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Abstract: Renewable portfolio standards (RPS) are the most popular U.S. state-level policies for 
promoting deployment of renewable electricity (RES-E). While several econometric studies have 
estimated the effect of RPS on in-state RES-E deployment, results are contradictory. We reconcile these 
studies and move toward a definitive answer to the question of RPS effectiveness. We conduct an 
analysis using time series cross sectional regressions – including the most nuanced controls for policy 
design features to date – and nonparametric matching analysis. We find that higher RPS stringency does 
not necessarily drive more RES-E deployment. We examine several RPS design features and market 
characteristics (including REC unbundling, RPS in neighboring states, out-of-state renewable energy 
purchases) that may explain the gap between effective and ineffective policies. We also investigate 
other RES-E policies and technology-specific effects. Ultimately, we show that RPS effectiveness is 
largely explained by a combination of policy design, market context, and inter-state trading effects. 

Keywords: Renewable energy, Renewable portfolio standards, Panel data models, Matching analysis. 
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1 Introduction 
Policymakers in the United States have sought to stimulate electricity generation from renewable 
sources (RES-E) to reduce pollutants from fossil fuel combustion, to cut emissions of greenhouse 
gases which contribute to climate change, and to stimulate job growth and industrial productivity 
(Schmalensee, 2011). While the cost of electricity generation from many renewable energy 
sources has been declining, RES-E technologies are not cost-competitive in many markets and 
therefore often depend on government intervention (Green and Yatchew, 2012; NREL, 2010).  

In the U.S., many federal-level policies in support of renewable energy, such as the production 
and investment tax credit have been introduced. However, there is a lack of coordinated and 
comprehensive action by the federal government, as evident by the absence of a nation-wide cap-
and-trade program or a clean energy standard. On the other hand, many state and local 
governments have taken initiatives to increase RES-E capacity and generation (Engel and 
Orbach, 2008), with most of the 50 states enacting some form of policy to encourage the use of 
renewable energy in their state (DSIRE, 2012). State-level initiatives are wide-ranging, 
including: renewable energy incentives, integrated resource planning programs, and cap-and-
trade programs (Wasserman, 2010).  

Renewable portfolio standards (RPS) are arguably the most popular state-level policy to promote 
RES-E deployment. RPS policies are a type of quantity regulation that mandate energy suppliers 
to ensure that a certain fraction of their total electricity sales is from electricity generated from 
renewable energy sources. Energy suppliers can meet their quota by producing renewable 
energy, buying renewable energy credits from other suppliers, or paying a penalty. According to 
the Database of State Incentives for Renewables and Efficiency (DSIRE, 2012), twenty-one 
states and the District of Columbia have a mandatory RPS program. Ten other states have 
legislated RPS policies with effective start dates in the future.  

States also use other policies to promote RES-E. Sixteen states have used public benefit funds to 
support renewable energy programs. In most states, these programs raise revenue by charging 
consumers an additional fee on their electricity bill to fund renewable energy investments, 
among other energy programs. Eight states have a mandatory green power option, which requires 
energy suppliers to provide consumers the option to buy electricity from renewable energy 
sources. In forty-two states, net metering mechanisms have been adopted, allowing households 
that generate their own electricity to pay for only the difference between their own generation 
and their own consumption – even if they do not occur at the same moment. Net metering 
typically favors small and distributed RES-E generation. Though states use multiple policies, 
RPS is considered a flagship RES-E policy tool. 

Given the decentralized policy making, the individual state policies and the renewable power 
deployment show a great deal of heterogeneity. While a number of factors might explain both the 
growth of renewable energy and the disparity in renewable capacity among states, policies 
adopted by state governments, including changes in the regulatory environment for electricity, 
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are expected to play an important role. Considering the number and duration of RPS policies, ex-
post analysis of their effectiveness in achieving the stated goal of increasing RES-E penetration 
is possible. Much work has been done in this area. However, results are contradictory, varying 
from showing the impact of RPS policies on renewable deployment as positively significant 
(Menz and Vachon, 2006; Yin and Powers, 2010) to insignificant (Carley 2009) to negatively 
significant (Shrimali and Kneifel, 2011). Thus, there is a need to explain these contradictory 
results and establish a robust answer to the question of RPS impact on in-state RES-E 
deployment. 

We explain and reconcile the differences in the results presented in the literature by examining 
differences in datasets, analytical techniques, and the time period over which the impact of 
policies is examined. We use recently released data and show that differences in results are due 
to the application of different datasets and not because of different methodologies. In particular, 
we show that the key result in Yin and Powers (2010) – that RPS policies have driven renewable 
deployment – may be based on the use of an incorrectly specified dataset. In this process, we 
also attempt to replicate the results in other papers (e.g., Carley, 2009; Shrimali and Kneifel, 
2011), and achieve different degrees of success, with the variability potentially due to differences 
in control variables. 

The two datasets primarily used in previous studies are publicly available; we refer to them as 
the “state-level” dataset and the “generator-level” dataset. We show that the former is the correct 
dataset because of irreconcilable discrepancies introduced in the latter due to a change in 
classification methodology in the middle of the time series. Using this state-level dataset, we 
show that the stringency of a state’s RPS – a proxy introduced by Yin and Powers (2010) – is 
actually negatively correlated with RES-E capacity. However, if we exclude an outlier state, 
Maine, from the sample – a strategy introduced by Shrimali and Kneifel (2011) – we find that 
RPS stringency has no statistically significant effect on RES-E capacity. 

We add richness to our results by considering the following: (1) RPS features such as alternative 
compliance payments, renewable energy certificate (REC) unbundling and trading, 
neighborhood effects, and trading restrictions. (2) Other RES-E policies, allowing for an 
examination of policy complementarities. (3) The effect of RPS on deployment of specific RES-
E technologies, namely biomass, geothermal, solar, and wind. (4) Robustness checks that 
complement our regression results with a causal, nonparametric matching analysis. 

The remainder of this paper is structured as follows. Section 2 provides a literature review. 
Section 3 presents our regression model. Section 4 discusses the variables as well as different 
datasets under consideration. Section 5 presents the results and discusses them. Section 6 
concludes. 
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2 Literature Review 

2.1 Samples  
There are several quantitative studies that estimate the impact of RPS policies on renewable 
energy deployment in the U.S.: Alagappan et al. (2011), Carley (2009), Delmas and Montes-
Sancho (2011), Dong (2012), Menz and Vachon (2006), Shrimali and Kneifel (2011), Yin and 
Powers (2010). Further, there is an emerging series of studies focusing on other regions. 
Marques et al. (2010; 2011) and Groba et al. (2011) study the effect of renewable energy policy 
in the EU. Salim and Rafiq (2012) conduct a similar study for several major emerging 
economies.  

2.2 Models  
With the exception of the descriptive analysis of Alagappan et al. (2011), all studies use some 
form of a time series cross-section regression model. Menz and Vachon (2006) run OLS 
regressions without fixed effects for a sample of 37 U.S. states over 5 years. Carley (2009), Dong 
(2012), Groba et al. (2011), Marques et al. (2010), and Yin and Powers (2010) control for time 
trends and state-level effects. Shrimali and Kneifel (2011) additionally control for state-specific 
time trends. Delmas and Montes-Sancho (2011) apply a two-stage regression – logit and tobit – 
to cover public choice variables such as the influence of private interest groups on policymaking. 
Marques et al. (2011) assess the impact of socio-economic factors on RES-E development with a 
quantile regression. Salim and Rafiq (2012) run modified and dynamic OLS regressions. 

2.3 Policy Covariates 
The level of sophistication to capture the impact of policies also varies broadly. Menz and 
Vachon (2006), Marques et al. (2010), Alagappan et al. (2011), and Dong (2012) use binary 
variables to represent the existence of renewable energy policies. Carley (2009) applies nominal 
variables to capture heterogeneity in policy design. Delmas and Montes-Sancho (2011) use the 
predicted probabilities of RPS adoption from their first stage regression as a covariate in the 
second stage regression. Shrimali and Kneifel (2011) use a “nominal” value of RPS stringency – 
also referred to as the annual RPS fraction – as reported in DSIRE (2012). Yin and Powers 
(2010) introduced the incremental share indicator (ISI) to quantify “the mandated increase in 
renewable generation in terms of the percentage of all generation” (Yin and Powers, 2010: 1142) 
of RPS policies. Groba et al. (2011) apply the ISI to an EU member countries sample.  

We discuss the dependent variable selection the Section 4. Table 1 summarizes the research 
designs and major policy findings of previous econometric analyses.  
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Table 1 Relevant empirical studies of renewable energy policy effectiveness 

Article Sample Time 
Frame Model Type Dependent Variable Findings 

Alagappan 
et al. (2011)  

14 transmission 
providers  

Summe
r 2010 - descriptive statistics - RES-E capacity ratio ° FIT binary 

Carley 
(2009)  

48 U.S. states 
(without CA, TX) 

1998- 
2006 

- FE regression 
- FE vector 

decomposition 
regerssion 

- log of non-hydro RES-
E generation ratio 

- absolute non-hydro 
RES-E generation 

° RPS binary 
* RPS trend 
* regional RPS  
*** tax index  
*** financial incentive index  
*** deregulation binary 

Delmas and 
Montes-
Sancho 
(2011) 

650 U.S. utilities in 
48 U.S. states 
(without AK, HI) 

1998- 
2007 

- 1st stage: logit 
- 2nd stage: tobit 

- absolute RES-E 
capacity of utility 

° RPS binary  
** MGPO binary  
** predicted RPS  
** predicted MGPO  
° DP binary  
° financial incentive index 

Dong (2012) 53 countries 2005- 
2009 - FE regression - annual wind capacity 

- absolute wind capacity 
** RPS binary  
* FIT binary 

Groba et al. 
(2011) 

26 EU member 
countries 

1992- 
2008 - FE regression 

- log of annual wind 
capacity 

- log of annual solar 
capacity 

*** ROI  
° ISI  
° tender binary  
° tax binary  

Marques et 
al. (2010) 

24 European 
countries  

1990- 
2006 

- FE regression 
- FE vector decomp.  

- log of non-hydro RES-
E generation ratio  ° EU 2001 binary 

Marques et 
al. (2011) 

24 European 
countries  

1990- 
2006 

- OLS regression 
- quantile regression 

- log of RES-E 
generation ratio   

Menz and 
Vachon 
(2006) 

37 U.S. states 
(states with wind 
capacity) 

1998- 
2003 - OLS regression 

- absolute wind capacity 
in 2003  

- growth after 1998/ 
2000 

** RPS binary 
° GDR binary  
*** MGPO binary  
° PBF binary  
° retail choice binary 

Salim and 
Rafiq (2012) 

Brazil, China, 
India, Indonesia, 
Philippines, Turkey  

1980- 
2006 

- modified OLS 
- dynamic OLS  
- Granger causality  

- absolute RES-E 
consumption    

Shrimali 
and Kneifel 
(2011) 

50 U.S. states 1991- 
2007 

- FE regression with 
state-year fixed 
effects 

- capacity ratios: non-
hydro RES-E, biomass, 
geothermal, solar, wind 

° RPS + capacity stringency 
*** RPS + sales stringency 
° GPP binary  
*** MGPO binary  
*** CEF binary  

Yin and 
Powers 
(2010)  

50 U.S. states 1993- 
2006 - FE regression  - non-hydro RES-E 

capacity ratio 

** ISI 
° RPS binary  
° RPS trend 
** RPS fraction  
** MGPO binary  
° PBF binary  
° NM binary 

Black: positive impact; grey/italic: negative impact; Significance: ***<1%, **<5%, *<10%, ° not statistically 
significant. CEF: clean energy funds; DP: disclosure program; FIT: feed-in tariff; GDR: generation disclosure 
requirement; GPP: green power purchasing; ISI: incremental share indicator (RPS); MGPO: mandatory green 
power option; NM: net metering; PBF: public benefit funds; ROI: return on investment (FIT). 

 

2.4  Results 
Menz and Vachon (2006) find a significant positive effect of RPS policies on the development of 
wind capacity in the U.S. Since their model does not control for state characteristics and time 
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trends, one can argue that the findings are not accurate enough to actually make a statement 
about real impact of RPS policies. Menz and Vachon (2006) do not explain why a random 
effects model is appropriate, for example by a Hausman (1978) Test. In contrast, almost all other 
studies – including ours – have shown that state and year effects can be a major biasing factor.  

Carley (2009) does not find a significant link between an RPS binary indicator and the share of 
electricity generated from RES-E in the U.S. Dong (2012), however, finds a negative and 
significant coefficient on the RPS binary indicator using cumulative wind capacity as the 
dependent variable. But, the coefficient is no longer significant when standard errors are 
clustered in a model that includes year trends, thus supporting the finding in Carley (2009). 
Carley (2009) also finds a positive and significant impact of an RPS trend variable, which 
represents the number of years since RPS enactment, on absolute generation. However, she 
shows that, after removing the state effects, the standard error on the RPS trend variable 
decreases, a finding which is consistent with state characteristics being an important driver of 
absolute RES-E deployment.  

Yin and Powers (2010) show that a RPS binary indicator and RPS trend variable do not have a 
significant relationship with the percentage of RES-E capacity in the U.S., with the former 
supporting and latter contradicting Carley (2009). However, they estimate a negative and 
significant coefficient on the annual RPS fraction using the RES-E ratio as the dependent 
variable, a result that is also found in Shrimali and Kneifel (2011). They conclude that a more 
nuanced measure, the ISI, is needed to more accurately represent the stringency of RPS policies. 
In each of their regressions specifications, they find that the ISI variable has a positive and 
significant impact on renewable deployment. However, Groba et al. (2011) do not find a 
significant coefficient of RPS policies (as measured by the ISI indicator) in six EU member 
countries using wind and solar PV added capacities as dependent variables. 

In summary, Yin and Powers (2010) is the only study (that we are aware of) that showed that 
RPS policies have positively impacted aggregate RES-E deployment. Nearly every other study 
has found either a negative or no connection between RPS policies and RES-E development. At 
the technology-specific level, Menz and Vachon (2006) found a positive effect of RPS policies 
on wind capacity. However, their model does not include fixed effects, and Shrimali and Kneifel 
(2011), using fixed effects, report an completely opposite result.  

3 Empirical Model 
The primary objective of this paper is to estimate the historical effect of RPS policies on 
development of in-state renewable energy deployment. We estimate this effect using a panel 
dataset enriched and improved relative to those used in previous studies. Following the 
theoretical approach outlined by Carley (2009), we estimate the capacity (and generation) 
development for renewable energy in state i in year t using the following model:  
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𝑌𝑖𝑡 = 𝛽0 + 𝛽𝑥𝑋𝑡 + 𝛽𝑝𝑃𝑖𝑡 + 𝛼𝑖 + 𝛾𝑡 + 𝜀𝑖𝑡    (1) 

where Y represents a measure of RES-E deployment calculated differently across specifications; 
β0 is a constant; X represents a vector of social and economic variables that are expected to have 
an impact on RES-E deployment; and P is a vector of policy variables to control for policy 
effects, interactions between policies, and specific policy design elements aimed at encouraging 
RES-E deployment.  

The proper estimation of this model requires addressing several econometric issues, as standard 
OLS estimation yields inconsistent or inefficient estimates. First, since we exploit a panel of 
individual states, unobserved state and year heterogeneity is likely and will lead to inconsistent 
estimates if not controlled. Therefore, we use a model controlling for state fixed effects, α, and 
time fixed effects, γ. While state fixed effects control for existing differences among states, such 
as renewable energy potential and existing renewable energy capacity (or generation), time fixed 
effects control for exogenous factors such as technological progress and macroeconomic trends 
that affect all states. A Hausman (1978) Test on each of the specifications rejects random effects, 
suggesting that a fixed effect specification is more appropriate in this context. Controlling for 
these effects and using clustered robust standard errors on the remaining error term, ε, accounts 
for heteroskedasticity. 

4 Variables and Data 

4.1 Renewable Energy Supply 

4.1.1 Quantification 
Previous econometric studies on the effectiveness of RES-E policies intended to stimulate state-
level deployment differ with respect to the selection of the dependent variable. Quantifying RES-
E deployment can be characterized along three dimensions. First, RES-E deployment can be 
measured in terms of capacity (watts) or actual generation (watt-hours). Second, multiple data 
sets on RES-E deployment are made available by the U.S. Energy Information Administration 
(EIA). State-level data can be aggregated from the raw EIA annual generator surveys – also 
referred to as the “generator-level dataset.” Alternatively, state-level aggregated RES-E data can 
be directly downloaded – we refer to this as the “state-level dataset”. Third, renewable energy 
can be quantified in absolute terms or as a percentage of total electricity capacity (generation). 
The characterization of RES-E dependent variables in previous studies is shown in Table 2. 
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Table 2 Dependent variable selection in previous studies 

  Generation Capacity 

Relative 
(%)  

Generator Level   Yin and Powers (2010) 

State Level Carley (2009)  
Marques et al. (2011) 

Shrimali and Kneifel 
(2011) 

Absolute 

Generator Level   Delmas and Montes-
Sancho (2011) 

State Level 
Carley (2009) 
Groba et al. (2011) 
Salim and Rafiq (2012) 

Dong (2012) 
Menz and Vachon (2006) 

The italic studies investigate EU member countries, while the other studies work with the U.S. sample. Delmas and 
Montes-Sancho (2011) compiled data for 650 utilities while the other studies use the state as their core unit of 
analysis. Salim and Rafiq (2012) analyzed RES-E consumption in six major emerging countries.  

 

4.1.2 Sources 
The U.S. Energy Information Administration (EIA) provides data for generation and capacity at 
both the state level and the generator level in the U.S. The EIA forms and documents that collect 
this data and their brief descriptions are shown in Table 3.  

Table 3 EIA data sources 

 Generation Capacity 

G
en

er
at

or
-L

ev
el

  

EIA Form EIA-906, EIA-920, and EIA-923 Data 
 
“The EIA-906, EIA-920, EIA-923 and predecessor 
forms provide monthly and annual data on 
generation and fuel consumption at the power plant 
and prime mover levels. A subset of plants, steam-
electric plants 10 MW and above, also provides 
boiler level and generator level data.” 
 
http://205.254.135.24/cneaf/electricity/page/eia906_
920.html 

EIA Form EIA-860 Annual Electric 
Generator Reports 
“The Form EIA-860 is a generator-level 
survey that collects specific information 
about existing and planned generators and 
associated environmental equipment at 
electric power plants with 1 megawatt or 
greater of combined nameplate capacity.” 
 
http://www.eia.gov/cneaf/electricity/page/eia
860.html 

St
at

e-
L

ev
el

 EIA Electric Power Annual  
“Detailed State Data: 1990-2010: Net Generation 
by State by Type of Producer by Energy Source” 
 
 
http://www.eia.gov/electricity/data/state/ 

EIA Electric Power Annual  
“Detailed State Data: 1990-2010: Existing 
Nameplate and Net Summer Capacity by 
Energy Source, Producer Type and State” 
  
http://www.geia.gov/electricity/data/state/ 

 

4.1.3 State-level data 
Most studies use the state-level data of the total electric power industry’s RES-E generation and 
capacity that is provided by the EIA Electric Power Annual. However, some studies aggregate 
generator-level data, as provided in the forms EIA-860 an EIA-906, to compile the required 
dependent variables. Therefore, our task was to investigate whether the two approaches result in 
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similar datasets and hence similar results. Figure 1 presents aggregate and technology specific 
RES-E generation and capacity development. 

 

Figure 1 State-level generation and capacity development 

 
 

4.1.4 Aggregated generator-level data 
Yin and Powers (2010) use generator-level data. However, aggregating 1990-2010 data from the 
EIA generator-level data we faced two major challenges related to data classification changes in 
2001. First, the classification of sources in the EIA generator-level data changed for both 
generation and capacity. The changes in the EIA’s classification scheme are complex and, 
despite our best efforts, are difficult to completely reconcile. Some changes are as simple as 
slight name changes (e.g. from “Anthracite” to “Anthracite Coal”), while other changes merged 
classifications (e.g. from “Plutonium” and “Uranium” to “Nuclear”) or split classifications into 
two or more groups (e.g. from “Wood and Wood Waste” into “Wood Waste Solids” and “Wood 
Waste Liquids”). More difficult to reconcile changes are that dropped some sources from being 
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recorded at all (e.g. “Methanol”) or added new sources (e.g. “Agriculture Crop 
Byproducts/Straw/Energy Crops”). Table 16 in the Appendices shows the classification in annual 
reports from 1990 to 2000 in comparison to the classification in annual reports from 2001 to 
2012.  

Second, and more important, in addition to the changes in classification, in 2001 the EIA also 
included data for non-utility power generators in the EIA-906 and EIA-860 forms. However, this 
introduces an inconsistency – while the EIA-906/EIA-860 data contains both non-utility 
generators and utility generators starting with 2001, pre-2001 data only contains data for utility 
generators. We worked closely with EIA to synchronize the databases as much as possible. 

Figure 2 presents the non-hydro generation (EIA-906) and capacity (EIA-860) data that does not 
account for the exclusion of non-utilities prior to 2001 as solid lines, whereas the dashed lines 
include the non-utility generators prior to 2001, using additional data from the EIA. This 
additional (i.e., non-utility generator) data for the years up to 2000 is from forms EIA-867 (for 
capacity) and EIA-906nonu (for generation) with some additional capacity data provided by 
EIA.  

Comparing the solid and dashed lines, it is apparent that the sharp increase in the solid lines in 
2001 is mainly caused by the exclusion of non-utility generators prior to 2001. The solid lines 
illustrate that generation and capacity as recorded by the EIA-906 and EIA-860 forms increase 
abruptly after 2000. When we add non-utilities data from 1990 to 2000, as shown by the dashed 
lines, this abrupt increase vanishes. The remaining inaccuracy between 2000 and 2001 is most 
likely caused by the changes in classification as outlined above.  

Figure 2 Generator-level generation and capacity development 
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4.1.5 Consequences on previous findings 
Yin and Powers (2010) is a unique study for two reasons: it used aggregated generator-level data 
and is the only econometric study to date that has demonstrated a robust positive impact of RPS 
policies on non-hydro RES-E deployment. Thus, its results require closer scrutiny, and they are 
questionable from two perspectives. First, the authors state that they use capacity as the 
dependent variable, and that the capacity data is compiled from the EIA-906 forms. However, 
EIA-906 collects generation data; EIA-860 collects capacity data. Second, it is not clear that they 
accounted for the non-utility generators prior to 2001. This omission may have resulted in 
misleading results: if we run a replication of their model with dependent variables that include 
the non-utility generator-level data prior to 2001, we find that the main conclusion of their paper 
is reversed. We discuss this issue in detail in Section 5. 

4.2 Policy and Policy Feature Variables 
In previous studies, RPS policies have mostly been represented by a dummy variable (RPS 
Binary) that equals 1 if an RPS is enacted and in enforcement and 0 otherwise. Carley (2009) 
provides an indicator which quantifies RPS policies by the number of years since policy 
implementation (RPS Trend). Yin and Powers (2010) provide an indicator which quantifies RPS 
policies by the yearly RES-E deployment requirement as a percent of total generation (RPS 
Yearly Fraction). Yin and Powers (2010) also introduced a more nuanced version of RPS Yearly 
Fraction, the incremental share indicator (ISI). The ISI attempts to capture “the mandated 
increase in renewable generation in terms of the percentage of all generation” (Yin and Powers, 
2010). The ISI is a metric for RPS policy stringency, and is constructed as follows for state i in 
year t with RPS enactment year T: 

 

𝐼𝑆𝐼𝑖𝑡 = 𝜂𝑖𝑡
𝑅𝐸𝑆∗𝜅𝑖𝑡

𝑅𝐸𝑆∗𝑞𝑖𝑡
𝑡𝑜𝑡𝑎𝑙−𝑄𝑖𝑇

𝑅𝐸𝑆 
𝑞𝑖𝑡
𝑡𝑜𝑡𝑎𝑙                                               (2) 

where 𝜂𝑖𝑡𝑅𝐸𝑆 represents the RPS’s requirement of RES-E generation as a percent of total 
electricity generation;  𝜅𝑖𝑡𝑅𝐸𝑆 represents the percentage load capacity that is legally eligible to 
meet 𝜂𝑖𝑡𝑅𝐸𝑆;  𝑞𝑖𝑡𝑡𝑜𝑡𝑎𝑙 represents annual total electricity generation; and 𝑄𝑖𝑇𝑅𝐸𝑆 represents the existing 
absolute RES-E generation in the year of RPS enactment. Data for the policy parameters has 
been provided by DSIRE (2012). We built the ISI in three different ways: first, using the 
generator-level dataset that was presumably used by Yin and Powers (2010), “ISI (YP)”; second, 
using the generator-level dataset without the erroneous 2001 “jump” in the data, “ISI (GL)”; and 
third, using the state-level dataset that has been used by many other studies, “ISI (SL).” 

In addition to the RPS variables above measuring the stringency of RPS policies (RPS Binary, 
RPS Trend, RPS Yearly Fraction, ISI (YP), ISI (GL), and ISI (SL)), we also collect binary 
variables to represent the existence of other RES-E policies: public benefit funds (PBF), net 
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metering policies (NM), and mandatory green power options (MGPO). We also interact these 
independent policies with RPS Binary to evaluate their impact if a RPS is already in place. 

We go beyond most previous studies by also testing the impact of policy design on the 
effectiveness of RPS policies. We account for the following RPS features: The (i) alternative 
compliance payments (ACP) represents the penalty in $ that an electricity supplier must pay for 
each MWh of RES-E its portfolio falls short of the mandated RPS quota. The (ii) maximum 
effective retail rate increase (MERRI) represents the highest possible percentage increase in the 
average retail rate after accounting for cost caps of the ACP (Wiser and Barbose, 2008). The (iii) 
unbundled REC trading binary indicates whether RECs are allowed to be traded separately from 
the renewable electricity from which they originate. If the binary equals 0, RECs can only be 
used in a bundle with the underlying power to meet the mandated RES-E quota. The (iv) 
allowance of REC trading binary indicates whether energy suppliers are allowed to trade RECs 
with other suppliers to meet their RES-E quota if they produce too many or too few RECs 
themselves. The (v) contracting mechanism binary indicates whether states provides incentives 
to encourage long-term investment in RES-E systems and reduce uncertainty over the return on 
investment in RES-E systems (Wiser and Barbose, 2008). These provisions range from contract 
duration requirements to credit protections and special funds. 

 

Table 4 RPS features for states with a RPS effectively enacted in 2010 
State  
with RPS 

ACP ($/MWh) MERRI (%) Unbundling Trading Contracting DTX Index DFX Index 

AZ 0 100.0 0 0 0 0.5 0 
CA 0 100.0 0 1 1 0.5 0 
CO 0 1.7 1 1 1 0 0 
CT 0 6.5 1 1 1 0 0.5 
DE 400 16.3 1 1 0 0 1 
HI 0 100.0 0 0 0 0 0 
IL 0 1.4 1 0 1 0 0 
MA 600 3.3 1 1 1 0 0.5 
MD 400 2.1 1 1 1 0 0.5 
ME 0 4.8 1 1 0 0 1 
MN 0 100.0 1 0 0 0 0 
MT 0 0.1 1 1 1 0.5 0 
NH 160 8.3 1 1 0 0 0.5 
NJ 711 10.6 1 1 0 0 1 
NM 0 1.8 1 1 0 0.5 0 
NV 0 100.0 1 1 1 1 0 
NY 0 0.9 1 1 1 0.5 0 
OH 450 100.0 0 1 0 0 0 
PA 550 100.0 1 1 1 0 0 
RI 0 6.4 1 1 1 0 0.5 
WI 0 100.0 1 1 0 0.5 0 
Count 7 21 17 17 11 7 8 
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State policymakers usually want new RES-E systems to be built in their state as the investment 
might come with various economic and political benefits (Schmalensee, 2011). Thus, some RPS 
schemes contain requirements that limit the geographical eligibility of RES-E to meet the RPS 
target (Wiser and Barbose, 2008). We build indices to capture these electricity delivery 
requirements. The (vi) delivery to regions index (DTX) captures if a state allows sharing the 
transmission inter-tie with out-of-state generators. The DTX index equals 0.5 if inter-ties are 
shared for some products in limited cases and 1 if all direct transmission inter-ties are shared. 
The (vii) delivery from regions index (DFX) captures the degree of flexibility to buy RES-E 
from out-of-state generators. The DFX index equals 0.5 for if generators in limited out-of-state 
areas are eligible to sell RECs into the state with the RPS and 1 for generators anywhere outside 
the region. These features (i)-(vii) only exist as elements of RPS policies, and not all RPS 
policies include all features. Data for the RPS features has been taken from DSIRE (2012) and 
Wiser and Barbose (2008). Table 4 shows which states with an RPS (in 2010) include these 
policy features (i)-(vii). 

In some specifications, we use Yin and Power’s (2010) RPS market size (RPSMS) control to 
capture the effect of the regional REC trading market size. The RPSMS (viii) is constructed as: 

 

𝑅𝑃𝑆𝑀𝑆𝑖𝑡 =  ∑ �𝜂𝑎𝑡𝑅𝐸𝑆∗𝜅𝑎𝑡𝑅𝐸𝑆∗𝑞𝑎𝑡𝑡𝑜𝑡𝑎𝑙−𝑄𝑎𝑡𝑅𝐸𝑆�∗𝑇𝑅𝐴𝐷𝐸𝑎𝑡𝐴
𝑎

𝑆𝐴𝐿𝐸𝑆𝑖𝑡
                                 (3) 

with A representing the number of neighboring states a to state i; 𝑇𝑅𝐴𝐷𝐸𝑎𝑡 representing a binary 
code that equals 1 if out-of-state trading is allowed and 0 otherwise; and 𝑆𝐴𝐿𝐸𝑆𝑖𝑡 representing 
the total electricity sales. Data to construct the RPSMS was taken from EIA (2012a) and DSIRE 
(2012). In some specifications, we also follow Chandler (2009) and include the percent of 
neighboring states that have a RPS in place to control for cross-state effects using data from 
DSIRE (2012).  

4.3 Controls 
Our full model includes state and year fixed effects. State effects control for preexisting RES-E 
capacity and time-invariant characteristics such as renewable energy resource availability. Time 
effects control for federal economic and policy impacts, economic and technological 
developments that are invariant across states but affect the overall development of RES-E. In our 
initial regressions, we use the suite of controls mirroring Yin and Power’s (2010) in order to 
provide comparable estimations. We control for: 

• State Income, represented by the median income of a 4-person household in 1000 $. We 
expect RES-E to increase more rapidly in wealthier states since they would be in the best 
position to absorb the additional costs involved in the shift from conventional to 
renewable energy production.  
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• Electricity Price represents the mean state electricity price in $ cents/ kWh. High 
electricity prices may lower market barriers for RES-E by making them appear more 
cost-competitive, and support their deployment. On the other hand, high electricity prices 
may foster reluctance to add further burden to the electricity bills due to RES-E capacity 
development. We lag this variable once – as in Yin and Powers (2010) – in order to avoid 
reverse causality.  

• Import Ratio controls for the imbalance between domestic sales and out-of-state power 
generation. Following Yin and Powers (2010), we quantify the import ratio as the 
percentage of net electricity imports and total electricity sales of the previous year. In 
order to reduce energy dependence, a high import ratio presumably advances domestic 
RES-E capacity building.  

• The LCV Score, an index created by the League of Conservation Voters (LCV) that 
tracks the voting behavior of state-level representatives and senators on environmental 
issues.  

• Data for the variables has been compiled from various EIA sources (see above), DSIRE 
(2012), the U.S. Census Bureau (2011), Wiser and Barbose (2008), Wiser et al. (2010), 
and the League of Conservation Voters (2011). Table 5 presents the summary statistics.  

The state income and the electricity price variable distribution are skewed, potentially requiring 
taking logarithms. However, in order to keep the suite of controls as close to Yin and Powers 
(2010) as possible, we end up not logging the variables. Though we sacrifice some rigor for 
comparability of results, we feel that this is justifiable because the overall estimates do not 
change much. In the matching analysis in Section 4.1 we also introduce variables that measure 
the technical potential of renewables at the state level, calculated using GIS data (NREL, 2012). 
These variables are only used in this section and are described there. 
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Table 5 Summary Statistics 
 Obs Mean Std. Dev.  Min Max Unit 
RES-E Capacity Ratio (YP) 1050 1.46 3.02 0 23.93 % 
RES-E Capacity Ratio (GL) 1050 2.00 3.40 0 23.93 % 
RES-E Capacity Ratio (SL) 1050 4.31 4.86 0 27.59 % 
RES-E Generation Ratio (YP) 1050 1.56 3.02 0 26.08 % 
RES-E Generation Ratio (GL) 1050 2.42 3.69 0 26.08 % 
RES-E Generation Ratio (SL) 1050 2.72 4.23 0 37.14 % 
ISI (YP)1 1000 0.87 3.83 0 32.10 % 
ISI (GL)1 1000 0.87 3.83 0 32.10 % 
ISI (SL)2 1000 0.87 3.83 0 32.10 % 
RPS Binary 1050 0.09 0.29 0 1 Binary 
RPS Trend 1050 0.32 1.21 0 11 Years 
RPS Yearly Fraction 1050 0.97 4.10 0 33 % 
Alternative Compliance Payments  1050 14.66 89.79 0 711 $/MWh 
Maximum Effective Retail Rate Increase 1050 0.03 0.17 0 1 % 
Unbundled REC  1050 0.08 0.27 0 1 Binary 
REC Trading 1050 0.08 0.27 0 1 Binary 
Contracting Mechanism 1050 0.05 0.22 0 1 Binary 
Delivery to Region Index 1050 0.02 0.11 0 1 0-0.5-1 
Delivery from Region Index 1050 0.03 0.17 0 1 0-0.5-1 
RPS Market Size 1050 2.27 9.56 0 93.08 % 
Neighbors with RPS 1050 16.42 25.24 0 100 % 
Public Benefit Fund 1050 0.18 0.38 0 1 Binary 
Net Metering 1050 0.37 0.48 0 1 Binary 
Mandatory Green Power Option 1050 0.04 0.19 0 1 Binary 
State Income 1050 50.16 7.99 30.44 73.60 1000 $ 
Electricity Price 1050 7.62 2.77 3.37 29.20 cents/kWh 
Import Ratio 1000 -18.43 63.00 -301.11 99.87 % 
LCV Score 1050 47.20 26.92 0 100 0-100 index 
 

5 Results 
Considering the attention that Yin and Powers (2010) has received in the literature evaluating the 
effectiveness of RPS policies (according to Google Scholar, the article has received 43 citations 
as of October 2012), we first attempt to replicate their results in Table 6 and Table 7. Table 8 
presents regressions with the ISI covariate under additional specifications of the dependent 
variable. Table 9 shows the results from our basic specification that uses state-level capacity 
data. Table 10 uses RPS indicators (other than the ISI) that capture additional channels through 
which RPS may affect RES-E development. Table 11 presents similar regressions with a host of 

                                                 
2 The three ISI variables appear to have the same summary statistics. This is partly due to rounding to two decimal 

points. Further, recalling that the ISI consists of the RPS yearly fraction, the coverage of the RPS, total electricity 
sales, and RES-E generation in the previous year, only the latter parameter differs between the ISI (YP) and the 
other two, ISI (GL) and ISI (SL). In 2001, the year with the erroneous “jump” in the data that led us to distinguish 
between GL and YP, only Maine had a RPS effectively implemented. Thus, the difference between the three ISI 
variables is very small.  
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additional policy interactions. Table 12 highlights the effects of additional RPS policy features. 
Finally, Table 13 presents the technology-specific estimates.   

5.1 Replication of Yin and Powers (2010) 
Table 6 and Table 7 present regression results for a dataset that replicates one used by Yin and 
Powers (2010). As detailed in Section 4, this dataset includes the erroneous 2001 “jump” in the 
data. In each of the two tables, Specification (1) estimates the relationship between the ISI 
covariate and the dependent variables without any control variables. Specification (2) adds state 
fixed effects to remove time-constant state-level characteristics, such as renewable energy 
potential or past planning regimes. Specification (3) adds time fixed effects to remove state-
invariant time bias in the error term. Specifications (4) and (5) incorporate other policy variables 
and socio-economic controls. These specifications also include both state and year fixed effects 
and clustered standard errors, as in Yin and Powers (2010). While Specifications (1)-(4) use data 
for 1990-2010, Specification (5) limits the dataset to 1993-2006 as in Yin and Powers (2010). 

 

Table 6 Recreation of Yin and Powers (2010) with capacity ratio as dependent variable 
 (1) (2) (3) (4) (5) 

ISI (YP) 0.325*** 0.311*** 0.134*** 0.160* 0.190***   

 (0.023) (0.026) (0.024) (0.092) (0.042) 

Public Benefit Fund Binary    0.411 0.085   

   (0.395) (0.260)   

Net Metering Binary    -0.564 0.157   

   (0.542) (0.324)   

Mandatory Green Power Binary     3.588** 0.882   

   (1.557) (1.297)   

State Income    0.145*** 0.078***   

   (0.025) (0.022)   

Electricity Price, lagged    -0.095 0.481*   

   (0.309) (0.284)   

Import Ratio    0.010 -0.007   

   (0.014) (0.008)   

LCV Score    0.018** 0.008*   

   (0.008) (0.005)   
State Effects  yes yes yes yes 
Year Effects   yes yes yes 
State Clusters (robust)    yes yes 
Time Frame 1990-2010 1990-2010 1990-2010 1990-2010 1993-2006 
N 1,000 1,000 1,000 1,000 700 
R-Squared 0.164 0.422 0.604 0.664 0.791   
Standard errors in parentheses. The dependent variable is the percentage of RES-E capacity to total annual 
electricity capacity on the base of generator-level data without correcting for the 2001 inconsistency. * Significant at 
10%, ** Significant at 5%, *** Significant at 1%. 

 

The ISI (YP) has a positive and significant effect on RES-E capacity across all specifications, 
indicating that the ISI covariate appears to positively correlate with the share of renewable 
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capacity in the uncorrected dataset. The result is fairly robust across the six specifications shown 
in Table 6, although the specifications with state and time fixed effects and with controls 
estimate a lower impact of the ISI variable on RES-E capacity (Specifications 3-5). Under 
Specification (5), we re-estimate our model as closely as possible to Yin and Powers (2010), 
limiting the data to the time period used in Yin and Powers (2010), 1993-2006. Under this 
specification, the size of the impact marginally increases relative to Specification (4), which uses 
the full times series available to us. However, our estimate of the coefficient remains less than 
half of the estimate presented in Yin and Powers (2010). 

In Table 7 we use generation as the dependent variable, and estimate regression coefficients that 
match more closely with the results presented in Yin and Powers (2010), despite the fact that Yin 
and Powers claim to be using capacity data. We estimate +0.394 for the ISI (YP) coefficient 
(with a standard error of 0.062) whereas Yin and Powers (2010) estimated the same coefficient at 
+0.558 (with a standard error of 0.175). While our estimate is within one standard error of the 
result in Yin and Powers (2010), we cannot precisely replicate their results. Given that our 
results for generation data match more closely to the results presented in Yin and Powers (2010), 
they support our hypothesis that Yin and Powers (2010) used generation data, not capacity, as 
claimed. This hypothesis is corroborated by Yin and Powers’ reference to the EIA-906 forms 
which contain generation, not capacity, data. 

However, when we repeat the exercise with either the generator-level dataset that corrects for the 
erroneous “jump” or the state-level dataset, we do not arrive at the same conclusion as Yin and 
Powers (2010). Table 8 summarizes our efforts to explore datasets that could lead us to the 
conclusions in Yin and Powers (2010). The table shows the coefficient on the ISI covariate when 
we regress different specifications of the dependent variable. The dependent variable varies by 
originating data source (either manually aggregated from generator-level data, “GL,” or EIA-
aggregated state-level data, “SL”); and by type (generation or capacity). Further, the SL data 
either measures total generation/capacity of the electric power industry, “SL-T”; or of electric 
utilities only, “SL-U.” Finally, the GL data either includes the 2001 “jump,” “GL-T*”; or 
corrects it by properly accounting for 2001 changes EIA classification methodology, “GL-T.” A 
regression model with an identical set of controls as in is run on three different time frames: the 
full period for which data is available (1990-2010), the period after the change in classification in 
the generator-level data (2001-2010), and the period used by Yin and Power (1993-2006).  
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Table 7 Recreation of Yin and Powers (2010) with generation ratio as dependent variable 
 (1) (2) (3) (4) (5) 

ISI (YP) 0.534*** 0.484*** 0.351*** 0.336** 0.394*** 
(0.019) (0.022) (0.020) (0.137) (0.062) 

Public Benefit Fund Binary    
0.091 -0.163 

   
(0.394) (0.354) 

Net Metering Binary    -0.236 0.344 

   (0.369) (0.275) 

Mandatory Green Power Binary     2.112** -0.103 

   (0.960) (0.904) 

State Income    0.057* 0.038* 

   (0.033) (0.022) 

Electricity Price, lagged    
-0.156 0.259 

   
(0.260) (0.246) 

Import Ratio    
-0.015 -0.021* 

   
(0.012) (0.013) 

LCV Score    
0.007 0.006 

   
(0.007) (0.006) 

State Effects  yes yes yes yes 
Year Effects   yes yes yes 
State Clusters (robust)    yes yes 
Time Frame 1990-2010 1990-2010 1990-2010 1990-2010 1993-2006 
N 1,000 1,000 1,000 1,000 700 
R-Squared 0.442 0.596 0.721 0.745 0.810 
Standard errors in parentheses. The dependent variable is the percentage of RES-E generation to total annual 
electricity generation on the base of generator-level data without correcting for the 2001 inconsistency. * Significant 
at 10%, ** Significant at 5%, *** Significant at 1%. 
 

Table 8 The coefficient on ISI under different specifications of the dependent variable 
 Capacity 
 1990-2010 2001-2010 1993-2006  

GL-T* + 0.160* − 0.065 + 0.190*** 
GL-T − 0.106*** − 0.065 − 0.132*** 
SL-T − 0.105*** − 0.089 − 0.158*** 
SL-U − 0.153** − 0.036* − 0.134** 

 Generation 
 1990-2010 2001-2010 1993-2006  

GL-T* + 0.336** − 0.027 + 0.394*** 
GL-T − 0.015 − 0.027 − 0.061* 
SL-T − 0.116*** − 0.023 − 0.184*** 
SL-U − 0.121 − 0.043 − 0.062 
GL: generator-level; SL: state-level; T*: sample with 2000-2001 bias presumably used by Yin and Powers (2010); 
T: total electric power industry; U: electric utilities only. Sources: Capacity data: (GL-T*) from EIA-860A; (GL-T) 
from EIA-860A and EIA-867; (SL-T) from EIA Electric Power Annual; (SL-U) from EIA Electric Power Annual. 
Generation data: (GL-T*) from EIA-906; (GL-T) from EIA-906, EIA-867, and EIA-906nonu; (SL-T) from EIA 
Electric Power Annual; (SL-U) from EIA Electric Power Annual. The sign of the coefficients on the remaining 
control variables are the same as in Table 6 and Table 7, Specification (5) (Public Benefit Fund, Net Metering, 
Mandatory Green Power, State Income, Electricity Price, Import Ration, LCV Score). The sign of their coefficients 
remain the same throughout and is not reported here. 
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The key insight from this exercise is that the coefficient on the ISI is positive if and only if the 
2000-2001 change in classification that exists in the GL data remains in the dependent variable 
(i.e. the GL-T* variable in the 1990-2010 and 1993-2006 time frames). All other specifications 
yield ISI coefficients that are negative, although only some are significant. In this set of 
specifications, RPS stringency only appears to have a positive and significant impact on RES-E 
when the incorrect generator-level dataset is used; when this error is corrected, the generator-
level dataset yields results similar to those derived from state-level datasets. Therefore, going 
forward, we use state-level datasets only, as in Carley (2009), Menz and Vachon (2006), and 
Shrimali and Kneifel (2011). 

5.2 Maine: An Outlier 
Figure 3 presents the range of year-to-year changes for RES-E capacity ratio for the 50 U.S. 
states over 1990-2010. Figure 5 in the Appendix provides the corresponding line plots by state. 
Both figures show that Maine’s RES-E ratio appears to sharply decline from 1999 to 2000. This 
was due to the fact that, that by the end of 1999, Maine added roughly 1,500 MW of natural gas 
capacity to its total capacity of roughly 3,000 MW. Thus, Maine’s total electricity capacity 
increased by 50%, whereas its RES-E capacity remained relatively stable. As a result, the RES-E 
capacity ratio sharply decreased from 27% in 1999 to 16% in 2000. 

This event in Maine seems to be unprecedented in the panel as no other states shows such an 
abrupt decrease. The uniqueness of the time series of electricity capacity in Maine is 
independently corroborated in the matching analysis in Section 5.7, where the matching 
algorithm performs the worst for Maine due to the inability to find suitable matches for Maine’s 
unique RES-E ratio development.  

We also calculated the interquartile range (IQR) and found that some of Maine’s data points are 
greater – by a factor of more than 1.5 times the IQR – than the third quartile maximum. In line 
with the commonly used “1.5*IQR” criteria, we declare Maine to be an outlier in the sample. 
Henceforward, we will present our full regressions model on the base of the full sample and 
without Maine in order to test the robustness of our full model. Shrimali and Kneifel (2011) also 
followed a similar strategy.  
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Figure 3 Plot of maximum and minimum year-on-year change in RES-E capacity ratio 

 
 

5.3 Our Model 
Table 9 presents the results of our main model to measure the impact of the ISI variable, using 
the state-level dataset with and without state and year fixed effects and various controls. A 
Hausman (1978) test rejects the null hypothesis of consistent and efficient random effects, 
supporting the application of a fixed effects specification in this context. We also conduct a 
series of Wald and likelihood ratio tests. The tests confirm that heterogeneity is present in the 
panel, supporting our use of state and year fixed effects.  

Specification (1)-(5) replicate the structure we used in Table 6  and Table 7. Specifications (1)-
(3) present the results on only the ISI. Specification (2) adds state fixed effects, and Specification 
(3) adds year fixed effects. Specifications (4)-(6) include the full set of other policy variables and 
controls with clustered standard errors. Specification (5) uses the time frame from Yin and 
Powers (2010), 1993-2006. Finally, Specification (6) based on findings in Section 5.2 excludes 
the state of Maine. In Specification (1), we do not account for state-level heterogeneity in the 
random effects model and the ISI coefficient is estimated to be positive. This is suggestive 
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evidence of an omitted variable bias and inconsistent estimation, which we further confirm by 
means of a Hausman Test. Therefore, in the remaining specifications, we use a fixed effects 
model. Specifications (4) and (5), which also include a suite of control variables, we estimate a 
negative and significant coefficient for the ISI (SL) covariate. This result is also verified by a 
non-parametric match analysis in Section 4.7. Given that RPS is one of the most popular RES-E 
support policies, this finding is surprising.  

 

Table 9 Basis model results with capacity ratio as dependent variable 
 (1) (2) (3) (4) (5) (6) 

ISI (SL) 0.411*** -0.042* -0.188*** -0.105*** -0.158*** -0.095 
(0.038) (0.025) (0.023) (0.036) (0.034) (0.069) 

Public Benefit Fund 
Binary    

0.593 0.277 0.394 

   
(0.486) (0.405) (0.450) 

Net Metering Binary    -1.058** -0.343 -1.126** 

   (0.491) (0.313) (0.500) 
Mandatory Green 
Power Binary     3.882*** 2.437*** 4.071*** 

   (1.434) (0.841) (1.530) 

State Income    0.118** 0.046* 0.121** 

   (0.049) (0.027) (0.050) 

Electricity Price, lagged    
-0.268* -0.096 -0.265* 

   
(0.142) (0.200) (0.149) 

Import Ratio    
0.031*** 0.014*** 0.032*** 

   
(0.010) (0.003) (0.011) 

LCV Score    
0.019** 0.010* 0.018** 

   
(0.009) (0.005) (0.009) 

State Effects  yes yes yes yes yes 
Year Effects   yes yes yes yes 
State Clusters (robust)    yes yes yes 

Time Frame 1990-2010 1990-
2010 1990-2010 1990-2010 1993-2006 1990-2010 

N 1,000 1,000 1,000 1,000 700 980 
R-Square 0.104 0.789 0.844 0.883 0.962 0.857 
Standard errors in parentheses. The dependent variable is the percentage of RES-E capacity to total annual 
electricity capacity on the base of state-level data. * Significant at 10%, ** Significant at 5%, *** Significant at 1%. 

 

Three different explanations are possible for this counter-intuitive result. One possible 
explanation is that the RPS stringency by itself is not an adequate representation of the richness 
of an RPS policy, and specific RPS policy features, such as automatic compliance payment or 
regional trading, may cause RPS schemes to be more or less effective. A second related 
hypothesis is that more stringent RPS schemes have a positive effect on RES-E deployment 
overall but the new installations are not necessarily brought online inside the state. Since 17 of 
the 21 states that have a RPS effectively in place also allow trading of RECs, it could be that 
electricity suppliers import RES-E from out-of-state facilities in order to comply with the RPS 
requirement. This effect may be intensified with a more stringent RPS. We test these hypotheses 
in Section 5.5 by estimating the impact of RPS features--including the DFX index, which 
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measures the flexibility in meeting RPS targets via out-of-state sources, and regional 
characteristics such as the share of neighboring states with an RPS in place. 

A third possible explanation is the presence of outlier states, such as Maine, as discussed in 
Section 5.2. We observe that the coefficient for ISI decreases in magnitude and becomes 
insignificant when we drop Maine in Specification (6).3 These results indicate that the negative 
and significant result on ISI in some specifications may be driven by Maine, so we include an 
additional specification that drops Maine from the most complete specification in each analysis 
moving forward. 

The other coefficients remain robust and we interpret them next. We include a control for public 
benefit funds, employed in 16 states: CA, CT, DE, HI, IL, MA, ME, MI, MN, MT, NJ, OR, PA, 
RI, VT, and WI.  We do not find a significant impact of these funds on RES-E deployment in 
Specifications (4)-(6). This is consistent with Menz and Vachon (2006) and Yin and Powers 
(2010).  

We also control for the existence of mandatory green power options, employed in 8 states: CO, 
IA, ME, MT, NM, OR, VA and WA. We estimate a robust positive and significant coefficient 
across all model specifications. This is in line with Delmas and Montes-Sancho (2011), Menz 
and Vachon (2006), Shrimali and Kneifel (2011), and Yin and Powers (2010). Specifically, this 
policy seems to drive a 4 percentage point increase in the RES-E share in electricity capacity, as 
indicated in Specifications (4) and (6). 

Net metering has been implemented in almost every U.S. state. It appears to have a sizeable 
negative effect on RES-E deployment in Specifications (4) and (6). We posit that the usual 
eligibility caps of net metering schemes at system sizes of less than 1MW and the EIA data 
coverage minimum at 1MW invalidate further interpretation. A more specific examination of the 
impact of net metering schemes is needed in future research.  

We estimate a positive impact of state income on RES-E deployment. This might be expected, as 
wealthier states would be more willing to invest in renewable energy. Carley (2009) found a 
similar relationship and Groba et al. (2011) found a positive effect of GDP per Capita on annual 
wind capacity in Europe. 

The coefficient for lagged electricity price is negative and significant at the 10% level in 
Specifications (4) and (6). This may be because high electricity prices make policymakers and 
utilities reluctant to incorporate expensive renewables that would further increase costs and 
therefore prices. Carley (2009) and Delmas and Montes-Sancho (2011) presented similar results, 
but Shrimali and Kneifel (2011) did not.  

                                                 
3 We performed an additional regression with logged (to correct for a skewed distribution) absolute renewable 

capacity as the dependent variable, with appropriate adjustment for the state-size by including the total electricity 
capacity as an independent variable. However, this regression also revealed a negative and non-significant result 
for ISI. 



23 

We also find a positive and significant link between electricity import ratio and RES-E capacity 
deployment. A potential interpretation is that producers may believe that switching from 
imported electricity to domestically generated renewable electricity will be more lucrative than 
continuing to buy power from other states. Marques et al. (2011) and Yin and Powers (2010) also 
found positive and significant links for similar covariates.  

We estimate a positive and significant relationship between the LCV Score and RES-E capacity 
deployment in Specifications (4)-(6). This is consistent with the interpretation that a culture and 
political environment that is supportive of environmental and renewable energy policy may also 
promote the adoption of RES-E capacity through non-policy mechanisms. Carley (2009) also 
found a positive relationship between the LCV Score and RES-E generation. 

5.4 Replication of Previous Studies 
We now examine additional RPS indicators that have been proposed in previous studies (e.g., 
Carley, 2009; Yin and Powers, 2010; Shrimali and Kneifel, 2011). Table 10 Specifications (1)-
(6) use the full sample, while Specifications (7)-(9) exclude Maine. All specifications apply state 
and year fixed effects and robust standard errors. 

The interpretation of the coefficients on the RPS indicators in Specifications (1), (3) and (5), 
which use the complete dataset, can be interpreted as follows: the negative coefficient on the 
binary indicator in Specification (1) indicates that – all else equal – if a state without an RPS 
enacts an RPS, the ratio of RES-E capacity to total electricity capacity decreases by 0.98 
percentage points. The negative coefficient on the RPS Trend variable in Specification (3) 
indicates that the ratio of RES-E to total electricity continues to decline by an additional 0.38 
percentage points per year after an RPS is enacted. Finally, the coefficient on RPS Yearly 
Fraction in Specification (5) indicates that RPS policies that require one additional percent of 
renewable deployment decrease the ratio of RPS capacity to total electricity generation by 0.1 
percentage points. 

Specifications (1), (3), and (5) use the complete dataset and the full timeframe. Specifications 
(2), (4), and (6) examine many of the findings in the literature that used state-level data (i.e. 
Carley, 2009; Shrimali and Kneifel, 2011). In these cases, we use the complete dataset but adjust 
the timeframe to match time frames of previous studies. The reader should note two caveats. 
First, given that we kept the suite of independent control variables from our main analysis 
(Sections 5.1 and 5.3), they do not match previous studies exactly due to differences in data 
sources. For now, the reader should focus on the signs and standard errors of the RPS 
coefficients only. Second, note that because Specifications (1)-(6) include Maine, which we have 
shown to be an outlier, these results should be interpreted with caution. They are provided for 
comparison purposes only. 
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Table 10 Recreation of results on RPS indicators in previous studies with capacity ratio as 
dependent variable 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

RPS Binary -0.980* -1.401     -0.768   
(0.583) (0.948)     (0.586)   

RPS Trend   -0.376** -0.655***    -0.363**  
  (0.147) (0.209)    (0.184)  

RPS Yearly 
Fraction 

    -0.082** -0.096**   -0.057 
    (0.040) (0.043)   (0.061) 

Public Benefit 
Fund Binary 

0.547 0.146 0.568 -0.029 0.539 0.310 0.392 0.414 0.345 
(0.469) (0.364) (0.465) (0.281) (0.484) (0.413) (0.450) (0.449) (0.446) 

Net Metering 
Binary 

-1.054** -0.267 -1.062** -0.316 -1.055** -0.393 -1.092** -1.095** -1.115** 
(0.481) (0.262) (0.479) (0.271) (0.491) (0.343) (0.492) (0.490) (0.498) 

Mandatory 
Green Power 
Binary  

3.867*** 1.850*** 3.893*** 1.787*** 3.898*** 2.929*** 4.113*** 4.005*** 4.115*** 

(1.426) (0.569) (1.427) (0.580) (1.434) (0.784) (1.515) (1.528) (1.525) 

State Income 0.120** 0.028 0.126** 0.035 0.117** 0.060** 0.121** 0.125** 0.119** 
(0.048) (0.033) (0.049) (0.037) (0.049) (0.028) (0.050) (0.050) (0.050) 

Electricity 
Price, lagged 

-0.272* 0.061 -0.231* 0.025 -0.275* -0.141 -0.279* -0.230* -0.283* 
(0.142) (0.147) (0.123) (0.132) (0.145) (0.159) (0.149) (0.130) (0.157) 

Import Ratio 0.033*** 0.020*** 0.031*** 0.016*** 0.032*** 0.017*** 0.032*** 0.031*** 0.032*** 
(0.009) (0.006) (0.009) (0.004) (0.010) (0.004) (0.011) (0.011) (0.011) 

LCV Score 0.021** 0.004 0.019** 0.005 0.020** 0.012** 0.018** 0.018** 0.018** 
(0.009) (0.007) (0.009) (0.008) (0.009) (0.006) (0.009) (0.009) (0.009) 

State Effects yes yes yes yes yes yes yes yes yes 
Year Effects yes yes yes yes yes yes yes yes yes 
State Clusters 
(robust) yes yes yes yes yes yes yes yes yes 

Time Frame 1990-
2010 

1998-
2006 

1990-
2010 

1998-
2006 

1990-
2010 

1990-
2007  

1990-
2010 

1990-
2010 

1990-
2010 

N 1,000 450 1,000 450 1,000 850 980 980 980 
R-Square 0.882 0.960 0.884 0.962 0.882 0.955 0.857 0.860 0.857 
Standard errors in parentheses. The dependent variable is the percentage of RES-E capacity to total annual 
electricity capacity on the base of state-level data. * Significant at 10%, ** Significant at 5%, *** Significant at 
1%. 

 

We are able to recreate the results of past studies with moderate success. Specification (6), which 
attempts to replicate Shrimali and Kneifel (2011), finds a similar coefficient on RPS Yearly 
Fraction. This result remains relatively stable when the underlying period is changed from 1990-
2007 to 1990-2010 in Specification (5). On the other hand, Specifications (2) and (4), which 
attempt to recreate the results in Carley (2009), achieve only partial success. Like Carley (2009), 
Specification (2) shows that the impact of RPS Binary is negative but insignificant. The result 
matches more closely with Carley (2009) when the period is extended from 1998-2006 to 1990-
2010 in Specification (1). However, Specification (3) and Specification (4) are not able to 
replicate the positive coefficient of the RPS Trend variable in Carley (2009), perhaps because 
Carley (2009) used not only a different set of independent variables but also logged RES-E 
generation ratio as the dependent variable. 

Overall, we estimate that for the three variables that previous studies have used as proxies for 
RPS policies, there is a negative and significant coefficient over the 1990-2010 timeframe. Once 
Maine is dropped from the sample, the coefficients on the binary and yearly fraction variables 
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become insignificant with increasing p values. The coefficient on the RPS variable is not 
significant at the 10% level without Maine in the sample. However, the trend variable remains 
negative and significant at the 5% level. 

Given that the three RPS variables used here do not capture the full variation in incentives that 
different RPS policy designs create, we return to using the ISI for the rest of the paper. 

5.5 Other Policies 
We now examine policy interactions to analyze potential complementarities among policies 
(Table 12). Specification (1) and (3) replicate our main model and are identical to Specifications 
(5) and (7) in Table 9. Specifications (2) and (4) add interactions terms to (1) and (3), 
respectively. The interaction terms represent the simultaneous presence of an RPS and one of the 
other policies. 

 

Table 11 Policy interaction results with capacity ratio as dependent variable 
 (1) (2) (3) (4) 

ISI (SL) -0.105*** -0.074* -0.095 -0.050 
(-0.036) (-0.038) (-0.069) (-0.069) 

Public Benefit Fund (PBF) Binary 0.593 0.713 0.394 0.494 
(-0.486) (-0.501) (-0.450) (-0.455) 

RPS x PBF Interaction  -0.586  -0.469 
 (-0.581)  (-0.539) 

Net Metering (NM) Binary -1.058** -1.055** -1.126** -1.101** 
(-0.491) (-0.493) (-0.500) (-0.507) 

RPS x NM Interaction  -0.139  -0.322 
 (-0.550)  (-0.523) 

Mandatory Green Power (MGPO) Binary  3.882*** 4.072** 4.071*** 4.139** 
(-1.434) (-1.880) (-1.530) (-1.869) 

RPS x MGPO Interaction  -0.851  -0.336 
 (-1.947)  (-1.817) 

State Income 0.118** 0.119** 0.121** 0.122** 
(-0.049) (-0.050) (-0.050) (-0.050) 

Electricity Price, lagged -0.268* -0.261* -0.265* -0.261* 
(-0.142) (-0.138) (-0.149) (-0.147) 

Import Ratio 0.031*** 0.031*** 0.032*** 0.032*** 
(-0.010) (-0.010) (-0.011) (-0.011) 

LCV Score 0.019** 0.019** 0.018** 0.018** 
(-0.009) (-0.008) (-0.009) (-0.009) 

State Effects yes yes yes yes 
Year Effects yes yes yes yes 
State Clusters (robust) yes yes yes yes 
Time Frame 1990-2010 1990-2010 1990-2010 1990-2010 
N 1,000 1,000 980 980 
R-Square 0.883 0.883 0.857 0.858 
Standard errors in parentheses. The dependent variable is the percentage of RES-E capacity to total annual 
electricity capacity on the base of state-level data. * Significant at 10%, ** Significant at 5%, *** Significant at 1%. 
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Previous results on individual policy effectiveness estimated in Table 9 hold when interactions 
are included. Again, after dropping Maine from the sample, we fail to establish a significant link 
between the ISI and RES-E capacity at the 10% level. Further, we observe that the simultaneous 
presence of an RPS and a public benefit fund, net metering, or green power option does not 
significantly impact the RES-E share. RPS policies do not appear to gain or lose strength by 
having these other policies in place. 

5.6 RPS Features 
We now investigate if individual RPS policy design features not included in the ISI impact the 
efficacy of RPS (Table 13). Specifications (1) and (2) examine the effect of individual RPS 
features excluding the suite of controls with and without fixed effects and robust errors 
specifications. Specification (3) runs the full model with controls. Specification (4) drops the 
REC Trading Binary as it strongly correlates with the Unbundled REC Binary. Specification (5) 
drops Maine from the sample. 

We observe that the inclusion of other RPS features renders the ISI coefficient insignificant 
whenever Maine is included in the sample, with the apparent negative impact observed in 
previous analysis now attributed to other RPS features, such as DFX (Specification 4). Upon 
dropping Maine in Specification (5), the ISI coefficient becomes positive and statistically 
significant at the 5% level. This result implies that every 1% increase in RPS stringency results 
in an approximately 0.3% increase in renewable share. In other words, once we 1) include a full 
set of controls, 2) incorporate information about both RPS stringency and other RPS design 
features, and 3) drop the outlier state of Maine from the sample, we find a positive and 
statistically significant effect of RPS stringency on RES-E deployment. This is the most 
complete specification in the paper. However, it must be considered with caution given that 1) 
many RPS features may have a moderately high correlation with the ISI and 2) the results are not 
particularly robust to small changes in specification. 

The MERRI variable, which captures the maximum allowed electricity rate increase due to RPS, 
is not significant in the full model once fixed effects are included, but it is consistently negative 
and becomes significant after dropping Maine in Specification (5). Thus, we can assert with 
reasonable confidence that the MERRI variable has a negative impact on renewable share.  This 
is probably because limits on the increase in electricity rates puts downward pressure on RPS 
compliance, as suppliers are allowed to hold back on meeting RPS targets if the cost of doing so 
becomes exorbitant. 

The unbundled REC binary, which captures whether RECs are allowed to be traded separately 
from the underlying power, positively affects the renewable share. In fact, the magnitude is large 
– greater than 2% – which is consistent with the hypothesis that the flexibility provided by 
unbundling has a positive impact on renewable share. Unbundling seems to support RES-E 
deployment by bypassing geographical constraints of power delivery in order to achieve greater 
RPS compliance, as intended (Wiser and Barbose, 2008).  
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Table 12 Results for RPS features with capacity ratio as dependent variable 
 (1) (2) (3) (4) (5) 

ISI (SL) 
1.143*** 0.035 0.015 0.017 0.281** 
(0.133) (0.074) (0.090) (0.090) (0.117) 

Alternative Compliance 
Payments (ACP)  

0.014*** 0.001 0.000 -0.000 0.001 
(0.003) (0.002) (0.002) (0.002) (0.001) 

MERRI 
-4.712*** -2.589** -1.187 -1.343 -2.020*** 
(1.537) (1.087) (0.902) (0.832) (0.668) 

Unbundled REC Binary 
-2.544 2.344* 2.792*** 2.330*** 2.581*** 
(1.562) (1.279) (1.033) (0.874) (0.804) 

REC Trading Binary 
4.080* 0.794 -1.027   
(2.082) (1.372) (1.234)   

Contracting Mechanism 
Binary 

1.517 -1.443** -1.276** -1.442** -1.789*** 
(1.208) (0.667) (0.534) (0.573) (0.594) 

Delivery to Regions Index 
(DTX) 

1.145 1.166 0.902 0.637 1.036 
(2.605) (1.513) (1.154) (1.221) (1.173) 

Delivery from Regions 
Index (DFX) 

-14.170*** -7.632*** -4.325*** -4.781*** -6.080*** 
(2.855) (1.550) (1.641) (1.554) (1.369) 

RPS Market Size 
-0.248*** -0.060** -0.027 -0.033 -0.090*** 
(0.049) (0.027) (0.030) (0.031) (0.030) 

Neighbors with RPS 
0.014** 0.022* 0.017* 0.017* 0.023** 
(0.007) (0.012) (0.010) (0.010) (0.010) 

Public Benefit Fund Binary 
  0.522 0.494 0.117 
  (0.548) (0.541) (0.465) 

Net Metering Binary 
  -1.101** -1.093** -1.134** 
  (0.481) (0.481) (0.484) 

Mandatory Green Power 
Binary  

  3.823** 3.787** 4.260*** 
  (1.512) (1.503) (1.579) 

State Income 
  0.111** 0.108** 0.104** 
  (0.047) (0.047) (0.047) 

Electricity Price, lagged 
  -0.189 -0.185 -0.168 
  (0.137) (0.136) (0.135) 

Import Ratio 
  0.030*** 0.030*** 0.031*** 
  (0.010) (0.010) (0.011) 

LCV Score 
  0.014* 0.013 0.009 
  (0.008) (0.008) (0.008) 

State Effects  yes yes yes yes 
Year Effects  yes yes yes yes 
State Clusters (robust)  yes yes yes yes 
Time Frame 1990-2010 1990-2010 1990-2010 1990-2010 1990-2010 
N 1,000 1,000 1,000 1,000 980 
R-Square 0.141 0.857 0.889 0.889 0.867 
Standard errors in parentheses. The dependent variable is the percentage of RES-E capacity to total annual 
electricity capacity on the base of state-level data. * Significant at 10%, ** Significant at 5%, *** Significant at 1%. 
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The REC contracting variable, which captures state-provided provisions to encourage long-term 
investment in RES-E systems, has a negative and significant effect on  RES-E ratio in 
Specifications (3)-(5). These provisions may not have had the desired effect in the short run. 
However, as there are large planned capacities in the U.S. – e.g. 3.2 GW of mostly large-scale 
solar PV projects being realized in 2012 (SEIA, 2012) – the real effect of the long-term 
provisions may not yet be captured in the data. 

The delivery-from-region index, which captures the degree of flexibility on where electricity is 
delivered from (i.e. in-state only vs. limited out-of-state areas vs. any out-of-state area), seems to 
have a negative impact on renewable share. This implies that states granting their energy 
suppliers greater flexibility on where to buy RES-E have a lower in-state RES-E deployment 
ratio than states that strictly limit the eligible area. This result could be explained by electricity 
suppliers benefitting from the option to choose RES-E imports from presumably cheaper 
producers over local RES-E capacity building.  

The neighbors with RPS variable, which captures the percentage of neighboring states that have 
an RPS policy in place, seems to have a statistically significant and positive impact on renewable 
share. This provides evidence of network effects: if a state’s neighbors have implemented RPS 
policies, it may create a better environment (e.g. through improved infrastructure) for renewable 
development in the region. This result, combined with the previous result on delivery-from-
region index, adds credibility to the hypothesis in Section 5.3 that more ambitious RPS policies 
may actually be driving out-of-state deployment of RES-E instead of in-state deployment. 

The RPS market size variable, which captures the size of the market that the RECs generated in a 
state can be sold into, appears to have a negative effect that only becomes significant after 
dropping Maine. Yin and Powers (2010) also found a negative but insignificant link using a 
similar variable.  

Synthesizing the three coefficients just discussed – the positive effect of the neighbors-with-RPS 
variable and the negative effect of the RPS market size variable and delivery-from-region index 
– provides evidence of an inter-state trading effect. The existence of RPS policies in neighboring 
states supports in-state RES-E deployment. However, once cross-border trading is allowed and 
the trading zone becomes larger, in-state deployment appears to decrease in most states in favor 
of RES-E installations in a few states. That is, RES-E production can move to the most attractive 
places. This effect is accelerated once trading restrictions are removed, as shown by the delivery-
from-region index. 

Allowing REC trading does not appear to have a significant impact. Further, the variable is 
highly correlated with the unbundling covariate and is therefore not well identified. Thus, we 
drop the REC trading variable from Specifications (4) and (5). The correlation between REC 
trading and unbundling makes sense, as the allowance to unbundle RECs from the underlying 
energy requires the allowance to trade RECs in the first place. Finally, neither the ACP, which 
captures the amount of financial penalties that are levied on responsible parties in case of non-
compliance, nor the delivery-to-region index, which captures the strictness of requirements 
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placed on where the underlying electricity is delivered to, seem to have a statistically significant 
impact on renewable share. 

5.7 Technology Analysis 
Similar to Section 5.5, we now examine the impact of RPS and other polices on the capacity of 
specific RES-E technologies: biomass, geothermal, solar, and wind. Table 13 presents the key 
results. Specification (1) presents the results from the RES-E (i.e., total non-hydro renewable 
capacity) model. The technology-specific results in Specification (2)-(5) can then be compared to 
the RES-E results. Because of the dominant share of biomass in total renewable energy capacity, 
we split the biomass regression into Specification (2A) and (2B), with the latter excluding 
Maine. 

 

Table 13 model results with technology-specific capacity ratios as dependent variables 
 RES-E Biomass Geothermal Solar Wind 
 (1) (2A) (2B) (3) (4) (5) 

ISI (SL) -0.105*** -0.106** 0.001 -0.008 0.002 0.001 
(0.036) (0.052) (-0.012) (0.007) (0.003) (0.041) 

Public Benefit Fund (PBF) 
Binary 

0.593 0.547** 0.323*** -0.026 -0.024 0.151 
(0.486) (0.243) (-0.104) (0.044) (0.018) (0.353) 

Net Metering (NM) Binary -1.058** 0.068 0.063 -0.014 0.019 -1.095** 
(0.491) (0.125) (-0.115) (0.018) (0.012) (0.433) 

Mandatory Green Power 
(MGPO) Binary  

3.882*** -0.002 0.198 0.025 -0.001 3.834*** 
(1.434) (0.176) (-0.147) (0.025) (0.016) (1.473) 

State Income 0.118** 0.017* 0.013 -0.002 -0.000 0.104** 
(0.049) (0.010) (-0.011) (0.001) (0.001) (0.048) 

Electricity Price, lagged -0.268* 0.081 0.013 0.002 0.003 -0.292 
(0.142) (0.056) (-0.016) (0.011) (0.003) (0.181) 

Import Ratio 0.031*** 0.007** 0.003** -0.000 0.000 0.023** 
(0.010) (0.003) (-0.002) (0.000) (0.000) (0.010) 

LCV Score 0.019** 0.002 0.000 0.001 0.000 0.013* 
(0.009) (0.002) (-0.002) (0.000) (0.000) (0.007) 

State Effects yes yes yes yes yes yes 
Year Effects yes yes yes yes yes yes 
State Clusters (robust) yes yes yes yes yes yes 

Time Frame 1990-
2010 

1990-
2010 

1990-
2010 

1990- 
2010 

1990-
2010 

1990-
2010 

N 1,000 1,000 980 1,000 1,000 1,000 
R-Square 0.883 0.968 0.943 0.986 0.794 0.608 
Standard errors in parentheses. The dependent variable is the percentage of RES-E, biomass, geothermal, solar, or 
wind capacity to total annual electricity capacity on the base of state-level data. * Significant at 10%, ** Significant 
at 5%, *** Significant at 1%. 

 

In general, the regressions with biomass turn out to be similar to the full model results in Section 
5.4. Since biomass capacity is by far the largest among all RES-E capacities, we argue that 
biomass deployment potentially drives the result on ISI in Specification (1): ISI has a significant 
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negative effect on biomass deployment but no significant effect on any of the other technologies. 
That is, the negative impact of ISI on total renewable share is driven by the corresponding impact 
on biomass. However, after excluding Maine, the significance disappears for biomass in Table 
13. Again, the outlier seems to bias the coefficient of the full sample.  

The presence of a public benefit fund has a statistically significant positive impact on biomass 
deployment, which is consistent with the hypothesis that biomass-burning power plants have 
been the principal beneficiaries of this policy.  

On the other hand, the results on net-metering and mandatory green power option seem to be 
driven by wind. This result demonstrates the need to explore the impact of policies on individual 
renewable technologies; given that the corresponding analysis for total RES-E capacity may not 
be nuanced enough to detect underlying impacts. We estimate a significant negative coefficient 
on the existence of net metering for wind development and insignificant coefficients for biomass 
and solar capacity. Mandatory green power options have a statistically significant positive effect 
on wind capacity development, but no apparent effect on other technologies. Hence, the presence 
of an MGPO policy appears to benefit wind power development that in turn determines the 
MGPO coefficient in the regression with total renewable share as the dependent variable.State 
income has robust positive and significant effect throughout the model specifications.  

Table 13 shows that the overall ceteris paribus effect of income on RES-E capacity can be 
narrowed down to strong positive effects on wind capacity and a small positive – albeit less 
significant – effect on biomass capacity. This is consistent with the hypothesis of wealthier states 
being more able to invest in wind parks with high upfront costs. The import ratio – a proxy for 
state energy dependence – shows a similar pattern. Biomass and wind capacity development is 
positively affected by an increase in electricity imports over exports. However, the effect on 
other technologies is very small. 

5.8 Estimation of State-Level Causal Effects of RPS Enactment 
So far, we have used regression adjustment and fixed effects to estimate causal effects in a 
parametric fashion that relies on conventional assumptions on the functional form of the 
response function. We now estimate state-level effects of enacting an RPS on future RES-E 
capacity deployment without any functional form assumptions. Rather than controlling for 
covariates that may drive RES-E development, we match states on important characteristics to 
develop causal estimates of the effect of enacting an RPS. This allows us to estimate effects of 
the RPS on individual states rather than average effects for all states. Further, these estimates 
have causal interpretations (Rubin, 2006). 

In the matching framework, we define enactment of an RPS as a “treatment” and therefore we 
have 21 treated units (i.e., states) and 29 control units that never enact an RPS. We use six 
covariates to create matched synthetic control units. As in Abadie, Diamond, and Hainmueller 
(2010), we match on pre-treatment values of the dependent variable. We include the ratio of 
solar and wind technical potential (NREL, 2012) to total generation in pre-treatment years to 
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account for renewable energy development effort prior to enacting an RPS. We also include 
three demographic variables – per -household income, GDP growth, and population growth – in 
the 5 years prior to enacting an RPS to account for various socioeconomic factors that may affect 
how renewable deployment in a state may be affected by adopting an RPS. The matching 
covariates that we use to create synthetic controls are summarized in Table 14. 

 

Table 14 Matching covariates 

Variable Years Matched On 

State-level capacity ratio of RES-E to total electricity 1990 – year before RPS enacted 
Ratio of solar energy technical potential to total generation 1990 – year before RPS enacted 
Ratio of wind energy technical potential to total generation 1990 – year before RPS enacted 
Per-household income 1 – 5 years prior to RPS enactment 
GDP growth rate 1 – 5 years prior to RPS enactment 
Population growth rate 1 – 5 years prior to RPS enactment 
 
 
We run the synthetic control algorithm described in detail in Abadie, Diamond, and Hainmueller 
(2011) to find optimal control units. For each of the 21 states that implement an RPS between 
1990-2010, the optimal synthetic control unit is defined as the convex combinations of the 29 
control units that minimize the distance (mean squared prediction error) between the treated and 
control unit during the pre-treatment period on the matching covariates listed in Table 14. Some 
of the treated states cannot be matched well with a synthetic control unit. We drop states that 
differ from their optimal synthetic control by two percentage points in the dependent variable 
during their pre-treatment period. These states are CA, HI, MA, ME, MN, MT, NH, NM. 
Notably, Maine differs from its optimal synthetic control unit by the largest amount, 12.5 
percentage points – this provides complementary evidence for dropping Maine in the regressions 
described in Section 5. Causal effect estimates are the difference in the outcome variable (RES-E 
ratio) in the post-treatment period between the treated unit and the weighted average of the 
control units, where the weights are given by the synthetic control algorithm. Annual causal 
effect estimates for the thirteen individual states that we are able to find suitable synthetic control 
matches for are displayed in Table 15. The values in Table 15 are presented graphically in Figure 
4.  
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Table 15 State-level causal effect estimates of RPS enactment 
 Years Relative to RPS Enactment 

 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 
AZ 0.00 0.01 0.00 0.01 0.02 -0.01 0.02 -0.01 -0.10 0.01 0.02 -0.05 -0.20 -0.37 -2.23 -2.11   
CO -0.22 0.17 -0.32 -0.56 -0.32 0.06 -0.41 0.32 0.18 0.05 0.38 4.64 4.18 4.46 3.91     
CT 0.90 0.02 0.15 0.35 0.19 0.44 -0.56 -0.10 -0.02 -0.07 -0.13 -0.10 0.09 -0.16 -1.63 -1.84   
DE -0.08 -0.08 -0.08 -0.12 -0.09 -0.08 -0.08 -0.08 -0.10 0.06 0.04 -0.39 -3.26 -4.18       
IL 0.03 -0.10 -0.15 -0.25 -0.24 -0.17 -0.16 -0.14 -0.40 0.76 0.78 -0.81 -1.13         
MD 0.21 0.18 0.14 0.15 -0.07 0.05 0.34 0.32 -0.26 -0.09 -0.20 -0.30 -0.46 -1.46 -4.08 -3.82   
NJ -0.06 -0.13 0.05 0.02 0.05 0.03 0.15 0.10 -0.13 -0.12 0.07 -0.09 -0.96 -1.43 -1.78 -3.58 -3.95 
NV 0.10 0.15 0.12 0.17 0.15 -0.41 -0.27 -0.08 0.34 0.17 -0.07 0.26 -0.31 0.02 -0.51 -1.21 -1.69 
NY -0.20 -0.20 -0.37 -0.03 -0.13 -0.06 0.29 0.12 -0.06 -0.12 0.32 0.45 1.17 2.13 2.06     
OH -0.04 -0.08 -0.01 0.05 0.07 0.06 -0.06 -0.19 -0.04 0.01 -0.41 -2.79 -3.55         
PA -0.03 -0.33 -0.22 0.10 0.21 0.12 -0.35 -0.63 -0.43 -0.55 -0.25 -0.34 -0.71 -1.05       
RI -0.35 -0.26 -0.25 -0.27 -0.14 0.09 -0.08 -0.07 -0.24 0.09 0.02 -0.06 -0.45 -1.92 -2.28     
WI 0.06 -0.11 -0.06 -0.12 -0.10 -0.20 0.02 0.12 -0.08 0.35 -0.23 -0.99 -1.40 -0.44 -2.30 -2.81   

AVG 0.02 -0.06 -0.08 -0.04 -0.03 -0.01 -0.09 -0.02 -0.10 0.04 0.03 -0.04 -0.54 -0.40 -0.98 -2.56 -2.82 

Differences in the state-level capacity ratio of RES-E to total electricity of states that enact an RPS relative to their 
synthetic control unit. Values in the grey columns with negative headers help assess the quality of the matches: the 
closer these values are to zero, the better the match.Treated states that differ from their synthetic control unit in the 
dependent variable by more than 2 percentage points in any pre-treatment year are dropped from the table. Dropped 
states are CA, HI, MA, ME, MN, MT, NH, NM. 

 

Figure 4 State-level causal effect estimates of RPS enactment 
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For eleven of the thirteen states that we assess, the estimated causal effect of enacting an RPS is 
negative in the most recent year of data, 2010. Causal effect estimates are only positive in 2010 
for Colorado and New York. Two years after RPS enactment, the mean causal effect estimate is 
a decrease of 0.5 percentage points. Four years after RPS enactment, the mean causal estimate 
doubles to a decrease of 1.0 percentage points. The largest negative effect is for Delaware in 
2010, a 4.2 percentage point drop in the outcome variable three years after enacting an RPS. 
Given that the average value of RES-E over all states and in all years is 4.3 percent, these are 
economically significant effect estimates. The sign and magnitude of this effect is consistent with 
the negative effects we estimate in Table 9 and Table 10. It suggests that renewables are being 
deployed in states with and without RPS’s but, on average, states that do not use an RPS appear 
to have deployed renewables more rapidly, perhaps by finding ways to deploy renewables 
through means other than an RPS. However, this analysis does not incorporate information about 
RPS policy design features or inter-state trading effects. Instead, it considers an RPS policy to be 
a binary “treatment” that is either in place or not. Therefore, these matching results do not 
contradict our findings in Table 13.   

6 Conclusion 
Renewable portfolio standards (RPS) are considered a key policy instrument in the U.S. for 
promoting renewable energy deployment. More than 30 states have adopted an RPS, yet it 
remains unclear whether these policies have been effective in practice. The existing empirical 
literature on RPS has been contradictory, with studies finding all possible impacts ranging from 
negative (Shrimali and Kneifel, 2011) to none (Carley, 2009) to positive (Yin and Powers, 2010). 
Our work brings existing literature into a common empirical and econometric framework by 
closely identifying the sources of differences and attempting to reconcile them. 

We find that most of the differences in results of previous studies may be due to the use of 
different datasets and RPS indicators. We are able to reconcile most of these differences while 
introducing a more advanced set of controls that explains much of the difference between 
effective and ineffective RPS policies. Specifically, while we find a negative or insignificant 
impact of RPS on RES-E deployment in most of our basic specifications, it appears to be driven 
by measureable factors including the presence of outlier states in our sample, the influence of 
other RPS features, and inter-state trading effects. When we account for these factors, the effect 
of RPS stringency on RES-E appears to turn positive but with substantial caveats. 

We have introduced a fairly complicated set of results, so here we summarize the key takeaways 
from each step in our analysis: 

First, we examine the results of Yin and Powers (2010), who found that RPS stringency has a 
positive and significant impact on RES-E deployment. Their study was unique because it 
included a measure of RPS stringency (ISI) that incorporated information about policy design 
and market context.  Previous studies had used binary variables or simple nominal variables 
representing RPS strength and had found a consistently insignificant or negative effect of RPS on 
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RES-E.  We are able to replicate the significance and direction of Yin and Powers’ ISI 
coefficient (but not its magnitude) as well as most of the results from other previous studies. 

Second, we correct for the erroneous 2001 “jump” in the data presumably used by Yin and 
Powers (2010).  This reverses their results, causing the coefficient on ISI to become negative and 
significant. This is consistent with the negative impact of RPS found in Shrimali and Kniefel 
(2011) and is driven primarily by biomass.  

Third, we show that this negative result is largely attributable to Maine, which is an outlier. Once 
Maine is removed from the sample, it appears that ISI actually has no effect on RES-E 
deployment in most specifications. This is consistent with the insignificant results found by 
Carley (2009). Our matching analysis (which is not affected by Maine) nonetheless finds a 
negative effect of RPS on RES-E that is growing over time. However, the matching analysis is 
inconclusive because it employs a binary RPS variable only and does not account for policy 
design features. 

Fourth, in our most complete analysis we account for a more extensive list of RPS design 
features, market characteristics, and inter-state trading factors than in any previous analysis while 
also including those used in Yin and Powers (2010). When Maine is dropped from the sample 
and this full list of controls is included, we find a positive and significant effect on RPS 
stringency and significant coefficients on several other new variables. Specifically, our results 
imply that every 1% increase in RPS stringency results in an approximately 0.3% increase in 
renewable share. Thus, it appears that much of the negative or insignificant effect of RPS 
stringency in more basic specifications is actually explained by other RPS features. However, 
this result comes with many caveats, as it is not robust to relatively small changes in 
specification. 

In sum, the experience of U.S. states has shown that enacting a strong RPS does not guarantee an 
increase in RES-E. In some cases, RPS may be better thought of as a “floor” to RES-E 
investment rather than a driver of investment. However, we have identified and analyzed several 
policy design features, market characteristics, and trading effects that may explain much of the 
difference between effective and ineffective policies. Our study is the most advanced to date in 
parsing out those factors. 

One important contribution is that we identify and begin to quantify an inter-state trading effect.  
The presence of RPS policies in neighboring states supports in-state RES-E deployment, but as 
cross-border trading is allowed and the trading zone becomes larger, in-state deployment appears 
to decrease in most states and concentrate in a few states—presumably where it is most cost-
effective. This effect is increased in states with fewer trading restrictions. We also find that REC 
unbundling increases renewable share by 2-3%; state provisions to allow long-term contracting 
of RECs do not appear to have worked, at least in the short term; and limits on the maximum 
increase in electricity rates appear to reduce RES-E deployment. 
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In addition to RPS, we examine the impact of other major renewable policies. Similar to Menz 
and Vachon (2006) and Yin and Powers (2010), we find that the public benefit funds do not have 
a statistically significant impact. Further, similar to Delmas and Montes-Sancho (2011), Menz 
and Vachon (2006), Shrimali and Kneifel (2011), and Yin and Powers (2010), we find that 
mandatory green power options have an economically and statistically significant and positive 
impact – the presence of a mandatory green power option increases renewable deployment by 
about 4%. However, we also observe that the impact of this policy is reduced when it is present 
along with the RPS. Finally, we find that net metering policies have a significant and negative 
impact on renewable deployment, though this is likely due to data limitations.  

We also examine the impact of RPS (and other policies) on technology-specific renewable 
deployment. We show that the supposedly negative impact of RPS stringency is primarily driven 
by an equivalent result for biomass, again driven by the outlier state, Maine. Once Maine is 
removed from the sample, the RPS stringency parameter becomes insignificant. Examining the 
results for other policies, we observe that public benefit funds have actually a statistically 
significant positive impact on biomass deployment, indicating that this policy may primarily 
support biomass. Finally, the results for mandatory green option and net metering are primarily 
driven by the corresponding results for wind, indicating that these policies have mostly impacted 
wind.  

We believe that this is the most comprehensive work to date on the empirical effectiveness of 
RPS schemes. Our use of a variety of methodological approaches adds robustness to our 
conclusions. This work can help inform policymaking, but our results should be re-examined as 
RPS policies become more stringent. Currently, the minimum renewable share requirement is not 
binding in 9 of the 21 states that have effectively adopted an RPS (LBNL, 2012). As RPS 
policies become more stringent, thereby creating greater incentives for RES-E deployment, the 
power of econometric models to evaluate the effectiveness of policies and policy design 
characteristics will invariably grow. This paper has laid out an empirical strategy that has 
avoided the pitfalls of poor data sources, endogenous covariates – in part due to inter-state 
trading effects, and a one-off historic idiosyncrasy in Maine that created a powerfully distorting 
outlier. We hope that future research will incorporate the lessons learned in this paper but also 1) 
explore how RES-E trading affects in-state deployment more fully, 2) examine differences in 
RPS effectiveness due to market dynamics in different regions, 3) explore technology-specific 
effects in more detail, and 4) assess the cost-effectiveness of RPS policies.  
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8 Appendices 
Table 16 Classification 
1990 – 2000 classifications 2001 – 2012 classifications 
ANT Anthracite AB Agriculture Crop Byproducts/Straw/Energy Crops 
BFG Blast Furnace Gas ANT Anthracite Coal 
BIT Bituminous Coal BFG Blast-Furnace Gas 
COG Coke Oven Gas BIT Bituminous Coal 
COL Coal (generic) BLQ Black Liquor 
COM Coal-Oil Mixture CUR Water, Current 
CRU Crude Oil DFO Disillate Fuel Oil (all Diesel, and No. 1, No. 2, and No. 4 Fuel Oils) 
CWM Coal-Water Mixture GEO Geothermal 
FO1 No. 1 Fuel Oil JF Jet Fuel 
FO2 No. 2 Fuel Oil KER Kerosene 
FO4 No. 4 Fuel Oil LFG Landfill Gas 
FO5 No. 5 Fuel Oil LIG Lignite 
FO6 No. 6 Fuel Oil MWH Megawatt Hour (MWh) 
GAS Gas (generic) MSW Municipal Solid Waste 
GST Geothermal Steam NA Not Available at this Time 
JF Jet Fuel NG Natural Gas 
KER Kerosene NUC Nuclear (Uranium, Plutonium, Thorium) 
LIG Lignite OBG Other Biomass Gases (Digester Gas, Methane, and other Biomass Gases) 

LNG Liquified Natural Gas OBL Other Biomass Liquids (Fish Oil, Liquid Acetonitrite Waste, Medical Waste, 
Tall Oil, ethanol, Waste Alcohol, and other Biomass Liquids not specified) 

LPG Liquified Propane Gas OBS Other Biomass Solids (Animal Manure and Waste, Solid Byproducts, and 
Other Solid Biomass not specified) 

MF Multifueled OG Other Gas (Coke-Oven, Coal Processes, Butane, Refinery, Other Process) 
MTH Methanol OTH Other (Batteries, Chemicals. Hydrogen, Pitch, Sulfur, Misc. technologies) 
NG Natural Gas PC Petroleum Coke 
PC Petroleum Coke PG Propane 
PET Petroleum (generic) PUR Purchased Steam 
PL Plutonium RC Refined Coal 

REF Refuse, Bagasse and all 
other nonwood waste RFO Residual Fuel Oil (Include No. 5, and No. 6 Fuel Oil, and Bunker C Fuel 

Oil) 
RG Refinery Gas SG Synthetic Gas, other than coal-derived 
RRO Re-Refined Motor Oil SGC Coal-Derived Synthetic Gas 
SNG Synthetic Natural Gas SLW Sludge waste 
STM Steam SUB Subbituminous Coal 
SUB Subbituminous Coal SUN Solar (Photovoltaic, Thermal) 
SUN Solar TDF Tires 
TOP Topped Crude Oil TID Water, Tides 
UR Uranium WAT Water, Conventional or Pumped Storage 
WAT Water WC Waste/Other Coal (Culm, Gob, Coke, and Breeze) 

WD Wood and Wood Waste WDL Wood Waste Liquids (Red Liquor, Sludge Wood, Spent Sulfite Liquor, and 
other Wood Related Liquids not specified) 

WH Waste Heat WDS Wood/Wood Waste Solids (Paper Pellets, Railroad Ties, Utility Poles, Wood 
Chips, and Other Wood Solids) 

WND Wind WH Waste Heat 
OT Other WND Wind 

  WO Oil-Other, and Waste Oil (Butane (liquid), Crude Oil, Liquid Byproducts, 
Propane (liquid), Oil Waste, Re-Refined Motor Oil, Sludge Oil, Tar Oil) 

  WV Water, Waves 
The grey cells indicate non-hydro renewable energies. 
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Figure 5 Line Plot of RES-E capacity ratio by state 
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