’s utility gradient into i’s present value
vector we divide U i by the marginal utility of good 0.

The utility functions are as follows:

UA(x0, x1, . . . , x6) = 10 log(x0) + 2 log(3x1 + x3) + log(2x2 + x6)

+ log(x4) + log(x5)

UB(x0, x1, . . . , x6) = x0 + log(2x1 + x4) + log(2x2 + x5)

+ log(x3) + log(x6),

(21)

Each consumer has an initial endowment of 30 at ξ0 and no initial endowments
elsewhere. The cost function is given by equation (11).

Consumer A’s demand for shares is ϑA
0 = 10/C, ϑA

1 = ϑA
0 (q1 + y1)/(3q1 − y3),

and ϑA
2 = ϑA

0 (q2 + y2)/(2q2 − y6). Consumer B demands ϑB
0 = 4/C, ϑB

1 =
ϑB

0 (q1 + y1)/(2q1− y4), and ϑB
2 = ϑB

0 (q2 + y2)/(2q2− y5). The scale of production
is given by the market clearing condition ϑA

0 +ϑB
0 = 10/C+4/C = 1 which entails

that the costs are identically equal to 14. Thus, any ŷ = (y1 . . . y5) determines
the amount y6 = g(ŷ) = 14− y1 · · · − y5.

Consumer A’s consumption at the initial node equals xA
0 = 30− ϑA

0 C = 30−
10 = 20. Therefore, A’s marginal utility ∂0U

A is identically equal to 10/xA
0 = 1/2.

If we multiply UA by 2 then the marginal utility of good 1 is normalized to 1.
Let ui(ŷ) = U i(xi(ŷ)) be i’s indirect utility function and define:

Definition 2. The social welfare function W is given by

W(ŷ) = 2uA(ŷ) + uB(ŷ).

In the previous examples, social welfare is determined independently of the
location of the welfare maximum. In general, this is not the case because ∂0U

i(x)
depends on x. Then one can proceed as in the two-period case. That is to say,
one rules out production plans at which first-order Pareto improvements can be
achieved when the production plan is varied and infinitesimal transfers of good 0
are made.

When one solves the first order condition DW(ŷ) = 0 numerically one obtains
ŷ∗ ≈ (4.248, 2.085, 1.245, 2.503, 2.459). Furthermore, y∗6 = g(ŷ∗) ≈ 1.456.
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The shareholdings (ϑA
0 , ϑB

0 ) = (5/7, 2/7) at the initial node ξ0 are not optimal
for planner P . This planner, who cannot change the production plan, can improve
social welfare by giving some of A’s shares to B. Thus, one expects that the BL
rule is violated.

A’s state price system is πA ≈ (1, 1.033, 0.941, 0.344, 1.431, 1.201, 0.471) and
B’s is πB ≈ (1, 0.861, 1.177, 1.814, 0.430, 0.588, 2.129). It is easy to check that
the system of equations λsπ

A
s + (1− λs)π

B
s = 1 for s = 1, . . . , 6 has the following

property: For each pair of nodes with the same immediate predecessor the solu-
tions are different. That is to say, λ1 6= λ2, λ3 6= λ4, and λ5 6= λ6, so that there
cannot be any weighted gradient formula where the immediate successors of at
least one node have the same weight.

The BL price system (1, 0.984, 1.009, 0.993, 0.989, 1.003, 1.006) differs from the
technology gradient at every coordinate s ≥ 1. This reflects the complete lack of
additive separability of the pair of utility functions.

The example illustrates the difficulty to find intuitively plausible price per-
ceptions that can be used to specify the objective of a firm in multiperiod models
with incomplete markets in a satisfactory manner. Local information about E
can hardly be detected by individual introspection. This fact is a consequence of
a failure of markets with price taking behavior to coordinate consumers’ decisions
in a constrained efficient way when sequential trade is allowed. Otherwise one
could use the BL rule which is far less complex because it is as simple as the
original Drèze rule applied to each non-terminal node.

Although this conclusion appears disappointing, it does not mean that the
solutions that we have obtained in our examples cannot be derived from an effi-
ciency goal. This will be the topic of the next section.

5 How can one derive a generalized Drèze rule
from efficiency considerations?

Drèze (1974) and Magill and Quinzii (1996) emphasize the importance of con-
strained efficiency for two period models of incomplete markets with production.
On the other hand, we have analyzed examples in which firms are unable to
achieve a slightly efficient allocation. This leads to the question of how one can
reconcile our approach with the original intention to satisfy an appropriate effi-
ciency requirement.

For this reason, we adapt the approach taken by E. and H. Dierker (2010) in a
two period setting to the multiperiod framework. As before, we consider a single
firm with constant returns to scale. There is a finite date-event tree with dates
t = 0, 1, . . . , T , states s = 0, 1, . . . , S and date-event pairs or nodes (t, s) denoted
by ξ0, ξ1, . . . , ξS. The node ξ0 is the root of the tree. At each intermediate node
ξs 6= ξ0, shares are traded at the market clearing price qs. For simplicity, we
assume that no costs occur at t ≥ 1 so that the price at ξ0 equals the production
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cost C.
The tree structure can be used to impose separability restrictions on the utility

functions under consideration. If the tree structure is such that the consumption
of good s precludes the consumption of s′ then one would like that s and s′ are
additively separated in the utility function. Although it appears natural, we do
not make this assumption because it does not impact our arguments.

Consider the production plan y = (y0, y+) = (y0, y1, y2, . . . , yS). Consumer i
consumes xi

0 = ei
0−ϑi

0C at the initial node ξ0. At each intermediate node ξs, the
consumption of i equals xi

s = ei
s+qs(ϑ

i
s−−ϑi

s)+ϑi
s−ys, where ξs− is the immediate

predecessor of ξs. If ξs is a terminal node then i consumes xi
s = ei

s + ϑi
s−ys.

At a stock market equilibrium, all stock markets clear. Stock market equilibria
are elements of

E = {y+ ∈ RS
++ |

∑
i

ϑi
s(y+) = 1 for all non-terminal states s}.

Because the stock price at ξ0 equals the production cost C we have one equa-
tion more than is needed to determine all stock market prices. Under the rank
assumption of the implicit function theorem, one can express one coordinate of
y+ locally as a function of the others. For the ease of notation, we assume that
yS = g(ŷ) where ŷ = (y1, . . . , yS−1). We shall consider stock market equilibria
in a neighborhood of a reference stock market equilibrium with output vector
y∗+ = (ŷ∗, g(ŷ∗)) À 0.

As before, all functions have ŷ directly or indirectly as their argument so that
the restriction to the stock market equilibria is incorporated in the notation. At a
stock market equilibrium, consumer i = 1, . . . , I consumes the vector xi(y+(ŷ)) ∈
RS+1 with coordinates xi

s(y1, . . . , yS−1, g(y1, . . . , yS−1)), where s = 0, . . . , S.

Assumption . There is an open neighborhood O of ŷ = (ŷ1, . . . , ŷS−1) and a
C1-function g : O → R such that y+(ŷ) = (ŷ, g(ŷ)) is an equilibrium output plan.
All functions used in the description of an equilibrium are C1.

Consider a planner who can choose the stock market equilibrium and redis-
tribute the total consumption

∑
i x

i
0(y

∗
+) at t = 0 by assigning to i the amount ci

0.
A minimally efficient stock market equilibrium must not be Pareto dominated by
an allocation resulting from some other stock market equilibrium followed by a
redistribution of consumption at t = 0.

Definition 3. The stock market equilibrium associated with y∗+ is minimally
constrained efficient, or minimally efficient for short, iff there is no y+ with
associated equilibrium consumption plans (xi

0(y+), xi
+(y+))i=1,...,I such that the

allocation (ci
0, x

i
+(y+))i=1,...,I is Pareto preferred to (xi

0(y
∗
+), xi

+(y∗+))i=1,...,I where∑
i c

i
0 =

∑
i x

i
0(y

∗
+).

Next we introduce a way to measure deviations from minimal efficiency that
falls into the tradition of the four Hicksian surplus concepts, cf. Hicks (1956) and
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E. and H. Dierker (2010). Consumer i’s compensating surplus CSi
ŷ∗(y+(ŷ)) is

the amount of good 0 which i has to lose after the move from the reference stock
market equilibrium associated with ŷ∗ to the alternative equilibrium associated
with ŷ. That is to say,

U i(xi
0(y+(ŷ))− CSi

ŷ∗(y+(ŷ)), xi
+(y+(ŷ))) = U i(xi(y+(ŷ∗))). (22)

Definition 4. The total compensating surplus associated with the change from
ŷ∗ to ŷ is

CSŷ∗(y+(ŷ)) =
I∑

i=1

CSi
ŷ∗(y+(ŷ)).

The total compensating surplus CSŷ∗(y+(ŷ)) can be interpreted as the amount
of good 0 that can be taken out of the economy at ŷ without making any consumer
worse off than at ŷ∗. Minimal efficiency prevails if this amount is nowhere positive.

Remark . The equilibrium associated with ŷ∗ is minimally efficient iff

CSŷ∗(y+(ŷ)) ≤ 0 = CSŷ∗(y+(ŷ∗)).

Thus, minimal efficiency of y∗ is based on the maximization of the total com-
pensating surplus CSŷ∗ . In the presence of income effects, CSi

ŷ∗ is typically not
a utility function because different indifference classes must be disjoint. Hence,
CSŷ∗ is typically not a social welfare function.

When we differentiate xi
σ(ŷ, g(ŷ)) with respect to ys, s = 1, . . . , S − 1, we

obtain ∂sx
i
σ + ∂Sxi

σ ∂sg. Similarly, we have ∂sCSi
ŷ∗ + ∂SCSi

ŷ∗ ∂sg. We normalize
all utility gradients such that the marginal utility of good 0 at ŷ∗ equals 1 in order
to obtain the consumers’ present value vectors πi(xi(y+(ŷ∗))). We differentiate
(22) and obtain, for s = 1, . . . , S − 1,

∂s(x
i
0 − CSi

ŷ∗) + ∂S(xi
0 − CSi

ŷ∗) ∂sg +
S∑

σ=1

πi
σ(∂sx

i
σ + ∂Sxi

σ ∂sg) = 0.

When we sum over all consumers and use the definition of xi
0 we obtain

I∑
i=1

(
∂sCSi

ŷ∗ + ∂SCSi
ŷ∗ ∂sg

)
=

∂sy0 + ∂Sy0 ∂sg +
I∑

i=1

S∑
σ=1

(πi
σ ∂sx

i
σ + πi

σ ∂Sxi
σ ∂sg).

(23)

As in (14), state prices are defined by πs =
∑

i ∂sv
i =

∑
i

∑
σ πi

σ ∂sx
i
σ. The first

order condition for minimal efficiency states that (23) vanishes for s = 1, . . . , S−1,
that is to say, −(∂sy0 + ∂Sy0 ∂sg) = πs + πS ∂sg. (24)
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Equation (24) has the following interpretation. Consider an infinitesimal
change at y∗ = y+(ŷ∗) in a direction tangent to E . This change induces a change
of the cost, which is represented by the left hand side of (24), and a change of the
social benefit, which is captured by the right hand side. Optimality requires that
the two effects cancel out. Equation (24) states that the marginal cost equals the
marginal social benefit in every direction tangent to E.

We want to compare (24) with the first order condition for welfare maximiza-
tion and normalize all utility functions so as to obtain individual present values
at y∗+. Define

Wy∗ =
∑

i

U i(xi((y+(ŷ)))

∂0U i(xi((y+(ŷ∗)))
. (25)

When we differentiate (25) with respect to ys, s = 1, . . . , S − 1, we obtain, drop-
ping the argument y+(ŷ∗),

∂sy0 + ∂Sy0 ∂sg +
I∑

i=1

S∑
σ=1

(
πi

σ ∂sx
i
σ + πi

σ ∂Sxi
σ ∂sg

)
= 0 for s = 1, . . . , S − 1,

which is equivalent to (24).

Theorem . 1) The first order condition for minimal efficiency requires that the
directional derivatives of the cost function and the social benefit function in any
direction tangent to E coincide.
2) The same condition results from the first order condition for welfare maxi-
mization if every utility function U i is normalized such that ∂0U

i(y+(ŷ∗)) = 1.

6 Conclusions
The economic intuition provided by traditional two-period models of produc-
tion economies with incomplete markets needs to be modified substantially when
stock markets operate sequentially. For simplicity’s sake, we have ruled out spot
markets by assuming that there is only one good per state.

First, even in the quasilinear, additively separable case, consumer i’s present
value of an intermediate state ξs with an active stock market must take i’s trans-
actions on that market into account. There is no envelope type argument that
allows us to ignore how i adjusts his shares. This fact has severe implications
for the price perceptions because perceptions about individual transactions are
needed. That is to say, in multiperiod models portfolio adjustments replace the
fixed shareholdings in the two-period Drèze rule.

Second, if utility functions are not additively separable then i’s state price
of ξs is typically impacted by other states due to repercussions across different
stock markets. For instance, the stock market price qs can depend on changes in
the production of good s′ 6= s. This is similar to oligopolistic competition such
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as Cournot competition, where the price of good s depends on the output of the
competing good s′.

These difficulties are caused by the inefficiency of the consumption sector.
If this sector would not violate BL’s constrained efficiency assumption then the
transition from two to more periods would have far less severe consequences. The
pricing rule derived by BL is in the spirit of the original Drèze rule although it
incorporates all finite date-event trees.

Third, in the two-period case, the assumption that production takes time
implies that investments are made at t = 0 and dividends are received at t = 1.
In multiperiod models, costs can occur at intermediate states. Consumers do not
only disagree because of different evaluations of dividend streams. They also hold
different opinions about cost streams unless there are enough market prices for
inputs at different times so that one can determine the total cost objectively.

This point is illustrated in Subsection 3.2 by comparing the generalized Drèze
equilibrium in the case of incomplete markets with the Walrasian equilibrium
when markets are complete. The firm and the consumers evaluate the firm’s
production plan differently in the former case and equally in the latter.

Fourth, the Drèze rule does not refer to E , but our generalization does. Our
analysis involves local knowledge of E in the form of tangent directions at the
equilibrium. Again, it is difficult to imagine how an individual person develops
reasonable perceptions about this tangent space by introspection.

To summarize, the informational requirements rise enormously when one
leaves the two-period framework. This may appear regrettable if one aims to
develop a more or less plausible, positive model of a realistic world with incom-
plete markets and production. However, a generalized Drèze equilibrium can
be viewed as a suitable normative concept that lends itself to the analysis of
benchmark models.

Finally, although the consumption sector does not satisfy the first order con-
dition for slight efficiency in the sense of Definition 1, efficiency considerations
can be used to derive a generalization of the Drèze rule. However, it would be
far-fetched to interpret this rule as maximization of a profit function.

To generalize the Drèze rule, one has to weaken the efficiency requirements
so much that the feedback effect that entails slight inefficiency is fully taken
account. This is done by the use of minimal efficiency in Definition 3. The first
order condition for minimal efficiency coincides with the first order condition for
welfare maximization and serves as a basis for the concept of a generalized Drèze
rule in the same way as the first order condition for constrained efficiency provides
a foundation for the original Drèze rule. In the two-period case, the first order
condition for constrained and for minimal efficiency coincide. This is no longer
true in multiperiod models because of the efficiency loss caused by the feedback
effect in the consumption sector.
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