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Abstract

We consider a simple model that combines elements of search and
social learning. Acting in sequence, and observing the action adopted
by a previous agent, agents must search for an action. We explore why
agent heterogeneity may increase expected payoffs and demonstrate
that social learning may be most effective if agents are heterogenous.

∗The research reported here was supported by ESRC Grant RES-061-23-001, ‘Social
learning and the Theory of Search’.

1



1 Introduction

Economic agents must often search for, say, goods that are of high quality
or cheap price. Modelling such search has been the subject of a large litera-
ture (including Stigler 1961, Kohn and Shavell 1974, Rosenfield and Shapiro
1981). Often, however, agents begin search having observed the choice of one
or more other agent (McFadden and Train 1996, Bikhchandani, Hirshleifer
and Welch 1998, Banerjee and Fudenberg 2004). This means that costly
search could potentially be avoided by social learning and imitation. In this
paper we consider a simple model in which elements of search and social
learning combine.
To briefly outline the model: Agents must adopt some action where action

could be interpreted as, for example, choice of restaurant or grocery store.
Given uncertainty over, say, the quality of a restaurant or cheapness of a
grocery store agents can, as in a standard model of search, sample any number
of actions before committing to an adopted action. Agents are assumed,
however, to act in sequence with each agent being able to observe the action
adopted by the agent previous to him in the sequence. An agent can imitate
the action that he observes. Note that agents will be assumed rational and so
our approach is distinguished from much of the literature on social learning
where agents exhibit bounded rationality (e.g. Ellison and Fudenberg 1995).
The sequential nature of choice means that our model is similar to models

of herding (Bikhchandani, Hirshleifer andWelch 1998). One crucial difference
is that in herding models an agent only chooses once. Thus, an agent who
adopts an action based on social learning cannot ‘go back on his choice with
hindsight’. In our model an agent can imitate a previous agent, find that
imitating this agent did not produce the desired outcome and sample for
himself. For example, an agent can try the restaurant that some other agent
adopted, find that he does not like it, next time try some other restaurant
and continue to search until he finds a restaurant that he does like.
The obvious benefit from observing another agent’s choice is that an agent

can imitate and avoid ‘costly search’. For this to work requires that the agent
should like what he imitates. For example, if one agent’s ‘ideal restaurant’
is an others ‘worst choice’ then an agent who imitates may still be required
to pursue costly search if he is ‘not happy’ with the choice he imitates. This
would suggest that agents do best if preferences are homogenous. We shall
demonstrate, however, that preference heterogeneity may be optimal.
Agent heterogeneity can prove beneficial in terms of ‘accumulated learn-
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ing’. To illustrate contrast two cases. Scenario 1: agent 1 finds and adopts
an action that yields a ‘very high utility’. Agent 2 will imitate the action,
and provided preferences are not too heterogenous, will find that it yields
him a ‘very high utility’ and so adopt it. Thus, if agent 1 finds an action
that yields a ‘very high utility’ this will ‘get passed on to’ agent 3 and so on.
Scenario 2: agent 1 finds and adopts an action that yields a ‘just sufficient
utility’. Agent 2 will imitate the action. If agents 1 and 2 are homogenous
then agent 2 will also find the action yields a ‘just sufficient utility’ and so
adopt it. If, however, agent 2 has slightly different preferences to agent 1
then he may find that the imitated action yields a ‘not quite sufficient util-
ity’. In this case agent 2 will decide to search and may potentially find and
adopt an action that yields a ‘very high utility’. This need not be good news
for agent 2, who has the cost of search, but is good news for agent 3. In this
way heterogeneity can prove beneficial. In short, ‘high utility actions’ will
always get ‘passed down the sequence’ but ‘low utility actions’ get ‘weeded
out’ by preference differences.
In general, the consequences of heterogeneity are more search and this has

benefits and costs for a particular agent. The benefits are that heterogeneity
results, as seen above, in more accumulated sampling so that an agent well
into the sequence can expect to imitate a ‘high utility action’. Heterogeneity
means, however, that each agent has a greater chance of having to perform
costly search himself. Characterizing these trade-offs through a heterogene-
ity function we provide a limit case. ‘Going below’ this limit case means
that payoffs are maximized if agents are identical: the costs of heterogeneity
outweigh the benefits. ‘Going above’ the limit case means that agents who
come later in the sequence do best if there is heterogeneity: the benefits of
heterogeneity eventually outweigh the costs.
Our results highlight the potential advantages of social learning. That

social learning can prove advantageous in a model of search would seem
obvious because it allows an agent to avoid the costs of search. We find,
however, more surprisingly, that social learning can do even better. It not
only allows agents to avoid the costs of search but also results in, on average,
higher utility actions being adopted. Thus, social learning results in both less
search and the adoption of more preferable actions. Interpreting our results
another way, agents would be willing to pay to observe the choice of some
other agent. The literature on social learning is diverse but often suggests
that social learning can lead to ‘inefficiencies’ if agents ignore private signals
to ‘follow the herd’ (e.g. Bikhchandani, Hirshleifer and Welch 1992). This
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can not be the case in our model where social learning proves unambiguously
beneficial to agents.
Preference heterogeneity has been considered in models of search and

social learning (e.g. McFadden and Train 1996, Smith and Sorenson 2000
and Goeree et. al. 2006). Our understanding, however, of the consequences
of preference heterogeneity for social learning still remain limited (Keller,
Rady and Cripps 2006). In this paper, we find that the benefits of social
learning may be greater if there is preference heterogeneity. Equivalently,
agents may pay more to observe others when there is agent heterogeneity
than when all agents are identical. This is a surprising result that illustrates
the importance of investigating further the relationship between preference
heterogeneity and social learning.
A more detailed interpretation of the results and discussion of related

literature is contained in Section 5. We shall illustrate the arguments using
a simple ‘uniformly distributed’ model. This is done for transparency and
generalizations are discussed in Section 4. Section 2 outlines the model,
Section 3 characterizes optimal behavior and provides the main results. All
proofs are contained in Section 6.

2 Model

There exists a set of agents N = {1, 2, 3, ...}, a set of actions X = [0, 1]
and discrete time periods t = 1, 2, .... In periods t = 1, 2, 3, .. agent 1 must
choose an action. He can choose an action by sampling or using experience
(both to be explained below). If agent 1 uses experience in period t1 then
agent 2 must choose an action in period t1+1, t1+2, .... He can sample, use
experience or imitate agent 1. If agent 2 uses experience in period t2 then
agent 3 must choose an action in periods t2+1, t2+2, .... He can sample, use
experience or imitate agent 2. And so on. Let xit denote the action chosen
by agent i in period t.
For each agent i there exists a utility function ui(x) : X → [0, 1]. Agent

i receives utility ui(x
i
t) in period t. If agent i uses experience in period ti

then he selects action b = maxt<ti ui(x
i
t) and we say that agent i has adopted

action bi := xiti. Note (the formal argument will follow) that once an agent
uses experience he uses experience in all subsequent periods and thus bi will
not change. If an agent samples then his action chosen is a random draw
from set X determined by distribution F [0, 1] where we use F [l, h] to denote
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the uniform distribution over interval [l, h].1 If agent i + 1 imitates then
he chooses action bi. That is he chooses the action adopted by the agent
previous to him in the sequence.
Agents act to maximize their (expected) discounted stream of utility us-

ing discount rate r. To avoid confusion we shall use utility to refer to the
in-period payoff and expected payoff to refer to the discounted stream of
utilities. A strategy for agent i dictates whether he should sample, use expe-
rience, or imitate in each period t > ti−1 conditional on the history of choices
made.
The assumption that agent i only chooses once agent i − 1 has used

experience is made for modelling convenience. Essentially we are modelling
a setting where agent i + 1 will begin search with ‘additional information’
from his observation of agent i. We could equivalently consider a model where
there exists only one agent at any time but this agent is periodically replaced.2

Note also that while, in principle, an agent may never use experience for
realistic parameter values one could expect experience to be used within a
‘reasonable number of periods’.
We are using what Kohn and Shavell (1974) call the experience case in

that an agent gets utility ui(xti) irrespective of whether he imitates, samples
or uses experience. More generally, one may want to impose, say, a fixed
cost to sampling and imitation. Our results, and the proofs as written, do
extend, however, without qualification to a general formulation for sampling
and imitation costs (such as that in Kohn and Shavell 1974).3 Note that
there are indirect costs to sampling (and imitation) if an agent expects to

1That is,

F [l, h](x) :=


0 if x < l

x−l
h−l if x ∈ [l, h)
1 if x ≥ h

.

2This does make the analysis less transparent. For example, if an agent expects to ‘live’
only a finite number of strategies it alters his optimal sampling strategy. Also, if agent i
has not used experience but is replaced by agent i+1 then i+1 will be obliged to continue
sampling. This is analytically irrelevant but does mean we cannot be so precise in saying,
for example, what agent 3 would do as compared to agent 2.

3Sampling costs prove irrelevant because we taken as given a switchpoint w (see the
next section). Sampling costs alter the value of w but nothing else. Thus, our results
remain valid. Imitation costs prove irrelevant because there are only two possibilities:
(i) imitation costs are low enough that all agents imitate or (ii) imitation costs are high
enough that no-one imitates. In case (i) our results remain valid. In case (ii) our results
change but in a trivial way.
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receive a lower utility by sampling than could have been achieved through
using experience.
We make a number of assumptions about the utility function ui. Note

that ui(x) itself is not known (otherwise agents have no reason to search) but
agents will be assumed to know how utilities are distributed across actions.

Assumption 1: If agent i samples then his expected utility ui(x) is a random
draw from [0, 1] determined by distribution F [0, 1].

Before detailing the remaining assumptions it is useful to briefly outline the
model with the aid of figure 1. For each action x there exist real numbers
ux and ux where ux ≤ x ≤ ux is such that if agent i chooses action x then
his payoff ui(x) is, ex-ante, a random draw on uncertainty interval [ux, ux] ⊂
[0, 1]. It must be emphasized that agent i’s payoff is not stochastic but just
unknown ex-ante. So if agent i chooses action x then he always receives utility
ui(x) but ui(x) could be anything between ux and ux. Equivalently we can
interpret the model (as in Goeree et. al. 2006) that when agent i chooses
action x he receives utility ui(x) = πx + vix where πx is a common-value
utility of action x and vix is a private-value utility of action x drawn from
some distribution fx. In our model we set πx = x and fx = F [ux−x, ux−x].
There is a degree of heterogeneity parameter δ ∈ [0, 1] that determines

the size of the uncertainty interval ux − ux. The smaller is δ then the larger
is the interval and thus the greater the heterogeneity in preferences or, put
another way, the relatively larger is the private-value utility. Specifically, if
δ = 1 then we set ui(x) = x for all x and so all agents are identical (see
Figure 1a). In this case, when agent i imitates agent i− 1 he knows that he
will receive the same payoff as agent i − 1. If δ = 0 then there is maximal
heterogeneity with, for example, the value ui(0.5) being a random draw from
interval [0, 1] (see Figure 1d). In this case, when agent i imitates agent i− 1
he can only form an expectation of how close his payoff will be to that of
agent i− 1.
In stating the values of ux and ux we define an upper bound h(x, δ) :=

1−δ(1−x), a lower bound l(x, δ) := δx and introduce a heterogeneity function
θ : X × [0, 1]→ [0, 1]. If x ≥ 0.5 then we set ux = θ(x, δ) and ux = h(x, δ) so
the value ui(x) is, ex-ante, uniformly distributed on interval [θ(x, δ), h(x, δ)].
If x < 0.5 then we set ux = l(x, δ) and ux = θ(x, δ) so the value ui(x) is, ex-
ante, uniformly distributed on interval [l(x, δ), θ(x, δ)]. The upper and lower
bounds h(x, δ) and l(x, δ) are fixed (essentially without loss of generality)
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but the bound θ(x, δ) is left free to allow flexibility in the model. This is
illustrated by comparing Figures 1b and 1c and will prove crucial in stating
our results as we shall explain below.4

Before formally stating the remaining assumptions we note that, given
Assumption 1, the bounds will prove irrelevant to an agent who samples and
so are only relevant in looking at social learning.

Assumption 2: If δ = 1 then ui(x) = x for all i and x. If δ < 1 then utility
ui(x) is a random draw for all i determined by distribution F [θ(x, δ), h(x, δ)]
if x ≥ 0.5 and F [l(x, δ), θ(x, δ)] if x < 0.5 where h(x, δ) := 1− δ(1− x) and
l(x, δ) := δx.

Assumption 2 formalizes the way that we shall model heterogeneity of payoffs.
Note that if E(x, δ) denotes the expected utility of choosing action x then
E(x, δ) = (θ(x, δ) + h(x, δ)) /2 for x ≥ 0.5 and E(x, δ) = (θ(x, δ) + l(x, δ)) /2
for x < 0.5.

Assumption 3: The value of E(x, δ) is a continuous, non-decreasing func-
tion of x and a continuous monotonic function of δ. Also, E(x, δ) ≤ x for all
x ≥ 0.5.

That the expected utility of action x ≥ 0.5 be never more than x is not
necessary for our results but desirable in interpretation. It means that payoff
heterogeneity can never be of direct benefit to agents. In particular, if δ = 1
then an agent who imitates someone using action x will get utility x. If
δ < 1 then they can expect utility at most x and possibly less (depending on
θ(x, δ)).
We require one final, more technical assumption.

Assumption 4: If x0 > x ≥ 0.5 then θ(x0, δ) − θ(x, δ) ≥ δ(x0 − x).
If x < x0 < 0.5 then θ(x, δ) ≤ θ(x0, δ). Finally, θ(0.5, δ) = δ/2 and
limx−→0.5,x<0.5 θ(x, δ) = 1− δ/2.

Assumption 4 guarantees that the bounds ux are ux are continuous, increasing
functions of x. This follows from continuity ofE(x, δ) and the limits on θ(x, δ)
near x = 0.5. Assumption 4 simplifies the analysis but could be relaxed.

4If we think of the amount of heterogeneity as, say, h(x, δ)− θ(x, δ) then heterogeneity
depends on both δ and θ(x, δ). For example, comparing Figures 1b and 1c there is greater
heterogeneity in Figure 1b but δ could be the same in both.
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In interpretation there are broadly two ways we could proceed. First,
we could assume that agent i becomes aware of θ(x, δ) and h(x, δ) when he
observes someone adopting action x. Intuitively, this would correspond to
agent i observing both action bi−1 and utility ui−1(bi−1). Alternatively, we
could assume that agent i only observes action bi−1 and remains ignorant of
θ(bi−1, δ) and h(bi−1, δ). The general correlation between utility functions is,
however, known. Intuitively, this would correspond to agent i forming an
expected utility from choosing action bi−1 on the basis that if agent i− 1 has
adopted action bi−1 then it must have yielded him a relatively high utility. We
proceed using the later interpretation but mathematically both are identical.
Either way, the function θ ties together the utility functions of agents in the
sense that if agent i observes someone adopting action x then function θ
allows him to form an expectation over the utility that he would receive from
choosing x.
In a more general model the upper bound h(x, δ) and lower bound l(x, δ)

would also be undetermined. To a large extent, however, given the freedom
of θ(x, δ) we can fix h(x, δ) and l(x, δ) without loss of generality. Basically,
by manipulating θ(x, δ) we can obtain the same degree of flexibility as if all
bounds were left free. The present formulation will allow sharper results.
Note also, that what happens for x ≥ 0.5 is much more important for our
purposes given that this is where utilities are highest and thus actions are
likely to be adopted.

3 The optimal amount of heterogeneity

We begin by defining an optimal strategy (making use of Kohn and Shavell
1974). Let w be the real number called the switchpoint that solvesZ

x>w

x− w

r
dx = w − 1

2
. (1)

We define the optimal strategy:

Optimal strategy: Agent 1: Sample in period t+ 1 if u1(x1t ) < w and use
experience otherwise. Agent i ≥ 2: Imitate agent i− 1 in period ti−1+1. In
period t+ 1 > ti−1 + 1, sample if ui(xit) < w and use experience otherwise.

Fixing a δ and assuming that agents behave according to the optimal strategy
an expected payoff for agent i can be calculated. Let δi denote the value of

8



δ that maximizes the expected payoff of agent i (assuming that all agents
use the optimal strategy). Our first result shows that the optimal strategy
is indeed the optimal strategy. Formally, we find a Nash equilibrium in the
sense that agent i’s optimal strategy maximizes his payoff if the other agents
use the optimal strategy.5

Proposition 1: If δ = 1 or δ = δj for some j ∈ N and agents 1, 2, ..., i − 1
use the optimal strategy for some i ∈ N , then agent i maximizes his payoff
by using the optimal strategy.6

If agent 1 uses the optimal strategy then his expected payoff is

U1 := w
(1 + r)

r
.

To explain, when ui(x
i
t) = w agent i is indifferent between using experience

and sampling and if he was to use experience his payoff would be U1.7 If
ui(x

i
t) < w and agent i uses the optimal strategy then his expected payoff

is the same as if ui(xit) = w. Thus, U1 is as above. For agents i > 1 their
‘default payoff’ is also U1. More precisely, if agent i imitates agent i− 1 but
decides not to adopt action bi−1 then his expected payoff becomes U1.
Before exploring the implications of heterogeneity consider the case where

δ = 1 and agents are homogenous. Applying Proposition 1 and the definition
of optimal strategy we observe that Agent 1 will sample until he observes an
action x such that u1(x) ≥ w. Agents 2, 3, 4, .... will then imitate and adopt
action x. Thus, agent 1 ‘determines everything’. This is an example of what
we shall call lock in where some action x, adopted by agent 1 in this example,
will be adopted by all subsequent agents in the sequence. This is an example

5It is the unique Nash equilibrium (discounting tie-breaking rules) because agent i’s
optimal strategy is unique given the strategy of agent i − 1 and agent 1 has a unique
optimal strategy.

6There is no circularity in this argument: If δ = δj then agents will want to behave
according to the optimal strategy detailed in Lemma 1. If agents behave according to
optimal strategy detailed in Lemma 1 then agent j wants δ = δj . More generally, agents
may not want to imitate if δ is, say, low and so the ‘optimal strategy’ need not be consistent
with Nash equilibrium.

7Using that his payoff is

w +
w

1 + r
+

w

(1 + r)2
+ ... = w +

w

r
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of herding (Bikhchandani, Hirshleifer andWelch 1998). Given that the action
adopted by agent 1 is drawn from interval [w, 1] according to the uniform
distribution, the expected payoff of agents 2, 3, 4, .... is

U1
i :=

(1 + w)

2

(1 + r)

r
> U1.

Agent heterogeneity may increase or decrease expected payoffs relative to U1
i

as we now explain:

The benefit of heterogeneity: For δ sufficiently large there exists action µδ > w
such that θ(µδ, δ) = w. If some agent i adopts action x ≥ µδ then, given
Proposition 1 and Assumptions 2 and 3, every agent j > i will also adopt
action x because ui (x) ≥ w. When this occurs we say that there is lock
in to action x ≥ µδ. We refer to µδ as the lock in threshold. If δ = 1
then µδ = w and so lock in occurs with agent 1 and on any action x ≥ w.
As δ increases then µδ increases. This implies that lock in will occur on
some action x ≥ µδ > w. Consequently more heterogeneity means that ‘low
actions get weeded out’ and agents can expect to do better when lock in
occurs. Note that for δ small we may have θ(1, δ) < w and so no lock in
threshold exists and lock in is not possible.

The cost of heterogeneity: If an agent imitates action x then his expected
utility is (θ(x, δ)+h(x, δ))/2. At best his expected payoff is x. More generally,
his expected utility is less than x and, most importantly, a decreasing function
of δ. Thus, the greater is heterogeneity the lower, ceteris paribus, is his
expected utility from the imitated action.

Once the cost and benefit of heterogeneity are combined there is a trade-off
that can mean heterogeneity is or is not desirable depending on θ. This is
illustrated in Figure 2. There is no gain in locking in to a high action if the
expected utility from imitating this action is still very low as seen in Figure
2b. Conversely, there is much to be gained from locking in on a high action
if the expected utility from imitating this action is likely to be high as seen
in Figure 2c. All will depend on the function θ as the following result shows.

Proposition 2: If θ(x, δ) ≤ δx for all x ≥ 0.5 and δ then δi = 1 for all i.
If θ(x, δ) > δx for all x ≥ 0.5 and δ < 1 then there exists finite i∗ > 2 such
that δi

∗
= 1 for all i < i∗ and δi

∗
< 1 for all i > i∗.
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Thus, if function θ is ‘sufficiently high’ the expected payoff of agents later in
the sequence is maximized when there is agent heterogeneity. If θ(x, δ) = δx
then the expected utility of imitating action x is.

E(x, δ) :=
θ(x, δ) + h(x, δ)

2
=
1− δ

2
+ δx.

As θ(x, δ) is less than or greater than δx the expected utility of imitating
action x is less than or greater than E(x, δ). Proposition 2 demonstrates that
when the expected utility of imitating is E(x, δ) or lower then agents do best
if they are identical (and δ = 1). The costs of heterogeneity outweigh the
benefits. If there is agent heterogeneity then an agent who imitates someone
who has adopted a high utility action expects to choose an action that yields
him a relatively low payoff. If the expected utility of imitating is strictly
greater than E(x, δ) then some agents do best if there is heterogeneity (and
δ < 1). The potential benefits of heterogeneity now outweigh the costs. In-
deed, the method of proof for Proposition 2 provides another interpretation.
If we fix a δ < 1 so that some µδ ∈ (w, 1) exists and thus lock in is possible
then there will exist some i∗ such that agents i ≥ i∗ do strictly better than
if δ = 1. Thus, it is not that we need ‘pick δ carefully’, basically, as long as
lock in is possible, all agents sufficiently far into the sequence do better with
heterogeneity. Note, however, that Agent 2 always does best if δ = 1 and
agents 2, 3, .., i∗ − 1 also do best if δ = 1.
Proposition 2 says nothing about the value of i∗ or δi for i > i∗. Especially

given that our proof will be one of limiting arguments this may lead to
questions whether i∗ can be small and or δi small. That is, will agents early
in the sequence desire significant heterogeneity. We can address this point
by looking at a limiting example. If θ(x, δ) + h(x, δ) = 2x then the expected
utility of imitating action x is x. In terms of the earlier discussion the costs
to heterogeneity are minimized.

Proposition 3: If θ(x, δ) = x − (1 − δ)(1 − x) for all x ≥ 0.5 and δ then
δi < 1 for all i ≥ 3 and limi→∞ δi = 0.

The proof of Proposition 3 proceeds by showing that agent 3 would prefer
δ = 0 to δ = 1. While this does not preclude that δ3 is still close to 1 it
does illustrate how significant heterogeneity, even if not necessarily optimal,
need not be undesirable. Ultimately, we observe that agents prefer maximal
heterogeneity.
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Finally, we can comment on expected payoffs. Let U δ
i denote the expected

payoff of agent i. We have already defined U1 (which is independent of δ) and
U1
i . Comparing U1 and U1

i we see that social learning leads to a significant
rise in expected payoffs.

Proposition 4: If δ < 1 then U δ
i+1 > U δ

i for all i ≥ 2. If δi < 1 then
U δi
i > U1

i .

The first part of the Proposition demonstrates that agents do best the further
they are into the sequence. This is an illustration of how there can be ac-
cumulated learning even though each agent only observes the agent previous
to him in the sequence. This, in itself, does not tie down the relative size of
payoffs but the second part of the Proposition does so. If δ = δi < 1 then all
agents j ≥ i do strictly better given agent heterogeneity than they would do
given δ = 1. This does not rule out some agents j < i also doing better.
To summarize our results. We find that social learning can significantly

increase expected payoffs. This, in itself, is not surprising as social learn-
ing allows agents to ‘free-ride’ and avoid ‘costly search’. We find, however,
that when there is agent heterogeneity imitation may actually do better.
It not only means that agents avoid the cost of search it also means that
they can expect to adopt a higher utility action than if they had searched
themselves. Specifically, we know that agent 1 (who cannot use social learn-
ing) has expected payoff wR where R := (1 + r)/r. If δ = 1 then agents
2, 3, ... have expected payoff (1 + w)R/2. The benefit in being ‘able to free
ride’ and avoid search could thus be measured by (1 − w)R/2. Agent het-
erogeneity means that social learning can result in even higher benefits. If
θ(x, δ) + h(x, δ) = 2x for example, then, applying Proposition 3, we see that
limi→∞U δi

i = (w + 3)R/4 and so agent heterogeneity can result in an ad-
ditional, significant, gain of (1 − w)R/4. The consequence of this is that
an agent may prefer a setting where he will observe someone with different
preferences to himself. Interpreting our results another way an agent would
be willing to pay to observe some other agent. If δ = 1 then we see that an
agent would be willing to pay (1−w)R/2. If δ < 1 and there is agent hetero-
geneity an agent may be willing to pay up to (1−w)3R/4.8 This illustrates

8Note that, given a choice, an agent does best to observe the agent who most recently
adopted an action. Also, if observing the action of an agent is costly, then it may be
optimal for an agent to observe only one previous agent (even if he does not adopt the
imitated action). This provides some motivation for the model considered in this paper.
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the potential gains from social learning and agent heterogeneity.

4 Generalizations and extensions

Our analysis essentially relies on four factors: (1) Lock in can occur despite
heterogeneity of preferences. (2) Lock in occurs on the actions that yield
highest utilities. (3) An agent only observes the action adopted by the agent
previous to him in the sequence. (4) Agents are homogenous in their sampling
distribution. With these four factors the analysis would easily generalize
because heterogeneity would act to weed out low utility actions and enable
lock in on high utility actions. We should, however, question what happens
in the absence of these four factors.
Lock in would not occur if with positive probability ui(x) < w for all i and

all x. This could result from an enlargement in the support of the distribution
over ui(x). For example, it may be that most agents like a restaurant of a
very high quality (even if preferences do vary) but occasionally there is some
‘extreme’ agent who would dislike the restaurant. This should make little
difference provided that the probability ui(x) < w is small. Lock in would
no longer be possible but the expected loss from ‘extreme type agents’ would
be small (because extreme type agents are rare) and compensated for by the
gains to agent heterogeneity. If, however, the probability that ui(x) < w
is large then preference heterogeneity may be undesirable. For example,
suppose that there are two ‘types of agent’, say, a Chinese food type and
an Indian food type where a high quality Chinese restaurant is not liked by
those who prefer Indian food and vice versa. If proportion δ of agents are of
one type and proportion 1−δ of the other type then preference heterogeneity
will be undesirable. This is because heterogeneity would stop lock in from
occurring but not lead to any significant gains elsewhere.
Relaxing factor (2) would likely change our conclusions because hetero-

geneity in this case would act to weed out the high utility actions with lock
in on actions yielding ‘just sufficient utility’. Intuitively, factor (2) does not
seem unreasonable so this qualification seems a minor one. This issue can
also be related to our existing results and analysis. We find, Proposition 2,
that if heterogeneity decreases the expected utility of imitation by enough
then heterogeneity may no longer be beneficial. This could be interpreted as
saying that lock in does not occur on high utility actions.
In relaxing factor (3) suppose that an agent can observe two or more other
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agents and possibly the whole sequence. This would matter if there exists
some agent i−1 where agents 1, ..., i−2 adopt action b1 but agent i−1 ‘rejects’
action b1, searches and adopts action b2. In the model we have analyzed
agent i only observes action b2. Observing b1 as well as b2 can clearly be of
no disadvantage to agent i but presumably is to his benefit. In particular, he
can imitate both b1 and b2 and can adopt the action yielding highest utility.9

This reduces the probability that he would have to sample and means that the
‘accumulated learning’ by agents 1, .., i−2 is not lost. Here heterogeneity has
a further benefit in creating multiple imitation opportunities. Less immediate
in this setting is the optimal strategy that agents should use. Note that it is
also not critical for our results that each agent observes the agent immediately
previous to him in the sequence. We could, for instance, assume that an
agent observes the action adopted by one agent randomly selected from those
previous in the sequence.
The consequences of relaxing factor (4) are more complex. If agents

have different sampling distributions (known to them) then each agent has
a different switchpoint. Agents with a ‘poor’ sampling distribution would
have a low switchpoint and be more inclined to adopt the action imitated.
Agents with a ‘good’ sampling distribution would have a high switchpoint
and thus be inclined to sample even if the imitated action yields a high
utility. Lock in need not occur in this setting because agents with a good
sampling distribution need ‘never be satisfied’ but this is not necessarily a bad
thing. In particular, lock in will occur for those agents with a poor sampling
distribution in the sense that they always adopt the imitated action rather
than sample. If there are agents with a good sampling distribution who
push the expected utility of any adopted action higher then this should be
beneficial. We only have to check whether those agents with a good sampling
distribution benefit, given their increased chance of having to search. Agents
only search, however, because it increases their payoff and an agent with a
good sampling distribution could behave, if she wished, the same as an agent
with a poor sampling distribution.

9If imitation is costly he may not opt to do this on the basis that b1 = b2 with positive
probability.
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5 Discussion and related literature

In the setting of this paper imitation proves advantageous for agents. That
social learning could allow agents to avoid the costs associated with search
is trivial. We find, however, that when there is agent heterogeneity social
learning actually does better. It not only means that agents avoid the cost
of search it also means that they can expect to adopt a higher utility action
than if they had searched themselves. This can be contrasted with much of
the literature on social learning, particularly that on herding and informa-
tion cascades, where it is typically shown that social learning can lead to
inefficiencies. In herding models social learning can prove inefficient if agents
ignore private information and follow the herd (Banerjee 1992, Bikhchan-
dani, Hirshleifer and Welch 1992, 1998). The reason that social learning
proves efficient in our model is the possibility of ‘rejecting advice’. In our
model an agent can imitate, gain full information about an action and then
subsequently search. In models of herding an agent has only one opportunity
to use an action. So in herding models, unlike the model of this paper, an
agent cannot learn from experience. This leads to a contrast in the desirabil-
ity of lock in. In our model lock in is ‘good’ because it indicates that a high
utility action has been found. In herding models lock in can be ‘bad’ because
it encourages agents to disregard informative signals. The crucial difference
is whether agents have the possibility to ‘act on advice’ but subsequently
‘reject the advice’ if they find it was not successful for them. It does seem
reasonable that in many contexts social learning need not lead to a binding
commitment, like that assumed in herding models.
The importance of considering social learning in conjunction with agent

heterogeneity is also illustrated by our results. For instance, (unobserved)
agent heterogeneity creates a divergence between private signal and observed
action that results in the type of issues familiar from the herding literature.
Also, many models of social learning lead to ‘lock in type stories’ where
lock in may or may not prove advantageous. Agent heterogeneity is one
source through which a ‘story of lock in’ may change. In the model of this
paper agent heterogeneity implies lock in on more preferable actions and
thus proves advantageous. Related results are obtained by Goeree et. al.
(2006) and Smith and Sorenson (2000). Both papers consider models of
social learning with multiple agent types where agents with ‘extreme types’
guarantee that lock in cannot occur. This perturbs the dynamic and can
result in ‘complete learning’ and an ‘efficient outcome’. Note, however, that
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this result relies on ‘extreme heterogeneity’ where the set of agent types
has full support. Our result is more easily interpreted in terms of ‘slight
heterogeneity’ in agent preferences. Also related is the work of Banerjee and
Fudenberg (2004). They consider a model of social learning where behavior
converges to the optimum. Again, lock in on an inefficient equilibrium is
avoided by the presence of agents who ‘break the chain’, but in this case it
results from each agent only observing a sample of previous agents actions.
This is similar to our model where the fact that only one previous action is
observed implies that any amount of ‘accumulated learning’ can ‘be lost’.
What can we learn with respect to agent behavior? Clearly, agents should

imitate and let as many agents as possible act before they do. More interest-
ing is to question whether or not the degree of heterogeneity is endogenous
and if so what the implications are. The degree of heterogeneity may be en-
dogenous if agents have some choice over who they observe and imitate. An
agent may, for example, choose to observe only the agent he believes has the
most similar preferences to himself. If so, then a tension may arise between
the interests of the population and individual. As we have seen, an agent can
do best if the population is heterogeneous. An agent also does best, however,
if he imitates someone with identical preferences to himself. That is, if agent
i had the choice then he would want agents 1, 2, .., i − 1 to be heterogenous
but i − 1 to be identical to himself. Intuitively, the only thing that i could
control is his similarity with agent i − 1. Hence, a tension between what is
best for the population and best for the individual.
If search is conducted simultaneously amongst agents then free-riding or

encouragement effects may emerge reflecting strategic concerns (McFadden
and Train 1996, Bolton and Harris 1999, Bergemann and Valimaki 2000 and
Keller, Rady and Cripps 2005). The framework of this paper was deliberately
chosen to abstract away from such strategic issues in order to focus on the
consequences of agent heterogeneity in a model of social learning. Our results
do, however, point towards an incentive to free ride or delay ‘commitment’
as long as possible because the further back is an agent in the sequence the
higher his utility. Our analysis would also point towards a more surprising
result, the greater is agent heterogeneity then the more incentive to free
ride because the greater are the gains from being later in the sequence. In
particular with heterogeneity there are two motivations to free ride: to avoid
search and to ultimately imitate a better action.
A related issue is that of endogenous sequencing. As is standard in mod-

els of herding we have assumed an exogenous sequencing of agents. Clearly,
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however, agents would care where in the sequence they are and this leads
to questions of whether agents should be able to choose when to act (Gale
1996). This, as already highlighted in the previous paragraph, would lead to
strategic incentives to delay acting as long as possible. Within our framework
agents are ex-ante identical and so we do not gain much insight into which
agents would have the least incentive to delay acting. Agent heterogeneity
does, however, point towards potential consequences for the ‘dynamics of
sequencing’ particularly if heterogeneity is observable in some way. In par-
ticular, we know that agents do best if they follow agents most identical to
them but we also know that agents benefit from being later in the sequence.
So, even if we fix a sequence in which all except one agent will act it is
an interesting question to ask where this agent would choose to enter the
sequence.

6 Proofs of the Propositions

Let β(x) denote the probability that an agent i would adopt action x, i.e.
β(x) = Pr {ui(x) ≥ w}. Note that this is not agent specific. Also, note that
β(x) = 1 if and only if x ≥ µδ for some lock in threshold µδ ∈ [w, 1].

Lemma 1: If δ < 1 then β is a continuous, non-decreasing function of x.

Proof : If x ≥ µδ then β(x) = 1. If x ∈ [0.5, µδ) then

β(x) =
h(x, δ)− w

h(x, δ)− θ(x, δ)
.

Comparing, µδ > x0 > x ≥ 0.5 and using Assumption 4 we get that h(x0, δ)−
θ(x0, δ) ≤ h(x, δ)− θ(x, δ). Clearly, h(x0, δ) ≥ h(x, δ). Thus, β(x0) ≥ β(x). If
x < 0.5 then

β(x) =
θ(x, δ)− w

θ(x, δ)− l(x, δ)
.

Comparing 0.5 > x0 > x ≥ 0 and using Assumption 4 we get θ(x0, δ) ≥
θ(x, δ). If θ(x, δ)− l(x, δ) ≥ θ(x0, δ)− l(x0, δ) then β(x0) ≥ β(x). Otherwise
θ(x0, δ)− θ(x, δ) > l(x0, δ)− l(x, δ) = δ(x0 − x) > 0. But given that w > 0.5
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this also implies β(x0) ≥ β(x).10 Finally, we can compare x0 = 0.5 > x.
Using Assumption 4 we get that θ(x0, δ) = δ/2 = limx→0.5,<0.5 l(x, δ) and
h(x0) = 1− δ/2 = limx→0.5,<0.5 θ(x, δ). Thus, β(x0) = limx→0.5,<0.5 β(x). This
shows that β is an non-decreasing function of x. Continuity is apparent from
the continuity of both upper and lower limits and that δ < 1 (and so there
exists x where β(x) ∈ (0, 1)).¥
Let πi and Πi denote the ex-ante probability distribution over the action that
agent i will adopt (as viewed from period t = 0). That is, Πi (x) =

R b
0
πi(x)

is the probability that agent i adopts action x ∈ [0, b]. [Existence of function
πi is demonstrated in Lemma 2.] Let

Di :=

Z 1

0

πi−1(x)β(x)dx

denote the ex-ante probability that agent i ≥ 2 will adopt action bi−1. That
is, Di denotes the probability that agent i will adopt the action of agent i−1.
Again, this is ex-ante as viewed from period t = 0 and thus before bi−1 is
known. Note that if δ < 1 then Di < 1 for all i ≥ 2. For example, with
positive probability agents 1, 2, .., i − 1 will adopt an action x ∈ [w,w + ε]
(for some small positive number ε). Using assumptions 2 and 3, with positive
probability agent i will not adopt action x.

Lemma 2: If agents use the optimal strategy, δ < 1 and there exists a lock
in threshold µδ ∈ [w, 1] then
1: πi is a continuous, non-decreasing function of x for all i;

2: πi(x) = πi(x
0) for all x, x0 ≥ µδ and i ∈ N ;

10The point is intuitively clear. To give a more formal argument. The ‘loss in probability’
is at least

Loss :=
θ(x0, δ)− θ(x, δ)

θ(x0, δ)− δx0
.

The ‘gain in probability’ is at most

Gain : =

·
1

θ(x, δ)− δx
− 1

θ(x0, δ)− δx0

¸ ·
θ(x, δ)− 1

2

¸
=

[θ(x0, δ)− θ(x, δ)− δ(x0 − x)]

(θ(x, δ)− δx) (θ(x0, δ)− δx0)

·
θ(x, δ)− 1

2

¸
.

Using that θ(x, δ)− δx > θ(x, δ)− 1
2 and δ(x0 − x) > 0 we obtain Gain < Loss.
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3: Πi(x) ≥ Πi+1(x) for all x and i ≥ 2;
4. Πi(µ

δ) > Πi+1(µ
δ) for all i ≥ 2

5: Di < Di+1 for all i ≥ 2.
Proof : If x ≥ µδ then π1(x) = 1/(1 − w). If x < µδ then π1(x) = Λβ(x)
where constant Λ satisfies

Λ

Z µδ

0

β(x)dx = 1− 1− µδ

1− w
.

By Lemma 1 we see that π1 is a continuous, non-decreasing function of x.
For any agent i ≥ 2: if agent i adopts action bi−1 then his distribution over
actions adopted is given by πi−1. If agent i samples then his distribution over
actions adopted is given by π1. So,

πi(x) = πi−1(x)β(x) + (1−Di)π1(x). (2)

From equation (2) and Lemma 1 it is simple to derive the five claims of
the lemma by iteratively deriving πi. That both πi−1 and β are continuous
non-decreasing functions of x gives claims 1 and 3. The additional property
that β must be strictly increasing over some range of x (because β(x) = 1
for x > µδ and β(x) < 1 for x < µδ) gives claim 5. If claim 2 holds for πi−1
(and we have already demonstrated that it holds for π1) then using β(x) = 1
for all x ≥ µδ we see that πi satisfies claim 2. Using that Di < 1 for all i,
β(x) = 1 for all x ∈ [µδ, 1] and Π1(µ

δ) > 0 gives claim 4.¥

Lemma 3: Agent 2’s expected payoff is maximized when δ = 1 and he
imitates agent 1.

Proof : If agent 2 does not imitate agent 1 then his expected payoff is U1
irrespective of δ. If δ = 1 then agent 2 has an expected payoff of U1

i > U1.
So, agent 2 must imitate agent 1 to maximize his expected payoff. Recall
that π1(x) = 1/(1 − w) for all x ≥ w and π1(x) = 0 for all x < w if δ = 1.
If δ < 1 then by Assumptions 1 and 2 π1(x) ≤ 1/(1− w) for any x ≥ w and
π1(x) > 0 for some x < w. Further E(x, δ) ≤ x for all x. This implies that
U δ
2 < U1

i for any δ < 1. Thus, agent 2’s utility is maximized when δ = 1.¥

Lemma 4: If δ = δj for some j then any agent i ≥ 2 maximizes his expected
payoff by imitating agent i− 1.
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Proof : If agent i does not imitate agent i − 1 then his expected payoff is
U1. If δ = 1 and agent i imitates then his expected payoff is U1

i > U1. Now
consider δj < 1. We have immediately that U δj

j ≥ U1
i and so agent j must

imitate agent j− 1. Given Claim 3 of Lemma 2 if it is optimal for agent i to
imitate then it is optimal for every agent l ≥ i to imitate. We know that j
will imitate and so it remains to consider agents i < j. Suppose that agent
j − 1 does not imitate. That agent j wishes to imitate agent j − 1 implies,
by symmetry, that agent 2 would want to imitate agent 1. But, if agent 2
imitates then all agents i > 2 would want to imitate. Suppose that agent
j−2 does not imitate. That agent j−1 wishes to imitate agent j−2 implies
that agent 2 would want to imitate agent 1. Again, we have a contradiction.
Iterating the argument gives the desired result.¥

Proof of Proposition 1: The optimal strategy for agent 1 is detailed by
Kohn and Shavell (1974) but easily explained in this context. For the mo-
ment, without loss of generality set u1(x) = x for all x. To sample is the
optimal strategy for agent 1 in period t if and only if the expected payoff from
sampling in period t and then using experience thereafter is greater than the
payoff of using experience in periods t onwards. That is, if b is the current
best available action, when

1

2
+

Z
x≤b

b

r
dx+

Z
x>b

x

r
dx ≥

µ
1 +

1

r

¶
b. (3)

Rearranging, this becomes Z
x>b

x− b

r
dx ≥ b− 1

2
(4)

The larger is b then the smaller is the LHS of (4) and the larger is the RHS.
Thus, there exists a unique switchpoint w where agent 1 should sample if
and only if b ≤ w.11 We have framed the discussion in terms of agent 1 but
can clearly generalize to all agents. Consider agent i ≥ 2. Agent i has an
opportunity to imitate agent i − 1. Clearly, there is no gain to agent i in
delaying imitation and so he should either imitate or not in period ti−1+1. As
seen in Lemma 4, agent i should imitate. Imitation is a one shot opportunity
and so agent i should sample or use experience in all subsequent periods.

11Clearly w < 1 and w > E.
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The problem facing agent i is now identical to that of agent 1 and thus he
should use experience or sample as ui(x) is greater than or less than w.¥

Proof of Proposition 2: Set θ(x, δ) = δx for x ≥ 0.5. Then

E(x, δ) =
1− δ

2
+ δx (5)

and there exists lock in threshold µδ = w/δ when δ > w. Suppose that
δ > w and there is lock in. Given Lemma 2 and (5) the expected payoff of
subsequent agents is

R
δ

δ − w

Z 1

w
δ

·
1− δ

2
+ δx

¸
dx = R

1 + w

2
. (6)

Note that this expected value does not depend on δ. Indeed, this is the
expected payoff if δ = 1. If δ = 1 then lock in will occur for sure after
agent 1 and the expected payoff of all agents i ≥ 2 is U1

i . By Assumption 3
the expected payoff of an agent that imitates before lock in has occurred is
strictly less than U1

i . So, if δ < 1 the expected payoff of any agent i ≥ 2 is
strictly less than U1

i . Thus, δ
i = 1 for all i. The same reasoning can be used

if δ ≤ w and lock in can thus not occur. Also, if θ(x, δ) ≤ δx for x ≥ 0.5 and
δ < 1 then the expected payoff after lock is at most U1

i and so we can again
use the same reasoning.
If θ(x, δ) > δx for all x ≥ 0.5 then

E(x, δ) >
1− δ

2
+ δx (7)

for all δ < 1. Fix a δ and corresponding µδ ∈ (w, 1). Find the δ0 > δ such
that µδ = w/δ0.12 If lock in occurs then, using claim 2 of Lemma 2 and
equations (6) and (7), the expected payoff of subsequent agents is

R
δ0

δ0 − w

Z 1

w
δ0
E(x, δ)dx = U1

i − ε.

for some positive real number ε > 0. Note that this expected value can
be fixed independent of i. If Li denotes the probability that lock in has

12We have that w = θ(µδ, δ) > δµδ and µδ > w so there exists δ0 > δ such that δ0µδ = w.
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occurred before agent imust first choose an action then clearly limi→∞ Li = 1.
Suppose, as a worst case scenario, that an agent i has expected payoff U1 if
lock in has not occurred before he must choose an action. For i sufficiently
large (1− Li)U1 < ε and U δ

i > U1
i . Noting that if δ = 1 an agent’s expected

payoff is U1
i we find, as desired, that there exists some i

∗ such that δi < 1
for all i ≥ i∗.¥

Proof of Proposition 3: Fixing a δ and setting θ(µδ, δ) = w we have that
µδ = (w + 1 − δ)/(2 − δ) and E(x, δ) = x. So, if lock in occurs then the
expected utility of subsequent agents is

EUδ =
2− δ

1− w

Z 1

w+1−δ
2−δ

xdx =
w + 3− 2δ
2(2− δ)

The value of EUδ is maximized when δ = 0 because

dEUδ

dδ
=

w − 1
2(2− δ)2

< 0.

Note that EUδ and its differential are independent of i. We know that the
probability of lock in Li tends to one as i tends to infinity provided that
µδ < 1. Thus, δi tends to 0 as i tends to infinity.
Consider agent 3 and suppose that δ = 0. We shall show that agent 3’s

expected payoff is greater than U1
i . Setting δ = 0 we have that µ

0 = (w+1)/2
and E(x, δ) = x. So, if lock in occurs then the expected utility of subsequent
agents is

EUδ=0 =
2

1− w

Z 1

w+1
2

xdx =
w + 3

4
.

With probability 0.5 agent 1 will sample an action b1 ≥ µ0. Let p =
2 (1−D2) denote the probability that agent 2 samples conditional on b1 < µ0.
By claim 5 of Lemma 2 the probability that agent 3 will sample conditional
on b2 < µ0 is is strictly less than p. If b2 < µ0 but agent 3 adopts b2 then,
using Lemma 2 and that E(x, δ) = x, we know that the expected payoff of
agent 3 is strictly greater than

R
2

1− w

Z w+1
2

w

xdx = R
3w + 1

4
.

The probability that lock in has occurred (i.e. that b2 ≥ µ0) is 1/2 + p/4. If
lock in has not occurred then with probability of at most p agent 3 will sample
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and with probability at least 1−p he will adopt action b2. So, denoting agent
3’s expected payoff by U δ=0

3 we get

U δ=0
3

R
≥

µ
1

2
+

p

4

¶µ
w + 3

4

¶
+

µ
1

2
− p

4

¶·
pw + (1− p)

µ
3w + 1

4

¶¸
=

8w + 8 + p2(1− w)

16
>

w + 1

2
.

Thus, agent 3 gets a higher expected payoff if δ = 0 than δ = 1. Consequently
δ3 < 1. Applying Proposition 4 we see that agents i > 3 also prefer δ = 0 to
δ = 1.¥

Proof of Proposition 4: The first part of the Proposition is an imme-
diate consequence of claims 3 and 4 of Lemma 2. The second part of the
Proposition is an immediate consequence of δi being the i that maximizes i’s
expected payoff.¥
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Figure 1: The consequences of payoff heterogeneity: 
Figure 1a: If δ = 1 then the utility of action x is x. 

 
Figures 1b and 1c: If δ = 0.5 then the utility of action x < 0.5 could be anything in the 
interval [0.5x, θ(x, δ)] and the utility of action x > 0.5 could be anything in the 
interval [θ(x, δ), 1- 0.5x].  
 
Figures 1b: Low expected utility; θ(x, δ) is relatively high for x < 0.5 and low for x > 
0.5. 
 

 
 
Figures 1c: High expected utility; θ(x, δ) is relatively high for x > 0.5 and low for x < 
0.5.  
 

 
 
Figures 1d: : If δ = 0 then the utility of action x can vary over the entire unit interval. 
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Figure 2: The consequences of heterogeneity 
 
Figure 2a: If δ = 1 then lock in occurs on any action greater than w and the expected 
utility of the adopted action is (w + 1)/2.  

expected utility of adopter and imitator 
 
 
Figure 2b: Heterogeneity is bad. For δ < 1 lock in occurs on an action greater than w 
so the expected utility of an adopted action is (µ + 1)/2 > (w + 1)/2 but the expected 
utility of an imitator is lower than (w + 1)/2. 
 

 
 
 
Figure 2c: Heterogeneity is good. For δ < 1 lock in occurs on an action greater than w 
so the expected utility of an adopted action is (µ + 1)/2 > (w + 1)/2. The expected 
utility of an imitator is lower than (µ + 1)/2 but greater than (w + 1)/2. 
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