
Cartwright, Edward

Working Paper

Contagion and the emergence of convention in small
worlds

Department of Economics Discussion Paper, No. 04,14

Provided in Cooperation with:
University of Kent, School of Economics

Suggested Citation: Cartwright, Edward (2004) : Contagion and the emergence of convention in small
worlds, Department of Economics Discussion Paper, No. 04,14, University of Kent, Department of
Economics, Canterbury

This Version is available at:
https://hdl.handle.net/10419/68078

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/68078
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 
 

Contagion and the Emergence of  
Convention in Small Worlds 

 
Edward Cartwright 

University of Kent 

October 2004 

 

Abstract 

We model a simple dynamic process in which boundedly rational agents 
learn through their interactions with others. Of interest is to study the 
process of contagion where by one action `spreads throughout the 
population' and becomes conventional. We vary the network of player 
interaction between a regular lattice and a random network allowing us to 
model contagion in small world networks. Through simulation results we 
highlight the importance of network structure on both the possibility of 
contagion and the rate of contagion. 
 
JEL Classification: C70, C72, C62 
 
Keywords: Best reply, risk dominant, contagion, small world. 
 
Address for correspondence: Edward Cartwright, Department of 
Economics, University of Kent, Canterbury CT2 7NP. Tel +44 (0)1227 
823460. email: E.J.Cartwright@kent.ac.uk.  



1 Introduction

A large literature has addressed the issue of myopic learning in coordination
games (see Young 1998 and Fudenberg and Levine 1998). Of principal inter-
est has been to address the issue of equilibrium selection. It has been widely
demonstrated that in two strategy coordination games the risk dominant
strategy emerges as the �long run equilibrium�. Crucial, however, to inter-
preting this conclusion is to have some understanding of how long the long
run may be. Ellison (1993), Blume (1995) and Cartwright (2004), amongst
others, demonstrate that convergence rates depend on the matching network
of player interaction and further, depending on this network, convergence
times can range from economically �realistic� to �unrealistic�. The prior lit-
erature has, however, focussed for the most part on a particular form of
network - namely lattice networks. The primary motivation for the cur-
rent paper is to consider a more general class of matching networks and, in
particular, to evaluate the stability of equilibrium in small world networks.

To illustrate the issues a simple example may be useful: Play evolves
other a number of discrete periods. At the start of each period, simultane-
ously, each of n computer users must decide whether to use software �good�
(G) or software �not so good� (B). During the period, computer users inter-
act through a series of pairwise matchings. Whenever two computer users
who have chosen G interact they each receive a payoff of 2. If two computer
users who have chosen B interact they each receive a payoff of 1. Finally, if
two users interact who have chosen different software they each get a payoff
of 0. �Everybody choose G� and �everybody choose B� are Nash equilibrium
of this game. Intuition would suggest that strategy G - the risk dominant
strategy - should emerge as a long run convention. Suppose, however, that
every player is currently playing B. If we consider it unlikely that a player
would choose software G when everybody else is choosing B it is clearly
questionable whether a transition from B to G is plausible.

Crucial is the �stability� of the equilibrium to play B. More speciÞcally,
suppose that each player behaves myopically in choosing the software that
would have maximized his payoff in the previous period. Let the stability of
the equilibrium to play B be represented by the number of players that must
play G in the initial period in order for software G to be selected by others
and ultimately become, over time, conventional. If this number is small then
we consider the equilibrium to play B to be unstable - a transition from a
state in which all players play B to one where all play G could be seen
as �realistic� if we allow some player �experimentation�. Conversely, if the
number is large then we consider the equilibrium to play B to be stable -
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even if we allow player experimentation, the transition from a state in which
all players play B to one where all play G could be seen as �unrealistic�.

The previous literature (e.g. Ellison 1993, Blume 1995, Chapter VI of
Young 1998 and Morris 2000) has demonstrated that the stability of B as
a convention will depend on the matching network - in the context of the
example this equates to which computer users interact with each other.
With the notable exception of Morris (2000) the literature has focussed on
a particular form of matching network - namely lattice networks. This has
led to results in respect of network size with the distinction drawn between
local and global networks. Lattice networks have, however, a very particu-
lar structure and do not appear particular representative of observed social
networks. It thus appears crucial to model more general interaction struc-
tures and, in particular, to model interaction structures that more closely
resemble those observed in social interaction.

The approach taken in this paper is motivated by the literature on small
world networks (e.g. Watts 2000). This literature essentially builds on two
principles. First, many observed social networks have so called small world
characteristics; more formally they have two properties: (a) a high amount
of clustering or, equivalently, a large overlap in the interaction sets of agents
and yet (b) the path length between any two individuals is small. Second,
small world networks can be seen as intermediate between lattice networks
(which have property (a) but not (b)) and random networks (which have
property (b) but not (a)).

As already discussed, lattice networks have been the subject of a large
literature. The broad conclusion of that literature is that the risk dominated
equilibrium is unstable in lattice networks if each player interacts with a
relatively small number of players. In Cartwright (2004) we consider random
networks and Þnd that, even if player interact with only a small number
of other players, equilibria are stable. In this paper will make use of a
framework for modelling interaction structures intermediate between that
of lattice and random networks allowing us to consider equilibrium stability
in small world matching networks.

Our main conclusion will be that the risk dominated equilibrium is unsta-
ble in small world networks provided that players are not �nearly indifferent�
between strategies. Thus, stability in small world networks is comparable to
that of local interaction on a regular 1 lattice. One particularly interesting
aspect of this result is that it demonstrates the potential instability of risk
dominated equilibria in networks where the path length between players is
relatively short. Previous results demonstrating instability of the risk dom-
inated equilibrium (see, in particular, Morris (2000)) assume a low neigh-
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borhood growth property implying long path lengths. Our research would
suggest that, while being sufficient, a low neighborhood growth property is
not necessary for equilibrium instability. What does appear necessary is a
high amount of clustering. Note that this distinction can only be made by
considering small world networks precisely because these networks do not
satisfy the �normal� relationship between clustering and path length charac-
teristics.

That the risk dominant strategy will realistically emerge as conventional
will depend not only on the stability of the risk dominated equilibrium but
also on the rate of contagion of the risk dominant strategy once it is em-
bedded within the population. This latter effect is likely to be of secondary
inßuence relative to the former but may still be important. Previous results
(see in particular Blume 1995) in treating interaction on a regular lattice
have shown that the rate of contagion is relatively slow in local networks and
fast in global networks. This would suggest a trade off between instability
of the risk dominated equilibrium and a slow rate of contagion. Intuitively,
however, it seems possible that the rate of contagion will, in general, be
related to the average path length between players. This opens up an in-
teresting possibility that in small world networks we could observe both
instability of the risk dominated equilibrium and a fast rate of convergence
to the risk dominant equilibrium. In fact, we Þnd this to typically not be
the case, with the rate of contagion in small world networks being relatively
slow and similar to that of local interaction on regular 1 lattice. Thus, the
rate of contagion does not appear closely linked to the path length between
players. Interestingly, however, we do observe for particular types of small
world network the hypothesized relationship. Thus, in certain networks we
observe both instability of the risk dominated equilibrium and a fast rate of
convergence to the risk dominant equilibrium.

We proceed as follows: Section 2 introduces the dynamic and additional
notation. In Section 3 we discuss different types of network. In Section 4
we set our approach before providing results in Sections 5 and 6. Section 7
concludes.

2 The Learning Dynamic

There exists a Þnite population of players N = {1, ..., n}. Members of the
population are linked by an (undirected) matching network represented by
matrix R = [rij ]. If rij = 1 there is an edge between players i and j and if
rij = 0 there is no edge between players i and j. If there is an edge between
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two players i and j then we say, interchangeably, that i and j are neighbors
or that i and j interact with each other. We denote by (i, j) an edge linking
players i and j. For each player i ∈ N we denote by R(i) ⊂ N the set of
neighbors of i.

Given any two distinct players i, j ∈ N we denote by τ(i, j) the distance
between i and j in the matching network. Distance is deÞned by the min-
imum number of edges that need to be traversed to go between i and j.
Thus, for example, τ(i, j) = 1 if and only if i and j are neighbors. For each
player i ∈ N we set τ(i, i) = 0.

Play proceeds over an indeÞnite number of discrete time periods, indexed
t = 0, 1, 2, .... In each period every member of the population chooses one of
two strategies G or B. A strategy vector is given by a vector s ∈ {G,B}N
where si is the strategy of player i. Let S denote the set of strategy vectors.
We denote by s(t) the strategy vector in period t. Thus, s(0) is the initial
strategy vector.

Given strategy vector s ∈ S we denote by g(s) the number of players
playing strategy G. We say that strategy G is conventional if g(s) > n

2 ; that

is, if half of the population are playing it. Let
−→
B denote the strategy vector

where every player plays B and
−→
G the strategy vector where every player

plays G. Thus, g
³−→
B
´
= 0 and g

³−→
G
´
= n.

There exists a threshold value q. In each period t > 0 every player i ∈ N
is assumed to choose strategy G if and only if proportion q or more of those
players with whom he interacts played G in period t− 1.1 Note that every
player revises his choice of strategy in every period. It will be assumed
throughout that 0 < q < 0.5 implying a bias in favor of strategy G.

The above behavior gives rise to a deterministic dynamic that we refer
to as a best reply dynamic. We denote the dynamic by D(s,R, q) where s is
the initial state, R the reference network and q the threshold value. Given
any initial state s ∈ S the long run dynamics of the best reply dynamic
D(s,R, q) can be traced out with certainty. Note that both −→G and

−→
B are

absorbing states.

3 Networks

We wish to contrast networks that have differing structures. Two common
measures of network structure are characteristic path length and clustering

1The reference network R and threshold value q are assumed to be constant over time.
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coefficient.2 After deÞning the characteristic path length and clustering
coefficient we introduce the type of networks we will model in this paper.

The characteristic path length L of matching network R is a measure of
the typical distance between players in the network.3 Formally, deÞne Li as
follows,

Li =
1

n− 1
X
j∈N
j 6=i

τ(i, j)

The characteristic path length L is deÞned as the median value of Li, taken
over all players i ∈ N . Thus, if a network has a characteristic path length of
x this suggests that on average the shortest path length between two players
is x.

The clustering coefficient C is a measure of the cliquishness of a network.
Formally, deÞne Ci as follows,

Ci =
1¡|R(i)|
2

¢ X
j∈R(i)

X
l∈R(i)
l 6=j

rjl

Note that
¡|R(i)|

2

¢
is the total number of edges that there could be between

the neighbors of player i while
P
j,l rjl is the actual number of edges. The

clustering coefficient C of network R is deÞned as the mean value of Ci. If
a network has a clustering coefficient of C this would suggest that, for any
three players i, j, k ∈ N , if j, k ∈ R(i) then j ∈ R(k) with probability C.

3.1 Regular 1 lattice

A regular 1 lattice of degree k has the property that each player i ∈ N is
neighbors with the nearest k2 players to each side. Thus, player i interacts
with players i ± d (modn) where 1 ≤ d ≤ k

2 . Each player has, therefore, k
neighbors. Ellison (1993) primarily treats interaction on a regular 1 lattice
while Blume (1993, 1995) treats interaction on a 2 lattice.

3.2 Random regular networks

A model of random networks consists of a set of networks M and a proba-
bility distribution over that set p. Thus, for example, M may be the set of

2A third characteristic is network size - the total number of edges. This is something
we will keep constant.

3Our deÞnitions of the charactersitc path length and clustering coefficient are standard
- see, for example Watts (2000).
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all networks that have m edges and p selects amongst them equally. This
particular model is not very useful for our purposes; for example, there will,
almost surely, be players who interact with no player. An alternative, as
taken by Cartwright (2004) is to consider random regular networks. Let
G(n, k) denote the set of all networks that have n vertices and where each
vertex has k edges. We refer to a network as a random regular network of de-
gree k if it was randomly selected from the set G(n, k).4 [Models of random
networks and random regular networks are covered in detail by Ballobas
2001].

3.3 Small worlds

Between the extremes of a regular 1 lattice and a regular random network
we can conceive of networks with �varying degrees of randomness�. To model
this we make use of the concept of a β-graph as deÞned by Watts (2000).
[The material covered in this section is treated in more detail by Watts
(2000)] A β-graph, where β ∈ [0, 1] is constructed using the following algo-
rithm:

1. begin with a perfect regular 1-lattice of degree k.

2. taking each player i ∈ N in turn consider the edge between player i and
his nearest neighbor in a clockwise sense i+1. With probability β the
edge (i, i+ 1) is rewired. If the edge is rewired then it is deleted from
the network and player i is randomly linked to a player j for which
there is no existing link to form an edge (i, j).5 With probability 1−β
edge (i, i + 1) is not rewired in which case the edge remains and the
algorithm continues.

3. taking each player i ∈ N in turn consider, the edge between i and its
second nearest neighbor in a clockwise sense (i, i+2) for rewiring, and

4In the simulations, reported below, we did not consider random regular networks.
Instead, as we explain immediately below, we considered a form of random network where
the number of neighbours of a player can very between k

2
and (theoretically) n− 1. The

mean number of neighbours of a player is k. To the best of our knowledge there are no
results on the charactersitics of networks of this form. Our strong intuition, however,
is that these types of network will have almost identical properties to those of random
regular networks. We base this presumption on the fact that each player must interact
with at least k

2
players. Note that this immediately overcomes the principal problem (for

our purposes) of other models of random networks where some players almost surely have
no neighbours.

5Note that edge (i, i+ 1) could be deleted and then immediately reinstated.
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so on. In all there are k/2 rounds of the rewiring process as outlined
in stage 2 of the algorithm.

We note that in any β graph each player has at least k
2 neighbors and

the average number of neighbors is k. If β = 0 then the resulting network
is a regular 1 lattice - no edges are rewired. If β = 1 then the network will
resemble a random regular network - all edges are rewired. In varying β
between these two extremes we can generate a range of different networks.

Figure 1 [all Þgures follow the Conclusion] illustrates how the clustering
coefficient and characteristic path length vary with β (when n = 1000 and
k = 10). Note that L varies between 3.3 and 46.65 while C varies between
0.009 and 0.666. The difference in structure between a regular 1 lattice and
random network are apparent and important. Note also the possibility of
small world networks. Formally, we say that a network is a small world
network if it has a relatively small characteristic path length and relatively
large clustering coefficient. We observe small world networks for a value of
β around 0.01 to 0.1.

4 Matching networks and stability

In this section we set out our approach and summarize results concerning
the two extreme cases of a regular 1 lattice and random regular network.

4.1 Clusters

We say that a strategy vector s has a cluster of size D centered on player i
if and only if there exists integer eτ such that,
1. g(s) = D,

2. if τ(i, j) < eτ then sj = G,
3. if τ(i, j) > eτ then sj = B,

The Þrst condition states that D players are playing strategy G. The second
and third conditions state that all those sufficiently close to i are playing G
and all those sufficiently far away are playing B. This leaves those players
at distance eτ from i who may be playing either G or B. We refer to eτ as
the radius of the cluster.
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4.2 Simulation approach

Given a network R, let s(0) be an initial state that has a cluster of size D
centered on some player i and consider the best reply dynamic D(s(0), R, q).
The evolution of the dynamic can be mapped out and the number of players
playing strategy G recorded. Thus, given values for β, n, k, q and D we sim-
ulate the best reply dynamic by randomly generating a β-graph, randomly
picking a player i, randomly choosing an initial state that has a cluster of
size D centered on player i and then running the best reply dynamic. Data
recorded included whether or not strategy G became conventional, that is,
whether there existed some t > 0 such that g(t) > n

2 , the characteristic path
length and clustering coefficient of the network, and whether g(t) exceeded
values other than n

2 and if so the number of periods it took to do so. We
discuss this data in more detail as we proceed.

4.3 Stable and unstable

Our principal objective is to consider the stability of state
−→
B . Under the

best reply dynamic
−→
B is an absorbing state and so its stability is not under

question. Suppose, however, we consider a scenario in which players may
switch to alternative G even if this is not a best reply. For example, a
player i may be able to �persuade� those players �near to him� in the network
to �experiment with G�. [Note that at no point will we formally model this
possibility]. Howmany people does i need to persuade to experiment in order
for the best reply dynamic to converge on states where G is conventional?
If this number is small or, more speciÞcally, independent of n then we might
think of

−→
B as unstable. Conversely, if the number is large and increasing in

n then we might think of
−→
B as stable.

The issue of stability can be highlighted by considering the extreme cases
of a random regular network and a regular 1 lattice. The following two
propositions (somewhat informally stated) are proved in Cartwright (2004).
(Proposition 1 is easily derived from Ellison (1993) or Blume (1993)).

Proposition 1: If R is a regular 1 lattice of degree k then given any initial
state with a cluster of size k + 1 the best reply dynamic converges on state−→
G .

Proposition 2: Let qk > 1.6 Given any integer D and any real number
ε > 0, as n → ∞ for almost every network in G(n, k) and any initial state

6That is, a typical player plays G only if at least two of his neighbors played G in the
previous period.
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with cluster of size D the probability that the best reply dynamic converges
to state

−→
B is at least 1− ε.

Thus, in a regular 1 lattice the state
−→
B is relatively unstable and in a random

regular network relatively stable.

5 The data on stability

To question the stability of
−→
B for intermediate values of β we look to measure

(given β, n, k, q) what values of D are consistent with strategy G becoming
conventional for some t > 0. The procedure we used can be detailed as
follows: a β-graph was generated. Fixing a value of D ten simulations of
the best reply dynamic were run (with a randomly generated initial state
that had a cluster of size D). By incrementally increasing D we recorded:
(i) the minimum D such that G became conventional in at least one of ten
simulations (denote this DL) and (ii) the minimum D such that G became
conventional in all ten simulations (denote this DU). The reported values of
DU andDL are the mean average values from repeating the above procedure
in generating many networks for the given value of β.7

We treat DU and DL as measures of the stability of
−→
B . The larger

is DL and DU then the more stable it would appear is
−→
B . Clearly, the

above procedure is somewhat arbitrary but we feel is as good as any other
in providing bounds on the cluster size for which G can be seen to become
conventional.8 Certainly, the data (Figures 2-4) appear to give a reliable
picture and experimentation with all aspects of the procedure did not change
the �look of this data�.9

We present our results. Figures 2, 3 and 4 (and Tables A1 - 7 in the
Appendix) give the recorded estimates ofDL and DU . Figure 2 presents the
data for the case where n = 1000 and k = 10; i.e. there are 1000 players and
on average a player has 10 neighbors. The data conÞrm that

−→
B is relatively

unstable when β ≈ 0 and stable when β ≈ 1. There is also clear evidence

7Typically, �many� equated to 20 different networks. There was, however, vary little
observed variance in the values of DL and DU between the different networks (for the
Þxed β).

8Note that given any β andD there is some probability that G will become conventional
and that probability will (realistically) be intermediate between 0 and 1. It will thus
inevitably be a matter of interpretation as to whether we judge G as likely or not to
become conventional.

9The particular procedure used had the beneÞts of saving on computer time.
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of an increase in the stability of
−→
B as β increases. Indeed, the data would

suggest the following conjecture,

Conjecture 1: Given values of N, k and q there exists a critical value β∗

such that if β < β∗, almost surely, for any β-graph R and any initial state s
that has a cluster of size k+1 the best reply dynamic D(s,R, q) will converge
to a state where G is conventional. Further, β∗ is an increasing function of
q.10

Thus, for sufficiently small β the stability of
−→
B is similar to that of a

regular 1 lattice. Figure 4 provides results for a range of values of n and k.11

It is worth noting that, even when β = 1, many players have 10 neighbors;
so, for example if q = 0.35 this implies that a typical player will choose G if
and only if she has 4 or more neighbors who played G in the previous period.
This implies that the crucial variable is not so much q as 1

k dqke where d·e
denotes the nearest integer greater than or equal to ·. For example, having
q = 0.475 and k = 20 would appear the analogue to having q = 0.45 and
k = 10 in that in both scenarios the typical player will only play G if half
or more of his neighbors played G in the previous period. With reference to
Figure 4 we suggest the following.

Conjecture 2: The critical value β∗ is invariant to changes in n, q and k if
1
k dqke is held constant.

Given that we are interested in modelling large populations, crucial is to
observe whether the values of DU and DL are independent of n. Proposi-
tions 1 and 2 suggest that they should be when β = 0 but not when β = 1.
Consider the doubling of n from 1000 to 2000 while k remains constant at
10. We appear to observe that for β < β∗ both DU and DL are invariant to
the change in n; this is to be expected given Conjecture 1 and Proposition 1.
If, however β > β∗ we observe a doubling of both DU and DL as n doubles.
Thus, it appears the DU and DL change proportionally to changes in n.
Changing qk while keeping n Þxed appears to have little effect on DU and
DL. The following appears consistent with the data.

10Note that an alternative would be to think in terms of a critical value of 1
k
dqke (see

below) for each value of β. We prefer using a critical value of β on the basis that β is
continuous while 1

k
dqke is discrete and, for small k, can take relatively few values.

11Additional values of n and k were considered and the picture remained as consistent
as Figure 3 suggests.
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Conjecture 3: For β > β∗, Þxed k and q and any D the probability that
G becomes conventional (for randomly constructed β-graphs and random
initial states with cluster of sizeD) is decreasing in the size of the population.

Conjecture 3 would imply that in large populations
−→
B is stable when

β > β∗. It would also imply a very distinct change is observed between
β < β∗ and β > β∗. One important issue is what level the critical value β∗

takes as a function of n, k and q. Of particular interest is to see on what
side of the critical value we Þnd small world networks. Let βs denote a value
of β consistent with β-graphs that have small world characteristics. Figures
2 and 4 would suggest that βs < β∗ when 1

k dqke ≤ 0.4 but that βs > β∗

when 1
k dqke = 0.5. Figure 4 presents results where n = 3000 and k = 40;

the larger value of k permits us to look at a range of q values between 0.4
and 0.5. The data would certainly suggest the following,

Conjecture 4: If 1k dqke < 0.4 then βs < β∗.

More generally it appears that strategy vector
−→
B will typically be un-

stable in small world networks unless the critical value is close to 0.5; that
is, unless players only marginally favor strategy A. This is an important re-
sult. First, and most importantly, it suggests that in small world networks,
even if a risk dominated strategy is a current convention, the experimenta-
tion of relatively few can tip the dynamics in favour of the risk dominant
strategy. Thus, it would not be unreasonable to talk of the risk dominant
strategy as being likely in the medium to long run. Second, it answers an
open question in the literature as to when the risk dominated equilibrium
is unstable in this way. Previous results (Ellison 1993, Blume 1993, 1995,
Young 2001) suggest that whenever the clustering coefficient is high the risk
dominated equilibrium will be unstable. Morris (2000), however, shows that
a low neighborhood growth property is a sufficient condition for instability
of the risk dominated equilibrium. In the terminology of the current paper
this low neighborhood growth property is essentially equivalent to a high
characteristic path length. Given that �in most networks� a high cluster-
ing coefficient and a high characteristic path length go hand in hand it is
difficult to distinguish what is really causing the instability of the risk dom-
inated equilibrium. In considering small world networks we can answer this
question. Our results suggest that the clustering in the network is the prin-
cipal determinant of the stability of the risk dominated equilibrium. More
conclusively we Þnd that a high characteristic path length is not a necessary
condition for the risk dominated equilibrium to be unstable.
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6 Other issues

While our central motivation was to consider the stability of
−→
B we brießy

consider in this section two other questions of interest. First, how quickly
strategy G is adopted by players if G does become conventional. Second, the
possibility of long run outcomes in which both strategies G and B coexist.

6.1 The rate of contagion

One motivation for considering the stability of
−→
B was to gain some un-

derstanding of whether the weighting times for strategy G to become con-
ventional could be seen as economically plausible or not. We argued that
the stability of

−→
B is crucial to addressing this issue as it reßects the like-

lihood that experimentation could �tip the balance� in favor of strategy G.
A second determinant of the expected weighting time for strategy G to be
conventional will be the time it takes for players to take up strategy G once
the balance has been tipped in its favor. As discussed by Blume (1995) the
overall weighting time for strategy G to become conventional will be pri-
marily determined by the Þrst of these factors but the second factor is also
clearly of interest.

To obtain some data on the speed of convergence simulations were run as
follows: a β-graph is generated and the best reply dynamic simulated with
an initial cluster size of D∗ (see below); recorded (for the case of n = 1000)
are the number of periods before 500, 600, 700 and 800 players are playing
strategy G.12 The choice of D∗ is clearly important and we chooseD∗ ≈ DU
where DU is the value noted earlier in Section 4.1. We highlight that the
value of DU is speciÞc to the value of β and as a consequence relatively
little can be gained by comparing across β the number of periods it takes
before 500 players are playing strategy G. The choice of D∗ reßected two
considerations (1) to guarantee that strategy G become conventional in the
majority of cases and (2) to have as few players as possible playing strategy
G in the initial period in order that the contagion process is not overly driven
by the initial state.13

Figure 5 (see also table A8) provides results for the case where n = 1000
and k = 10. Figures 6, 7 and 8 (see also tables A9 - A11) provide analogous

12One data point (for Þxed β and D) was the average of 500 simulations as given by 50
different β-graphs and 10 different initial strategy vectors with a cluster of size D for each
β-graph.
13Having experimented with alternative values of D∗ our results seem robust to the

choice of initial strategy. Also, in the majority of cases D∗ < k + 1.
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results for differing values of n and k. One notable feature of the data is the
apparent proportionality between the number of periods elapsed and the
number of players playing G. Let ∆ denote the time taken for the number
of players playing G to increase by 100. It appears that ∆ is independent of
the number of players playing G. Comparing Figures 5 and 7 (and 6 and 8)
we observe that ∆ appears highly dependent on n. This would imply long
weighting times in large populations. Also, comparing Figures 5 and 6 (and
7 and 8), we observe that a ceteris paribus increase in k decreases ∆ except
when q is near to 0.5.

A key issue is how ∆ varies with β. One clear observation is that ∆
appears to be a decreasing function of β. That is, as we move to more
random networks the rate of contagion is quicker. Generally, however, we
observe that in small world networks the value of ∆ is relatively high and
the same as that in a regular 1 lattice.14 It may have been conjectured that
the rate of contagion would be related to the characteristic path length (as
will be the case when q = 0.01). Our results clearly suggest the contrary.

One aspect of the data is, however, worth highlighting: While the rate
of contagion does not appear to be fast for small world networks in general
for particular values of β we do obtain both a small world network and
relatively fast rates of convergence. In particular, we observe this for values
of β around 0.1.15 Table 1 provides results of simulations in which we directly
compared the cases β = 0, 0.1 and 1.

β L C q = 0.05 q = 0.15 q = 0.25 q = 0.35 q = 0.45
NC TC NC TC NC TC NC TC NC TC

0 50.45 0.667 1 30 1 37 1 50 1 75 1 150
0.1 4.42 0.49 1 1 1 2 1 11 0.07 66 0 −
1 3.26 0.009 1 1 0.02 1 0 − 0 − 0 −

Table 1: Comparing properties of the best reply dynamic with n = 1000
and k = 10. Recorded are the characteristic path length (L), the clustering

14Two exceptions are when q = 0.01 and q = 0.45. When q = 0.01 the rate of contagion
will be directly related to the characteristic path length - hence, the observed results (see
Figure 1). Interpreting the results for q = 0.45 is difficult given the neccessarily large
value of D∗ needed to guarantee convergence. How much can be read into the results is
thus open to question but this does seem an issue worth pursuing further.
15Note that this cannot be due to the choice of D∗ as D∗ was typically less than k + 1

for β around 0.1.
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coefficient (C) and for differing values of q the proportion of simulations out
of 500 (NC) where strategy G became conventional given a cluster size of
k + 1 = 11 and, if it did so, the time taken (TC) for the number of players
playing G to increase from 500 to 800.

The results in Table 1 suggest the interesting possibility that in certain
networks we have that both (1)

−→
B is relatively unstable and (2) the weighting

time for G to become conventional once �the dynamics are in its favor� is
relatively short. These two factors clearly combine to suggest a relatively
short weighting time for strategy G to become conventional. As can be seen
in Table 1, for qk ≤ 3 we do observe, when β = 0.1 both relative instability
of
−→
B and a relatively fast rate of convergence.

6.2 The coexistence of multiple strategies

Typically we observed that the best reply dynamic converged to either
−→
B

or
−→
G . There is, however, the potential for long run dynamics in which both

strategies B and G coexist. For results and discussion on the possible long
run existence of multiple strategies see Young (1998) or Morris (2000). To
obtain some data on the likelihood that multiple strategies coexist, in the
simulations discussed in the previous section 6.1, we recorded the number
of players playing strategy G in the absorbing state to which the dynamic
converged.16

The case of q < 0.45 was uninteresting with state
−→
G emerging in over

99% of simulations. The case of dqke = k
2 proves more interesting with the

results summarized in Figure 9. When β is close to 0 or 1 we rarely see
the long run coexistence of strategies. In small world networks, however,
we Þnd a dramatic increase in the possibility of coexistence of strategies.
Indeed the coexistence of strategies is both likely and signiÞcant: signiÞcant
in the sense that a signiÞcant number of players may be playing strategy B
even if strategy G is conventional. For example, when β is around 0.01 we
observe that in over one half of the simulations in which strategy G becomes
conventional more than one Þfth of the population typically continue to play
strategy B in the long run.17

16There is the potential for non-singleton communication classes - or equilibrium cycles.
These appeared at most very few times and if they did occur the number playing G after
4000 periods is recorded.
17This cannot be due to insufficient time - it is a simple matter to check when an

absorbing state has indeed been reached.
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What are we to make of this result? The Þrst thing to note is that we
only observe the likely coexistence of strategies when qk is near k2 and are

thus in the range where
−→
B is relatively stable in small world networks. It

would seem therefore that in small world networks, if qk is near k2 , strategy
G can �survive� in the population without necessarily �spreading� through-
out the population. This is in contrast to random regular networks where
strategy G can only survive in the population by spreading throughout that
population.

7 Conclusion

We have consider a simple model of learning in which players interact
through a network. Of key interest was to consider the process whereby a
strategy can become conventional. It has long been known that the structure
of the interaction network can inßuence the likelihood of contagion (Ellison
1993, Blume 1995 and Morris 2000). In a companion paper (Cartwright
2004) we compare a regular lattice to random networks. The main contri-
bution of the current paper has been to consider interaction networks that
lie between the extremes of randomness and a regular lattice.

Of particular interest has been to consider interaction in small world
networks. Our interest in this is motivated partly by the fact that many
economic and social networks appear to have small world characteristics
(Watts 2000). Also, as small world networks lie somewhere between the
extremes of randomness and regularity we wished to question whether the
likelihood of contagion is more akin to that in random or in regular net-
works. The general conclusion we make is that contagion in the small world
networks that we model is comparable to that of a regular lattice. One
implication is that in small world networks a risk dominated equilibrium is
relatively unstable while the rate of contagion is relatively slow. We do Þnd,
however, that for certain small world networks that the rate of contagion can
be relatively fast and the risk dominated equilibrium unstable. Our results
certainly suggest that in treating small world networks it is not unreasonable
to talk of the risk dominant equilibrium as being the expected medium to
long run convention (of �a best reply dynamic with experimentation�) even
if the risk dominated equilibrium is the starting convention.

There seem two clear avenues for future research. First, to consider more
general models of small world networks. Here we consider a particular form
of small world network constructed using the algorithm of Watts (2000).
Our conjecture is that the risk dominated equilibrium is generally speaking

16



unstable in small world networks - stability being related to the clustering
in the network. Our results suggest, however, that the rate of contagion
can differ depending on the speciÞc form of the network. In particular,
there may be a class of networks that produce both instability of the risk
dominated equilibrium and a fast rate of contagion. One problem with
pursuing this avenue of research is a lack of algorithms for constructing
general small world networks. A second possible line for future research
is to consider heterogenous populations. That is a population in which the
critical value q differs across the population. Again, our conjecture would be
that the stability of the risk dominated equilibrium would not be altered by
this change but that the rate of contagion may be. In running preliminary
simulations with heterogenous populations we, in fact, found results similar
to those reported in this paper. A problem, however, is how to introduce
heterogeneity - in our simulations results were highly sensitive to the way
heterogeneity was introduced.18 Introducing heterogeneity, while being an
interesting possibility, is thus one we leave for future research.

18We considered the following, a player�s q is uniformly drawn from some interval
£
q, q
¤
.

Qualitatively we obtained the same results as reported in the paper. A slight change in
q and q could, however, lead to a case where strategy G became conventional for D = k
irrespective of β to one where it never became conventional for D = k irrespective of β.

17



8 Appendix

Table A1: Values of DU and DL for n = 1000 and k = 10.

q = 0.15 q = 0.25 q = 0.35 q = 0.45
β DU DL DU DL DU DL DU DL

0.0001 5 5 5 5 5.9 5.3 9.3 7.6
0.000373 5 5 5 5 5.8 5.2 35.1 9.6
0.0014 5 5 5 5 5.9 5.1 179.8 29.3
0.0052 5 5 5 5 6 5.2 257 111.9
0.0193 5 5 5 5 6.5 5.3 358.8 261
0.072 5 5 5.2 5 43.8 8.1 454.9 396.5
0.2683 5.1 5 15.9 5.8 208 176 467.4 440.2
1 19.5 14.6 104 95.1 268.6 259.6 436 427.2

Table A2: Values of DU and DL for n = 2000 and k = 10.

q = 0.15 q = 0.25 q = 0.35 q = 0.45
β DU DL DU DL DU DL DU DL

0.0001 5 5 5 5 5.8 5.3 28 7.4
0.000373 5 5 5 5 5.9 5.1 203.8 29.8
0.0014 5 5 5 5 6 5.2 381.5 97.3
0.0052 5 5 5 5 5.9 5.3 467 257.5
0.0193 5 5 5 5 6.2 5.5 674.8 556.2
0.072 5 5 5.1 5.1 62.3 14.5 877.5 799.3
0.2683 5.1 5 28.8 6.1 385.2 329.1 900.5 860.6
1 35.3 25.4 194.6 179.2 532 515.4 879 872.9

Table A3: Values of DU and DL for n = 3000 and k = 10.

q = 0.15 q = 0.25 q = 0.35 q = 0.45
β DU DL DU DL DU DL DU DL

0.0001 5 5 5 5 5.9 5.3 13.6 7.4
0.000373 5 5 5 5 6 5.1 400.2 38.5
0.0014 5 5 5 5 6 5.4 557.7 144.9
0.0052 5 5 5 5 6 5.2 688.1 429.9
0.0193 5 5 5 5 6.3 5.7 1005.2 823.9
0.072 5 5 5 5 76 29.4 1323.2 1203.2
0.2683 5.1 5 36 7.9 602.3 501 1348.4 1286.2
1 51.4 39 283.6 270.4 799 787.6 1317 1292.2
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Table A4: Values of DU and DL for n = 1000 and k = 20.

q = 0.15 q = 0.25 q = 0.35 q = 0.45
β DU DL DU DL DU DL DU DL

0.0001 5 5 7.4 7 11.3 10.2 27.4 13.8
0.000373 5 5 7.5 6.9 11.3 10.2 143 26.2
0.0014 5 5 7.4 7 11.3 10.1 265.3 92.7
0.0052 5 5 7.4 7.1 11.3 10.2 371 255.8
0.0193 5.1 5 8.1 7.2 12.1 10.4 475.8 396.2
0.072 5.6 5.1 10.1 8 14 11.4 477.7 426.7
0.2683 8.9 5.9 17 11.6 306.9 214 503.4 491.6
1 79.1 73.6 204.1 199.1 341.5 331 489.3 473.2

Table A5: Values of DU and DL for n = 2000 and k = 20.

q = 0.15 q = 0.25 q = 0.35 q = 0.45
β DU DL DU DL DU DL DU DL

0.0001 5 5 7.6 7 11.1 10.3 158.2 14.2
0.000373 5 5 7.4 7 11.2 10.2 391.5 88.2
0.0014 5 5 7.5 7 11.1 10.3 515.4 240.8
0.0052 5 5 7.7 7.1 11.4 10.5 696.7 549.2
0.0193 5.1 5 7.9 7 11.9 10.2 969.7 853.4
0.072 5.5 5.1 9.6 7.8 17.1 11.8 1038.5 972.3
0.2683 9 5.9 17.8 12.7 585 523.3 969.4 942.4
1 157.6 149.5 410 399 669.6 661.6 967 967

Table A6: Values of DU and DL for n = 3000 and k = 20.

q = 0.15 q = 0.25 q = 0.35 q = 0.45
β DU DL DU DL DU DL DU DL

0.0001 5 5 7.3 6.7 11.2 10.3 103.4 15.2
0.000373 5 5 7.6 7.1 11.2 9.9 589.6 124.9
0.0014 5 5 7.5 6.9 11.3 10.1 770.3 360.7
0.0052 5.1 5 7.3 6.8 11.4 10.1 1054.8 839.9
0.0193 5.1 5 8.2 7 12 11 1381.2 1245.3
0.072 5.7 5 9.6 7.6 14.1 11.4 1518 1421.2
0.2683 9.5 5.7 18 12.3 830.4 772.7 1441.2 1414
1 237.1 223 599 599 1014 995.2 1414 1414
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Table A7: Values of DU and DL for n = 3000 and k = 40.

q = 0.4125 q = 0.4375 q = 0.4625 q = 0.4875
β DU DL DU DL DU DL DU DL

0.0001 23.2 21.5 25.2 23.2 27.6 25.5 483.8 80.8
0.000373 23.3 21.5 25 23 27.6 25.2 801.9 383.2
0.0014 23.2 21.8 25.4 23.7 27.8 25.2 1066.2 827.7
0.0052 23.6 21.6 25.3 23.8 27.9 25.5 1507 1222.5
0.0193 24.8 22.6 27.2 24.4 659.2 183.6 1615.4 1357.2
0.072 29.6 26 1005.2 277.6 1341.8 1262.8 1503.6 1428
0.2683 1203.2 1025 1348 1298.6 1482 1461.6 1576.8 1554
1 1226 1226 1286 1286 1414 1414 1482 1482

Table A8: The number of periods taken for g(s) to increase from 500 to
800 (or in the case of q = 0.45 from 600 to 800) when n = 1000 and k = 10.

β q = 0.01 q = 0.15 q = 0.25 q = 0.35 q = 0.45
0.0001 27 38 50 75 114
0.000373 19 38 50 75 142
0.0014 10 38 50 75 100
0.0052 3 37 50 74 68
0.0193 1 19 49 73 51
0.072 1 3 28 62 28
0.2683 0 1 2 6 12
1 0 1 1 1 1

Table A9: The number of periods taken for g(s) to increase from 500 to
800 (or in the case of q = 0.475 from 600 to 800) when n = 1000 and k = 20.

β q = 0.01 q = 0.175 q = 0.275 q = 0.375 q = 0.475
0.0001 12 22 30 50 119
0.000373 8 22 30 50 141
0.0014 3 22 30 50 83
0.0052 1 21 29 50 56
0.0193 1 21 29 48 36
0.072 1 11 27 45 23
0.2683 0 1 3 9 8
1 1 0 1 1 1
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Table A10: The number of periods taken for g(s) to increase from 1000
to 1600 (or in the case of q = 0.45 from 1200 to 1600) when n = 2000 and
k = 10.

β q = 0.01 q = 0.15 q = 0.25 q = 0.35 q = 0.45
0.0001 50 75 100 150 232
0.000373 29 75 100 150 258
0.0014 10 74 100 150 164
0.0052 3 72 99 149 110
0.0193 1 25 97 147 68
0.072 1 3 37 101 41
0.2683 0 1 2 7 14
1 1 1 1 1 2

Table A11: The number of periods taken for g(s) to increase from 1000 to
1600 (or in the case of q = 0.475 from 1200 to 1600) when n = 2000 and
k = 20.

β q = 0.01 q = 0.175 q = 0.275 q = 0.375 q = 0.475
0.0001 19 43 60 100 257
0.000373 9 43 60 100 188
0.0014 3 43 60 100 134
0.0052 1 43 60 99 89
0.0193 1 42 58 97 33
0.072 0 14 54 89 41
0.2683 0 1 4 10 10
1 0 0 1 1 1
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