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Identifying Structural Vector Autoregressions

via Changes in Volatility1

Helmut Lütkepohl
Department of Economics, Freie Universität Berlin and DIW Berlin

Mohrenstr. 58, D-10117 Berlin, Germany
email: hluetkepohl@diw.de

Abstract. Identification of shocks of interest is a central problem in struc-
tural vector autoregressive (SVAR) modelling. Identification is often achieved
by imposing restrictions on the impact or long-run effects of shocks or by con-
sidering sign restrictions for the impulse responses. In a number of articles
changes in the volatility of the shocks have also been used for identifica-
tion. The present study focusses on the latter device. Some possible setups
for identification via heteroskedasticity are reviewed and their potential and
limitations are discussed. Two detailed examples are considered to illustrate
the approach.

Key Words: Markov switching model, vector autoregression, heteroskedas-
ticity, vector GARCH, conditional heteroskedasticity
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1 Introduction

In structural vector autoregressive (SVAR) analysis, typically a critical is-
sue is the identification of economically meaningful shocks. Restrictions on
the impact effects, the long-run responses of the variables, or the signs of
the impulse responses are usually used to identify or characterize the shocks
of interest (e.g., Sims (1980), Amisano and Giannini (1997), Blanchard and
Quah (1989), King, Plosser, Stock and Watson (1991), Faust (1998), Canova
and De Nicoló (2002), Uhlig (2005)). Such restrictions are sometimes con-
troversial. Taking that into account, another strand of the literature uses
statistical data properties for identification. In particular, changes in the
volatility of the residuals or the variables is used as additional identifica-
tion information. For instance, Rigobon (2003), Rigobon and Sack (2003),
Lanne and Lütkepohl (2008) use heteroskedasticity while Normandin and
Phaneuf (2004), Bouakez and Normandin (2010) and Lanne, Lütkepohl and
Maciejowska (2010) consider conditional heteroskedasticity for the identifi-
cation of shocks.

In the present study the general principle is discussed and specific mod-
elling strategies are considered. First the general modelling strategy is pre-
sented and its advantages and limitations are discussed in Section 2. The
general idea is that the structural shocks are extracted by transforming
the reduced form residuals. The basic assumption that structural shocks
should be instantaneously uncorrelated is insufficient to uniquely determine
or identify the shocks. Therefore further restrictions have to be imposed for
uniquely identifying the shocks or at least characterizing them sufficiently
to make them distinguishable. In a conventional analysis this is typically
done through exclusion or sign restrictions. In the present study possibilities
are considered how changes in volatility can be used for this purpose. It is
assumed that the impulse responses remain invariant even if the volatility of
the shocks is changing, which provides additional restrictions for the shocks
that can even uniquely determine the shocks if the changes in volatility are
sufficiently heterogeneous.

Some specific models for changes in volatility that can be used in this
context are considered in Section 3. In particular, a standard heteroskedas-
ticity model with exogenously generated shifts in variance is discussed, an
approach based on a multivariate generalized autoregressive heteroskedastic
(MGARCH) model for the movements in volatility is presented and a Markov
regime switching mechanism is considered for capturing changes in the resid-
ual volatility. Detailed examples are provided in Sections 4 and 5. The first
example compares different identification schemes for monetary policy shocks
that have been considered in the literature. The second example considers
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models for the crude oil market. Finally, Section 5 concludes.

2 The Model Setup

2.1 The basic model

The point of departure is a K-dimensional reduced form VAR(p),

yt = ν + A1yt−1 + · · ·+ Apyt−p + ut. (1)

Here ν is a (K × 1) constant term, Aj (j = 1, . . . , p) are (K × K) VAR
coefficient matrices and ut is a zero-mean white noise error term. The model
may contain cointegrated variables and may in fact be set up as a vector
error correction model. Also there may be more general deterministic terms
such as seasonal dummies or a polynomial trend.

The standard SVAR analysis assumes that the structural shocks, say εt,
are obtained from the reduced form residuals by a linear transformation, say
εt = B−1ut or, equivalently, Bεt = ut. In a conventional SVAR analysis B
is chosen such that the structural shocks, that is, the components of εt are
instantaneously uncorrelated. In other words, εt has a diagonal covariance
matrix, that is, E(εtε

′
t) = Σε is a diagonal matrix. In practice, B is often

chosen such that Σε is an identity matrix so that εt ∼ (0, IK) and, hence,
E(utu

′
t) = Σu = BB′ if ut is homoskedastic and, thus, has a time-invariant

covariance matrix. Notice that by substituting Bεt for ut in (1), the matrix
B is easily recognized as the matrix of impact effects of the structural shocks.

The matrix B is not uniquely determined by the relation Σu = BB′ be-
cause Σu is symmetric and, hence, has at most K(K+1)/2 different elements
while B has K2 elements. Consequently, at least K(K − 1)/2 further rela-
tions or restrictions are needed to uniquely specify the transformation matrix
B and thereby characterize the shocks. As mentioned earlier, restrictions on
the impact effects of the shocks, that is, on the elements of B directly, or indi-
rect constraints on the long-run effects are often used in a conventional SVAR
analysis to specify unique structural shocks. Alternatively, sign restrictions
on the impulse responses may be imposed. They will not fix unique struc-
tural shocks in general but will specify a range of structural shocks. Such an
approach may be sufficient for answering at least some questions of interest.

Another possibility for specifying unique shocks opens up if the variances
of the reduced form and, hence, also the structural shocks change during
the sample period. To see this suppose that E(utu

′
t) = Σ1 if t is from the

first part of the sample, say t = 1, . . . , T1, and E(utu
′
t) = Σ2 in the second

part of the sample (t > T1) and Σ1 6= Σ2. Moreover, suppose that all
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other VAR parameters in (1) remain time-invariant. Then there is a matrix
decomposition result that ensures the existence of a matrix B and a diagonal
matrix Λ = diag(λ1, . . . , λK) such that

Σ1 = BB′ and Σ2 = BΛB′. (2)

Using this B matrix to obtain structural shocks from the reduced form errors,
that is, defining εt = B−1ut, we get

E(εtε
′
t) =

{
IK , t = 1, . . . , T1,
Λ, t > T1.

Since Λ is diagonal, the structural errors obtained in this way satisfy the
basic requirement of being instantaneously uncorrelated. Moreover, Lanne
et al. (2010) show that the matrix B is unique apart from changes in the
signs and permutations of the columns if the diagonal elements of Λ are
all distinct. The latter condition can be checked easily, of course. If it is
satisfied, we have unique shocks by just imposing the basic requirement that
the structural shocks are instantaneously uncorrelated. Of course, using the
same transformation matrix B for the whole sample period implies that the
impact effects of the shocks are time-invariant as well and only the variances
change. All other requirements for uniqueness of the joint decomposition
of the two covariance matrices do not affect the shocks substantively. The
possible changes in sign just mean that we may consider negative instead of
positive shocks and vice versa. Also the fact that the columns of B can be
permuted reflects just that the ordering of the shocks can be chosen freely.
It is worth looking at an example in some detail.

2.2 An illustrative example

Consider a bivariate system so that

ut =

[
u1t

u2t

]
=

[
b11 b12

b21 b22

] [
ε1t

ε2t

]
.

For this case the relations (2) are[
σ2

1,1 σ12,1

σ12,1 σ2
2,1

]
=

[
b2

11 + b2
12 b11b21 + b12b22

b11b21 + b12b22 b2
21 + b2

22

]
and [

σ2
1,2 σ12,2

σ12,2 σ2
2,2

]
=

[
λ1b

2
11 + λ2b

2
12 λ1b11b21 + λ2b12b22

λ1b11b21 + λ2b12b22 λ1b
2
21 + λ2b

2
22

]
.

3



Thus, we get six relations,

σ2
1,1 = b2

11 + b2
12,

σ12,1 = b11b21 + b12b22,
σ2

2,1 = b2
21 + b2

22,
σ2

1,2 = λ1b
2
11 + λ2b

2
12,

σ12,2 = λ1b11b21 + λ2b12b22,
σ2

2,2 = λ1b
2
21 + λ2b

2
22,

from which we can solve for the six structural parameters b11, b12, b21, b22, λ1, λ2.
Here the latter two parameters are the diagonal elements of Λ. The solution
is unique (up to sign) if λ1 and λ2 are distinct and are ordered in some spe-
cific way. For instance, λ1 < λ2. Notice that the variances of the structural
shocks are normalized to one in the first part of the sample. Hence, the λi
indicate the change in variance from the first to the second variance regime.
In other words, they can be interpreted as relative variances in the second
part of the sample. The uniqueness requirement just means that the change
in variance is not homogeneous across both variables. In fact, only the vari-
ance of one of the variables has to change. This already suffices for a unique
solution.

It should be clear, however, that this is a purely technical way of getting
unique shocks and does not necessarily result in economically meaningful
shocks. Just like using a Choleski decomposition of the residual covariance
matrix to obtain a unique set of orthogonal shocks does not lead automat-
ically to economically meaningful shocks but requires further arguments to
make them meaningful. For example, Rigobon (2003) discusses the case of
a bivariate system with demand and supply shocks. Although in this case
it is indeed difficult to disentangle the shocks in the absence of economic re-
strictions and, hence, the statistical identification approach comes in handy,
it must be kept in mind that the method just normalizes the shocks in a
mathematical way and the shocks identified in this way need not correspond
to supply and demand shocks. Such an interpretation requires further eco-
nomic insights and needs to be viewed with some caution. What we can
say if the identification conditions are satisfied is that there are only two
specific shocks that satisfy the basic requirements of structural shocks and
induce time-invariant responses throughout the full sample. The latter as-
sumption is, of course, implicit in a conventional analysis that ignores the
changes in volatility or does not use them for identification purposes. On the
other hand, one may question the assumption that the instantaneous effects
of the shocks are not affected by the volatility changes. Indeed, also the
VAR coefficients are assumed to be time-invariant and that assumption may
be unrealistic in some cases. It is required, however, to make the approach

4



work. If also the VAR coefficients change over time, then the assumption of
time-invariant impulse responses does not make sense any more and without
that assumption enforcing time-invariant impact effects is meaningless.

2.3 The general model

In general there may be more than two volatility regimes. Suppose there are
M such regimes and the corresponding covariance matrices are Σ1, . . . ,ΣM .
In that case a decomposition

Σ1 = BB′, Σi = BΛmB
′, m = 2, . . . ,M, (3)

with diagonal matrices Λm = diag(λm1, . . . , λmK) (m = 2, . . . ,M) may not
exist if arbitrary covariance matrices Σm (m = 1, . . . ,M) are allowed for.
In fact, the decomposition (3) imposes testable restrictions on the covari-
ance matrices. Thereby we can check whether the data are compatible with
the decomposition and, hence, we can use B to transform the reduced form
residuals into structural errors with time-invariant impact effects. Lanne
et al. (2010, Proposition 1) show that the structural shocks obtained in this
way are unique (apart from ordering and sign) if for any two subscripts
k, l ∈ {1, . . . , K}, k 6= l, there is a j ∈ {2, . . . ,M} such that λjk 6= λjl.
Although this condition for exact (local) identification is more complicated
than in the 2-state case, it shows that not much is needed for identification
of structural shocks via heteroskedasticity. Moreover, the identification con-
dition can be checked with statistical tests because, if there are M distinct
volatility regimes, then the diagonal elements of the Λm matrices are iden-
tified and, hence, can be estimated consistently with a proper asymptotic
distribution under common assumptions. We will discuss the issue further
when we consider specific models for the volatility regimes in Section 3 and
we will present examples in Sections 4 and 5.

If unique structural shocks are obtained via heteroskedasticity, then any
further restrictions become over-identifying. In particular, restrictions on the
impact or the long-run effects imposed in conventional SVAR analyses will
be over-identifying and, hence, can be tested against the data. This impli-
cation of the present framework is very convenient if there are controversial
identifying restrictions in a conventional analysis. In the present framework
the data can speak up against such restrictions or confirm that they are com-
patible with the data. Of course, it can happen that even this framework
does not allow for discrimination between competing economic theories. In
other words, different models may both be in line with the data in the present
framework. Moreover, rejecting a particular model in the present framework
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could be the result of the underlying assumptions of the statistical model
not being compatible with the data. For example, the assumption of regime
invariant impact effects may be problematic and then a particular set of re-
strictions may be rejected although it is actually the model framework that
is too narrow for the test.

So far we have considered what is known as a B-model in the SVAR liter-
ature (see Lütkepohl (2005, Chapter 9)). In practice A-models are sometimes
preferred because they allow to impose restrictions on the instantaneous in-
teractions between the observed variables more easily. An A-model has the
form

A∗0yt = ν∗ + A∗1yt−1 + · · ·+ A∗pyt−p + εt. (4)

In this model the A∗i (i = 0, 1, . . . , p) are structural form VAR coefficient
matrices. The matrix A∗0 represents the instantaneous relations between the
observed elements of yt. The B-model can be obtained from the A-model
by pre-multiplying (4) with B = A∗−1

0 . Thus, the two models are closely
related. However, in the A-model the matrix A∗0 is typically assumed to
have unit diagonal elements. Thereby each of the K variables can appear as
dependent variable on the left-hand side of one of the equations. In that case,
assuming unit variances of the structural errors is not reasonable. Thus, the
error term εt in the A-model is usually assumed to have diagonal covariance
matrix.

In that situation it may also be preferable not to normalize the variances
of the structural shocks in the first regime if there are different volatility
regimes. Hence, one may prefer to choose a decomposition

Σm = A∗−1
0 Λm(A∗−1

0 )′, m = 1, . . . ,M, (5)

where A∗0 has a unit main diagonal. Although this modification of our basic
model is in principle easy to deal with as far as estimation is concerned, the
identification conditions are more difficult to state in this model. Hence, it
may be better to leave the diagonal elements of A∗0 unrestricted and normalize
the variances of the structural shocks in the first regime. Such a modification
leaves zero restrictions on A∗0 unaffected. Thus, they may be imposed as in
a conventional analysis. Alternatively, one may set up a so-called AB-model
of the form

A∗0yt = ν∗ + A∗1yt−1 + · · ·+ A∗pyt−p +Bεt (6)

and specify B to be a diagonal matrix and require the structural shocks εt
to have unit variances throughout the sample in a conventional analysis or
in the first volatility regime in a heteroskedastic model.
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There are two other generalizations of the present setup that have been
used in practice. First, one may include additional unmodelled right-hand
side variables. As long as time-invariance of all parameters apart from those
in the residual covariance structure can be justified, the extension is straight-
forward. The same holds if there are cointegrated variables and a vector error
correction model is specified. In that case one may estimate the cointegration
relations in a first step without accounting for heteroskedasticity and fix the
cointegration parameters at those estimates in the subsequent analysis.

3 Specific Models for Changes in Residual

Volatility

In this section different models for the changes in residual volatility are pre-
sented. The first one assumes exogenous changes in given time periods.
The second model supposes that the volatility changes are generated by a
vector generalized autoregressive conditional heteroskedasticity (MGARCH)
process and the third approach models the volatility changes with the help
of a Markov process. All three models have been used in applications in
the literature. Which one of them is most suitable in a particular situation
is best judged by the analyst and subject matter considerations may play
a role for the choice. For instance, for higher frequency financial market
data conditional heteroskedasticity is often a plausible assumption whereas
in low frequency macro data models assuming that some exogenous event has
caused a change in the variance at a specific point in time may be plausible.
Also the standard tools for model checking can be used to confirm whether
a particular model captures the volatility features of the data. In practice
it may be difficult, however, to discriminate between different models purely
on the basis of statistical tools because they capture similar data features.

3.1 Exogenous changes in volatility

3.1.1 The general setup

In the original article on identifying structural shocks via heteroskedasticity
in a SVAR analysis, Rigobon (2003) considers changes in the variances of the
shocks at specific time points. Although he also discusses the implications of
misspecifying the change points, the baseline model is one where the change
in volatility occurs exogenously. Thus, it is assumed that the reduced form
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residual covariance matrix in time period t is

E(utu
′
t) = Σt =


Σ1 for t ∈ T1,
...

ΣM for t ∈ TM ,
(7)

where Tm = {Tm−1 + 1, . . . , Tm} (m = 1, . . . ,M) are M given volatility
regimes that typically consist of consecutive time periods. Here T0 = 0 and
TM = T is assumed. The Tm, for m > 0, represent the points of volatility
changes.

3.1.2 Inference

Assuming that the error term in (1) is Normal, that is, ut ∼ N (0,Σt), with
covariance matrix structure as in (7), estimation of the model can be done
by maximum likelihood (ML). The log-likelihood function is

log l(β,σ) = −KT
2

log 2π − 1

2

T∑
t=1

log |Σt| −
1

2

T∑
t=1

u′tΣ
−1
t ut, (8)

where σ contains all unknown covariance parameters and the time-invariant
VAR parameters including deterministic terms are collected in β (see Lütkepohl
(2005, Chapter 17) for further details). One may also use a feasible GLS
procedure by estimating (1) with equationwise OLS first and then using the
residuals obtained, say ût, for estimating the covariance matrices as

Σ̂m =
1

Tm − Tm−1

∑
t∈Tm

ûtû
′
t.

In the next step these estimates can then be used in a GLS estimator

β̂ =

(
T∑
t=1

Zt−1Z
′
t−1 ⊗ Σ̂−1

t

)−1( T∑
t=1

(Zt−1 ⊗ Σ̂−1
t )yt

)
, (9)

where β = vec[ν,A1, . . . , Ap], Zt−1 = (1, y′t−1, . . . , y
′
t−p)

′ and Σ̂t = Σ̂m for t ∈
Tm. If the VAR process is stable, these estimators have standard asymptotic
properties and can be used accordingly.

The structural parameters can be estimated by substituting BB′ for Σ1,
BΛmB

′ for Σm (m = 2, . . . ,M) and yt − (Z ′t ⊗ IK)β for ut in (8) and using
a full maximization of the log-likelihood. Alternatively, the β parameters
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can be estimated in a first step and in the second step the concentrated log-
likelihood is optimized only with respect to the structural parameters B and
Λm (m = 2, . . . , ,M).

Again the estimators have standard asymptotic properties under common
assumptions. These estimators can thus be used for checking the crucial as-
sumptions underlying the present analysis. For example, since the estimators
of the diagonal elements of the Λm are asymptotically Normal, they can be
used to test for distinct diagonal elements and, hence, for identification of
the shocks. Moreover, a likelihood ratio (LR) test for checking the null hy-
pothesis that the covariance matrices can be decomposed as in (3) can be set
up by comparing the log-likelihood maxima with and without the restriction.
The LR statistic has an asymptotic χ2 distribution with

1

2
MK(K + 1)−K2 − (M − 1)K

degrees of freedom under the null hypothesis (see Lanne et al. (2010)).
Notice, however, that the asymptotic properties of the estimators and test

statistics may differ substantially from the small sample properties because
we are in a dense parameter environment and macro time series are typically
relatively short. Recall also that a certain volatility regime may be present
only for a relatively short time span. Hence, the interpretation of the sta-
tistical results should be done cautiously. Remember also that the volatility
regimes are assumed known which is not true in practice. Instead there will
be uncertainty regarding the change points and perhaps some pretesting may
have occurred to determine the change points (see, e.g., Ehrmann, Fratzscher
and Rigobon (2011)). All these problems do not add to the reliability of the
inference in this context. Still, the fact that the data have a chance to speak
up regarding some of the crucial issues related to the identification of the
shocks is an advantage over having no information on these issues.

Although this type of model requires nonlinear estimation techniques,
doing a bootstrap for inference on impulse responses should not result in
insurmountable problems.

3.1.3 Applications

Rigobon (2003) applies this approach to investigate the relationship between
sovereign bonds in three Latin American countries, Argentina, Brazil and
Mexico, using daily bond yields for the period January 1994 to December
2001. There is no natural instantaneous causal direction of the relation be-
tween the bond yields in these three countries. In fact, shocks hitting the
system of the three series of interest are expected to have an instantaneous
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effect on all of them. Also, the long-term impact of shocks does not pro-
vide easily acceptable identifying restrictions. Hence, using the changes in
volatility makes sense.

Rigobon and Sack (2003) point out the instantaneous nature of the rela-
tion between short-term interest rates and stock prices and use identification
via heteroskedasticity to disentangle the relation between these variables. In
particular, they use differences in volatility shifts in the stock market and
in monetary policy for identification. More precisely, they assume that the
volatility of monetary shocks is constant whereas the volatility in equity
prices varies. They distinguish four different volatility regimes that are de-
termined by 30-day rolling variance estimates. Their analysis is based on
daily US data from March 1985 to December 1999. They find that monetary
policy reacts to unexpected movements in the stock market.

Rigobon and Sack (2004) address related problems as in the previous
application. In other words, they also study the links between monetary
policy and the stock market. Using identification through heteroskdasticity
they find that earlier results from event studies may be biased.

Lanne and Lütkepohl (2008) use identification through heteroskedastic-
ity to compare different models for the US money market that have been
considered in the earlier literature. Their analysis will be discussed in more
detail as an example in Section 4.

Ehrmann et al. (2011) use the approach to investigate the linkages be-
tween the US and euro area money, bond and equity markets by analyzing
a system of short-term interest rates, long-term bond rates, stock returns
from both regions and an exchange rate. They use two-day returns for a
period from 1989-2008. The change in volatility is determined by a rolling
window procedure that results in various volatility regimes for their dataset.
Again identification through heteroskedasticity is used because there are not
enough identifying exclusion restrictions for the impact effects of the shocks.

3.2 Vector GARCH residuals

Rather than assuming heteroskedastic residuals one may consider conditional
heteroskedasticity. Normandin and Phaneuf (2004) propose to use multivari-
ate GARCH models to capture changes in volatility. Their setup is presented
in this section.
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3.2.1 The general setup

The reduced form errors ut are assumed to be generated by a multivariate
GARCH (MGARCH) process of the form

Σu,t|t−1 = E(utu
′
t|ut−1, . . . ) = BΣε,t|t−1B

′, (10)

where Σε,t|t−1 = diag(σ2
1,t|t−1, . . . , σ

2
K,t|t−1) is a diagonal matrix with

σ2
k,t|t−1 = γk0 +

q∑
j=1

γkjε
2
t−j +

s∑
j=1

gkjσ
2
k,t−j|t−j−1, k = 1, . . . , K. (11)

In other words, the structural shocks εt are assumed to be instantaneously
uncorrelated and have a diagonal MGARCH(q, s) structure. This is basi-
cally the generalized orthogonal GARCH (GO-GARCH) model of van der
Weide (2002). A closely related model was also proposed by Vrontos, Della-
portas and Politis (2003). These authors consider a model of the form (10)
with a triangular matrix B. This choice simplifies the identification issue.
Normandin and Phaneuf (2004) assume an MGARCH(1,1) model which is a
standard model in practice for variables with GARCH effects. By sticking to
the simple first order class they avoid a more difficult GARCH order selection
step.

Sentana and Fiorentini (2001) provide general results that imply identifi-
cation of the structural shocks (apart from permutation and sign changes) if
all but one of the components are actually conditionally heteroskedastic and
Γ′Γ is invertible, where (σ2

k,1|0, . . . , σ
2
k,T |T−1) is the kth row of Γ′. In other

words, in the GARCH(1,1) case we can have for at most one k ∈ {1, . . . , K}
that γk1 = gk1 = 0. Invertibility of Γ′Γ ensures that the conditional het-
eroskedasticity is not driven by a small number of processes like in a factor
model where a single process may determine the development of a larger set
of variables. Of course, this requirement corresponds to the condition that
there must be sufficient heterogeneity in the volatility changes when there
are only finitely many volatility regimes (see Section 2.3). Provided the iden-
tification conditions are satisfied, the setup in (10) ensures that, if we choose
εt = B−1ut, the structural shocks will be unique and the impulse responses
including the impact effects, are time-invariant.

3.2.2 Inference

For parameter estimation Normandin and Phaneuf (2004) propose a two-
step procedure that fits a reduced form VAR(p) process in the first step and
then estimates the GARCH and structural parameters by maximizing the
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corresponding Gaussian log-likelihood. In other words, B and the GARCH
parameters are estimated by maximizing

log lc(B,γ) = −1

2

T∑
t=1

[log det(BΣε,t|t−1B
′) + û′t(BΣε,t|t−1B

′)−1ût], (12)

where ût, t = 1, . . . , T , are the reduced form residuals from the first estima-
tion stage and γ is the vector of all GARCH parameters. For example, for a
GARCH(1,1),

γ = (γ01, . . . , γ0K , γ11, . . . , γ1K , g11, . . . , g1K)′.

Obviously, the estimation problem is a highly nonlinear optimization task
and Bouakez and Normandin (2010) mention that a full optimization of the
function in (12) may be difficult for high dimensional systems. In that case
further simplifications may be necessary. For example, one may split up
the system and introduce further estimation stages, in particular, if suitable
constraints on B are justifiable.

In principle, the identification conditions can be checked with statistical
tools. In particular, it can be tested whether the GARCH parameters in
(11) are significantly different from zero. Moreover, the nonsingularity of
the matrix Γ′Γ can be tested. Normandin and Phaneuf (2004) basically
check only the nonsingularity of the empirical counterpart of this matrix. It
would be desirable, of course, to develop a proper statistical test of the null
hypothesis that the population matrix Γ′Γ is singular.

Once structural shocks are identified, an impulse response analysis can
be performed. Usual methods for generating confidence intervals for them
with a bootstrap may be computationally demanding, given the difficulties in
maximizing the likelihood function. Normandin and Phaneuf (2004) mention
that they used a Bayesian method from Sims and Zha (1999) for that purpose
without giving details.

3.2.3 Applications

Normandin and Phaneuf (2004) use their MGARCH framework to compare
identification schemes for monetary policy shocks similar to the example
discussed in Section 4 based on US monthly data for the 1982M11 - 1998M12
period. They reject some of the assumptions for identifying monetary policy
shocks in a conventional framework. In Section 4 a slightly different model
will be considered in a related analysis that illustrates how identification
through changes in volatility can be used in this context.
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Bouakez and Normandin (2010) study the effects of US monetary pol-
icy shocks on exchange rates between the US and the G7 countries. The
monetary policy shocks are identified via GARCH in the residuals. They
use monthly data for 1982M11 to 1998M12 for one set of countries and from
1982M11 to 2004M10 for the remaining countries. They find that monetary
policy shocks have a substantial impact on exchange rate fluctuations.

3.3 Markov switching in residual volatility

The first proposal for modelling volatility changes assumes a finite number
of states that are exogenously generated while the previous proposal of an
MGARCH process generating the volatility changes amounts to assuming
an endogenously generated continuum of possible volatility regimes. In the
present subsection an intermediate proposal is presented where only a finite
number of volatility regimes is assumed that are, however, generated endoge-
nously via a Markov process. In the context of structural shock identification
through changes in volatility this approach was first suggested by Lanne et al.
(2010). A more complete methodology for using it in the SVAR framework
is presented by Herwartz and Lütkepohl (2011).

3.3.1 The general setup

In this approach the distribution of the reduced form error term ut is assumed
to depend on a discrete Markov process st (t = 0,±1,±2, . . . ) with M states.
In other words, st ∈ {1, . . . ,M}. The transition probabilities between the
states are

pij = Pr(st = j|st−1 = i), i, j = 1, . . . ,M.

Lanne et al. (2010) assume that the conditional distribution of ut, given the
state st, is Normal,

ut|st ∼ N (0,Σst). (13)

This assumption allows them to do ML estimation but is otherwise not crit-
ical. Notice that the VAR coefficients do not depend on the Markov process
st and are assumed time-invariant. Hence, our model is more restrictive than
the Markov switching (MS) models considered by Rubio-Ramirez, Waggoner
and Zha (2005), Sims and Zha (2006) and Sims, Waggoner and Zha (2008),
for example.

Although there is only a finite number of volatility states, the model can
mix these states by assigning probabilities strictly between zero and one to
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them in any particular period t. Thus, it may capture gradual transitions
from one state to another and one may argue that it can also generate a
continuum of states. They are centred at a finite number of states, how-
ever, which may simplify the interpretation. The state covariance matrices
Σ1, . . . ,ΣM are used for the identification of shocks, as before. In other words,
the state covariance matrices are decomposed as in (3) and uniqueness of the
structural shocks obtained as εt = B−1ut is ensured if the diagonal elements
of the Λm matrices have a fixed ordering and are sufficiently heterogeneous,
as specified in Section 2.3.

3.3.2 Inference

The statistical analysis has to address the following issues in addition to the
usual VAR inference: The number of volatility states has to be determined,
the parameters of the overall model have to be estimated, the diagonal el-
ements of the Λm matrices have to be compared and possibly identifying
restrictions from a conventional analysis have to be tested within the present
framework. Under the assumption of a conditional Normal distribution given
the states, the likelihood function can be set up easily,

log l(β,B,λ, P |y) =
T∑
t=1

log

(
M∑

m=1

Pr(st = m|Yt−1)f(yt|st = m,Yt−1)

)
, (14)

where λ is the vector of all diagonal elements of Λ2, . . . ,ΛM , P is the matrix
of transition probabilities, y is the full sample, Yt−1 = (y′t−1, . . . , y

′
t−p)

′ and

f(yt|st = m,Yt−1) = (2π)−K/2 det(Σm)−1/2 exp

{
−1

2
u′tΣ

−1
m ut

}
.

Optimizing this log-likelihood function is a highly nonlinear optimization
problem that poses a number of computational challenges. A suitable EM
algorithm is provided by Herwartz and Lütkepohl (2011) who adopt an al-
gorithm from Krolzig (1997) for the present model. Unfortunately, this al-
gorithm seems to work reliably only for reasonably small systems with a
small number of variables K, a small number of volatility states M and a
moderate number of lags p. A detailed discussion of the problems associated
with the optimization of the log-likelihood function is given by Herwartz and
Lütkepohl (2011). In practice, if the conditional Normality of the residuals
given State m is not satisfied, the procedure is a quasi ML procedure. The
Normal distribution assumption is made for convenience. It is not essential
for the asymptotic properties of the estimates to hold, provided some general
conditions are satisfied.
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Inference for the λ parameters can then be done with standard proce-
dures. For example, equality of some of them can be tested with standard
Wald or LR tests. The latter tests have the drawback in the present situation
that they involve two difficult log-likelihood maximizations. Hence, Wald
tests may be preferable from a computational point of view. Unfortunately,
they are known to have poor small sample properties in similar situations
and, hence, may also not be fully satisfactory. In any case, in principle these
tests can be used to check the identification conditions. Moreover, if the
shocks can be identified via the volatility structure, other restrictions can be
tested as well with conventional tests.

Standard model selection criteria can be used for choosing between models
with different numbers of volatility states. Psaradakis and Spagnolo (2003,
2006) find that they work reasonably well. This is important because testing
models with different numbers of states against the data is not easy. The
usual tests have nonstandard properties because of unidentified parameters
under the null hypothesis (e.g., Hansen (1992), Garcia (1998)). Of course,
model selection criteria can also be used to compare models with other sets
of restrictions.

When a structural model with identified shocks is specified, it can be
used for structural analysis. Impulse responses are a standard tool for that
purpose. In a classical ML analysis confidence bands for impulse responses
are typically generated with bootstrap methods. Clearly, such methods are
problematic when a single estimation is difficult. To mitigate the computa-
tional problems, Herwartz and Lütkepohl (2011) propose a fixed design wild
bootstrap procedure. Such a procedure makes sense in the present frame-
work because it can take care of conditional heteroskedasticity, as shown by
Goncalves and Kilian (2004). The bootstrap samples are constructed condi-
tionally on the ML estimates using

y∗t = ν̂ + Â1yt−1 + · · ·+ Âpyt−p + u∗t . (15)

Here the right-hand side variables for a given t are always the original lagged
variables and the errors u∗t = ηtût, where ηt is a binary random variable
with values 1 and −1 that have equal probability. The procedure preserves
heteroskedasticity and the pattern of contemporaneous dependence of the
data. Herwartz and Lütkepohl (2011) propose to bootstrap parameter esti-
mates θ∗ of θ = vec[ν,A1, . . . , Ap] and B∗ of B, conditionally on the initially
estimated transition probabilities and λ to limit the computational burden.
Computing the bootstrap impulse responses requires nonlinear optimization
of the log-likelihood even with these simplifications and is computationally
demanding.
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3.3.3 Applications

Lanne et al. (2010) illustrate their approach by considering a small US macro
model from Primiceri (2005) consisting of inflation, unemployment and an
interest rate. They find that previously used identification restrictions are
problematic and are not supported by the data when changes in volatility
are taken into account. As a second example they consider a US model from
Sims et al. (2008) for log GDP, inflation and a short-term interest rate. Based
on quarterly data from 1959Q1-2005Q4 they find support for conventional
identification restrictions, as used by Sims et al. (2008).

In a study that advances the methodology needed for a structural MS-
VAR analysis, Herwartz and Lütkepohl (2011) consider an example from
Peersman (2005) that aims at investigating the causes of the early millen-
nium economic slow down. They use a four-variable system consisting of the
price of oil, output, a consumer price index and a short-term interest rate.
Peersman uses zero restrictions on the impact effects and the long-run effects
of the shocks for identification. Using quarterly US data from 1980Q1 to
2002Q2 and models with two and three volatility states they find that some
but not all of the identifying restrictions used by Peersman are in line with
the data when changes in volatility are accounted for. They question that
the model based on conventional identifying restrictions properly reflects the
causes of the economic downturn at the beginning of the millennium.

Lütkepohl and Netšunajev (2012) illustrate how the MS-SVAR approach
can be used for checking models identified through sign restrictions. They
consider models for the crude oil market from Kilian (2009) and Kilian and
Murphy (2011). That analysis is discussed as a more detailed example in
Section 5 and is therefore not elaborated upon here.

Netšunajev (2012) applies the MS-SVAR methodology to reconsider al-
ternative approaches for identifying technology shocks and sheds new light
on the conflicting evidence on the impact on hours worked in the bivariate
system. He does not find clear evidence of an increase in hours worked in
response to a positive technology shock.

4 Comparison of Money Market Models

This section is based on Lanne and Lütkepohl (2008) (henceforth LL). Alter-
native identification schemes for monetary shocks are reviewed in the next
subsection and then an empirical comparison using identification of shocks
via heteroskedasticity is performed.
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4.1 Alternative identification schemes

The models for the US money market considered in the following use the
variables:

• TRt – total reserves;

• NBRt – nonborrowed reserves;

• BRt – borrowed reserves; and

• FFt – federal funds rate.

Because TR = BR+NBR, only three of these variables are really modelled.
Hence, we define yt = (TRt, NBRt, FFt)

′.
Bernanke and Mihov (1998) and Christiano, Eichenbaum and Evans (1999)

consider the following general structural model for the market for bank re-
serves: The demand for total reserves is described as

TRt = −αFFt + fTR(policy information) + σdε
d
t ,

where εdt is a demand disturbance with variance 1 and α and σd are param-
eters. The demand for borrowed reserves is given by

BRt = βFFt − γNBRt + fBR(policy information) + σbε
b
t ,

where εbt is the borrowing function disturbance with variance 1 and β, γ
and σb are parameters. Finally, the Fed policy rule for setting nonborrowed
reserves is

NBRt = fNBR(policy information) + φdσdε
d
t + φbσbε

b
t + σsε

s
t .

The quantity εst represents the exogenous monetary policy shock, again with
variance 1, and φd, φb and σs are parameters. It is assumed that the Fed
knows the disturbances to the demand for total reserves and borrowed re-
serves when it makes policy decisions. The policy information set consists of
instantaneous and lagged values of the variables

• gdpt – log of Gross Domestic Product (GDP);

• pt – log of the implicit GDP deflator; and

• pcomt – index of commodity prices.
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The functions f∗(·) are all linear functions. Thus, we have a three-equation
VAR model with unmodelled variables xt = (gdpt, pt, pcomt)

′. For an impulse
response analysis these variables have to be modelled as well. However, for
the present purposes where we focus on comparing alternative identification
schemes for monetary policy shocks, there is no need to model them. The
reduced form model is

yt = ν +A1yt−1 + · · ·+Apyt−p +C0xt +C1xt−1 + · · ·+Cpxt−p + ut (16)

and the reduced form error term ut is related to the structural shocks εt =
(εdt , ε

b
t , ε

s
t)
′ as ut = Bεt, where

B =



σd
β − φdαγ + φdα

β + α
−ασs

γ − 1

β + α
−ασb

−1 + φbγ − φb

β + α

σdφ
d σs σbφ

b

σd
φdγ − φd + 1

β + α
σs
γ − 1

β + α
σb
−1 + φbγ − φb

β + α


. (17)

The nine elements of B are determined by the eight free parameters ψ =
(α, β, γ, φd, φb, σ2

d, σ
2
b , σ

2
s)′. Since six restrictions are obtained from the rela-

tions Σu = BB′, we need two more restrictions to uniquely determine the
eight parameters and, hence, the structural shocks in this general setup.
Christiano et al. (1999) list a number of studies that report specific identify-
ing assumptions. In particular, we consider the following four identification
schemes from the given references.

• FF policy shock: φd = 1/(1− γ) and φb = −φd (Bernanke and Blinder
(1992)). These restrictions imply that the Fed targets the federal funds
rate, hence the abbreviation FF policy shock.

• NBR policy shock: φd = φb = 0 (Christiano and Eichenbaum (1992)).
With these restrictions the policy shocks can be associated with the
errors of the equation for nonborrowed reserves.

• NBR/TR policy shock: α = φb = 0 (Bernanke and Mihov (1998), Stron-
gin (1995)). These restrictions assume that shocks to total reserves are
demand shocks that are accommodated by the Fed.

• BR policy shock: φd = 1, φb = α/β and γ = 0 (Cosimano and Shee-
han (1994)). These restrictions assume that the Fed targets borrowed
reserves.
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The first three sets of restrictions are just-identifying and, hence, they cannot
be checked against the data in a conventional setting. Therefore LL use
the heteroskedasticity in the residuals as additional identifying information.
Thereby the foregoing restrictions on B become over-identifying and can be
checked against the data.

4.2 Empirical analysis

LL use monthly US data from Bernanke and Mihov (1998) for the period
1965M1-1996M12. The monthly values for GDP and its deflator are con-
structed from quarterly data by using a set of monthly interpolator variables.

A crucial question in the present framework is, of course, whether there
are changes in volatility during the sample period. Indeed changes are found
by other authors as well. In fact, it is argued that the monetary policy
during the Volcker era differs from that of other periods. Of course, one
would like the data to confirm corresponding changes in the volatility of the
shocks. For that purpose, models with heteroskedastic residuals must be
estimated. LL do this with a multi-step iterative procedure. The model (16)
is first estimated with equation-wise OLS. The different covariance matrices
are estimated from these residuals and then a feasible GLS estimator is used.

Based on these GLS estimators heteroskedasticity is checked with LR-
type tests. It is confirmed that there is strong evidence for a change in
volatility in 1984M2 in line with other literature and there is also some ev-
idence that another change has occurred in 1979M10. Because only one
volatiltiy change is needed for identification of the shocks, LL go on under
the assumption of a break in 1984M2 and leave open the possibility of an-
other volatility change in 1979M10, that is, they leave the covariance matrix
for the period prior to 1979M10 unrestricted and also do not use it for iden-
tification. Estimation under this assumption gives the diagonal elements of
Λ shown in Table 1.2 Apparently they are quite different and one-standard
error intervals around the estimates do not overlap. Although this is not a
particularly strict criterion, it shows that there is some evidence for distinct
λm values. Given that these are reduced form parameters, we could, in fact,
perform formal tests of equality. In Section 5 we discuss how to do that and,
for the moment, pretend that the structural shocks in the present model are
identified via heteroskedasticity.

Thus, all the identification schemes presented in the previous subsection
can be tested against the data. The results of the corresponding LR tests
are presented in Table 2, where the degrees of freedom used for evaluating

2Note that we report the corrected values from LL.
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Table 1: Estimates of Structural Parameters with Standard Errors in Paren-
theses from LL

Parameter Estimate
λ1 1.1463 (0.2583)
λ2 0.0144 (0.0032)
λ3 0.5520 (0.1246)

Table 2: LR Tests of Over-Identifying Restrictions from LL

Identification
scheme H0 LR statistic p-value
FF φd = 1/(1− γ) and φb = −φd 8.021 0.018
NBR φd = φb = 0 55.880 7.342e-13
NBR/TR α = φb = 0 66.119 2.890e-14
BR φd = 1, φb = α/β, and γ = 0 55.947 7.101e-13

the p-values are equal to the number of restrictions specified under H0. They
are the asymptotically correct ones if the shocks are uniquely identified via
heteroskedasticity, that is, under the assumption of distinct λm. If not all but
only some of the λm are distinct, a smaller number of degrees of freedom may
apply. However, even with the larger number assumed here, the p-values of all
the tests are very small and at a 5% significance level all null hypotheses and,
hence, all identification schemes are rejected. It is worth recalling, however,
that LR tests in the presence of many parameters may be biased and in
particular may reject too often. Thus, in the present case, one may want
to work with very small significance levels. Even if a 1% level were chosen,
only the FF scheme would survive. Thus, in the present framework only the
Bernanke and Blinder (1992) model, based on the assumption that the Fed
targets the federal funds rate, is not clearly rejected by the data. Our results
agree to a large extent with those of Normandin and Phaneuf (2004) who also
find that the data are not supportive of the standard identification procedures
for monetary policy shocks used in much of the previous literature. Note,
however, that these authors use a slightly different sample period, 1982M11
- 1998M12, and a different model for changes in volatility.

What the example shows is that it may pay to use the additional informa-
tion coming from the heteroskedasticity of the data to discriminate between
competing models that cannot be tested against the data in a conventional
setting. Of course, rejecting all but one model is a very special case. Our
framework could have ended up not discriminating between the alternative
identification schemes. A further example is presented in the next section.
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5 A Model for the Market of Crude Oil

In this subsection a model from Kilian (2009) for the crude oil market is
reconsidered. It consists of three variables,

• ∆prodt – change in oil production;

• qt – real activity; and

• pt – real price of oil.

Thus, yt = (∆prodt, qt, pt)
′. Monthly data for the period 1973M2 - 2006M12

from Kilian (2009) are used. The change in oil production is measured as log
differences of world crude oil production in millions of barrels pumped per day
(averaged by month), as obtained from the US Department of Energy. For qt
Kilian constructs a measure based on dry cargo single voyage ocean freight
rates. It is meant to capture worldwide real economic activity. Finally, the
real price of oil, pt, is based on a series from the US Department of Energy
for refiner acquisition cost of imported crude oil. Thus, all three variables
refer to the world market.

Kilian (2009) considers three shocks:

• εoil−s
t – oil supply shocks;

• εaggr−d
t – aggregate demand shocks; and

• εoil−d
t – oil market specific demand shocks that are innovations to the

real price of oil that cannot be explained by oil supply shocks or aggre-
gate demand shocks.

He identifies the shocks by imposing exclusion restrictions on the impact
effects. More precisely, he assums that oil-market specific demand shocks
(εoil−d

t ) do not have an instantaneous impact on oil production and real ac-
tivity and aggregate demand shocks (εaggr−d

t ) do not affect oil production
instantaneously. Thereby B is a lower-triangular matrix and the reduced
form and structural residuals are related as follows: u∆prod

t

uqt
upt

 =

 b11 0 0
b21 b22 0
b31 b32 b33

 εoil−s
t

εaggr−d
t

εoil−d
t

 . (18)

Of course, one may question these identification restrictions and, in fact,
doubts are expressed by Kilian and Murphy (2011) and Baumeister and
Peersman (2010) who consider sign restrictions instead. We will return to
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their studies later but will report results from Lütkepohl and Netšunajev
(2012) (henceforth LN) first, who use heteroskedasticity in the residuals to
check the identification assumptions. Thus, the following empirical study
draws heavily on their results.

5.1 Empirical analysis

NL consider a VAR(3) model with intercept because in a standard order
selection exercise not accounting for changes in volatility, AIC favours that
model. In contrast, Kilian (2009) uses a VAR(24). Such a large model would
be difficult to estimate by ML with an MS structure for the residual variance,
however. In any case, a finite order VAR should only be viewed as an approx-
imation to the DGP. Below, a VAR(3), which preserves features of special
interest in the present context, is used for expositional purposes. In partic-
ular, the reduced form residuals display clear changes in volatility. They are
plotted in Figure 1. The volatility of the residuals of the oil production equa-
tion are more volatile in the earlier part of the sample while the volatility in
the price of oil residuals is larger in the later part of the sample. One may
also spot some change in volatility in the equation for real activity although
that change is not quite so obvious. Of course, visual inspection can usu-
ally not be a substitute for a formal statistical analysis that will be reported
shortly. Before turning to that, it is worth pointing out that the kind of
volatility changes observed by visual inspection are precisely what is needed
for our analysis. Recall that the change in volatility has to be sufficiently
heterogeneous in order to get identification through heteroskedasticity.

Table 3: Comparison of MS-VAR(3) Models for yt = (∆prodt, qt, pt)
′ (results

from LN, Table 2)

Model AIC SC
VAR(3) (without MS) 8615 8759
MS(2)-VAR(3) 8302 8478
MS(3)-VAR(3) 8206 8422
MS(4)-VAR(3) 8159 8423

Note: LT – likelihood function, AIC = −2 logLT + 2×no of free parameters, SC

= −2 logLT + log T×no of free parameters.

A formal statistical analysis of volatility changes is reported in Table 3
where AIC and SC values are presented for models with different numbers
of volatility states. Notice that a VAR(p) model with m volatility states is
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Figure 1: Residuals of VAR(3) model from NL.

denoted as MS(m)-VAR(p). From the results in Table 3 it is clear that both
AIC and SC favour models that allow for volatility changes over a standard
VAR model without MS. They do not agree on the number of states, however.
AIC favours the largest model with four different volatility states while SC
prefers a model with only three states. Since an MS(4) model is the largest
one in our choice set, one may wonder whether AIC may even prefer more
than four states. Admittedly, a maximum of four states was chosen for
computational reasons. Even an MS(4)-VAR(3) model is already difficult to
estimate from the given dataset.

Since the model selection criteria are not very reliable in choosing the
number of states, we plot the estimated smoothed probabilities associated
with the states in Figure 2. The first two states of the MS(3) model are
quite similar to those of the MS(2) model and the third state picks out some
special events in the crude oil market (see, e.g., Barsky and Kilian (2004)
for a discussion of such events). Thus, a three state model makes good sense
from a subject matter point of view. In contrast, the MS(4) model has one
state (the third state) that comes up only in a very few periods. While it
may well be plausible to single out one state that covers only very special
periods, such a situation is problematic from a computational and estimation
point of view. Clearly, such a model may require that some parameters are
basically estimated from very few observations and, hence, the estimates may
be unreliable. If the estimation algorithm actually associates a separate state
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with a single observation, the associated covariance matrix estimate becomes
singular and the algorithm runs into a problem because it cannot invert the
matrix in evaluating the log-likelihood function. Given that a three state
model produces quite plausible states, we favour overall this model, like NL,
and continue the analysis with an MS(3)-VAR(3) model.

Having decided on an MS(3)-VAR(3) model, the next important question
in the context of the present analysis is whether the three covariance matrices
can be decomposed as in (3). For answering that question we may use an
LR test with 1

2
MK(K + 1) −K2 − (M − 1)K = 3 degrees of freedom (see

Section 3.1). Such a test results in a p-value of 0.63 and, hence, there is little
basis for rejecting the more restricted model. In other words, the covariance
matrix decomposition in (3) is in line with the data and we can work with a
model with state-invariant matrix of initial effects of the shocks.

The next question then concerns the uniqueness of the B transformation
matrix and, hence, the uniqueness of the shocks. That uniqueness depends
on the diagonal elements of the Λm matrices. The estimated quantities for
the MS(3)-VAR(3) model are given in Table 4 together with estimated stan-
dard errors. Taking into account the estimated λmi values and the estimation
uncertainty reflected in the standard errors, there is clearly hope for having
enough heterogeneity for identification. To check this formally, the corre-
sponding tests are presented in Table 5. Recall from Section 3.3 that for
each pair i, j ∈ {1, . . . , K}, i 6= j, there has to be an m ∈ {1, . . . ,M} such
that λmi 6= λmj. Thus, identification is ensured if all three null hypotheses
listed in Table 5 are rejected. Wald and LR tests are given in the table. The
Wald tests are easier to compute because they only require estimates of the
unrestricted model. The associated p-values are all below 10% and indicate
that the identification conditions are satisfied. As Wald tests may not be
very reliable in the present situation, we also report LR tests. They require
two very nonlinear optimizations of the log-likelihood. Given that this func-
tion has many local optima and, hence, there is some danger of ending up
in a local optimum and comparing inappropriate likelihood values in the LR
tests, these tests are also problematic. Taking their values seriously, they do
provide strong evidence for the identification conditions to be satisfied. No-
tice that the tests are performed for models where the λ2i are ordered from
largest to smallest. The ordering has to be fixed to ensure uniqueness of the
decomposition of the covariance matrices.

Given the evidence in favour of the identification conditions, we may pro-
ceed with testing Kilian’s identification conditions presented in (18). The
corresponding LR test has a p-value of 0.84. Thus, we cannot reject the
restrictions at conventional significance levels. In other words, in our frame-
work the data do not object to Kilian’s identification conditions. It is still
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Figure 2: Smoothed state probabilities of MS(m)-VAR(3) models for m =
2, 3, 4 from Fig. 2 of NL (state invariant B matrix imposed for MS(3) and
MS(4)).
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Table 4: Estimates of Structural Parameters of MS(3)-VAR(3) Models for
yt = (∆prodt, qt, pt)

′ with State-invariant B, adapted from LN

parameter estimate std.dev.
λ21 5.384 0.933
λ22 3.210 0.485
λ23 0.056 0.009
λ31 25.235 6.938
λ32 3.387 1.242
λ33 4.441 1.018

Note: Standard errors are obtained from the inverse of the outer product of numerical

first order derivatives.

Table 5: Tests for Equality of λmjs for MS(3)-VAR(3) Model with State-
invariant B (from LN)

H0 Wald statistic p-value LR statistic p-value
λ21 = λ22, λ31 = λ32 7.99 0.02 20.39 3.7× 10−5

λ21 = λ23, λ31 = λ33 7.87 0.02 21.04 2.7× 10−5

λ22 = λ23, λ32 = λ33 5.16 0.07 27.15 1.3× 10−6
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Figure 3: Impulse responses with 68% confidence bounds of the MS(3)-
VAR(3) model with state-invariant B (Fig. 4 from LN).

worthwhile considering the case where these restrictions are not imposed.
The corresponding impulse responses will be discussed next.

5.2 Impulse response analysis

Since we have identified shocks by assuming the MS structure for the volatil-
ity, we can go on and use these shocks for an impulse response analysis. We
present the resulting responses to structural impulses obtained as εt = B−1ut
and 68% bootstrap confidence intervals in Figure 3. These impulse responses
are arbitrary in several respects. First, the scaling of the responses is deter-
mined by normalizing the shocks such that they have identity covariance
matrix in the first state. Since the numbering of the states is arbitrary, this
normalization is also arbitrary. The scaling does not affect the shape of the
impulse responses, of course. Another element of arbitrariness results from
the signs of the shocks. In Figure 3 they are chosen such that an interpre-
tation becomes possible, as we will see shortly. Finally, the ordering of the
shocks is arbitrary. As mentioned in Section 3.3, B is unique only up to
column permutations. Because the columns of B correspond to the impact
effects of the shocks, permuting the columns comes down to changing the
order of the shocks.

Because the shocks are uniquely determined in our framework, they must
correspond to the three shocks of interest in the system under investigation,
namely an oil supply shock, an aggregate demand shock and an oil-market
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specific demand shock, provided that these shocks are really the ones that
drive the system. In our framework it is unclear a priori which of the three
shocks deserves which label. However, by looking at the impulse responses
we are able to assign labels and we have done so in Figure 3. The first shock
is called an oil supply shock because a surprise reduction in oil production
goes together with a reduction in output and a possible increase in the price
of oil. Notice that the reaction of the oil price is not clear in our system.
However, taking into account the uncertainty in the response of the oil price,
a price increase due to a surprise reduction in oil production is quite possible.

The second shock is labelled aggregate demand shock because it increases
oil production, output and the price of oil simultaneously, at least initially.
Finally, the third shock is the only one that leads to a clear increase in the
price of oil on impact. Therefore the shock is the only one that qualifies as
an oil-market specific demand shock. The effects in Figure 3 are also in line
with the sign restrictions imposed by Kilian and Murphy (2011) for a the
same system of variables. They characterize the shocks by the signs of their
impact effects and in a sense we are doing the same thing by labelling the
shocks obtained in our framework accordingly. Notice, however, that in the
present analysis the shocks are point identified and only the labelling is done
by considering the effect or impulse responses whereas using sign restrictions
results in set-identified shocks only that may be more difficult to interpret
because their effects may be more diffuse.

Obviously, also some of the effects on our models are not all that clear,
given the substantial sampling uncertainty reflected in the confidence inter-
vals associated with the impulse responses. In general there is no guarantee
that the shocks of interest are actually in line with the model under study.
Even if in an underlying theoretical model the desired shocks are the most
important driving forces, they may not be found in an associated empirical
model. The empirical model usually differs from the theoretical one in a
number of dimensions. For example, variables that are not of interest in the
theoretical model may be quite important in the empirical model, that is,
there may be an omitted variables problem. Moreover, the empirical vari-
ables may not be exactly the same as the corresponding quantities in the
theoretical model. In other word, there may be measurement errors. For
example, the theoretical model may not account for trends and seasonality
that may be present in practice. Hence, there are a number of reasons why
the empirical shocks may not be those of interest from a theoretical point of
view. LN use this point as an argument for proposing their framework for
checking the validity of sign restrictions.

Regarding the confidence intervals in Figure 3, it is remarkable that the
original impulse responses in the upper left-hand and lower right-hand panels
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Figure 4: Impulse responses with 68% confidence bounds of the MS(3)-
VAR(3) model with state-invariant, lower-triangular B (Fig. 5 from LN).

fall largely outside the intervals. Such an outcome is not impossible, of
course, but it is still a bit unusual and may indicate that there is room for
improvement in constructing suitable confidence intervals for the impulse
responses in our model. The intervals are standard percentile intervals and
it may have been worth trying other intervals for impulse responses (e.g.,
Benkwitz, Lütkepohl and Wolters (2001)).

Given that Kilian’s restrictions for the impact effects are not rejected
in our analysis, it is also plausible to consider the corresponding impulse
responses. They are presented in Figure 4. Because the triangularity of B is
very much in line with the data, it is not surprising that the impulse responses
in Figure 4 look quite similar to those in Figure 3, except, of course, that
now some of the impact effects are restricted to zero. Thus, in contrast to the
example in Section 4, in the present example using heteroskedasticity for the
identification of the structural shocks supports the more stringent restrictions
that were used in a previous analysis. The important point to note is that
accounting for changes in volatility allows us to check the restrictions that
had to be assumed in a conventional analysis.

6 Conclusions

In the present paper it is argued that taking into account changes in the
volatility of the residuals can provide useful additional identifying infor-
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mation for structural shocks. The basic assumptions are that changes in
volatility occur during the sample period, that they just affect the volatil-
ity of the shocks but not the effects the shocks have on the variables and
that the changes in volatility are sufficiently heterogeneous across variables.
It is important to note that the requirements regarding the existence and
heterogeneity of the volatility changes can be investigated by statistical pro-
cedures. Hence, the data are informative about some of the crucial conditions
for identification. If full identification of the structural shocks is obtained in
this framework, conventional identifying restrictions become over-identifying
and, hence, can be checked with statistical tests. Thus, competing conven-
tional identifying assumptions can be tested against the data, as illustrated
in Section 4. Moreover, the framework allows us to check that the empir-
ical model is in line with the underlying theoretical model more generally
and we have argued that differences between the empirical and theoretical
models may stem from omitted variables or measurement error problems, for
example.

It must be emphasized, however, that the shocks obtained in the present
framework are unique due to the specific statistical model setup. Hence, they
are statistically identified or normalized. There is no guarantee that these
shocks necessarily correspond to economically interesting shocks. Therefore
using this framework without additional economic reasoning why the shocks
allow us to understand the economic relations in a system of variables is prob-
lematic. It is a useful tool for checking that an empirical model is compatible
with the data, however.
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