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Abstract

This paper extends the Baron-Ferejohn model of legislative bar-

gaining to general weighted majority games with two modifications:

first, payoff division can only be agreed upon after the coalition has

formed (two-stage bargaining); second, negotiations in the coalition

can break down, in which case a new coalition may be formed (re-

versible coalitions). Under the most natural bargaining protocol, both

expected payoffs and actual payoff division are proportional to the

voting weights provided that the set of winning coalitions of minimum

weight is weakly balanced and that the breakdown probability tends to

0. Homogeneity of the voting weights is neither necessary nor sufficient

for proportional payoffs. Intermediate values of the breakdown prob-

ability produce predictions consistent with the empirical evidence on

portfolio allocation in Europe: a moderate propoper advantage and a

linear relationship between weights and ex post payoffs for all coalition

members other than the proposer.
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1 Introduction

The Baron-Ferejohn (1989) model is the most frequently used formal model

of legislative bargaining. In this model, there are n identical legislators,

and decisions are taken by simple majority. An agent is selected at random

(each agent with probability 1/n) to propose a division of the budget. If a

majority votes in favor of the proposal, the proposal is implemented and the

game ends (closed rule); otherwise, a new proposer is selected at random,

and the process continues until an agreement is reached.

Even though coalitions are not explicitly formed in this model, we can

think of the set of players who vote yes as the coalition that forms. Given

this interpretation of the model, players are able to agree simultaneously

on coalition formation and payoff division.1 However, there are situations

in which players form tentative coalitions and then begin negotiations over

payoff division. This paper separates the coalition formation and the payoff

division stages, and follows Diermeier et al. (2003) in defining a coalition

(a proto-coalition in their language) as a set of parties that agree to talk to

each other about forming a government together. Negotiations over payoff

division may break down, resulting in the dissolution of the coalition and

possibly in the formation of a new one.2 The model also allows for general

voting rules.

Proposers are randomly chosen both at the coalition formation and at

the payoff division stage. The question then arises of what the proposer

probabilities should be. It seems natural to assume that each of the players

is chosen to be the proposer with a probability proportional to its number of

votes. Under this assumption, I show that expected payoffs are proportional

both ex ante (for all players) and ex post (for the members of the coalition)

provided that the set of winning coalitions with the lowest total number of

votes is weakly balanced and that the breakdown probability is arbitrarily

1This property is shared by other noncooperative models of coalition formation (see

Selten (1981) and Chatterjee et al. (1993)).
2Diermeier et al. (2003) do not allow negotiations within a proto-coalition to break

down. Another difference is that in their model the ”cake” available to the proto-coalition

depends on the state of the world, which evolves stochastically.
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close to 0.

If the breakdown probability is allowed to vary, we obtain a family of

models with different degrees of proposer advantage. If breakdown happens

for sure after a proposal is rejected, the model is very close to the original

Baron-Ferejohn model. The proportionality result still holds ex ante for all

players and ex post for all coalition members other than the proposer. The

proposer has an advantage that increases in the breakdown probability.

Perhaps surprisingly, homogeneity of the voting weights is neither nec-

essary nor sufficient for proportionality of payoffs. The game being constant

sum is sufficient provided that one chooses the ”right” weights to represent

the game.

The remainder of the paper is organized as follows. Section 2 introduces

the bargaining procedure and some general properties of equilibria. Section

3 contains the proportionality result. Section 4 contains a discussion of

the classes of games for which proportionality is obtained, and section 5

concludes.

2 The game

LetN = {1, 2, ..., n} be the set of players (parties) and (N, v) a characteristic
function game. The game (N, v) is a weighted majority game iff there are

n+ 1 nonnegative numbers w1, ..., wn, q such that v(S) = 1 if
P
i∈S wi ≥ q

and 0 otherwise. The pair [q;w] where w = (w1, ..., wn) is a representation

of the game. We say that S is winning iff v(S) = 1, and that S is minimal

winning if S is winning and no T Ã S is winning. Given a weighted majority
game, we will denote the set of winning coalitions as W (or W (q,w) if we

want to emphasize that W corresponds to [q;w]), and the set of minimal

winning coalitions as Wm. A player that belongs to all winning coalitions is

called a veto player. A player that does not belong to any minimal winning

coalition is called a dummy player.

We will interpret the characteristic function as referring to a budget of

size 1 that has to be divided by majority rule. The characteristic function

v indicates which coalitions of parties have a majority (and thus can divide
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the budget between themselves). We will assume that all players in N care

only about their own material payoff and are risk neutral; thus if x ∈ Rn is
a division of the budget ui(x) = xi.

Given the underlying weighted majority game, bargaining proceeds as

follows:

• Nature selects a proposer according to a probability distribution θ

(θi ≥ 0 for all i and
P
i∈N θi = 1).

• The selected proposer i proposes a coalition S such that S 3 i.

• Players in S accept or reject the proposal sequentially. If one of them
rejects, Nature selects a new proposer according to the probability

distribution θ.

• If all players in S accept, coalition S is formed. If S is a losing coalition,
the game ends and all players get 0.3 If S is a winning coalition, players

in S bargain over the division of the budget.

• The ”internal” game, played only by players in S, is a bargaining game
with random proposers (Nature follows a probability distribution θS

with θSi ≥ 0 for all i ∈ S and
P
i∈S θ

S
i = 1) and breakdown probability.

A proposal xS is a division of the budget between the players in S

(
P
i∈S x

S
i = 1). Every time a responder rejects a proposal, coalition S

is dissolved with probability 1− p (0 < p < 1).

• If coalition S is dissolved, Nature selects a proposer again according
to the probability distribution θ.

We denote the noncooperative bargaining game described above as

G(N, v, θ,
¡
θS
¢
S∈W , p), or simply G. We will be interested in stationary

subgame perfect equilibria (SSPE).

Since coalition formation occurs before payoff division, we can think of

the extensive game described above as a two-stage game. Of course, both the

3We may assume that S leaves the game but N\S can continue negotiating without
changing the results.
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coalition formation ”stage” and the payoff division ”stage” are complicated

objects and the play may bring the players back from the second to the first

stage.

We will refer to the probability distribution θ as the protocol, and to

θS as the internal protocol. Given a SSPE σ∗, we will denote by y the
expected equilibrium payoff vector computed before Nature starts the game,

and by yS the expected equilibrium payoff vector computed after S has

formed and before Nature starts the internal game. Let zS be the vector of

continuation values (i.e., expected payoffs after a proposal has been rejected)

in the internal game. Notice that because of stationarity, y, yS and zS

depend on σ∗ but not on history. We start by computing the equilibrium of

the internal game.

2.1 The equilibrium of the internal game

Suppose we have a SSPE of the game with associated expected equilibrium

payoff vector y. We now show that the internal game has a unique stationary

subgame perfect equilibrium payoff vector yS.

If a player rejects a proposal in the internal game, with probability p

Nature starts the internal game again (so that player i expects to get ySi )

and with probability 1 − p coalition S breaks apart and Nature starts the
coalition formation game again (so that player i expects to get yi). We have

the following equation for the continuation value of player i :

zSi = py
S
i + (1− p)yi

As for ySi , it is given by the probability that i is selected to be a pro-

poser in the internal game times his expected payoff as a proposer plus the

probability that he is selected to be the responder (which is 1− θSi because
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bargaining is unanimous in the internal game) times his continuation value.4

ySi = θSi [1−
X

j∈S\{i}
zSj ] + (1− θSi )z

S
i

From this system of equations (and taking into account that
P
j∈S y

S
j =

1) we see that

ySi = θSi (1−
X
j∈S

yj) + yi. (1)

This is a well-known result in bargaining games with breakdown proba-

bility: player i’s expected payoff equals the breakdown payoff (in this case,

yi) plus a share of the surplus proportional to the probability of being pro-

poser (cf. Binmore (1987) and Binmore et al. (1986)).

Equation (1) resembles an allocation rule in that each player receives a

share of the available surplus and this share is determined by the internal

protocol. However, there is an important difference: the payoff a player gets

from being in a coalition is not fully determined by the rules of the internal

game because the breakdown outcome is endogenous, as in Rubinstein and

Wolinsky (1985).

2.2 The equilibrium of the game

2.2.1 No-delay result

Under relatively weak conditions, agreement is reached immediately (cf.

Okada, 1996).

Lemma 1 If θi < 1 for all i, θSi > 0 for all winning coalitions S 3 i and
there are no veto players, then in any SSPE of G all proposals are accepted,

and a winning coalition forms immediately.

4The payoff for player i as a proposer is 1−Pj∈S\{i} z
S
j regardless of whether agreement

is immediate. There are two possible cases:

1) If
P

i∈S z
S
i < 1 the proposer strictly prefers making acceptable proposals; since in

any SSPE the proposer must offer exactly zj to each responder j the results holds.

2) If
P

i∈S z
S
i = 1 acceptable and unacceptable proposals give the same payoffs to the

players. Notice that this second case is only possible if
P

i∈S y
S
i = 1 and

P
i∈S yi = 1.
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Proof. The first thing to notice is that yi ≥ 0 because no player can be
forced into a coalition. A proposal to form a coalition S with

P
k∈S yk < 1 is

always accepted because the payoff from accepting the proposal, yj+θSj (1−P
k∈S yk), is strictly greater than the payoff from rejecting it, yj , for all

j ∈ N .5 Consider the situation of i as proposer. There is always a coalition
i can propose with 1 >

P
k∈S yk. This is because N\{k} is winning for

all k, thus player i can propose any N\{k} where k is such that yk > 0.

The only case in which this would not be possible is if yi = 1, but clearly

this cannot happen in equilibrium because all other players would propose

coalitions without i (and such coalitions would be accepted), resulting in i

getting 0 with positive probability, contradicting yi = 1. Since θSi > 0 for

all S, proposing S is strictly better than proposing a losing coalition.

On the equilibrium path, i proposes a winning coalition S with
P
k∈S yk <

1 and bargaining between players in S results in immediate agreement.

Corollary 2 If moreover θi > 0 for all i, then in any SSPE of G we have

yi > 0 for all i.

Proof. Clearly, a player will never accept a negative payoff in any

situation. By rejecting all proposals and proposing only losing coalitions, a

player can secure a payoff of 0. Furthermore, as a proposer, any player gets

a positive surplus because there is a coalition S 3 i with 1 >Pk∈S yk.

Corollary 3 The proposer will propose a coalition S that solves the follow-

ing problem

max
W3S3i

θSi (1−
X
k∈S

yk).

Because the solution of this problem is sure to have
P
k∈S yk < 1, the

proposer does not need to worry about acceptance.

Corollary 4 Let λSi be the probability that player i proposes coalition S.

Under the conditions of lemma 1, the following must hold in any SSPE of

5Notice that equilibria in which several responders reject just because S is going to be

rejected anyhow are ruled out by the fact that the players in S respond sequentially.
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G:

yi = θi
X
S3i

λSi

"
θSi (1−

X
k∈S

yk) + yi

#
+

X
j∈N\{i}

θj
X

S⊃{i,j}
λSj

"
θSi (1−

X
k∈S

yk) + yi

#
X
S3i

λSi = 1

λSi > 0 implies S ∈ arg max
T :T3i

θTi (1−
X
j∈T

yj)

2.2.2 How coalitions larger than minimal winning may form

If we make no further assumptions on θ and (θS)S∈W , proposed coalitions
are not necessarily minimal winning.

Suppose θTi > θSi for some T ⊃ S. Then player i is facing a trade-

off: i receives a higher share of the surplus in T , but the surplus of T is

smaller. Example 5 shows that the first effect may predominate. This is not

completely obvious because (yj)j∈N is endogeneously determined.

Example 5 Consider the apex game with seven players [6; 5, 1, 1, 1, 1, 1, 1].

Suppose θ1 =
7
8 , θi =

1
48 , θ

N\{1}
i = 1

6 and θS1 =
s−1
s , where s is the number

of players in S.6 There is an equilibrium in which the large player forms a

coalition with two small players.

Let the large player propose to two small players at random, thus each

small player has a probability 2
6 of receiving a proposal if the large player

is selected to be proposer. Let the small players propose coalition N\{1}.
Given these strategies, the equilibrium payoffs can be found from the fol-

lowing equations:

y1 =
7

8

∙
y1 +

2

3
(1− y1 − 2yn)

¸
yn =

7

8

2

6

∙
yn +

1

6
(1− y1 − 2yn)

¸
+
1

8

1

6

The solution is y1 =
28
37 , yn =

3
74 . Player 1 is behaving optimally because

s−1
s [1− y1 − (s− 1)yn] is maximized for s = 3. The small players are also
6The value s−1

s
is also the coalition structure Shapley value (Aumann and Drèze, 1974)

of player 1 for any S with {1} Ã S 6= N .
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behaving optimally by proposing coalition N\{1}. In N\{1}, they expect
a payoff of 16 . If instead they proposed {1, i}, they would get a payoff of
3
74 +

1
2

¡
1− 28

37 − 3
74

¢
= 21

148 <
1
6 .

2.2.3 Games with veto players

If there are veto players, the two-stage feature of the model does not make

any difference and the set of equilibria is the same as in the original Baron-

Ferejohn game without discounting.7 Assuming that all players have a pos-

itive probability of being proposers, all non-veto players get 0 and any divi-

sion of the total payoff between the veto players is an equilibrium regardless

of the protocol. Agreement may be delayed but must eventually occur.

3 The proportionality result

We now turn to the question of proportionality of payoffs. Because each

game has many equivalent representations8, for this section we use [q;w]

and not (N, v) as the primitive of the analysis. We will not make any

assumptions about q and w for the time being, except q >
P
i∈N wi
2 (so

that it is not possible for two disjoint sets of players to achieve a majority).

There is no presumption that [q;w] is the canonical representation of the

game. Without loss of generality, we will normalize the weights so thatP
i∈N wi = 1.
The question we ask is the following. Suppose θ and

¡
θS
¢
S∈W are pro-

portional to the voting weights. Is there an equilibrium with proportional

payoffs? More specifically, is there an equilibrium in which expected payoffs

coincide with w and expected payoffs conditional on S forming are propor-

tional to w?

7Games with veto players are studied by Winter (1996); see also appendix A in Drou-

velis, Montero and Sefton (2007).
8Two representations, [q,w] and [q0, w0], are equivalent if they have the same set of

winning coalitions, i.e., W (q, w) =W (q0, w0).
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3.1 Discarding dummy players

We have started from a very general [q;w]. In particular, we haven’t ex-

cluded the possibility of dummy players with a small but positive voting

weight. The following lemma shows that, if we are interested in propor-

tional payoffs under a proportional protocol, we can ignore dummy players

without any loss of generality: if payoffs are proportional to w, w cannot

give a positive weight to dummy players.

Lemma 6 If θi = wi, and θSi =
wiP
j∈S wj

for every S ∈ W and i ∈ S,
yi = wi for a dummy player i implies wi = 0.

Proof. Suppose wi = yi > 0 for a dummy player i. No player j 6= i will
include i in the proposed coalition (dropping i increases the surplus available

to the coalition as well as the share j receives of the surplus). Let T be one

of the coalitions that are optimal for i as a proposer. Then

yi = θi

⎡⎣yi + θTi (1−
X
j∈T

yj)

⎤⎦
Given the assumption of propotional protocol and proportional expected

payoffs, we can write the equation as

wi = wi

⎡⎣wi + wiP
j∈T wj

⎛⎝1−X
j∈T

wj

⎞⎠⎤⎦ = wi wiP
j∈T wj

.

Since there must be some nondummy players in T , we have wi <
P
j∈S∗ wj

and the equation cannot hold.

Remark 7 Since proportionality of payoffs under a proportional protocol

requires dummy players to get 0, we will henceforth assume that there are

no dummy players, or equivalently we will assume wi = 0 for all dummies

and redefine the set of players N as the set of those that belong to at least

one minimal winning coalition. This will simplify the statements below.
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3.2 A sufficient condition for proportionality

Let C be a collection of nonempty subsets of N . We say that the collection
is (weakly) balanced9 iff there exist (nonnegative) positive numbers (λS)S∈C
such that, for each i ∈ N , PS3i λS = 1. The numbers (λS)S∈C are called
balancing weights.

Given any (q, w), denote byW ∗(q,w) the collection of winning coalitions
with minimum total weight, namely

W ∗(q, w) := {S ∈W : wS ≤ wT for all T ∈W}.

Clearly, W ∗(q, w) ⊆ Wm(q, w), that is, winning coalitions of minimum

total weight must be minimal winning coalitions. If no confusion arises, we

will denote W ∗(q, w) by W ∗. We will denote minS∈W wS by q
∗.10

The main result of this paper is that, if the voting weights are such

that the set of winning coalitions with minimum total weight is weakly

balanced, and the recognition probabilities are proportional to the voting

weights, then expected payoffs (ex ante and conditional on the coalition that

forms) are also proportional to the voting weights. Actual payoff division is

proportional as well in the limit when the breakdown probability tends to

0.

Proposition 8 Let (q, w) be a weighted majority game such that W ∗(q,w)
is a weakly balanced collection. Let θi = wi, and θ

S
i =

wiP
j∈S wj

for every S ∈
W and i ∈ S. Then there exists an SSPE of the game G(q,w, θ, (θS)S∈W , p)
in which

(1) Only coalitions in W ∗(q, w) are proposed.
(2) Expected payoffs are yi = wi for all i in N .

(3) Expected payoffs conditional on S forming are ySi =
wiP
j∈S wj

for all

coalitions S that form in equilibrium.

9This concept appears in Shapley (1967).
10Because we haven’t assumed anything about [q;w], q∗ > q is possible. For example,

in the game [11; 9, 3, 3, 3, 3], q∗ = 12 but q = 11. Any representation of the game with a

claim to be the canonical representation would have q = q∗ (see Peleg 1968).
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(4) Ex post, each responder obtains
h
p
q∗ + 1− p

i
wi, and the proposer

obtains the residual. The proposer’s payoff is decreasing in the continuation

probability p and varies between 1−Pj∈S\{i}wj and
wi
q∗ .

Proof. Let (λS)S∈W∗ be a set of balancing weights. Consider the fol-

lowing strategy combination:

• As a proposer, player i proposes coalition S with probability λS if S ∈
W ∗ and i ∈ S, and with probability 0 otherwise. Since PS3i λS = 1,
player i’s strategy as a proposer is completely determined.

• As a responder, player i accepts all proposals to form winning coali-

tions and rejects all proposals to form losing coalitions.

• Given that a coalition S forms, the equilibrium of the internal game

as described in section 2.1 is played.

In order for the above strategies to be an SSPE of the game, two condi-

tions must be satisfied:

• Players are behaving optimally given the expected payoffs (yi)i∈N .

• Expected payoffs given the proposed coalitions are indeed (yi)i∈N .

To show that players are behaving optimally, suppose yi = wi for all

i ∈ N . By construction, players’ strategies are an equilibrium of the internal
game for any S. Since expected payoffs in the internal game are at least yi

(see equation (1)), it is optimal to accept all proposals to form a winning

coalition. Since all losing coalitions end up with a payoff of 0, it is also

optimal to reject all proposals to form a losing coalition. It remains to check

that only optimal coalitions are proposed.

From corollary 3, the proposer proposes a coalition that maximizes

θSi (1−
P
k∈S yk) over the set of winning coalitions to which it belongs. Thus,

other things being equal, the proposer prefers to propose coalitions with a

high θSi and a low
P
k∈S yk. If expected payoffs are proportional to the

weights, the coalitions that minimize
P
k∈S yk are the same as those that
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maximize θSi , namely the coalitions in the set W
∗. Weak balancedness of

W ∗ does not play a role here except to guarantee that each i ∈ N belongs

to at least one of those coalitions.

Recall that q∗ denotes the total weight of any coalition S ∈ W ∗. Ex-
pected payoffs conditional on a coalition S ∈W ∗ forming are

ySi = wi +
wi
q∗
[1− q∗] = wi

q∗
.

This result is independent of the value of p. Actual payoff division is

such that each responder receives its continuation value and the proposer

pockets the residual. Continuation values are

zSi = p
wi
q∗
+ (1− p)wi =

∙
p

q∗
+ 1− p

¸
wi

Thus, actual payoffs are proportional to wi for all responders, but the

proposer obtains a disproportionate share. In the limit when the contin-

uation probability tends to 1, the proposer advantage vanishes and actual

payoff division is proportional.

We have shown that players are behaving optimally given that yi = wi

for all i ∈ N and that this behavior induces proportional values for ySi . It

remains to show that ex ante expected payoffs induced by the strategies are

indeed (wi)i∈N .
Because only coalitions in W ∗ form given the strategies, ySi =

wi
q∗ for all

coalitions S 3 i that have a positive probability of forming. Thus, yi = λi
wi
q∗ ,

where λi is the probability that player i belongs to the coalition that forms.

In order for the strategy combination described above to have y = w, we

need λi = q
∗ for all i ∈ N .

λi =
X

S∈W∗,S3i

X
j∈S

wjλS =
X

S∈W∗,S3i
λS
X
j∈S

wj =
X

S∈W∗,S3i
λSq

∗ = q∗.

When is W ∗ (q, w) weakly balanced? In order to answer this question,
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consider the following linear programming problem11

min e

s.t.
X
i∈S

xi + e ≥ 1 for all S ∈WX
i∈N

xi = 1

xi ≥ 0 for all i

The value 1−Pi∈S xi is the surplus (usually called the excess) available
if coalition S forms. The program solves for vectors of nonnegative payoffs

that minimize the maximum 1−Pi∈S xi. The nucleolus (Schmeidler, 1969)
is a solution of this program by definition.

The following lemma is a weak version of a much stronger result proven

by Kohlberg (1971).

Lemma 9 The set W ∗(q, w) is weakly balanced iff the weight vector w is a
solution of the above program.

Proof. The dual of the linear program above (after noticing that we can

replace
P
i∈N xi = 1 by −

P
i∈N xi ≥ −1 without changing the solution) is

max
X
S∈W

λS − µX
W3S3i

λS − µ+ ρi ≤ 0X
S∈W

λS ≤ 1

λS ≥ 0 for all S ∈W , ρi ≥ 0 for all i and µ ≥ 0

where λS is the dual variable associated to the constraint x(S) + e ≥ 1,
µ is the dual variable associated to −x(N) ≥ −1 and ρi is the dual variable

associated to xi ≥ 0.
11We could also write the constraints as

P
i∈S xi + e ≥ v(S) for all S. This would

make no difference because the constraints corresponding to losing coalitions would not

be binding.
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Suppose w is a solution to the primal. Complementary slackness implies

that, for any coalition with λS > 0, we have x(S) + e = 1, that is, S is a

coalition of maximum excess (or of minimal total weight). Because wi > 0

for all players (we are ignoring dummies!), ρi = 0 and
P
S3i λS = µ for all

i ∈ N . If the core is empty, the value of e that solves the problem is positive
and complementary slackness implies

P
S∈W λS = 1. It is then clear that

µ > 0 and we can define λ0S =
λS
µ . Then

P
W3S3i λ

0
S = 1 for all i and the

result follows. If the core is nonempty (i.e., if there are veto players), N is

a coalition of maximum excess and setting λN = 1 shows that W
∗ is weakly

balanced.

Conversely, if W ∗(q, w) is weakly balanced and N ∈ W ∗, w is in the

core and is clearly a solution to the program. If N /∈ W ∗ we can show
that w solves the program by constructing feasible solutions to the primal

and to the dual satisfying complementary slackness. For the primal, simply

compute the maximum excess e∗ associated to w. For the dual, W ∗(q;w)
only contains winning coalitions. Given a set

¡
λ0S
¢
S∈W∗ of balancing weights,

define λS :=
λ0SP

S∈W λ0S
if S ∈ W ∗, λS = 0 if S /∈ W∗, ρi = 0 for all i

and µ :=
P
S3i λ

0
S . One can check that (w, e

∗) is feasible for the primal,
((λS)S∈W , µ) is feasible for the dual and complementary slackness holds.
By the complementary slackness theorem (cf. Theorem 5.3 in Vanderbei

(2001)) we have a solution to the program.

4 Discussion

4.1 On the relation between W ∗(q, w) being weakly balanced
and other properties of games

A given game may have many equivalent representations. For example,

[2; 1, 1, 1] and [5; 4, 3, 2] are equivalent representations of the same game.

Not all representations will have the property that W ∗ is a weakly balanced
collection. In the previous example, W ∗(2; 1, 1, 1) = {{1, 2}, {1, 3}, {2, 3}},
and this collection is weakly balanced (each minimal winning coalition can

be given a weight of 12). On the other hand, W
∗(5; 4, 3, 2) = {{2, 3}}, which
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is clearly not weakly balanced.

We may ask ourselves whether, given any majority game, we can find an

equivalent representation such thatW ∗ is weakly balanced and if so, whether
this representation is unique. The answer to both questions is negative

in general. If the game is constant-sum, there is always a representation

such that the associated W ∗ is weakly balanced. If the game is moreover
homogeneous, this representation is unique. Homogeneity on its own is

unrelated to whether W ∗ is weakly balanced.
Games with veto players

Games with veto players do not satisfy the balancedness condition unless

all players are veto players, in which case proposition 8 holds trivially.

Constant-sum homogeneous games

A game is constant-sum if v(S) + v(N\S) = 1 for all S ⊂ N (no ties are

possible). It is homogeneous if we can find a representation [qh;wh] such

that v(S) = 1 iff
P
i∈S w

h
i ≥ qh and

P
i∈S w

h
i = q

h for all S ∈Wm.

For this class of games, the nucleolus is a representation and the only

solution to the linear programming problem (see Peleg, 1968). Thus, there

is a unique system of weights such that expected payoffs with a proportional

protocol are themselves proportional.

Constant-sum but not homogeneous games

The nucleolus is still a representation (Peleg, 1968) but it may not be

the only solution to the linear programming problem. Any solution to the

linear programming problem is also a representation.

The following example illustrates how proportional payoffs can be achieved

despite the lack of homogeneity of the game.

Example 10 Consider the game [5; 2, 2, 2, 1, 1, 1]. Normalizing the weights

so that they add up to 1 we get w =
¡
2
9 ,
2
9 ,
2
9 ,
1
9 ,
1
9 ,
1
9

¢
and q = 5

9 . The set

W ∗(q, w) is weakly balanced.

Given w =
¡
2
9 ,
2
9 ,
2
9 ,
1
9 ,
1
9 ,
1
9

¢
, there are two types of coalition of maximum

excess: [221] and [2111]. This is a balanced collection, since we can assign a

weight of 2
15 to each of the nine coalition of type [221] and

1
5 to each of the

three coalitions of type [2111]. In the noncooperative game, players would
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propose coalitions to which they belong with a probability equal to the

corresponding balancing weight. Coalition {1, 2, 3} is also minimal winning
but does not form because it has a lower surplus to divide (39 as opposed to
4
9) and its members receive a lower share of this surplus (

1
3 as opposed to

2
5).

The only difference with the homogeneous case is that, if there are several

solutions of the linear programming problem, there are several payoff vectors

w with the property that a proportional protocol to w yields w as expected

payoff vector.

Isbell (1959) has an example of two representations of the same game:

[99; 38, 31, 31, 28, 23, 12, 11, 8, 6, 5, 3, 1] and [99; 37, 31, 31, 28, 23, 12, 11, 8, 7, 5, 3, 1].

Both of them minimize the maximum excess, thus proposition 8 applies to

both. The nucleolus is the midpoint.

Homogeneous but not constant-sum games

If (q;w) is a homogeneous representation, the set W ∗ is precisely the
set of minimal winning coalitions. Theorem 8 applies to w whenever Wm is

weakly balanced.12

There are homogeneous games for which the set of minimal winning

coalitions is not weakly balanced. For example, in game [5; 3, 2, 2, 1], the

set of minimal winning coalitions is {{1, 2}, {1, 3}, {2, 3, 4}}, which is not
balanced. Since player 4 belongs to only one of these coalitions, we would

need to set λ{2,3,4} = 1, which would imply λ{1,2} = λ{1,3} = 0 (otherwise

the weights would add up to more than 1 for players 2 and 3). But thenP
S31 λS = 0.
The example above is of a game with ”steps”. A step is a player that

cannot be replaced by smaller players in a minimal winning coalition. ”Steps

rule their followers” (Ostmann, 1987, lemma 4.8) in the sense that they must

be members of any minimal winning coalition in which a smaller player

appears.

One may ask whether the set of minimal winning coalitions is weakly

12Note that if the set of minimal winning coalitions is not weakly balanced, the set

W ∗(q,w) cannot be weakly balanced for any w (homogeneous or otherwise). This is

because W ∗(q,w) ⊂Wm(q, w).
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balanced for homogeneous games without steps. The answer is again not in

general (see Peleg and Rosenmüller, 1992).

Example 11 Consider the game [18; 4, 4, 4, 4, 2, 2, 2, 1, 1, 1]. This is a game

without steps, but the set of minimal winning coalitions is not weakly bal-

anced.

One may check this directly by setting a system of equations for the

balancing weights (λS)S∈W∗ and showing that there is no solution with

λS ≥ 0 for all S ∈ W ∗. Another way is to notice that if W ∗ was weakly
balanced, then w would be a solution to the linear programming problem in

lemma 9. However, there is another vector with a lower maximum excess:

(14 ,
1
4 ,
1
4 ,
1
4 , 0, 0, 0, 0, 0, 0). The maximum excess associated to this imputation

is 14 ; for the homogeneous representation it is 1− 18
25 =

7
25 >

1
4 .

There are also many homogeneous games for which Wm is weakly bal-

anced. Then there is a set of weights w for which theorem 8 holds. This set

is not necessarily unique, as the following example shows.

Example 12 Consider the game [6; 2, 2, 2, 1, 1, 1]. The set of minimal win-

ning coalitions is weakly balanced, thus the weight vector w = (29 ,
2
9 ,
2
9 ,
1
9 ,
1
9 ,
1
9)

satisfies the conditions of theorem 8. The nonhomogeneous weight vector¡
1
4 ,
1
4 ,
1
4 ,

1
12 ,

1
12 ,

1
12

¢
(which happens to be the nucleolus)13 also does.

Games that are neither homogeneous nor constant-sum

The possibility of W ∗ being weakly balanced is not excluded.

Example 13 Consider the game [8; 4, 3, 2, 2, 1, 1]. The setW ∗(q, w) is weakly
balanced.

The set W ∗(q, w) contains all winning coalitions with exactly 8 votes,
namely two coalitions of type [431], one coalition of type [422], two coalitions

of type [4211] and two coalitions of type [3221]. We can assign a weight of
3
16 to each coalition of type [431],

1
8 to the coalition of type [422],

1
4 to each

coalition of type [4211] and 5
16 to each coalition of type [3221].

13A useful computer program that calculates the nucleolus has been developed by Derks

and Kuipers (1997).
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4.2 On the impossibility of fully proportional payoffs for

some games

There is a sense in which the present model yields full proportional payoffs

whenever feasible. Abstracting from any particular model, suppose ex post

payoffs for all coalitions are proportional to the voting weights. It seems

natural to assume that only minimal winning coalitions with the lowest to-

tal voting weight form, since they are the coalitions that maximize their

members’ payoffs14. Let q∗ be the total weight of any coalition in W ∗. Con-
ditional on being in the final coalition, each player is receiving wi

q∗ . Ex ante

expected payoffs equal λi
wi
q∗ for each player, where λi is the probability that

i is included in the coalition that forms. Ex ante proportionality can only

be achieved if all players are in the final coalition with the same probability.

In other words, the set of coalitions that form, which is the set W ∗, must
be weakly balanced, otherwise proportionality ex ante and proportionality

ex post are incompatible.

The impossibility we have just discussed is on the assumption that only

coalitions in W ∗, which are the most attractive ones if ex post payoffs are
proportional, can form. Coming back to our particular model, we saw in sec-

tion 2 that it is possible to design protocols such that coalitions larger than

minimal winning can form. Perhaps proportional payoffs can be obtained

with a protocol that induces larger coalitions. This is indeed the case, but

the protocol has to be degenerate in the sense that at least one player is not

allowed to propose coalitions.15

Example 14 Consider the game [5; 3, 2, 2, 1]. Ex ante and ex post SSPE

payoffs can only be simultaneously proportional if there is a player i with

θi = 0.

Proof. We know from the previous discussion that proportional payoffs

cannot be achieved if only minimal winning coalitions form. There are three

14This is the logic behind Gamson’s (1961) model of coalition formation.
15For the original Baron-Ferejohn model, Kalandrakis (2006) finds that any ex ante

expected payoffs can be obtained for some protocol (which may assign a probability of 0

to some players).
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coalitions larger than minimal winning that could form in a hypothetical

equilibrium: {1, 2, 4}, {1, 3, 4} and {1, 2, 3, 4}. Suppose {1, 2, 3, 4} forms.
Some player must have proposed it. If it is player 1, it must be the case

that 1 gets at most 3
8 in {1, 2} and {1, 3}. Then θ2 = θ3 = 0 (otherwise

these players would get 58 or more as proposers). The same reasoning applies

in general: if i proposes a coalition larger than minimal winning, it must

be that i is badly treated by the internal protocol in the minimal winning

coalitions to which i belongs, and thus some other player j must be gener-

ously treated. In order to preserve proportionality, θj = 0, or else j would

propose a coalition with i or some other coalition that treats j even better,

and proportionality would break down.

There is always a trivial protocol that induces proportional payoffs: take

a player i, and let θi = 1 and θSi = 0 for all S 6= N . Then any payoff vector
including w is an equilibrium payoff vector.

4.3 Making the formateur coincide with the first proposer

The present model separates the role of formateur (the player selected to

propose a coalition) and first proposer (the player selected to propose a

division of the payoff, which may or may not be the formateur).16 The

model predicts a proposer advantage (for p < 1) rather than a formateur

advantage. The results are very similar if the model is modified to make

the first proposer coincide with the formateur.17 The model then predicts a

formateur advantage that decreases in the continuation probability p.

Consider the following modified model: if player i proposes S and S is

accepted, player i gets to make the first payoff division proposal. If this pro-

posal is rejected, θSi =
wiP
j∈S wj

for all subsequent rounds until an agreement

occurs or S breaks down. The probability of being selected as formateur is

still θi = wi for all i.

Consider the internal game. After the first proposal is rejected, the

game becomes identical to the one we have analyzed, thus if we denote

16For another model that separates the roles of formateur and proposer, see Seidmann

et al. (2007).
17Diermeier et al. (2003) make this assumption.
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as ySi the expected payoff conditional on S forming and the first proposal

having been rejected, the continuation values at the first round are still given

by zSi = py
S
i + (1 − p)yi and the equation ySi = yi + θSi

h
1−Pj∈S yj

i
still

holds. In particular, if yi = wi, it still follows that y
S
i =

wi
q∗ for all S ∈ W ∗,

and each responder would receive zSi =
h
p
q∗ + 1− p

i
wi as in proposition 8.

The same strategies as in proposition 8 lead to proportional payoffs.

Coalitions in W ∗ are still the optimal coalitions to propose given that yi =
wi. The only difference is that the equation for expected ex ante payoffs

is no longer as simple as yi = λi
wi
q∗ (the probability of being in the final

coalition times expected payoff conditional on being in the final coalition)

but it needs to separate the cases in which i is a proposer (with probability

wi, and payoff 1−
P
j∈S\{i}

h
p
q∗ + 1− p

i
wj for some S ∈ W ∗) and cases in

which i is a responder (with probability
P
W∗3S3i

P
j∈S\{i}wjλS and payoffh

p
q∗ + 1− p

i
wi). Given that

P
j∈S\{i}wj = q∗ − wi for all S ∈ W ∗, i’s

payoff as a proposer can be written as 1 −
h
p
q∗ + 1− p

i
(q∗ − wi), and the

probability of i being a responder can be written as (q∗ − wi)
P
W∗3S3i λS .

Since by construction
P
W∗3S3i λS = 1, the probability of being a responder

is q∗ − wi. Then expected payoffs can be written as

yi = wi

∙
1−

∙
p

q∗
+ 1− p

¸
(q∗ − wj)

¸
+ (q∗ − wj)

∙
p

q∗
+ 1− p

¸
wi = wi.

5 Conclusion

While proportionality (ex ante and ex post) is a very natural result it is not

present in the literature to the best of my knowledge. Von Neumann and

Morgenstern’s (1944) main simple solution and other cooperative solution

concepts like the aspiration core (Cross, 1967) and the demand bargaining

set (Morelli and Montero, 2003) predict a proportional division of payoffs

inside the coalition that actually forms, but have nothing to say about ex

ante expected payoffs. Ex ante solution concepts like the Shapley value do

not predict proportional payoffs; the nucleolus assigns proportional payoffs

to the grand coalition but not to minimal winning coalitions. Something
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similar can be said of noncooperative models: either proportionality holds

only ex post (as in Frechette et al. 2005, Montero and Vidal-Puga 2006),

or it holds only ex ante, while ex post the proposer gets a disproportionate

payoff (as in Montero 2006). Here, the proposer’s advantage vanishes in the

limit when the probability of breakdown tends to 0.

Empirical evidence on legislative bargaining finds a linear relationship

between weights and payoffs for coalition members other than the forma-

teur, and a significant formateur advantage, though this advantage is not

quite as large as the original Baron-Ferejohn model would predict (see An-

solabehere et al., 2005). The current model with an intermediate breakdown

probability and the formateur being the first proposer makes precisely these

predictions.18

The condition of weak balancedness of the set W ∗ is intuitive. It says
that we can assign probabilities to the coalitions that form in such a way

that each player is in the final coalition with the same probability. Ex

post payoffs can be described as competitive, since none of the players is

particularly popular or impopular given those payoffs. Interestingly, the

weak balancedness condition is independent of other well-known properties

such as homogeneity.

The present model yields fully proportional payoffs whenever feasible.

If only minimal winning coalitions with the lowest total voting weight form

(which seems natural if ex post payoffs are proportional to the weights),

ex ante proportionality can only be achieved if all players have the same

probability of being in the coalition that forms. In other words, the set of

coalitions that form must be weakly balanced, otherwise proportionality ex

ante and proportionality ex post are incompatible.

18One caveat is that it may not be possible to find an equivalent representation with

the property that W ∗(q,w) is weakly balanced for some of the parliaments in the sample.

Another is that (q,w) may be quite different from the actual seat shares. Diermeier and

Merlo (2004) find some empirical support for formateur selection proportional to seat

shares; to the best of my knowledge formateur selection proportional to voting weights

has not been tested. Ansolabehere et al. (2005) examine the question of which party

succeeds in forming the government and find that minimum integer voting weights and

seat shares separately predict who is the successful formateur.
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