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Is Preference Reversal Just Stochastic Variation?*

Jacinto Braga
CeDEx, University of Nottingham

lexjcb@nottingham.ac.uk

Abstract. This paper investigates whether the preference reversal phenomenon can
be accommodated by a stochastic model of expected utility. The model is based on
Loomes and Sugden's (European Economic Review, 1995) theory of random
preference. Its central assumption is that each individual has a set of preference
orderings and a probability distribution over that set. Each decision is made
according to a preference ordering drawn at random from that set. There are
probability distributions over sets of preference orderings, call that preference
distributions, that predict the observed asymmetric reversal patterns. These
preference distributions are however hard to justify. Moreover they cannot explain
the symmetric patterns of reversal that have been observed after repetition and
feedback in some experiments (which different, more easily justifiable preference
distributions can explain). The model casts doubts on a widely used measure of
reversals, and on some conclusions based on that measure, such as the famous
observation by Grether and Plott (American Economic Review, 1979) that incentives
made preference reversal stronger.

There is abundant, mainly experimental observation of behaviour deviating from the

predictions of the most widely used theory of rational risky choice in economics,

expected utility theory. Attempts to accommodate these deviations within a rational

choice framework have followed two approaches. The most common was the

development of new theories along the traditional deterministic line, such as regret

theory (Loomes and Sugden 1983) or rank dependent expected utility (Quiggin 1982).

Another was the addition of stochastic elements to existing deterministic theories

(Loomes and Sugden 1995, Hey and Orme 1994, and Harless and Camerer 1994).

We are concerned here with one of the most notorious deviations of observed

behaviour from that predicted by theories: preference reversal. In the typical

preference reversal experiment subjects are asked to choose between one safe and one

risky gamble and to place monetary values on them. Many subjects choose the safe

gamble but value the risky one more highly. This has been called standard reversal.

                                                
* I would like to thank Prof. Chris Starmer and Dr Henrik Orzen for their helpful comments. Any

mistakes are solely of my own responsibility.
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Choosing the risky bet while valuing the safer one more highly is far less frequent,

and has been called non-standard reversal.

Several explanations for preference reversal based on deterministic preference

theories have been proposed by Loomes and Sugden (1982), Holt (1986), and Karni

and Safra (1987) among others. These explanations stimulated further experimental

research and were eventually contradicted (see Tversky and Kahneman 1990, and

Cubitt et al forthcoming, or Braga 2003 for a review of that literature). Sugden

(forthcoming) proposes an explanation for preference reversal based on his newly

developed deterministic theory of reference-dependent expected utility. Empirical

research is yet to address this new explanation.

The predominant view among experimentalists seems to be that it is the

asymmetric pattern of inconsistencies between choice and valuation ranking that

challenges preference theory, not each inconsistency itself. Therefore the presence of

stochastic elements in decision making has been accepted, at least implicitly.

However the potential, or lack of it, of these stochastic elements in explaining

preference reversal is largely unexplored. Lichtenstein and Slovic (1971), the

discoverers of preference reversal, proposed and rejected a model of errors in choices

and valuations. Since then experimental results have been largely accepted as

systematic deviations from preference theory without evaluation against a stochastic

model. 

To ascertain that preference reversals were not mere random deviations from

deterministic theoretical predictions most authors, in the absence of a formal

statistical test, have relied on two features of the experimental results: in many

studies standard reversals far outnumber those of the non-standard type, thus, on

face value, the pattern appears not to be random; when a standard reversal occurs the

difference between the values placed on the risky and on the safe bets is often larger

than one might expect from randomness in decisions alone. Evaluation of these two

features has thus provided a surrogate, informal test of the significance of preference

reversal. Convincing as this informal test may have seemed, it amounts to testing a

stochastic model without specifying it. 
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This paper is an attempt to improve this state of affairs. We will revisit

Lichtenstein and Slovic’s (1971) error model, develop a random expected utility

model of choices and valuations, and test whether the data obtained from preference

reversal experiments could be generated by those models. The random preference

model to be developed here is rooted at Loomes and Sugden’s (1995) theory of

random preference. We will see that among the stochastic models of choice proposed

recently in the literature Loomes and Sugden’s theory is the one that can be extended

more directly to valuations. We will also see that two special cases of the Lichtenstein

and Slovic’s and the random preference models of choices and valuations are

observationally equivalent.

The remainder of this paper is as follows. Section 1 presents formally the

preference reversal phenomenon, specifies the type of data that the models need to

predict, and sets out the testing procedure. Section 2 briefly reviews the literature on

stochastic decision models. Section 3 revisits the Lichtenstein and Slovic’s error

model. Section 4 develops the random preference model of choices and valuations.

Section 5 fits the two models to preference reversal data. And section 6 concludes.

1. Preference Reversal

In a typical preference reversal experiment each subject makes a triple of decisions for

each pair of lotteries: a choice between the two lotteries and two, usually monetary,

valuations, one for each lottery. Thus we obtain N triples of decisions, where N is the

product of the number of subjects multiplied by the number of pairs of lotteries. If we

ignore instances of equal values given to both bets, which usually account for less

than 5% of all triples, each of these triples of decisions can be placed into one of four

categories, as in the table below. PP is the number of triples where the P bet is chosen

over and valued above the $ bet; $$ is the reverse; SR, the number of standard

reversals; and NSR the number of non-standard reversals.
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Table 1: Categories of triples

Highest Value
totalChoices

P $

P PP SR P + SR
$ NSR $$ NSR + $$

total P + NSR SR + $$ N

Only categories PP and $$ are compatible with deterministic expected utility

theory. Some other deterministic preference theories allow categories SR, NSR or

both, but, as mentioned above, of these theories only Loomes and Sugden’s

(forthcoming) reference-dependent expected utility provides an explanation for

preference reversal that has not been refuted by experimental research.

Models of stochastic choices and valuations may allow all four categories. A

model that predicts the expected frequencies of the four categories is testable. The

expected frequencies predicted by a model can be compared with the observed

frequencies by means of a chi-squared test of goodness-of-fit to test whether the

observed frequencies could have been generated by the model. That is, using the

subscripts O and E to denote observed and expected frequencies respectively, and if all

expected frequencies are at least five, the variable 
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follows approximately a chi-square distribution with degrees of freedom equal to

three (number of independent categories) minus the number of model parameters

estimated from the observed frequencies.

The statistical test is feasible if there are at most two parameters to be estimated

from the data. This poses a problem to both models under consideration here, as they

have both three parameters. In section 3 we apply a testing procedure to the

Lichtenstein and Slovic’s (1971) error model that, in some circumstances, is able to

reject the model. In section 5 we do the same with the random preference model of

choices and valuations.
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2. Stochastic Models of Decisions

Three stochastic theories of choice under uncertainty have emerged in recent

literature: the random error theories of Hey and Orme (1994) (HO) and Harless and

Camerer (1994) (HC), and the random preference theory (RP) of Loomes and Sugden

(1995). All three theories may be seen as a combination of a deterministic preference

theory and a stochastic element. Loomes and Sugden (1995, 1998) named the

deterministic component of a stochastic theory the core theory, and the stochastic

element, the stochastic specification. We will adopt these terms. The HO and RP models

with expected utility as their core theories were first presented by Becker et al (1963).

Hey and Orme (1994) and Loomes and Sugden (1995) generalised those models to

other core theories.

These three theories are theories of choice only, not of valuations. We will see in

section 4 that in most preference reversal experiments valuations were, according to

preference theory, equivalent to choices of one gamble from a set of many gambles.

Hey and Orme´s (1994) and Harless and Carmerer’s (1994) theories apply to pairwise

choices only. Therefore they cannot be extended in an obvious way to valuations.

Loomes and Sugden’s (1995) theory, as long as the core theory is transitive, applies to

choices from sets of any number of gambles. Therefore its extension to valuations is

straightforward.

The need to review the Loomes and Sugden’s (1995) random preference theory

of choice is obvious. We will also review the two error theories to put the Lichtenstein

and Slovic’s and the random preference models of choices and valuations in context. 

2.1. Three Stochastic Specifications

In the HC and HO error models each individual is thought of as having unique

deterministic preferences, as in any deterministic preference theory, but his decisions

may deviate from his unique preferences because of a random error. This random

error may be caused by failure to understand the tasks, inattention, or mistakes in

processing complex information. In Loomes and Sugden’s (1995) random preference

theory, an individual, rather than unique preferences, has a collection of preferences,
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and makes each decision according to some preferences drawn at random from his

collection. In this specification individuals do not make errors, but their preferences

are variable or imprecise.

In the HC model, an error is the choice of the truly least preferred option. This

happens with a probability that is constant across individuals and choice tasks. Thus

this model may be called the constant probability error model.

In the HO error model the probability that the least preferred gamble be chosen

varies across individuals and choice tasks. The true difference in subjective value

between two gambles X and Y is given by V(X, Y), with X preferred to Y if and only if

V(X, Y) > 0.1 X is chosen over Y if and only if V(X, Y) + ε > 0, where ε is normally

distributed with mean zero. The term ε may be interpreted as an error in the

evaluation of the relative value of X and Y. Let the operator fc  mean is chosen over. X

is chosen over Y with probability Pr(X fcY) = Pr(V(X, Y) + ε > 0) = Pr (ε > − V(X, Y)) =

Pr(ε < V(X, Y)) (because ε is symmetrically distributed around zero). Thus the larger

V(X, Y), that is, the more strongly X is preferred to Y, the more likely that X be chosen

over Y.

Loomes and Sugden’s (1995) theory of random preference is as follows.

Consider a set A of conceivable prospects, and a complete, reflexive, and transitive

binary preference relation, ≥p, on A, that is, ≥p is a preference ordering on A. Let R be

the set all possible preference orderings on A. The random preference model assumes

that for each individual there is an additive probability measure f on R, so that any

subset R’ of R has the probability f(R’). Whenever an individual has to choose an

element from a non-empty subset S of A, the elements of S are ranked according to a

preference ordering ri drawn at random from R. The individual will then choose the

highest ranked element of S, or one of the highest ranked elements with equal

probability if there is more than one element tied at the top of the preference

ordering. As ri is a preference order there will be at least one highest ranked element

in S. A given individual could make all its conceivably possible choices according to

only a small subset R* of R. This means that f(R*) = 1, and R* defines the core theory

                                                
1 In most of the commonly known core theories V(X, Y) can be expressed as u(X) − u(Y), that is, the

difference between two utilities, but in others, as regret theory, it cannot.
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governing that individual’s preferences. Given two gambles X and Y, let RX>Y and RX=Y

be the subsets of R that rank X above Y and X equally with Y respectively. Then, in a

pairwise choice, Pr(X fcY) = f(RX>Y) + 0.5 × f(RX=Y).

2.2. Experimental Evidence

Before exploring how these models could apply to valuations, we will review how

they have fared in explaining choice data.

Hey and Orme’s (1994) fitted preference functions, coupled with the normal

random error, separately to each individual’s choices. Their aim is to compare the

predictive power of expected utility and its generalisations, not evaluate the HO

stochastic specification itself. Still their conclusion that behaviour can be reasonably

approximated by expected utility plus noise implicitly approves the HO specification.

Harless and Camerer (1994) also compare the predictive power of expected

utility and its generalisations, but associated with the constant probability error.

However their method is different, and allows them to reject the model, regardless of

the core theory.

Carbone and Hey (1998) used the same method as in Hey and Orme (1994) to

compare the two random error specifications coupled with several core theories. They

concluded that the stochastic specification that performs best depends on the core

theory and on the individual.

Loomes and Sugden (1998) derive from the three stochastic specifications

predictions that are independent of the core theory. None of the predictions was

supported by the data, but the predictions of a model combining random preference

and a constant probability error seemed compatible with the data. Additionally the

authors derived implications of the three stochastic specifications when coupled with

expected utility as the core theory. All models were rejected on this score, but the

deviation from the predictions of the models appeared to be subsiding during the

course of the experiment.

Loomes, Moffat, and Sugden (2002) conducted an econometric analysis of

Loomes and Sugden’s (1998) data. They estimated stochastic versions of expected and
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rank-dependent utility. The stochastic specifications were random preference plus

constant probability error, and the HO specification with and without a constant

probability error. They conclude that rank dependent performs better than expected

utility; the HO plus constant probability error performs better than the HO model

alone; and the RP plus constant probability error model performs best of all. They

also find evidence, in line with Loomes and Sugden (1998), that the various rank-

dependent utility models were converging over time towards expected utility.

The balance of evidence appears to be that the best results will be obtained with

a combination of two stochastic combinations (Loomes and Sugden 1998, Loomes et

al 2002). The constant probability error specification in isolation appears to be

particularly inadequate. Among the studies reviewed, this model finds some support

only in Carbone and Hey’s (1998) findings. Note that this study only compares the

two error specifications. It includes no test to reject or accept either of them, contrary

to Harless and Camerer (1994) or Loomes and Sugden (1998).

2.3. Valuations

As we mentioned above, and as we will see below, under the elicitation methods

used in most preference reversal experiments, a valuation task was equivalent to a

choice of a gamble from a set a many gambles, specifically, more than two. This

means that theories of pairwise choice, as the HO or the HC error models, are not

directly applicable to valuations.

One could think that a model of pairwise choice could determine a choice of

one from more that two gambles by means of a chain of pairwise choices. Say, to

choose a gamble from {X, Y, Z}, one could first choose a gamble from {X, Y}. Suppose

X was chosen. Then one would chose from {X, Z}. The HO and HC stochastic

specifications pose a problem to this chain method: given any three or more gambles,

both models entail intransitive choice cycles with some positive probability. For the

chain method to be guaranteed to arrive at a final choice one would have to make

further assumptions. For instance one could rule out choice cycles. That is, one could

assume that after a gamble had been rejected in a pairwise choice it would not be
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object of any further choices. The random preference model also allows intransitive

choice cycles. This is not a problem though, because a single choice is enough to select

one from many options.

Interpreting a valuation as a choice is not merely a convenient way of applying

the random preference theory to valuations. For reasons that will be clearer below we

believe that this interpretation of valuations is precisely what preference theory

prescribes.

If the type of errors assumed in the HC and HO stochastic specifications exist

and influence people’s choices and valuations it must be possible to model such

errors in valuations, or, more generally, in choices of one from more than two

gambles. Lichtenstein and Slovic’s (1971) modelled error in valuation ranking (but

not in non-binary choice), and we now turn to their model.

3. Lichtenstein and Slovic’s Error Model

Lichtenstein and Slovic (1971) assume that the probability that a subject truly prefer

the P bet over the $ bet in a choice task is the same as the probability that he truly

value P above $ in the valuation tasks. Value here refers to the true subjective value.

These may, because of error, differ from the monetary value actually placed on a

gamble. Call this single probability p. Because of random errors subjects choose their

least preferred bet with probability r, and value their least preferred bet above their

preferred bet with probability s.

Note that a single probability p is an implication of deterministic expected

utility, but not of other deterministic preference theories, such as rank-dependent

utility, or regret theory.

3.1. Behavioural Rationale and Error Range

Lichtenstein and Slovic (1971) do not offer any rationale for their stochastic

specification. Nor do they indicate the possible range of r and s. The authors did not

need to specify these ranges, as they derived a testable hypothesis that is independent
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of r and s. Before moving to the predictions of their model, we will discuss what

rationale may be behind the model, and what limits can be imposed on r and s.

The error specification in choices is the same as that in Harless and Camerer

(1994). The error in a valuation task is not specified. What the authors specify is an

error in the valuation ranking, which depends on the comparison of two independent

valuations.

Loomes et al (2002) suggest that a constant probability error in binary choices

could arise from a subject failing to understand the task or suffering a lapse of

concentration, in which case his choice would be unconnected with his preferences,

that is, each option would be chosen with 50% probability. Then the probability that

the least preferred bet be chosen, r, is at most 50%, in the extreme case where all

choices are random.

Adopting the same rationale for valuations, a subject’s stated value for a lottery

could sometimes be unconnected with his true value. For instance, each possible

value could be selected with equal probability. Consider the lottery P = (yP, pP). It

offers an amount of money yP with probability pP, and zero with probability 1 − pP.

The paired lottery is $ = (y$, p$). Suppose that when a valuation is random the value

placed on the bet is uniformly distributed between zero and the winning amount.

This hypothesis implies different probabilities of error in valuation rankings,

depending on whether P or $ is preferred, contrary to Lichtenstein and Slovic’s (1971)

assumption of a single such probability. 

Denote vP and v$ the values stated by the subject. When a valuation is random

the probability density functions are fP(vP) = 1/yP with 0 ≤ vP ≤ yP , and f$(v$) = 1/y$ with

0 ≤ v$ ≤ y$. If both valuations are random, under the natural assumption that the two

valuations are independent, the joint probability density function is f(vP, v$) = 1/(yP ×

y$). Denote q the probability that a valuation is random, and vP*  and v$*  the true

values. Then, if P is truly preferred over $, the probability of error in the valuation

ranking is

sP = Pr(v$ > vP| vP
*  > v$

* ) = q2Pr(v$ > vp| v$ and v$ are random) + 

q(1 − q)Pr(v$ > vP
* | v$ is random and vP = vP

* ) +
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q(1 − q)Pr(vP < v$
* | vP is random and v$ = v$

* ).

Pr(v$ > vP| vP
*  > v$

* ) = 1
0 y y
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It can be shown in the same manner that if $ is truly preferred over P, the
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The probability of error in valuation ranking when P is truly preferred to $ may

be extremely high. For instance for the pair of bets P = (£8, 97%) and $ = (£32, 31%),

which has been used in several experiments, sP can be as high as 0.875, when q = 1.

When $ is preferred over P that probability is at most 0.125, again when q = 1. It can

be checked that with this pair of bets, for all values of q and any minimally plausible

pairs of true values (say, v$
* , vP

*  > £3,) sP is substantially higher than s$.

This stochastic specification of the valuations suggests a model of errors that is

different from Lichtenstein and Slovic’s (1971). In this model, s would be replaced by

sP and s$, derived above, and r = q/2. We will not pursue this model for two reasons.

This model needs at least six parameters: p, the probability that a subject truly

prefer the P bet, q, and two pairs of certainty equivalents, one with v$
*  > vP

* , and

another with vP
*  > v$

* . Testing against our categorical data requires that no more than

two parameters be estimated. This problem could possibly be overcome by assuming
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values for the certainty equivalents, especially as their variation within plausible

ranges causes little change in sP and s$.

A more fundamental reason not to pursue this model is that our stochastic

specification is an unrealistic account of all the errors that may occur in valuations.

The misunderstandings and lapses of concentration suggested by Loomes et al (2002)

as a cause of the constant probability error may occur in valuations. It is fair to

assume that these misunderstandings and lapses lead to choosing each of the options

in a binary choice with equal probability, but it is extreme to suppose that they lead to

valuations uniformly distributed between zero and the winning amount. To put it in

another way, lapses and misunderstandings leading to those uniformly distributed

valuations should be infrequent. Most errors are more likely to be smaller, more

symmetrically distributed deviations around the true value than implied by

valuations uniformly distributed between zero and the winning amount.

These considerations suggest that the sP derived above constitutes an upper

bound for a probability of error in valuation rankings implied by a more realistic

stochastic specification of errors in valuations. When v$ is uniformly distributed

between 0 and y$, $ is very likely to be valued above vP, because vP ≤ yP, and generally

yP is much smaller than y$. This leads to a high sP. When P is preferred to $, v$
*  < vP

*  ≤

yP. Thus, smaller, more symmetrically distributed deviations around v$
*  should lead

to a smaller sP than a uniform distribution of v$ between 0 and y$. Imposing in

Lichtenstein and Slovic’s (1971) model, s ≤ sP is possibly a very loose constraint, but

without a stochastic specification of error in each valuation it is not possible to

characterise s precisely.

While a valuation distributed uniformly between zero and the winning amount

when an error occurs is unrealistic, it is not clear what a realistic specification of

errors in valuations should be. It is also not clear what rationale may lie behind the

Lichtenstein and Slovic’s (1971) assumption of a single probability of error in

valuation ranking. We will derive the predictions of Lichtenstein and Slovic’s (1971)

model, and fit it to data, as it was used before in the literature, and bears some

similarities with the random preference model of choices and valuations. We will

impose r ≤ 0.5, as discussed above. We could compute an upper bound for s, based on
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sP, for each pair of bets. However we will ignore this bound, as it is never binding in

our estimates (s is zero in all but one estimate).

3.2. Predictions of the Lichtenstein and Slovic’s Error Model 

According to the model a reversal of one type or the other will occur whenever

a subject makes a mistake either in the valuation ranking or in the choice, but not in

both. The model predicts the probability that a triple of decisions will fall on each of

the four categories. We shall call these four probabilities the category probabilities.

The category probability distribution is given in table 2. 

Table 2: Category probability distribution under the error model

Highest Value
Choices

P $
total

P p(1−r)(1−s) + (1−p)rs p(1−r)s + (1−p)r(1−s) p(1−r) + (1−p)r

$ (1−p)(1−r)s + pr(1−s) (1−p)(1−r)(1−s) + prs (1−p)(1−r) + pr

total p(1−s) + (1−p)s (1−p)(1−s) + ps 1

Key: p is the probability that P is truly preferred. r and s are the probabilities of error
in choice and valuation ranking respectively.

For instance a standard reversal occurs if a subject prefers the P bet, chooses correctly,

and ranks the two bets by value incorrectly (this will happen with probability

p(1−r)s), or if he prefers the $ bet, chooses incorrectly, and ranks the paired bets by

value correctly (which will happen with probability (1−p)r(1−s)). The other category

probabilities may be found in a similar manner.

In any random sample the number of triples in each of the four categories is

random. Their expected value predicted by the model is the product of the number of

triples by the category probability. These predictions can be compared in a statistical

test with the corresponding, observed sample frequencies. For that one needs to find

values for the parameters p, r, and s. Lichtenstein and Slovic (1971, p. 51), tried to find

parameters that predicted exactly the proportions observed in their samples. As only

complex values for p satisfied that condition, they settled for what they deemed to be



IS PREFERENCE REVERSAL JUST STOCHASTIC VARIATION? 14

an approximate real solution,2 p = 0.5. If p = 0.5 the expected frequencies of standard

reversals are equal to those of non-standard reversals for all r and s. This hypothesis

was then rejected by the McNemar’s test for correlated proportions with probability

below 1% in all their samples.

This procedure is by no means satisfactory. The authors merely tested the

hypothesis that p = 0.5. Instead we will test the maximum likelihood estimates of all

three parameters. The likelihood function was maximised subject to 0 ≤ p ≤ 1, 0 ≤ r ≤

0.5, and s ≥ 0. Table 3 shows the maximum likelihood estimates of all parameters for

Lichtenstein and Slovic’s (1971) three treatments. The maximum likelihood estimates

of p turn out to be quite different from 0.5.

Table 3: Maximum likelihood estimates of the error model, Lichtenstein and

Slovic’s (1971) data

Treatment
Incent

compata

Sample
size p r s χ2

Pr (1 degree of
freedom)b

I – Selling prices No 1038 0.12 0.46 0.00 19.8 0.00
II – Buying prices No 444 0.39 0.40 0.00 5.4 0.02
III – Selling prices Yes 84 0.30 0.37 0.00 6.7 0.01
a An experiment is incentive compatible if subjects’ decisions have economic consequences for them.
b The assumption of one degree of freedom is too favourable to the model, but still rejects it. See text.

With three independent data categories and three estimated parameters we

have no degrees of freedom. Even if we had an extra category the distribution of the

χ2 statistic would be unknown because the derivative of the likelihood function with

respect to s at the optimal solution is not zero (the constraint s ≥ 0 is binding).

Nevertheless we are still able to reject the model with all three samples. If we assume

                                                
2 Equating the proportions in table 2 to observed proportions in their three samples yielded the

following values for p(1-p): 0.295, 0.315, and 0.27. The authors thought that these values were not too

far from 0.25, which is the maximum of p(1-p) for any real p (p=0.5). It may look so, but the true sample

solutions are 0.5±0.21i, 0.5±0.26i, and 0.5±0.14i. To better appreciate the approximation error, if the

sample values for p(1-p) had been 0.205, 0.185, and 0.23, which are as far from 0.25 as the actual sample

values, but yield real solutions for p, changing them to 0.25 would give rise to approximation errors in

the value of p of 0.21, 0.26, and 0.14. These do not look small at all.
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some value for one of the parameters, and estimate only the remaining two the χ2

statistic will gain one degree of freedom. Suppose we assume a value for s. Assuming

a value for s instead of for one of the other two parameters solves the problem of the

non-null derivative. Regardless of the value we assume, the χ2 statistic will not be

smaller than values shown on the table, which were obtained with the estimation of

all three parameters. Therefore if these values of χ2 lead to the rejection of the model

assuming one degree of freedom, as it is the case, the model may be confidently

rejected. If they did not the test would be inconclusive.

Many statistics textbooks caution that failing to reject the null hypothesis

should not be interpreted as its acceptance. This word of caution has a special

importance in the testing procedure we have just applied. This test uses a chi-squared

statistic based on three estimated parameter as if only two of them had been

estimated. Therefore this test could never be used to accept a model. We will use this

testing procedure with minor variations in section 5.

Instead of maximising the likelihood function we could minimise the χ2 statistic

on p, r, and s. This would give the model its best chance of not being rejected. As it

happens the minimum χ2 estimates are only negligibly different from the maximum

likelihood estimates.

4. A Random Preference Model of Choices and Valuations

We will begin by examining which elicitation methods and core theories allow the

Loomes and Sugden’s (1995) random preference theory to apply to valuations. Next

we derive the category probabilities predicted by the model. In the most general

model, the category probabilities depend on three parameters. We will then restrict

our core theory to expected utility, and derive the constraints it imposes on the model

parameters. These constraints turn out to be rather weak if one accepts all manner of

sets of expected utility preference orderings (subsets of R) and probability measures

(f) over those sets. In a final subsection we restrict our core theory further to

preferences described by power functions, and the probability measure f to truncated

normal distributions (of the power parameter).
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4.1. Valuations

If valuations are elicited in a second-price auction or with the BDM procedure

(Becker, DeGroot, and Marshak 1964) application of the model is straightforward, as

such a valuation can be seen as a choice among many gambles. The same is true of a

second-to-last price auction, used in Braga and Starmer (2001), or, generally, of an nth-

price auction. In an nth-price auction, in a group of n or more subjects, n − 1 sell their

lotteries for a price equal to the nth lowest bid. From the point of view of the subject,

the BDM procedure is equivalent to a second-price, selling auction where he bids

against a device that makes random bids. Therefore the following argument is also

valid for the BDM.

Suppose a subject is bidding to sell a lottery X in an nth-price auction. For ease

of exposition assume that the set of admissible bids is  BX = {b1, b2,…, bN}, with bi < bi+1

for i = 1,…, N − 1. These restrictions on the admissible bids, discreteness and upper

and lower limits, are common in experiments that use auctions to elicit valuations.

For instance, bids must usually be a whole number of pence (or the lowest

subdivision of the relevant currency) and no higher than the highest outcome of the

gamble. Elicitation with the BDM procedure usually imposes no restrictions on

subjects’ bids. The random counter bids are however drawn from a set as BX.

Therefore the subject will be indifferent between his unrestricted bid and the

restricted bid immediately bellow or above, depending on the rule to resolve ties. Let

w be the market price, which is the nth lowest bid, therefore w ∈ BX. Let G(w) be the

cumulative probability distribution the bidder attributes to w, that is G(w0) = Pr(w ≤

w0), and G(bN) = 1. For simplicity assume that all subjects make different bids.

Suppose the individual bids bk to sell X. If the market price is lower than or equal to bk

the individual keeps and plays X. The individual attributes to this event the

probability Pr(w ≤ bk) = G(bk). If the market price is higher than bk, for instance w = bl >

bk, the individual sells X for bl. The individual attributes to this the probability Pr(w =

bl) = G(bl) − G(bl-1).Then when a subject bids bk to sell a lottery X he is in effect choosing

to play the following compound lottery:

C(bk, X) = [X, G(bk); bk+1, G(bk+1) −G(bk); … ; bN, 1 − G(bN−1)]. (2)
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Therefore C(.,X) transforms the N admissible bids of BX into a set of N different

gambles. Denote SX this set of gambles. A valuation task is then in effect a choice of

one element from SX. If the core theory stipulates independence the optimal choice of

a valuation will be the same regardless of G(w): the highest among the admissible

bids that are no higher than the certainty equivalent of X.3 (See Karni and Safra 1987,

or Braga 2003) 

Cox and Grether (1996) elicited valuations in an English clock auction. Here

subjects can arrive at their valuations through a series of choices between the lottery

and a decreasing price, therefore this elicitation method raises no questions under the

random preference model.

Some experiments elicited valuations with a so-called ordinal payoff scheme

(Tversky et al 1990, Cubitt et al forthcoming). With this scheme subjects face some

probability (usually 50% divided by the number of pairs of lotteries) of playing, of

any two paired bets, the bet they valued most highly. Thus subjects would like to

value their preferred bet in a pair more highly than the paired bet. If preferences obey

independence and transitivity, this can easily be achieved by valuing each bet at its

certainty equivalent. Otherwise coordinating two valuation tasks may be very

difficult (see Braga 2003), and it is not clear what a subject’s best strategy should be.

But it seems clear that the random preference model applies to valuations elicited

under the ordinal payoff scheme as much as its deterministic core theory does.

Loomes and Sugden (1995) also considered non-transitive preference relations

when all choices are binary. In choices among three or more elements, a non-

transitive preference relation may leave one not knowing which element to choose.

As valuations are choices of one among many gambles, a random preference model

of choices and valuations appears to exclude intransitive preference relations from its

possible core theories. Indeed it appears that any theory of binary preference relations

aiming to explain preference reversal, a phenomenon for which violation of

                                                
3 If the certainty equivalent happens to coincide with an admissible bid the individual will be indifferent

between that admissible bid and the one immediately below it. We will ignore the possibility of the

subject choosing the latter.
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transitivity has been seen as a possible explanation, needs to impose transitivity of

preferences so that elicitation of valuations are possible in auctions or with the BDM

procedure. However when the intransitivity arises only from statewise comparisons

of the outcomes of the gambles, as is the case of regret theory with dependent

gambles, the preference relation will be transitive on SX, even if it leads to intransitive

cycles among other elements of A (see Appendix A for proof).

The random preference model of choice and valuation, therefore, imposes very

few restrictions on the preference relation of its core theory. The preference relation

need not be a preference ordering on A; it needs only to be complete and reflexive in

A, and transitive in SX, for any X of A.

4.2. Category Probabilities

A random preference model will predict a probability g that P be chosen over $, and a

probability h that P be valued above $. We shall call these the ranking probabilities. The

first thing to note is that the ranking probabilities may be different. We will show this

with an example that assumes expected utility as the core theory. If expected utility

allows different ranking probabilities, so will their generalisations, which account for

most theories of preference under uncertainty.

When expected utility is the core theory, all we need to know to determine an

individual’s choice and valuations concerning a pair of bets is the pair of certainty

equivalents. The individual will chose the bet with the highest certainty equivalent,

and will value each bet at the highest of the admissible bids that are no higher than

the certainty equivalent. This is the optimal bid only if the individual never has to sell

the bet for a price equal to his own bid. Above we ruled out this possibility by

assuming that all subjects made different bids. This is an unrealistic assumption. It is

however unlikely that anyone’s certainty equivalents might have a higher resolution

than that allowed by admissible bids. Thus we may simply assume that certainty

equivalents are one of the admissible bids. Therefore the optimal bid will be the

certainty equivalent. Thus, whenever we assume expected utility as the core theory,

we may represent each preference ordering as a pair of certainty equivalents, which is
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the same as the pair of optimal bids. This will contain all the information we need to

determine choices and valuations. We will denote bPi and b$i the optimal bids for the P

and $ bets under preference ordering ri.

Suppose expected utility is the core theory, and that an individual makes all his

decisions according to one of two preference orderings, each with 50% probability.

Let bP1 = 1, b$1 = 2, bP2 = 3, and b$2 = 4. $ is preferred to P under both preference

orderings. Thus P will never be chosen over $ (g = 0). The valuations of the two bets

will be determined by two independent draws of preference orderings. Thus the

individual will value P above $ with 25% probability (h = 0.25), when P is valued

under r2, and $, under r1. Further down we will derive the limits placed by expected

utility on the difference between the ranking probabilities.

For the time being assume that the ranking probabilities are the same for all

subjects. These probabilities determine the category probability distribution, which is

given in table 4. As in the error model the categories probabilities multiplied by the

number of decision triples yield the categories expected frequencies. These can then

be compared with the observed frequencies to test the model.

Table 4: Category probabilities under the random preference model, equal

individuals

Highest Value
Choices

P $
total

P gh g(1 − h) g

$ (1 − g)h (1 − g)(1 −h) 1 − g

total h 1 − h 1

Key: g and h are the probabilities that P will be ranked above $ in choices
and valuations respectively. 

Note that in the Lichtenstein and Slovic’s (1971) error model if p, the probability

that a subject truly prefer the P bet, is nil, any choice of P or any valuation of P above

$ will be an error, and any error will result in the choice of P or in the valuation of P

above $. Thus substituting in table 2 zero for p, g for r, and h for s yields the contents

of table 4. For a similar reason, the contents of table 4 will also be obtained by
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substituting, in table 2, 1 for p, 1 − g for r, and 1 − h for s. Although the theoretical

foundations of the two models are different, the random preference model of choices

and valuations with equal individuals is, from an observational point of view, a

special case of the Lichtenstein and Slovic’s (1971) error model. The theoretical

foundation makes a difference, though. As seen above, it is not possible to derive any

relationship between the two error probabilities, whereas it is possible to derive

constraints on the difference between the ranking probabilities, at least under the

assumption of expected utility.

The claim that preference reversal is a systematic deviation from preference

theory rested to a large extent on the asymmetry of rates of reversal conditional on

choice. That is, standard reversals as a proportion of P choices, SR/(PP + SR), usually

between 0.5 and 0.8, and non-standard reversals as a proportion of $ choices,

NSR/(NSR + $$), usually below 0.2. According to our model (of equal individuals) this

rate of standard reversal is g(1 − h)/g = 1 − h, and that of non-standard reversal is (1 −

g)h/(1 − g) = h. That is, the usual asymmetric pattern of reversal will appear if h is low,

regardless of g. An unbiased stochastic element in decisions may give rise to decision

patterns that seem at first sight highly non-random. We may not conclude that this

model will explain preference reversal. For instance, according to the model the sum

of those two rates of reversal is one. In most empirical studies that sum lies between

0.7 and 0.9. What we may conclude is that the rates of reversal conditional on choice

are not a meaningful measure of systematic, that is, non-random, deviation from all

stochastic preference theories, as it has implicitly been assumed.

We shall now explore the implications of allowing ranking probabilities vary

across subjects and pairs of lotteries. The category probabilities are now the expected

values of the expressions in table 4. Assume first that the ranking probability in

choices is independent of the ranking probability in valuations. Then simply

replacing g and h in table 4 by the respective means yields the new predicted category

probabilities. This assumption is, however, no more sensible than that of equal

ranking probabilities for everyone. Independence between the ranking probabilities

means that a subject with a high ranking probability in choices and a low ranking

probability in valuations is as likely as a subject with high ranking probabilities both
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in choices and valuations. We would naturally expect the latter to be more likely than

the former. Assume then that the ranking probabilities are positively correlated. The

category probabilities can now be expressed in terms of the mean ranking

probabilities and their covariance. Denoting µg the mean of g, µh the mean of h, and

Cov(g,h) the covariance, the category probability distribution is as shown in table 5.

Table 5: Category probabilities under the random preference model, correlated

ranking probabilities

Highest value
Choices

P $
total

P µgµh + Cov(g, h) µg(1 − µh) − Cov(g, h) µg

$ (1 − µg)µh − Cov(g, h) (1 − µg)(1 − µh) + Cov(g, h) 1 − µg

total  µh 1 − µh 1

Key: µ is the mean; Cov, the covariance.

This is no longer, even from an observational point of view, a special case of the

original Lichtenstein and Slovic’s (1971) error model. It would be a special case of an

augmented error model where correlated error rates vary across subjects. 

The model is able to predict exactly the category frequencies of many datasets.

The patterns of category frequencies allowed by the model depend on the admissible

range of the parameters. We have not derived them yet, but we may anticipate some

conclusions. Denote pp, sr, nsr, and dd the relative frequencies of the four categories

observed in a sample (that is, PP, SR, NSR, and $$ divided by the total number of

triples). Equating the category probabilities predicted by the model to the sample

relative frequencies (only three of the four equations are independent), and noting

that dd = 1 − pp − sr − nsr yields:
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µ µ

µ µ
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We will call these values for µg, µh, and Cov(g, h) the exact solution, as with them

the model matches the observed frequencies exactly. For some datasets the exact

solution will not be feasible. If sr and nsr are sufficiently high the exact solution will

violate our assumption that the covariance is non-negative. Additionally, in the exact

solution, µg − µh = sr − nsr. We will see that expected utility theory places limits on µg −

µh. Therefore if the reversal pattern is highly asymmetric the exact solution will not be

feasible. Note that we are measuring the asymmetry with sr and nsr. These are not the

rates of reversal conditional on choice, on which evaluation of the significance of

preference reversal has to a large extent relied. The rates of reversal conditional on

choice are sr/(pp + sr) and nsr/(nsr + dd). The rates of reversal conditional on choice

may be very different from each other when sr and nsr are similar, and vice-versa.

In terms of the parameters of the model the rate of standard reversal

conditional on choice is 1− µh − Cov(g, h)/µg, and the rate of non-standard reversal

conditional on choice is µh − Cov(g, h)/(1 − µg). If the covariance is high (we will see

below that Cov(g, h) ≤ µh(1 − µg), µg(1 − µh)) the usual asymmetric pattern between the

rates of standard and non-standard reversal conditional on choice will appear if µh is

low and µg is high (that is, if sr is high and nsr is low). If the covariance is small, the

usual asymmetric pattern will appear if µh is low, regardless of µg. The influence of

the covariance can be appreciated with the following example. Suppose µg = µh. If the

covariance is zero, all individual ranking probabilities coincide with the means, or are

independent, and the model reduces to the model of equal individuals. With µg = µh

the covariance is at its highest when for some individuals g = h = 0, and for others, g =

h = 1. Then no reversals ever occur.

The parameters of the model are constrained by basic statistical principles and

by the core theory. Thus any estimates for µg, µh, and Cov(g, h) must satisfy two

conditions. Firstly, those estimates must actually be the means and covariance of

some joint distribution of g and h, with 0 ≤ g, h ≤ 1. We will call such joint

distributions suitable distributions of (g, h) (for some given set of µg, µh and Cov(g, h)).

Secondly, at least one suitable distribution of (g, h) must be such that every pair (g, h)

with positive probability density must actually be the ranking probabilities implied

by some probability measure over some set of preference relations allowed by the
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core theory. We will call such probability measures suitable preference distributions (for

some given pair (g, h)). 

One may want to impose a third condition: that for every pair (g, h) with

positive probability density at least one suitable preference distribution be

“reasonable”. Consider µg = 2/3, µh = 1/3, and Cov(g, h) = 0. A suitable distribution for

these parameter values is Pr(g = 2/3, h = 1/3). Suppose the core theory is expected

utility. Thus a pair of optimal bids specifies a preference orderings for our purposes.

The preference distribution shown on table 6 is suitable for g = 2/3 and h = 1/3, but one

might question its reasonability. Not many people would value a P bet, which is

always very safe, at £1, £3, or £5 with equal probability.

Table 6: An unreasonable preference distribution?

Preference ordering bP b$ Probability

r1 £3 £2 1/3
r2 £5 £4 1/3
r3 £1 £6 1/3

The assumption of positive covariance is in effect a restriction on the

parameters on grounds of reasonability. We will now address each of these

conditions. Naturally the first two conditions are derived from basic statistical

principles and the axioms of the core theory, whereas the third is a matter of

individual judgement.

4.3. Suitable Distributions of (g, h)

A suitable distribution of (g, h) will exist if and only if the following restrictions are

imposed on µg, µh, and Cov(g,h): 0 ≤ µg, µh ≤ 1, Cov(g,h) ≤ µg(1 − µh), Cov(g,h) ≤ (1 −

µg)µh, Cov(g,h) ≥ −µgµh, and Cov(g,h) ≥ − (1 − µg)(1 − µh). The first restriction is obvious.

The other four are necessary to assure that the four category probabilities are non-

negative. The last two restrictions are made redundant by the more stringent Cov(g,h)

≥ 0. Thus we will we need only to prove that  0 ≤ µg, µh ≤ 1, Cov(g,h) ≤ µg(1 − µh),

Cov(g,h) ≤ (1 − µg)µh, and Cov(g,h) ≥ 0 are sufficient conditions for the existence of a
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suitable distribution. Consider first the case where µg, µh, or both are either zero or

one, say µg is either zero or one. Then as Cov(g, h) ≤ µg(1 − µh) and Cov(g,h) ≤ (1 −

µg)µh, Cov(g,h) = 0, which means that Pr(g=µg, h=µh) = 1 is a suitable distribution. This

would be a case of invariant ranking probabilities across subjects that we saw first. It

would be the only suitable distribution if µh = 0 or µh = 1, otherwise there would be

infinite suitable distributions. For the case where 0 < µg, µh < 1, suppose that µg ≤ µh

(the proof is similar for µg ≥ µh). Then µg(1 − µh) ≤ (1 − µg)µh, and Cov(g,h) ≤ µg(1 − µh) is

the active restriction. Define a = Cov(g,h)/[ µg(1 − µh)]. Then for all µg, µh, and Cov(g,h)

such that 0 < µg ≤ µh < 1, Cov(g,h) > 0, and Cov(g,h) ≤ µg(1 − µh), the distribution of (g,

h) shown in the table below is suitable. It may be easily checked that all conditions are

met: note that 0 < a ≤ 1, therefore 0 ≤ g, h ≤ 1; the means of g and h are µg, and µh; the

covariance is Cov(g,h); and all probabilities are non-negative and add up to unity

(under the assumption that µg ≤ µh)

Table 7: A suitable distribution of (g, h)

h
g

µh − µh a µh + (1 − µh) a

µg − µg a 1 − µh µh − µg

µg + (1 − µg) a 0 µg

Note: a = Cov(g,h)/[ µg(1 − µh)], 0< µg ≤ µh < 1.

If the covariance is at the maximum value allowed by the restrictions, Cov(g,h)

= µg(1 − µh), in which case a = 1, and if µg = µh = 0.5, then g and h take only the values

one and zero, and the distribution above is the only suitable one; otherwise there are

infinite suitable distributions.

4.4. Suitable Preference Distributions

Each individual has a preference distribution. Then the entire population has a set of

preference distributions. Not every suitable distribution of (g, h) will have a set of

suitable preference distributions. For instance, if in a random sample all triples are
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standard reversals, the maximum likelihood estimates are µg = 1, µh = 0, and Cov(g,h) =

0. Then Pr(g=1, h=0) = 1 is a suitable distribution, the only one, for those estimates, but

no preference distribution suits (g=1, h=0). If g=1 the P bet is ranked above the $ bet in

all preference orderings, therefore there must be some positive probability that P be

valued above $. 

We will now restrict our core theory to expected utility, and derive the limits

this theory imposes on the difference between g and h.

Consider a pair of P and $ bets. As we noted above, under the assumption of

expected utility all we need to know of a preference ordering are the certainty

equivalents of the paired bets, which we assume to coincide with some admissible

bids. Thus we will use the terms certainty equivalent and optimal bid interchangeably.

We denote (bPi, b$i) the pair of optimal bids in preference ordering ri, and denote (bP,

b$) two optimal bids determined by two independently drawn preference orderings.

In a typical preference reversal experiment the set of all possible pairs (bPi, b$i) is

finite. For instance in the experiment reported in Braga and Starmer (2001) some

subjects dealt with the following bets: P = (£8, 97%), $ = (£32, 31%). Subjects’ bids

when expressed in pence had to be integers, no less than zero, and no higher than the

positive outcome of the bet. Therefore there were 801 admissible bids for P, and 3201

for $. This makes for 801 × 3201 = 2 564 001 pairs of admissible bids. Let the

admissible bids for the P bet be bP ∈ BP = {0, 1,…, mP}, and those for the $ bet be b$ ∈ B$

= {0, 1,…,m$}, with mP ≤ m$ as in the typical experiment.

The unit bP and b$ are expressed in is the lowest admissible increment. Typically

the lowest increment is the lowest subdivision of the relevant currency, say, one

penny or one cent; but if bids must be multiples of ten pence, for instance, the

elements of B$ and Bp denote multiple of ten pence.4 Of course if the lowest possible

increment of admissible bids is large the assumption that certainty equivalents

always coincide with some admissible bids will be unrealistic. 

Denote a pair of admissible bids (i, j), with (i, j) ∈ BP × B$. Two preference

orderings may specify the same certainty equivalents for the P and $ bets, but differ

                                                
4 In Harrison (1994) the minimum increment was higher than one dollar cent, as much as 2 US dollars in

one treatment.
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with respect to other gambles. Thus the set of relevant preference orderings R*, that

is, f(R*) = 1, may have more elements than BP × B$, but each preference ordering of R*

specifies optimal bids for P and $ that belongs to BP × B$. The probability distribution f

over R* then implies a probability distribution p over BP × B$. We shall denote pij the

probability that (i, j) be drawn from BP × B$. Thus pij = f(Rij), where Rij is the set of all

preference orderings that specify (i, j) as the optimal bids.

We will assume, for the sake of simplicity, that the subject is never indifferent

between P and $ in any preference ordering. That is, pii = 0 for all i. The probability

distribution p determines g and h. We defined h as the probability that P be valued

above $. To establish the bounds on h given any g, we will minimise h = Pr(bP > b$), but

maximise Pr(bP ≥ b$), which is the same as to minimise Pr(bP < b$). We will show that

the difference predicted by the model between the maxima of Pr(bP > b$) and Pr(bP ≥

b$) is negligible, less than 0.002, under reasonable assumptions. The reason why we

follow this procedure is that the symmetry between the minimisation of Pr(bP > b$)

and maximisation of Pr(bP ≥ b$) (minimisation of Pr(bp < b$)) simplifies the analysis.

The probability g that the P bet be chosen over the $ bet is the sum of the

probabilities of all the pairs (i, j) where j < i (if we had not ruled out indifference we

would have to add half the sum of the probabilities of all pairs (i, i)):

g pij
j

i

i

mP

=
=

−

=
∑∑

0

1

1

.

To compute the probability h is useful to begin with the marginal probability

distributions. The probability that the optimal bid for the P bet be i is

Pr(bP = i) = pij
j

m

=
∑

0

$

,

and the probability that the $ bet be valued at l is

Pr(b$ =l) = pkl
k

mP

=
∑

0

.
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The probability that $ be valued below i is then

Pr(b$ < i) = pkl
l

i

k

mP

=

−

=
∑∑

0

1

0

.

The optimal bids for P and $ are determined by two pairs of admissible bids

independently drawn. Therefore the probability that a subject bid i for the P bet and

less than i for the $ bet is 

Pr(bP = i  and  b$ < i) = Pr(bP = i) × Pr(b$ < i) = p pij

j

m

kl

l

i

k
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= =

−

=
∑ ∑∑

0 0

1

0

$

.

Summing across all admissible bids for P yields the probability that P be valued

above $:

h p pij

j

m

i

m

kl

l

i

k

mP P

=
== =

−

=
∑∑ ∑∑

01 0

1

0

$

. (3)

The probability distribution over BP × B$ that minimises h given g is a solution to

the following problem:

min h p pij

j

m

i

m

kl

l

i

k

mP P

=
== =

−

=
∑∑ ∑∑

01 0

1

0

$

subject to

p gij

j

i

i

mP

=

−

=
∑∑ =

0

1

1

,

pij
j

m

i

mP

==
∑∑

00

$

= 1,

pij  ≥ 0,   i = 0,…, mP  and  j = 0,…, m$.

pii  = 0,   i = 0,…, mP

The first constraint states that the probability that P be chosen over $ be g; the

second, that the probabilities of all pairs of admissible bids add to up to 1, and the
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third is obvious. The constraint that each probability must not exceed 1 is guaranteed

by the second and third constraints. The last constraint could simply be substituted in

the objective function and the second and third constraints (it is already in the first),

but this would make the expressions even more cumbersome.

The global minimum is obtained with any probability distribution that obeys

conditions (4) to (6) below. We leave the proof to Appendix B, and will give here

some interpretation of those conditions. Note that although there are many

probability distributions that obey those conditions, the arguments of function h are

the same in all of them. The variability lies in the $ bids of the pairs defined by (4). As

they are always no less than the highest admissible P bid, their precise values do not

influence h. Therefore we will refer to the probability distribution (and not distributions)

defined by conditions (4) to (6), to be called the p* probability distribution, even

though many different probability distributions obey conditions (4) to (6).

p gn

j m

m

P

0 1*
$

=
∑ = − ,   for n = mP,…, m$, (4)

p g
mm m
P

,
*

− =1    for m = 1,…, mP, (5)

pmn
* = 0   for all other (m, n). (6)

Table 8 shows, somewhat graphically, an example of a p* probability

distribution. Suppose the pair of bets is (£5, 81%) and (£18, 19%), and that the

admissible bids and the certainty equivalents are integer numbers of pounds, no less

than zero, and no more than the positive outcome of the bet. Then mP = 5, and m$ = 18.

These are unrealistic assumptions, particularly that certainty equivalents are whole

number of pounds, but they are useful for illustration purposes. In an actual

experiment it would be more likely that mP = 500 and m$ = 1800, as in Braga and

Starmer’s (2001) experiment, where this pair of bets was actually used. The table

shows each pair (bPi, b$i) with positive probability in a column. The position of the

characters P and $ relative to the values on the left-most column indicate the value of

bPi and b$i respectively. For simplicity only one of the pairs defined by (4) has positive

probability, namely the pair (£0, £5), in column 6.
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Table 8: A p* probability distribution, mP = 5

Pairs (bPi, b$i) and their probabilities

Value 1
g/5

2
g/5

3
g/5

4
g/5

5
g/5

6
1 − g

£0 $ P
£1 P $
£2 P $
£3 P $
£4 P $
£5 P $

Each column represents a pair (bPi, b$i). The positions of P
and $ indicate the values of bPi and b$i. 

In preference orderings that rank $ above P, bPi is zero and b$i is no less than the

maximum possible optimal bid for P. Thus when the valuation of either P or $ is

determined by one such preference ordering, and regardless of the preference

ordering determining the other valuation, P will never be valued above $. Or, putting

it the other way, P will be valued above $ only if both valuations are obtained from

preference orderings that rank P above $. In these preference orderings the difference

between the optimal bids is the smallest possible. Having the probability of pairs that

rank P above $, g, allocated evenly to pairs running all the way from (1, 0) to (5, 4)

leads to a smaller h than having it concentrated on, say, a single pair. If bP is obtained

from the first pair (column 1), P is valued above $ only if b$ is also obtained from that

pair. This happens with probability (g/5) × (g/5). If bP is obtained from the second pair,

P is valued above $ only if b$ is obtained from the first or second pairs. This happens

with probability (g/5) × (2g/5). Thus, in this example, given g, the value of h is

h g g g g g g g= + + + +





=
5 5

2
5

3
5

4
5

5
5

3
5

2 .

Thus h may be much smaller than g. Say, for g = 0.5, and mP = 5, h can be as

small as 0.15. In this example there is a non-negligible probability that the two bets be

valued equally. Again for g = 0.5, Pr(bP = b$) = 0.14. With the more realistic mP = 500,

that probability would be 0.001499. To compute h under the p* distribution for a

general mP, one may substitute p* in the objective function (3). Only pairs defined by
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(5) matter, pairs where m ≥ 1 or n ≤ mP − 1. Then in expression (3) for each k there is

only one pkl > 0, namely, pk,k−1, and only if 1 ≤ k ≤ i. Also for each i there is only one pij >

0, namely pi,i−1. Thus expression (3) simplifies to

h p pi i

i

m

k k

k

iP

= −

=

−

=
∑ ∑, ,1

1

1

1

. (7)

Then according to (5)

min h h g
m

g
m

g
m

i g g
mPi

m

Pk

i

P i

m

P

P P

= = = = +
= = =
∑ ∑ ∑*

1 1

2

2
1

2 2

2 2
. (8)

The solution to the maximisation of Pr(bP ≥ b$) given g may be obtained from the

solution to the minimisation of Pr(bP > b$) given g. Appendix B shows the details. The

probability distribution that maximises Pr(bP ≥ b$) given g, to be called p#, is shown in

(9) to (11).

pmP ,
#

0  = g, (9)

p g
mm m
P

− =
−

1
1

,
#    for m = 1,…, mP, (10)

pmn
#  = 0   for all other (m, n). (11)

Note that this distribution may be obtained by swapping the indices in p*

(taking into account in (4) and (9) that bP cannot exceed mP) and substituting 1 − g for

g. In the same manner, a matrix representation of p# may be obtained from table 8 by

swapping the P’s and $’s, and substituting 1 − g for g. The value of Pr(bP ≥ b$) under

this distribution may be obtained by substituting in (8) 1 − g for g (again see

Appendix B):

max Pr(bP ≥ b$) = h# = g g g
mP

+
−

−
−1

2
1
2

2

. (12)

Under p#, as under p*, Pr(bP = b$) = g/mp − (g/mP)2. This decreases with mP, but

even for a P bet offering a low amount to win, say, £5, if any number of pence up to

£5 is an admissible bid, this probability is at most 0.002 (when g = 1). This means that,
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for mP = 500, the maximum of Pr(bP ≥ b$) exceeds the maximum of Pr(bP > b$) by at

most 0.002 (by less if Pr(bP > b$) is maximised by a probability distribution other than

p#), and obviously Pr(bP > b$) cannot exceed Pr(bP ≥ b$). Therefore the difference

between the two maxima is negligible.

As Pr(bP > b$) ≤ Pr(bp ≥ b$), h = Pr(bP > b$) ≤ h#. Therefore we may write, from (8)

and (12),

g g
mP

2 2

2 2
+ ≤ h ≤ g g g

mP
+

−
−

−1
2

1
2

2

. (13)

We have so far assumed that admissible bids are whole numbers of pence. We

may now relax this assumption. If the only restrictions on admissible bids are a lower

and an upper limit mP is infinite. As mP approaches infinity the lower and upper

bounds of h approach

g h g g2 2

2
1

2
< < +

− . (14)

Note that even for a finite mp, h will be within these bounds, and for the values

of mP commonly found in experiments h will be very close to the bounds.5 Therefore,

from now on, unless stated otherwise, we will consider only the bounds of h for an

infinite mP. Figure 1 shows all the combinations of g and h that are suited by some

preference distribution. For instance, if g = 0, h can vary between 0 and 0.5; and if g =

0.5, h can vary between 0.125 and 0.875. These differences between the ranking

probabilities allowed by random expected utility are probably larger than most

people would have expected.

                                                
5 Harrison (1994) is an exception. In one treatment admissible bids were multiples of 2 US dollar. The

BDM procedure was used with a maximum counter price of $10. Thus mP was 5 in that treatment. 
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These bounds apply to each person, that is, to each pair (g, h) with positive

probability density. This implies corresponding bounds on the population means,  µg

and µh. If for all pairs (g, h) with positive probability density, h > g2/2 then

µh = E(h) >E g2

2








 =

( )E ( )µ µg gg+ −



 =

2

2

=
( )µ µ µ µ µ σg g g g g gg g2 2 2 22

2 2

+ − + −
=

+E( ) E ( )
, (15)

where σg2 is the variance of g. It can be shown in a similar manner that if for all pairs

(g, h) with positive probability density, h < (1 −g2)/2+ g, then

µ µ
µ σ

h g
g g< +

− −1
2

2 2

. (16)

That µh lies in the interval defined by (15) and (16) is a necessary and sufficient

condition for a set of preference distributions to exist that suits µh, µg, and σg2. Our

model does not explicitly involve σg2, but places restrictions on it. We can derive

lower and upper bounds for σg2. By substituting the lower bounds in (15) and (16) we

will obtain a wider interval, and therefore necessary but not sufficient conditions for

the existence of a set of suitable sets of preference orderings; by substituting the

upper bounds will obtain a narrower interval, and therefore sufficient but not

necessary conditions.
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As g is limited between zero and one, its variance is also limited: σg2 = E(g2) −

µg2. As 0 ≤ g ≤ 1, E(g2) ≤ E(g), and σg2 ≤ µg − µg2. Thus a sufficient condition for the

existence of set of suitable preference distributions is

µ
µ

µg
h

g

2
1

2
< <

+
. (17)

The variances of g and h must be large enough to accommodate the covariance

estimated by the model: Cov(g,h) ≤ σgσh, or σg ≥ Cov(g,h)/σh. As with g it must be σh2 ≤

µh − µh2. Then

σ
σ µ µ

g
h h h

g h g h
≥ ≥

−

Cov( Cov(, ) , )
2

.

Therefore a necessary condition for the existence of a set of suitable preference

distribution is









−

−−+<<







−

+ 2

2
2

2

2
2 ),(Cov1

2
1),(Cov

2
1

hh
ggh

hh
g

hghg
µµ

µµµ
µµ

µ . (18)

Conditions (17) and (18) are expressed in terms of the parameters of the model,

and can therefore be used to check the existence of a set of suitable preference

distributions. Condition (18) may be expressed as restrictions on the covariance: The

lower and upper bounds on h are respectively equivalent to

)2)((),(Cov 22
ghhhhg µµµµ −−<     and

)221)((),(Cov 22
hgghhhg µµµµµ −+−−< .

(19a)

(19b)

Figure 2 shows for two values of g all the restrictions on the means and the

covariance that we have derived so far. 
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Figure 2: Restrictions on the means and the covariance

That the covariance lies underneath both slanting straight lines is a necessary

and sufficient condition for the existence of a suitable joint distribution of (g, h); that it

lies underneath the arches is a necessary condition for the existence of suitable

preference distributions; and that h lies between the vertical lines is a sufficient

condition for a set of preference distributions to exist that suits the two means,

regardless of the covariance. If µg, µh, and Cov are such that (µh, Cov) lies inside the

lighter shaded area then a set of preference distributions exists that suits these values;

if (µh, Cov) lies outside the union of the three shaded areas then no such set suits the

values.

These conditions are easy to check, and may in many cases be enough to accept

or reject a set of estimates for µg, µh, and Cov(g, h) (on grounds of the existence or non-

existence of suitable distributions of (g, h) and suitable preference distributions only).

However of the conditions for the existence of suitable sets of preference

distributions, the sufficient conditions, the vertical lines, are too demanding, and the

necessary conditions, the arches, are too lax, thus leaving a grey area (dark grey in the

figure above) where these conditions will not be enough to either accept or reject a set

of estimates.

When this happens the following sufficiency conditions may be used. These are

less demanding than conditions (17), but also more laborious to check. A set of

suitable sets of preference distributions will exist for the parameters µg, µh, and Cov(g,

h) if values for σg, σh, and p can be found, such that
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Conditions (20a), (20b), and (20c) simply guaranty that the following is a

suitable joint distribution of (g, h):

Table 9: Joint distribution of (g, h)

h

g µh − σh
p
p1−

µh + σh
1− p
p

µg − σg
p
p1−

1 − p 0

µg + σg
1− p
p

0 p 

It may be checked that the means and standard deviations of g and h are

actually µg, µh, σg, and σh, and that Cov(g, h) = σgσh. Conditions (20a) and (20b) simply

limit g and h between zero and one. Condition (20c) guarantees that the estimated

Cov(g, h) is feasible. The remaining conditions guarantee that all pairs (g, h) with

positive probability satisfy conditions (14), the necessary and sufficient conditions for

the existence a suitable preference distribution. Conditions (20) then amount to try to
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find an actual suitable distribution of (g, h) where all pairs (g, h) with positive

probability satisfy the conditions for the existence of a suitable preference

distribution. The rationale for searching within that type of distribution is as follows. 

The first thing to notice is that the above distribution is simply a joint

distribution of two perfectly correlated, binary variables that happens to be fully

specified in terms of the means and standard deviations of the variables, and of the

probabilities.

Specification in terms of the means and standard deviation facilitates the search

of the distribution as the model imposes restrictions on these parameters. Binary

variables make the distribution simple. The simplest of all distributions is of course a

single value with probability one. That is not possible if the covariance is positive. As

σgσh ≥  Cov(g, h), if the covariance is positive both variances must be positive. Then a

distribution with only two values with positive probability is the simplest possible.

Perfect correlation increases the chances that all pairs (g, h) satisfy conditions

(14), the condition for the existence of a set of suitable preference distributions.

Perfect correlation, σgσh =  Cov(g, h), allows both variances to be as low as possible in

the sense that, given σg, the lowest possible σh is such that σgσh =  Cov(g, h). We know

from condition (15) and (16) that a low σg2 facilitates the existence of suitable

preference distributions. So does a low σh2. Suppose that the estimated µh is just above

the estimated µg2/2, and thus the lower bound of h might be at risk of being violated.

The reasoning is similar if the upper bound is the problem. Compliance with the

lower bound is facilitated by a high σh2 for values of h above the mean, but by a low

σh2 for values of h below the mean. As g spreads away from the mean the lower

bound does not change much: ∂(g2/2)/ ∂g = g < 1 for g < 1; this is also evident in figure

1. Thus compliance with the lower bound is easier for values of h above the mean in

spite of a low σh2 than for values of h below the mean if σh2 is high.

The use of this approach is illustrated with the following example. Suppose

fitting the model to actual data gives rise to the following estimates: µg = 0.6, µh = 0.24,

and Cov(g, h) = 0.04. There is a suitable distribution of (g, h) for these estimates:

Cov(g, h) < µg(1 – µh), µh(1 – µg). The necessary conditions (19) for the existence of

suitable sets of preference orderings require that Cov(g, h) < 0.15 and Cov(g, h) < 0.5,
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and are satisfied. The sufficient conditions (17) require than 0.3 < µh < 0.8, and are

violated. These estimates would then lie in left-hand side dark grey area of figure 2 (if

we had drawn one for µg = 0.6). Thus these conditions would not tell us whether any

set preference distributions suits those estimates, but conditions (20) do. They are

satisfied with, for instance, σg = 0.25, σh = 0.16, and p = 0.5. These give rise to the

distribution below.

Table 10: Joint distribution of (g, h)

h
g

0.08 0.4

0.35 0.5 0
0.85 0 0.5

Note: 0.352/2 = 0.061, 0.852/2 = 0.36

We have derived easy to check but too strict and not so strict but harder to

check sufficiency conditions for the existence of suitable preference distributions.

Given the bizarre shape a preference distribution needs to have to produce big

differences between the two ranking probabilities (see table 8), one might not be

willing to accept a model that fails the strict sufficiency conditions. This brings us

back to the issue of reasonable preference distributions.

4.5. Reasonable Preference Distributions

We have no intention of defining, or even of suggesting, the conditions a preference

distribution should meet to qualify as reasonable. Instead we will take a particular

type of preference distribution that we expect will be accepted as reasonable, and see

by how much the two ranking probabilities diverge.

We chose preferences described by expected utility, with the utility of a

monetary outcome, y, given by ua(y) = ya, y ≥ 0, a > 0. The power function is a familiar

utility function when its argument is the level of wealth, but whether utility given by

the power of the change in wealth, as is the case here, is a reasonable assumption may

depend on the point of view.
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A power of the change in wealth implies constant relative risk aversion when

aversion is measured in terms of changes in wealth, but dramatically variable relative

and absolute risk aversion for small changes from initial wealth when aversion is

measured in terms of levels of wealth. One might thus object to a power of the change

in wealth on normative grounds.

On the other hand behaviour in individual choice experiments is more easily

explained by utility given by a power of the change in wealth than by a power of the

level of wealth. Sugden (forthcoming) notes that in some recent experiments where

subjects make many choices between lotteries, behaviour converges towards a pattern

that is compatible with stochastic expected utility, with the utility given by a power of

the change in wealth. In addition if one assumes that utility is given by a power of the

level of wealth it will be hard to explain the choice of the P bet in most pairs used in

preference reversal experiments. Consider the pair of bets P = (£5, 94%) and $ = (£17,

39%). Suppose utility is given by W0.01, where W is the level of wealth. Even such a

risk-averse individual would choose the $ bet if his wealth was £10 or more. In

several experiments fair proportions of subjects have chosen the P bet from that pair.

Even though virtually all subjects were young students, it is hard to believe that any

of them possessed less than ten pounds.

Our aim is to find a reasonable model of random preferences and test it against

data. Then it will be inappropriate to use compatibility with the data as a criterion for

reasonableness. Note however that the data against which the model will be tested

results from crossing choices with valuations, whereas we are basing our choice of

the utility function on choice data only. The results of preference reversal experiments

have been seen as a challenge to preference theory because of inconsistencies between

choices and valuations, not because many subjects choose the P bet. Therefore using a

utility function that is compatible with the choices observed in those experiments is

appropriate.

The power function defines only the core theory of the model. To complete the

model one needs a set of power functions, and a probability distribution over that set.

Each choice or valuation concerning monetary outcomes will be based on one power

function drawn at random. We will assume here that the parameter a of the utility
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function follows a truncated normal distribution. A normal distribution is perhaps

the most natural of assumptions, and we will see the usefulness of the truncation

below.

Let a ∈ [a1, a2], and its truncated normal distribution be centred on the midpoint

of [a1, a2]. Thus the mean of a is µa = (a1 + a2)/2. The cumulative distribution of a, F(a),

will be obtained as follows. The same amount of probability, c, 0 < c < 0.5, is cut off

from both tails of the standard normal distribution. A scalar x is defined so that Φ[(a1

− µa)/x] = c (and Φ[(a2 − µa)/x] = 1 − c) where Φ(.) is the standard normal cumulative

distribution. This makes x = (a1 − a2)/[2Φ -1(c)] or, more intuitively, x = (a2 − a1)/[Φ -1(1 −

c) − Φ -1(c) ]. Finally, the cumulative distribution of a is defined as

F a

a
x

c

c

a

( ) =

−





−

−

Φ µ

1 2
,

and its probability density function is

f a

a
x
c

a

( ) =

−





−

φ µ

1 2
,

where φ(.) is the standard normal probability density function.

Loosely speaking, this procedure takes a central portion of the standard normal

distribution (between Φ -1(1 − c) andΦ -1(c)), and compresses or stretches it so as to fit

the interval [a1, a2]. x would then be the standard deviation of a if its distribution were

not truncated. The probability that was cut off from the tails, 2c, is then distributed

pro rata by the interval [a1, a2].

The truncation serves two purposes. It is needed to keep a positive. If a was

zero, certainty equivalents would not exist, and if a was negative monotonicity would

be violated. Secondly, although we favour a distribution close to the untruncated

normal, truncation allows us to look at a continuum of probability distribution

shapes: from an essentially untruncated normal, if c is close to zero, to an essentially

uniform distribution, if c is close to 0.5.

Suppose an individual with such a preference distribution is to choose between

a pair o P and $ bets. Let each bet offer some positive amount of money with some
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probability and zero with the remaining probability. Denote P = (yp, pP) and $ = (y$, p$),

where y denotes the amount of money to win, and p, its probability. The expected

utilities are pP yP
a  and p$ y a$ , and the certainty equivalents are p yP

a
P

1  and p ya$ $
1 .

Figure 3 shows the certainty equivalents of the lotteries of two pairs as a

function of a. Preference reversals were observed with (£5, 81%) and (£18, 19%) in the

experiment reported in Braga and Starmer (2001). The other pair is not typical of

preference reversal experiments. Its lotteries can be thought of as a pair of P and $

bets, as one offers less money and a higher winning probability than the other.

However 38% is a winning probability typical of a $ bet, not of a P bet. We are

presenting this pair here because it will be useful in the discussion below. 

The certainty equivalent of the safer bet varies less with a than that of the $ bet.

For each pair of P and $ bets there is a value of a that leads to equal certainty

equivalents for both bets: p yP
a
P

1  = p ya$ $
1  ⇔  a = (ln pP − ln p$)/(ln y$ − ln yP),

approximately 1.132 in the first pair, exactly 1 in the second. If a is less than that

value, the certainty equivalent of P will exceed that of $. If a is higher than that value,

the opposite will happen.

In choice tasks both lotteries are evaluated with a single a drawn from [a1, a2].

Thus P will be chosen over $ if a is less than (ln pP − ln p$)/(ln y$ − ln yp). Thus the

probability that P be chosen over $ is

g = Pr a
p p
y y
P

P
<

−
−











ln ln
ln ln

$

$

 = F
p p
y y
P

P

ln ln
ln ln

$
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The valuations are made with two independently drawn powers. Let P be

valued with a, and $, with a’. Then

h = Pr( p yP
a
P

1  > p ya$ $
1 ′ ) = Pr

( )
a a p

p a y y
P

P
>

′
+ ′











ln
ln ln /$ $

= Pr[a > a(a’)],

where a a a p
p a y y

P

P
( )

( )
′ =

′
+ ′
ln

ln ln /$ $

.

Defining lb(a’) = min{a2, max[a1, a(a’)]}, then

h = ∫ ∫ ′
′′2

1

2

)(
)()(

a

a

a

alb
adadafaf .

As a and a’ are independent, their joint probability density is simply the

product of the individual probability densities. If a1 and a’ are low enough P will be

valued above $ for any a ∈ [a1, a2]. In these cases a(a’) < a1. Conversely, if a2 and a’ are

high enough P will be valued below $ for any a ∈ [a1, a2]. In these cases a(a’) > a2. The

function lb(.) guarantees the relevant lower bound of the integration with respect to a.

Figure 4 plots h against g, the curve hh, for the two pairs of bets of figure 3, and

two values of c. Each point of each curve is obtained with a different interval [a1, a2].

In each curve we kept the ratio of a2 to a1 constant, 1.5 in all curves of figure 3, and

computed pairs (g, h) for a few scores of intervals so as to obtain a full range of g

between 0 and 1. For instance, for the lotteries (£5, 81%) and (£18, 19), figure 3 shows

that g = 0 with a1 = 1.132, and g = 1 with a2 = 1.132. Thus, for g to vary between 0 and 1

with a2 = 1.5a1, the intervals varied from to [1.132, 1.132 × 1.5] to [1.132/1.5, 1.132].

The computation of g is straightforward. That of h is not. Therefore we

computed discrete approximations to it numerically. As each curve is made of scores

of pairs (g, h), and the computation of each value of h is long and tedious we wrote a

computer programme to do the job. This allowed us to observe effortlessly curves for

many pairs of lotteries, many values of c, and many a2-to-a1 ratios. We observed

curves for, among others, the following pairs: (£5, 94%), (£17, 39%); (£4, 92%), (£10,

50%); (£6, 94%), (£13, 50%); (£8, 97%), (£32, 31%); and (£4, 81%), (£18, 19%). Many

preference reversal experiments, including the best known ones, used these pairs or
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pairs very similar to these.6 One of the pairs of figures 3 and 4 is a small variation of

the last pair of the list, and was, together with the second-to-last pair of the list, used

in Braga and Starmer (2001).

The main findings of this exercise may be summarised in five stylised facts.

1. The curve hh crosses the diagonal only once, always near its midpoint, and

from above.

2. With the pairs listed above, and for any values of c and the a2-to-a1 ratio, the

absolute difference between h and g is always less than 20 percentage points, and less

                                                
6 Cubitt et al (forthcoming) used these pairs. Tversky et all (1990) used pairs with the same probabilities

and proportional payoffs. Multiplying the payoffs in a pair by the same scalar does not alter g or h, as

inspection of its analytical expressions reveals. The seminal experiment by Lichtenstein and Slovic

(1971), and the landmark study by Grehter and Plott (1979) used pairs with the same probabilities,

proportional winning amounts, and a small loss instead of the null outcome.
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than 10 percentage points for g < 0.75. This is much less than the differences under the

p* and p# preference distributions seen above.

3. Keeping c and the a2-to-a1 ration constant, this difference increases as the $ bet

becomes safer given the P bet; as the P bet becomes riskier given the $ bet; and as the

two bets become riskier given the absolute difference between their winning

probabilities.

4. The difference increases at the ends of the curve when c increases, that is,

when the distribution of a becomes flatter.

5. Increasing the a2-to-a1 ratio slides the whole hh curve down, but mainly at the

ends.

In what follows we will try to offer an explanation for these findings.

The stylised facts 2 and 3 hinge on the dispersion of the certainty equivalents of

the P bet relative to those of the $ bet. Figure 5 helps to understand why. The figure

shows the probability distribution of the optimal bids corresponding to the point

with abscissa g = 0.9 of the hh curves in figure 4. There is no particular reason to
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choose that particular abscissa. The vertical lines mark the intersection points of the

curves in figure 3. Any choice task compares two certainty equivalents that are on the

same side of the vertical line, or, with probability zero, on the vertical line: if on the

left-hand side, the P bet is chosen; if on the right-hand side the $ bet is chosen.

h may differ from g only to the extent that the distribution of the P optimal bid

overlaps that of the $ bet. The reason for this is that the $ certainty equivalents below

the minimum P certainty equivalent rank necessarily the $ bet below the P bet both in

valuations and in choices, and the $ certainty equivalents above the maximum P

certainty equivalent rank $ above P both in choices and valuations. Therefore, if the

whole range of the P certainty equivalents overlaps only a small portion of the $

certainty equivalent range, as is the case when the P bet is very safe relative to the $

bet, then g and h must be very close. If the distribution of the P certainty equivalents

collapses to the vertical line, if P is a sure amount, then g and h are equal. If the P

certainty equivalent distribution has long but slim tails covering most of the $

certainty equivalent distribution, the argument becomes a bit more complicated. In

that case we would have to say that the $ certainty equivalents to the left of the left-

hand side intersection of the two distribution curves rank $ below P in choices and

have only a slim probability (as slim as the tail of the P certainty equivalent

distribution) of ranking $ above P in valuations. The converse is true to the right of

the right-hand side intersection. This explains stylised facts 2 and 3, and is illustrated

by comparing the top and bottom panels of figures 4 and 5.

h is lower than g if the light shaded areas of figure 5 are bigger than the dark

shaded areas and vice-versa. The light shaded area is in the P choice area, but a $

valuation drawn from the corresponding range has some probability of being higher

than the valuation of the paired P bet. The converse is true of the dark shaded area.

Note that the vertical lines divide the area under each of the curves into g on the left-

hand side, and 1 − g on the right-hand side. Thus, when g is close to zero h is higher

than g, and when g is close to 1 h is lower than g. When g is close to 0.5, the two areas

have similar sizes, and h is close to 0.5 as well. This explains the first stylised fact.

The comparison of the left and right-hand side panels of figure 5 help

understand stylised fact 4, if one imagines a g even closer to 1. For 0.1 < g < 0.9 the
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difference between g and h hardly changes with c. Increasing the parameter c makes

the distribution of a, and consequently the distribution of the certainty equivalents

flatter. This increases the size of the overlapping areas at the ends of the g spectrum,

magnifying the difference that tends to exist there between g and h. If g is close to 0.5

the overlapping area decreases, but there the two halves of that area offset each other

to a great extent, therefore the difference between g and h, small to begin with, does

not change noticeably.

The distribution of the P certainty equivalents has a left-hand side tail that is

hardly noticeable if the a2-to-a1 ratio is not too big, say no bigger than 2. Increasing

this ratio makes the tail longer. This increases the light shaded areas relative to the

dark shaded areas, resulting in a lower h for any value of g, which explains stylised

fact 5. This effect is hardly noticeable with the pairs of lotteries listed above, unless

coupled with a large c. 

The general conclusion to draw from our simulations is that with this type of

preference distributions and the pairs of lotteries that have been used in best known

preference reversal studies the ranking probabilities should be very similar. Of the

listed pairs, it is with the last one, (£4, 81%), (£18, 19%), that the hh curve is further

from the diagonal (this hh curve cannot be distinguished at naked eye from that

obtained with the lottery (£5, 81%)). Even with this pair, the difference between g and

h never reaches 10 percentage points, unless c and the a2-to-a1 ratio are both large, say

c > 0.1, and a2 > 3a1.These values generate implausible distributions of the certainty

equivalents. For instance, with c = 0.1 and a2 = 3a1 the certainty equivalent of (£18,

19%) becomes roughly uniformly distributed between 0.4 and 4.8 for g = 0.9, and

between 0.5 and 6.4 for g = 0.5. One would not expect the preferences of an individual

to be so random.

The question naturally arises whether other types of core utility functions and

other types of probability distributions over these functions will give rise to larger

differences between g and h. We will not try to answer this question, but feel inclined

to speculate that the difference will tend to remain small if the P optimal bids are very

concentrated relative to the $ optimal bids, and the $ optimal bid is an increasing

function of the P optimal bid, in the sense that it is so in figure 3. The importance of
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the first condition was made explicit in our previous discussion. The second

condition was also crucial, even if not so obvious. The second condition guarantees

that in figure 5 P is chosen over $ to the left of the vertical lines, and $ is chosen over P

to the right of that line. It is the two conditions together that with our type of utility

function cause g and h to have similar values.

5. Testing the Stochastic Models with Actual Data

We will use the results of Braga and Starmer (2001) to test the error and the random

preference models. In that experiment subjects were randomly allocated to two

treatments: in one, valuations were elicited in a second-price auction, in the other, in a

second-to-last price auction. In both markets each lottery was auctioned five times in

a row. Table 11 shows the data obtained with the fifth valuations, and the single

choice, made after all the auction sessions.

The relative frequencies are significantly different. If we assume that the

category probabilities are the same in both markets, the maximum likelihood

estimates of these probabilities, which are simply the relative frequencies of the

aggregated data, are pp = 0.301, sr = 0.266, nsr = 0.127, and dd = 0.306. The chi-squared

statistic, expression (1), may be computed for both markets. Their sum follows a chi-

squared distribution with three degrees of freedom (number of independent

categories, six, minus the number of independently estimated parameters, three). The

sum of the chi-squared statistics is 17.14, and the probability value is 0.007.

Table 11: Category frequencies in Braga and Starmer (2001)

2nd Price Auction 2nd-to-last Price Auction

Highest Price Highest Price 

Choice P $ P $

P 35 16 17 30
$ 15 21 7 32
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Therefore no model that assumes no differential effect of the type of auction can

with the same set of parameters fit the two data sets. We will therefore fit the model

separately to each of the datasets.

5.1. Testing the Lichtenstein and Slovic’s Error Model

Table 12 shows the results of fitting the Lichtenstein and Slovic’s (1971) error model

to each of the markets. There is a set of plausible parameters with which the model

fits the second-price auction perfectly. One cannot therefore reject the hypothesis that

behaviour in that market can be represented by the error model.

In the second-to-last price auction the fit is not as good. In addition the estimate

of r is implausibly high. With r = 0.43, the choices are close to random: we would

expect r = 0.43 if 86% of all choices were random, and the remaining 14% always

correct. The testing procedure carried out in section 3, when applied to the second-to-

last price auction data, leads to a probability value of 0.106. One might not feel

entirely confident about rejecting the model on the basis of this probability value.

Therefore we carried out another test.

As 0.43 is an implausibly high value for r, we estimated the model subject to the

constraint r ≤ 1/3. An error probability of 1/3 in choices is still implausibly high

(implying that 2/3 of all choices are random), but it is low enough for the procedure

of section 3 to reject the model. The maximum likelihood estimates are p = 0.274, r =

1/3, and s = 0.016, which yield χ2 = 6.48. Imagine that the value r = 1/3 had been

assumed and not estimated from de data. Then the χ2 would have one degree of

freedom, and the probability value would be 0.011. If we had assumed that r was any

other value, lower than 1/3, χ2 ≥ 6.48 (as χ2 = 6.48 was obtained with the constraint r ≤

1/3, not r = 1/3), and the model would also be rejected.

Table 12: Maximum likelihood estimates of the error model

2nd Price Auction 2nd-to-last Price AuctionLichtenstein and
Slovic’s (1971) Error
Model χ1

2 = 0
p = 0.65, r = 0.25, s = 0.21

χ2
2 =2.61 

p = 0.28, r = 0.43, s = 0.0
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Highest Price Highest Price 

Choice P $ P $

Observed P 35 32 17 30
Frequencies $ 15 21 7 32

Expected P 35.0 16.0 13.9 26.7
Frequencies $ 15.0 21.0 10.7 34.8

We conclude then that the second-price auction may be explained by the model,

but the second-to-last price auction cannot.

5.2. Testing the Random Preference Model

To fit the random preference model to actual data we maximise the likelihood

function subject to the necessary and sufficient conditions for the existence of a

suitable distribution of (g, h), and the necessary conditions for the existence of a

suitable set of preference distributions. For a quick reference we present these

constraints together here, and will refer to them as the standard constraints:

0 ≤ µg, µh ≤ 1,

Cov(g, h) ≥ 0,

Cov(g, h)   ≤   µg(1 − µh),   µh(1 − µg),

)2)((),(Cov 22
ghhhhg µµµµ −−<   ,  )221)(( 22

hgghh µµµµµ −+−− .

The demanding sufficient conditions for the existence of set of suitable

preference distributions, µg/2 < µh < (1 + µg)/2 (24), will not be imposed, but checked

after the maximisation.

The exact solution (see section 4.2) is feasible in both datasets. That is, there is

for each market a set of parameter with which the model predicts exactly the

observed frequencies, making χ2 = 0. Both sets of parameters satisfy the demanding

sufficient conditions for the existence of a set of suitable preference distributions. For

the second-price auction the parameters are µg = 0.59, µh = 0.58, and Cov(g, h) = 0.065

(sufficient conditions: 0.295 < µh < 0.795); for the second-to-last price auction the
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parameters are µg = 0.547, µh = 0.279, and Cov(g, h) = 0.045 (sufficient conditions: 0.274

< µh < 0.774).

Of the two sets of parameters, that of the second-price auctions looks more

sensible. The small difference between the mean ranking probabilities is within the

range of what we observed in our example of a reasonable preference distribution.

The big difference in the second-to-last price auction is not. There are sets of

preference distributions that yield the parameters estimated for this market (because

the sufficient conditions are met, even if narrowly so), but given the difference

between µg and µh one might question the reasonability of such preference

distributions. On the other hand these parameters yield exactly the observed

frequencies. The question arises then whether imposing a more plausible set of

parameters will reject the model. 

To answer that question we maximised the likelihood function subject to the

standard constraints and µh ≥ kµg. Given that the best fit is obtained with µh much

lower than µg, that additional constraint, with k high enough, forces the difference

between µh and µg to be smaller and more in line with what we observed in our

simulations of reasonable preference distributions. We then obtained by trial and

error the values of k that lead to the rejection of the model at the most commonly used

significance levels. The results are in table 13.

The rationale for this test is the same as for the test conducted with the

Lichtenstein and Slovic’s (1971) error model. If the constraint µh = kµg is imposed on

the maximisation of the likelihood function, the model reduces, in effect, to a two

parameter model, and the χ2 has one degree of freedom. If one thinks that a plausible

value for k should be, say, no less than 0.72, then χ2 ≥ 3.85 (as 3.85 is the lowest value

of χ2 if the constraint is µh ≥ 0.72µg) and the probability value will be at most 0.05.

Table 13: Fitting the model with reasonability constraints

Pr χ2 constraint µg µh Cov(g, h)

0.10 2.69 µh ≥ 0.682µg 0.51 0.34 0.047

0.05 3.85 µg ≥ 0.72µg 0.49 0.36 0.046

0.01 6.72 µh ≥ 0.804µg 0.47 0.38 0.042
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The model is rejected if one thinks that any of the constraints of table 13 is

justifiable. Whether they are is a question to which we cannot give a definitive

answer, but given that the model cannot explain both markets, we feel inclined to

conclude that the model, if anything, explains the second-price auction.

We fitted the model and applied this testing procedure to several of the most

prominent datasets. Table 14 summarises the results. The fifth column shows the

probability (Pr) value (assuming one degree of freedom) obtained by fitting the

model with the standard constraints and the additional constraints µh ≥ kµg and µh ≤

1− k(1 − µg) (the latter is never binding) with k = 0.5. These additional constraints

guarantee the existence of a suitable set of preference distributions. χ2 = 0 in this

column indicates that the exact solution is feasible under the additional constraints.

The fourth column shows the χ2 value when the model is fitted only with the

standard constraints (thus k is zero in the additional constraints). Again, χ2 = 0 means

that the exact solution is feasible. The last two columns show the values of k in the

additional constraint µh ≥ kµg needed to reject the model at the stated probability

values (under the assumption of one degree of freedom).

Table 14: Fitting the random preference model to some experimental results

Pr Constraint: k
Experiment Incent

comp
Sample

size
χ2

k = 0 k=0.5 Pr=0.1 Pr=0.01

Lichtenstein and Slovic, 1971
Experiment I No 1038 2.3 <0.01 0.26 0.28

Experiment III Yes 84 0.0 (χ2=0) 0.67 0.78
Grether and Plott, 1979

No incentive No 245 0.0 (χ2=0) 0.62 0.68
With incentives Yes 262 0.0 (χ2=0) 0.66 0.72

Tversky and Kahneman, 1990, set I No 1074 0.9 <0.01 0.37 0.39
Notes: k is the k in the additional constraint µh ≥ kµg; sample sizes are the number of subjects multiplied
by 6 pairs of bets; Incent comp stands for incentive compatible. An experiment is incentive compatible if
subjects decisions have economic consequences for them.

The exact solution is not feasible in some of the datasets, but the χ2 statistic is

not high enough for our testing procedure to reject the model at the 10% significance

level (the critical value at the 10% significance level is 2.71). If the demanding

sufficient conditions are imposed, two data sets reject the model at the 1%
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significance level. None of these were obtained in incentive compatible experiments.

All data sets reject the model at 1% significance level if the constraint µh ≥ 0.78µg is

imposed, and at 10% if µh ≥ 0.67µg is imposed. These constraints look sensible in light

of our simulations of reasonable preference distributions. We cannot rule out the

possibility that other preference distributions that might be deemed reasonable

produce bigger differences between µh and µg. Still, at the very least, we may conclude

that there is no evidence so far that a model of random expected utility may explain

preference reversal.

6. Conclusions

This paper started with the observation that while preference reversal has been seen

as a non-random deviation from the predictions of most deterministic preference

theories, very little is known of what a random deviation in a preference reversal

experiment may look like. This paper is an attempt to increase our knowledge in that

area. We revisited the early, apparently forgotten, Lichtenstein and Slovic’s (1971)

error model, henceforth the error model, and developed a random preference model of

choices and valuations, henceforth the random preference model. These models combine

stochastic processes with deterministic expected utility theory. Both models predict

inconsistencies between choices and valuations, but we feel inclined to conclude that

they do not explain preference reversal. 

Our random preference model is based on Loomes and Sugden’s (1995) theory

of random preference. Of the recent research in stochastic models of choice, Loomes

and Sugden’s theory is the one that can be extended to valuations in an obvious way.

When the same assumption is made in both models about whether individuals

are homogeneous or diverse, the random preference model is in part observationally

equivalent to a particular case of the error model. This is however no more than a

curiosity, as that particular case requires the extreme assumption that all individuals

prefer the same bet.

The random preference model, even with the core theory restricted to expected

utility, is able to predict decision patterns that have generally been viewed as non-
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random deviations from most deterministic preference theories, including expected

utility. Many, if not most, economists and psychologists have relied on the difference

between rates of standard and non-standard reversals conditional on choice as an

indication of the non-random nature of preference reversal. According to the random

preference model that measure is not very meaningful: the model predicts no limit to

that difference. A more meaningful measure is the difference between the

unconditional rates of standard and non-standard reversal (standard and non-

standard reversals as proportion of total choices): the model predicts an upper limit

to that difference.

Changes in these rates of reversal conditional on choice have also been used to

justify various assertions as to the effect on the strength of preference reversal of

changes in the experimental design. Other measures, namely unconditional rates of

reversal, often lead to different conclusions (see Braga 2003). It is illustrative to revisit

one famous such assertion. Grether and Plott (1979) were surprised to find out that

the introduction of incentive compatibility had made preference reversal stronger.

This finding was based on the big increase in the rate of standard-reversal conditional

on choice. The unconditional rate of standard reversal actually decreased slightly. We

fitted the random preference model to the authors' datasets. The results are shown in

table 14. It took a stricter constraint to reject the model with the incentive-compatible

dataset than with the non-incentive-compatible one. On face value this means that the

introduction of incentives pushed behaviour in the direction of stochastic expected

utility. Given that the rationale for the constraints used to reject the model is based on

simulations with a particular type of utility functions we are not willing to make

much of this result. We may nevertheless conclude that we have no evidence that

incentives made preference reversal stronger.

Testing the random preference model against the data was not absolutely

conclusive. We fitted the model to seven datasets. Of these, one does not, at naked

eye, display preference reversal. Again at naked eye, it displays some bias in the

opposite direction, that is, the rate of non-standard reversal conditional on choice

exceeds that of standard reversal. The unconditional rates of reversal are virtually the

same though. The model cannot be rejected with this data set.
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Two datasets reject the model when one imposes a constraint that guarantees,

but is not necessary for, the existence of a set of suitable preference distributions for

the estimated parameters. These two data sets happen to result from experiments that

were not incentive compatible.

Four data sets, two of them from incentive-compatible experiments, reject the

model if a further constraint on the parameters is imposed. This constraint looks

sensible in light of simulations with a particular type of “reasonable” preference

distributions. These distributions were truncated normal probability distributions

over sets of utility functions of a particular type. One may not feel entirely confident

in rejecting the model on the basis of a particular type of preference distribution.

This points the way to further research. We derived constraints on the

parameters of the model from basic statistical principles and the axioms of expected

utility. The implication of expected utility to our model was simply that each

preference ordering determines the choice of a bet from a pair if and only if it

determines that the valuation of that bet is higher than the valuation of the other bet.

No other restrictions were imposed on the preference distribution. That is, no

restrictions were imposed on the set of preference orderings, except that each

preference ordering must be compatible with expected utility, and no restrictions

were imposed on the probability distribution over those preference orderings. This is

what allows the model to predict a wide variety of decision patterns, including

patterns observed in many preference reversal experiments. Many of those preference

distributions are nonsensical. In section 4.5 we made simulations with “reasonable”

preference distributions, and observed the parameters that they produce, but what is

desirable is a normative theory of preference distributions.

A normative theory of preference distributions is necessarily a theory of

reasonable preference distributions. An analogy can be made with deterministic

preference theory. In the standard theory of preference under certainty, monotonicity

and convexity of the indifference curves are properties required on grounds of

reasonability. So is independence in the theory of choice under uncertainty. In the

same manner it is desirable to require that a preference distribution display

normatively appealing properties. Otherwise some predictions of a random
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preference model may be dismissed on grounds of relying on absurd preference

distributions.

Therefore a generally accepted normative theory of preference distributions is

required for a more definitive test of whether the decision patterns observed in

preference reversal experiments are compatible with stochastic expected utility.

Appendix A: Regret Theory, Intransitivity, and Valuations

Regret theory assumes that individuals facing a choice between two prospects

X and Y compare the outcomes of the prospects in each state of the world. The

comparison is evaluated with the function Ψ (xi, yi), where xi, yi are the outcomes of X

and Y in state of the world i, and Ψ(.) has the properties Ψ (a, a)= 0 and Ψ (a, b)= − Ψ(b,

a). Denoting pi the probability of state of the world i happening, the individual will

prefer X to Y if

V(X, Y) = p x yi i i
i

Ψ ( ),∑ > 0.

He will prefer Y to X if V(X, Y) < 0, and will be indifferent if V(X, Y) = 0. Note that

V(Y, X) = − V(X, Y). Such a preference relation may not be transitive in general, but is

transitive over the set S of gambles generated by the admissible bids. 

Suppose X offers an amount of money x with probability p, and nil with

probability 1 − p. That is, X= (x, p; 0, 1 − p). Let bj, bk, and bl, be any three admissible

bids such that bj < bk < bl (j < k < l). Making these bids amounts to play the following

gambles (see main text):

C(bj,X)= [x,pG(bj); 0, (1−p)G(bj); bj+1, G(bj+1)− G(bj);…; bk, G(bk)− G(bk−1);…; bN, 1− G(bN−1)],

C(bk,X)= [x,pG(bk); 0, (1-p)G(bk); bk+1, G(bk+1)− G(bk);…; bl, G(bl)− G(bl−1);…; bN, 1− G(bN−1)],

C(bl, X) = [x, pG(bl); 0, (1-p)G(bl); bl+1, G(bl+1) − G(bl);…; bN, 1 − G(bN−1)].

For the sake of readability define Ci = C(bi, X), and Vh,i = V(Ch, Ci). Then
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Vj,k = [ ][ ]G b G b p b x p bi i i i
i j

k

( ) ( ) ( ) ( ) ( )− + −−
= +
∑ 1

1

1 0Ψ Ψ, ,
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l
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= +
∑ 1

1

1 0Ψ Ψ, ,

Vj,l = [ ][ ]G b G b p b x p bi i i i
i j

l
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= +
∑ 1

1

1 0Ψ Ψ, ,

Obviously, Vj,l = Vj,k + Vk,l. Then if Cj ≥p Ck and Ck ≥p Cl, thenVj,k ≥ 0 and Vk,l ≥ 0. Vj,l

= Vj,k + Vk,l, therefore Vj,l ≥ 0, and Cj ≥p Cl. In this example Ci, that is, C(bi, X) was

preference ordered by increasing order of bi. This is unimportant. For instance, if Cj ≥p

Cl and Cl ≥p Ck, thenVj,l ≥ 0 and Vl,k ≥ 0. Vj,k = Vj,l - Vk,l = Vj,l + Vl,k, therefore Vj,k ≥ 0, and Cj

≥p Ck. It can be easily checked that any other chain of preference (three gambles allow

six different preference chains) is also transitive.

Appendix B: Minimum and Maximum h given g

1. Minimising h Given g

We want to solve the following problem:

min h p pij

j

m

i

m

kl

l

i

k

mP P

=
== =

−

=
∑∑ ∑∑

01 0

1

0

$

(B1)

subject to

p gij

j

i

i

mP

=

−

=
∑∑ =

0

1

1

; (B2a)

pij
j

m

i

mP

==
∑∑

00

$

= 1; (B2b)

pij  ≥ 0,   i = 0,…, mP  and  j = 0,…, m$; (B2c)

pii  = 0,   i = 0,…, mP. (B2d)

The Lagrangian function for this problem is
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The Kuhn Tucker conditions for a minimum are

∂
∂
£
pmn

= 0    for m = 0,…, mP   and   n = 0,…, m$; (B4a)

p gij

j

i

i

mP

=

−

=
∑∑ =

0

1

1

; (B4b)

pij
j

m

i

mP

==
∑∑

00

$

= 1; (B4c)

pmm = 0   for m = 0,…, mP; (B4d)

λmnpmn = 0, for m = 0,…, mP   and   n = 0,…, m$; (B4e)

pmn ≥ 0, λmn ≥ 0   for m = 0,…, mP   and   n = 0,…, m$. (B4f)

The (mP + 1) × (m$ + 1) derivatives (B4a) take one of the following forms:

∂
∂

λ λ λ£ $

p
pij

j

m

i

mP

00 01

1 00 00 0= − − − ′ =
==

∑∑ ; (B5a)

∂
∂

λ λ£ $
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ij
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P

0 01

1 0 0= − − =
== +

∑∑    for n = 1,…, mP –1; (B5b)

∂
∂
£
p n0

=  −  λ1 − λ0n = 0   for n = mP,…, m$; (B5c)

∂
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for m = 1,…, mP, n = 1,…, m − 1;

(B5d)
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∂
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1 0    for m = 1,…, mP, n = m; (B5e)

∂
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for m = 1,…, mP, n = m + 1,…, mP − 1;

∂
∂

λ λ£
p

p
mn

kl

l

m

k

m

mn

P

= − − =
=

−

=
∑∑

0

1

0

1 0    for m = 1,…, mP, n = mP,…, m$. (B5g)

One Solution: the p* Probability Distribution

The preference distribution p* (B6a-c) ((4-6) in the main text) and the following

values of the Lagrange multipliers (B6d-k) satisfy the Kuhn Tucker conditions, that is,

(B5a-g) (that is, condition (B4a)) and conditions (B4b-f):

p gn

n m

m

P

0 1*
$

=
∑ = − ,   for n = mP,…, m$; (B6a)

p g
mm m
P

,
*

− =1    for m = 1,…, mp; (B6b)

pmn
* = 0   for all other (m, n); (B6c)

λg P

P

m
m

g* =
+ 1 ; (B6d)

λ1
*  = 0; (B6e)

λ0n
P

P

m n
m

g* =
−    for n = 0,…, mP − 1; (B6f)

λ0n
*  = 0   for n = mP,…m$; (B6g)

λmn
P

m n
m

g* =
− −1    for m = 1,…, mP, n = 0,…, m − 1; (B6h)

λmn P

P

m m n
m

g* =
+ −    for m = 1,…, mP, n = m,…, mP − 1; (B6i)

λmn
P

m
m
g* =    for m = 1,…, mP, n = mP,…, m$; (B6j)

′ =λmm
* 0    for m = 1,…, mP. (B6k)

Equations (B6a-c) merely describe the p* preference distribution presented in

the main text. Of the pairs of optimal bids with positive probability, only the pairs

defined by (B6b) rank P above $ (and none ranks P and $ equally). There are mP such

pairs, each with probability g/mp, thus their probabilities add up to g, and constraint
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(B4b) is satisfied. The sum of all the remaining pairs with positive probability is 1 − g

(B6a), thus the probabilities of all pairs add up to 1, and constraint (B4c) is satisfied.

Equations (B6a,b), the ones that define the pairs with positive probability, include no

pair (m, n) where n = m. Thus all these pairs fall under equation (B6c), have zero

probability, and constraints (B4d) are satisfied. The corresponding Lagrange

multipliers, λ’mn, are all null, meaning that constraints (B4d) would be satisfied even if

they had not been imposed. All Lagrange multipliers corresponding to the pairs that

may have positive probability are null: the Lagrange multipliers corresponding to

pairs in (B6a) are in (B6g); those corresponding to pairs in (B6b) are in (B6h) where n =

m − 1. Thus constraints (B4e) are satisfied. All probabilities and Lagrange multipliers

are non-negative, thus constraints (B6f) are satisfied.

This leaves us with constraints (B4a), or (B5a-g). Note that pairs in (B6a) do not

appear in these constraints. In each double sum, for each l there is only one k, such

that plk > 0, namely pl+1,l = g/mP, and all the other probabilities are null. Likewise, for

each i, pi,i-1 = g/mP, and all other probabilities are null. Thus substituting these results

and the values of the Lagrange multipliers into equations (B5a-g) yields:

∂
∂
£
p

g
m

m
m

g
Pi

m
P

P

P

00 1

0 0= − − =
=
∑ ,   (from (B6f)); (B7a)

∂
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0 1

0= − − =
= +
∑    for n = 1,…, mP –1,   (from (B6f)); (B7b)

∂
∂
£
p n0

=  −  0 − 0 = 0 for n = mP,…, m$,   (from(B6g)); (B7c)

∂
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g
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g
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m
m

g m n
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g
mn Pl
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Pi n

m
P

P P

P

= + − + − − − =
=

−

= +
∑ ∑

0

1

1

1 1 0    

for m = 1,…, mP, n = 0,…, m − 1, (from (B6d) and (B6h)).

Equations (B5e) and (B5f) become the same, since l’mn = 0. Thus

(B7d)

∂
∂
£
p

g
m

g
m

m m n
m

g
mn Pl

m

Pi n

m
P

P

P

= + − + − =
=

−

= +
∑ ∑

0

1

1 1

0    

for m = 1,…, mP, n = m,…, mP − 1, (from (B6i)); (B7e,f)



IS PREFERENCE REVERSAL JUST STOCHASTIC VARIATION? 59

∂
∂
£
p

g
m

m
m
g

mn Pl

m

P

= − =
=

−

∑
0

1

1

0    for m = 1,…, mP, n = mP,…, m$,   (from (B6j)). (B7g)

It may easily be checked that equations (B7a-g) are all true, and therefore

conditions (B4a-f) are all satisfied.

Non Quasi-Convexity of h

These conditions are necessary for p* to be a minimum. If the objective function,

h, was strictly quasi convex we would have a guaranty that p* was a (and only) global

minimum. h would be strictly quasi convex if for any two preference distributions p’

and p’’, and any scalar α such that 0 < α < 1, h(αp’ + (1 − α )p’’) < max{h(p’), h(p’’)}. The

following example shows that h is not strictly quasi convex. (It is not quasi convex

either. The definition of quasi convexity may be obtained from that of strict quasi

convexity by substituting weak inequalities for the strict ones.). Note that p’ and p’’ in

the table below are probability distributions over the listed pairs: their probabilities

are non-negative and add up to one.

Table B1: h is not strictly quasi convex

(bP, b$) p’ p’’ 0.5p’ + 0.5p’’

(0, 4) 0.2 0.2 0.2

(0, 1) 0.4 0.0 0.2

(2, 1) 0.4 0.4 0.4

(2, 3) 0.0 0.4 0.2

h = (p21+ p31)(p01 + p21) 0.32 0.32 0.36

If h was strictly quasi concave, any preference distribution satisfying the Kuhn

Tucker conditions for a maximum would be the global maximum. This is a preference

distribution that we would like to find as well. h would be strictly quasi concave if for

any two preference distributions p’ and p’’, and any scalar α such that 0 < α < 1, h(αp’
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+ (1 − α )p’’) > min{h(p’), h(p’’)}. The following example shows that h is not strictly

quasi concave (and not quasi concave either).

Table B2: h is not strictly quasi-concave

(bP, b$) p’ p’’ 0.5p’ + 0.5p’’

(0, 4) 0.6 0.6 0.6

(2, 1) 0.4 0.0 0.2

(3, 2) 0.0 0.4 0.2

h = p21
2 + p32(p32 + p21) 0.16 0.16 0.12

As the function h is not strictly quasi convex there may be other minima than p*.

One way to prove that no other minimum is smaller than (8) would be to find all the

solutions to the Kuhn-Tucker conditions, and see which one yields the lowest h. The

Kuhn-Tucker conditions include an indefinitely large number of non-linear equations

and non-negativity constraints over an indefinitely large number of variables.

Finding all the solutions to these conditions is not an enterprise one would

necessarily like to undertake. We will follow an alternative route. That requires a few

definitions.

The Set of p+ Probability Distributions

We will define three types of pairs of bids. Pairs where bP = 0 and b$ ≥ mP, to be

called $* pairs (because they rank $ above P); pairs where b$ = bP – 1, to be called P*

pairs, (because they rank P above $); and all the remaining pairs, to be called O* pairs.

Define p+ as the set of all probability distributions over BP × B$ that assign zero

probability to all O* pairs. Note that p* ∈ p+: all $* pairs are in (4) and all P* pairs are

in (5). Consequently all O* pairs are in (6), and therefore have no probability.

However not all p+ distributions are p*, as p+ distributions need not assign the same

probability to all P* pairs, as p* does.

p+ probability distributions have the following properties. If p’ is a p+

distribution, g’, the probability that P be chosen over $ under p’, is the sum of the
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probabilities of all P* pairs, because, of the pairs with positive probability, only P*

pairs rank P above $, and all P* pairs do that. Thus

g’ = ′ −

=
∑ pi i
i

mP

, 1

1

  for any p’ ∈ p+. (B8)

A second property is that, under a p+ distribution, P bid will exceed a $ bid only

if both valuations are extracted from P* pairs (obviously no valuations can be

extracted from O* pairs). Thus if p’ ∈ p+, h’, the probability that P be valued above $

under p’, defined by (B1) ((3) in the main text), simplifies to:

′ = ′ ′ = ′ ′ ′ ∈−

=

−

=

− −

==
∑ ∑ ∑∑h p p p p pi i

i

m

k k

k

i

i i k k

k

i

i

mP P

, , , ,1

1

1

1

1 1

11

for any  p+. (B9)

A last property is that the function h is strictly convex in p+.

This last property is very useful. The p* probability distribution, which satisfies

the Kuhn-Tucker conditions for a minimum, is a p+ distribution. Therefore it is also a

solution to the Kuhn-Tucker conditions when the domain of the probability

distributions is restricted to p+. As h is strictly convex in p+, and all the constraints the

minimisation of h was subject to are linear, and thus convex, the solution we found,

h*, is the global minimum in p+. We will show next that for any non-p+ probability

distribution p and its implied g and h there is a p’ ∈ p+ such that g’ = g, and h’ ≤ h. We

will also show that either h’ < h or h* < h’. Therefore h* is the global minimum for all

possible probability distributions over BP × B$.

Convexity of h in p+ 

In this subsection we will deal only with p+ distributions. Therefore g and h will

refer only to the ranking probabilities under p+ distributions. When the domain of h is

restricted to p+, expression (B9) can be further simplified. Table B3 illustrates how. Its

first row lists all the P* pairs, and so does the first column. Each of the remaining cells

shows the probability that pair (i, i − 1) be drawn for the valuation of P, and pair (k, k

− 1) be drawn, independently from (i, i − 1), for the valuation of $. That probability is
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pi,i−1pk,k−1. That is also the probability that the valuation of P is obtained from (k, k − 1)

and the valuation of $ is independently obtained from (i, i − 1). This is illustrated by

the symmetry of the probability matrix.

Table B3: Probabilities of two independently drawn P* pairs

$ bid

P bid
(1, 0) (2, 1) (3, 2) .   .   .   .   . (mP, mP − 1) Total

(1, 0) p10
2 p10p21 p10p32 .   .   .   .   . p10pmP, mP-1 p10g

(2, 1) p21p10 p21
2 p10p32 .   .   .   .   . p21pmP, mP-1 p21g

(3, 2) p32p10 p32p21 p32
2 .   .   .   .   . p32pmP, mP-1 p32g

...

..

...

..

...

..

...

..

.    .        .
            .                .

...

..

...

..
(mP, mP − 1) pmP, mP-1p10 pmP, mP-1p21 pmP, mP-1p32 .   .   .   .   . pmP P,m −1

2
pmP, mP-1g

Total gp10 gp21 gp32
.   .   .   .   . gpmP, mP-1 g2

Under a p+ distribution the probabilities of all P* pairs add up to g. Table B3

contains the probabilities of all possible combinations of two independently drawn P*

pairs. Therefore the sum of the probabilities of all cells in the matrix is g2. Under a p+

distribution h is the sum of all the probabilities in the diagonal and lower shaded area

(or in the diagonal and upper shaded area, as the matrix is symmetric). As the sum of

the probabilities in each of the shaded areas is the same h can be written as

h = 

g p

p
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. (B10)

The convexity of this function is easy to check. h is strictly convex in p+ if for any

two p’, p’’ ∈ p+, with p’ ≠ p’’, and any scalar α, 0 < α < 1, h(αp’ + (1 − α)p’’) − αh(p’) − (1

− α)h(p’’) < 0.

h(αp’ + (1 − α)p’’) − αh(p’) − (1 − α)h(p’’) =

= 
( )g p p g p g pi i i i
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, , < 0

because 0 < α < 1, and p’ ≠ p’’, thus for some i, ′ − ′′ ≠− −p pi i i i, ,1 1 0 , and its square is then

positive. Therefore h is strictly convex in p+. 

From (B10), noting that pi i,
*

−1 = g/mP for i = 1,…,mP (B6b), we obtain

min h h g g
mP

= = +*
2 2

2 2
, (B11)

which is the same as (8) in the main text.

For Any p There is a p’ ∈ p+: g’ = g And h’ ≤ h

For any non-p+ distribution, p, and the corresponding g and h, there is a p’ ∈ p+

such that g’ and h’, the ranking probabilities under p’, verify g’ = g and h’ ≤ h. To

prove this we will first obtain two intermediate results. Loosely speaking result 1

states that when the probability of a pair (m, n) is decreased by some amount, and the

probability of (m’, n), with m’ < m, is increased by the same amount, h either decreases

or stays the same. Result 2 states that the same will happen when some probability is

transferred from (m, n) to (m, n’), with n’ > n.

Result 1. Consider two probability distributions, p and p’, over the same pairs of

bids, and their implied h and h’. Let the two distributions differ only in that, for some

two pairs of bids (m, n) and (m − 1, n) with 1 ≤ m ≤ mP, pmn > 0, ′pmn = pmn − d, 0 < d ≤ pmn,

and ′ −pm n1, = pm−1,n + d. There must be such pairs unless g is zero, in which case h is also

zero. Then h’ ≤ h regardless of all other probabilities. To prove this we will compute h’

− h. Note that Pr(b$ < i) is the same in both distributions, that is,
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since ′pmn  + ′ −pm n1, = pmn+ pm−1,n, and all other probabilities are the same in both

distributions. Therefore
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≤ 0. (B12)

The above expression is the product of d by the probability that P be valued at

m – 1. The intuition is simple. When the $ bid is m – 1, P is valued above $ if the P bid

is extracted from pair (m, n) but not if it is extracted from pair (m − 1, n). Thus when a

probability d is transferred from pair (m, n) to pair (m − 1, n), h decreases by d × Pr(b$ =

m – 1). Obviously h will stay the same only if Pr(b$ = m – 1) = 0.
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Suppose now that 2 ≤ m ≤ mP, and that a third probability distribution, p’’,

differs from p’ only in that ′′−pm n1, = ′ −pm n1, − d, and ′′−pm n2 , = ′ −pm n2 , + d, 0 < d ≤ ′ −pm n1, .

From (B12)

h’’ − h’ = − −

=
∑d pk m
k

mP

, 2

0

and

h’’ − h = −
= −

−

=
∑∑d pkl
l m

m

k

mP

2

1

0

.

Generally if two probability distributions, p and p’, over the same pairs of bids,

differ only in that, for some two pairs (m, n) and (m’, n) with m’ < m ≤ mP, pmn > 0, ′pmn =

pmn − d, and ′ ′pm n = pm’n + d, 0 < d < pmn, then regardless of all other probabilities 

h’ − h = −
= ′

−

=
∑∑d pkl
l m

m

k

mP 1

0

= − d × Pr(m’ ≤ b$ ≤ m − 1) ≤ 0. (B13)

Note that h’ = h only if the probability that m’ ≤ b$ ≤ m – 1 is zero.

Result 2. Consider again two probability distributions, p and p’, over the same

pairs of bids, and their implied h and h’. Let p and p’ differ only in that, for some two

pairs (m, n) and (m, n+1) with n < mP and pmn > 0, ′pmn = pmn − d, and ′ +pm n, 1 = pmn+1+ d, 0 <

d ≤ pmn. Again there must be such pairs unless g and h are both zero. Then h’ ≤ h

regardless of the common part of the two distributions. We will again compute h’ − h.
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   for i = 1,…, n, n + 2,..., mP.
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If i ≤ n, the only probabilities that differ across distributions, those of pairs (m, n) and

(m, n+1), are not included in the sums. If i ≥ n + 2 both probabilities are included, but

pmn + pm,n+1 = ′pmn  + ′ +pm n, 1 . Also the marginal probability distributions of bP are the

same under both p and p’, that is,

p pij

j

m

ij

j

m

= =
∑ ∑= ′

0 0

$ $

   for any i,

because either i ≠ m, and none of the two different probabilities are involved, or i =m,

and both are.

Therefore
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   for i ≤ n  and  i ≥ n + 2,
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h’ – h = ′ ′ −+

= ==

+

= ==
∑ ∑∑ ∑ ∑∑p p p pn j

j

m

kl

l

n

k

m

n j

j

m

kl

l

n

k

mP P

1

0 00

1

0 00

, ,

$ $

= p p pn j

j

m

kl

l

n

k

m

kl

P

+

= ==
∑ ∑∑ ′ −1

0 00

,

$

( )

= p p p p p p pn j

j

m

kl

l

n

kl

k

m

kl

l

n

kl

k m

m

ml

l

n

ml

P

+

= ==

−

== + =
∑ ∑∑ ∑∑ ∑′ − + ′ − + ′ −











1

0 00

1

01 0

,

$

( ) ( ) ( ) =

= p p pn j

j

m

ml ml

l

n

+

= =
∑ ∑ ′ −1

0 0

,

$

( )  = p p pn j

j

m

mn mn+

=
∑ ′ −1

0

,

$

( )  =

h’ − h = − +

=
∑d pn j

j

m

1

0

,

$

= − d × Pr(bP = n + 1) ≤ 0. (B14)

The interpretation of expression (B14) is similar to that of (B12). When P is

valued at n + 1, P is valued above $ if $ is valued at n but not if it is valued at n + 1.

Thus when a probability d is transferred from (m, n) to (m, n + 1), h decreases by d ×

Pr(bP = n + 1), that is, it decreases unless Pr(bP = n + 1) = 0.

This result is generalised as the previous one. If two probability distributions, p

and p’, over the same pairs of bids differ only in that, for some two pairs (m, n) and
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(m, n’) with n ≤ n’, pmn > 0, ′pmn = pmn − d, and ′ ′pmn = pmn' + d, 0 < d ≤ pmn, then regardless

of the common part of the two distributions

h’ − h = −
== +

′

∑∑d pij
j

m

i n

n

01

$

= d × Pr (n + 1 ≤ bP ≤ n’) ≤ 0. (B15)

Note that h’ = h only if the probability that n + 1 ≤ bP ≤ n’ is zero.

Procedures to transform any non-p+ distribution in a p+ distribution. Let p be any non-

p+ probability distribution over BP × B$. g and h have the usual meanings. Then there

exists a probability distribution p’ ∈ p+ such that g’ = g and h’ ≤ h. If p ∉ p+ then there

exists at least one O* pair (m, n) such that pmn > 0. Loosely speaking we will find the p’

distribution by transferring the probability, if positive, of every O* pair to pairs that

are either P* or $* while preserving the relative ranking of P and $, thus leaving g

unchanged. If a pair (m, n), with pmn > 0, ranks P above $ and is not a P* pair, then n <

m − 1; if it ranks $ above P and is not a $ pair, then m > 0 or n < mP or both. This

exhausts all possibilities as we are assuming no indifference.

In the first case, n < m – 1, pmn is transferred to the P* pair (m, m − 1). That is,

′pmn = 0 and ′ −pm m, 1 = pm,m−1 + pmn. Note that this keeps P ranked above $, and therefore g

does not change. From (B15),

h’ − h = −
== +

−

∑∑p pmn ij

j

m

i n

m

01

1 $

= − pmn × Pr (n + 1 ≤ bP ≤ m − 1) ≤ 0. (B16)

In the second case, n > m and m > 0 or n < mP, the probability is transferred first

from (m, n) to pair (m, mP), and then from (m, mP) to the $* pair (0, mP). This keeps $

ranked above P, and leaves g unchanged. h either decreases or stays unchanged. The

first transfer leads, according to (B15), to the following change in h:

h’’ − h = −
== +

∑∑p pmn ij

j

m

i n

mP

01

$

 = − pmn × Pr(n + 1 ≤ bP ≤ mP) ≤ 0.

According to our convention the sum above is null if n ≥ mP. The second transfer

leads to, according to (B13),
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h’ − h’’ = −
=

−

=
∑∑p pmn kl

l

m

k

mP

0

1

0

 = − pmn × Pr(0≤ b$ ≤ m − 1) ≤ 0.

Again this sum is null if m = 0. Thus

h’ − h = h’ − h’’ + (h’’ − h) = − pmn × [ Pr(n + 1 ≤ bP ≤ mP) + Pr(0 ≤ b$ ≤ m − 1) ] ≤ 0. (B17)

After this procedure has been applied to all O* pairs with positive probability

under p the resulting probability distribution, p’, is a p+ distribution, g’ = g, and h’ ≤ h.

Now either the resulting p’ is p* or not. If not h* < h’ (that is, h(p*) < h(p’)), as we have

already shown that p* is the global, and only, minimum in p+. If p’ = p*, then h* = h’ < h.

To see why notice that, as shown in condition (B6b) (or (5) in the main text), under p*

the P bid takes all the values from 1 to mp, each with probability g/mP, and the $ bid

takes all the values from 0 to mP − 1, each also with probability g/mP. 

Now consider the process of probability transfers from O* pairs to P* and $*

pairs that transformed p into p’. Consider specifically the probability distribution, call

it p’’, that resulted during that process when there was only one O* pair with positive

probability left. Let that pair be (m, n).

If m < n the change h’ − h’’ brought about by the last probability transfer is given

by (B17). h’ − h’’ = 0 only if Pr(n + 1 ≤ bP ≤ mP) = 0, and Pr(0 ≤ b$ ≤ m − 1) = 0. As either n

≤ mP − 1 or m > 0 (or (m, n) would not be a O* pair), both probabilities are zero only if

at least one P* pair has zero probability, either the pair (1, 0) or the pair (mP, mP − 1).

The probability of these pairs does not change with the last transfer, as the probability

of (m, n) is transferred to (0, mP) (because m < n). Thus after the last probability

transfer either h’ > h’’ or the resulting p+ probability will not be p*, and h* < h’.

If m > n, then m > n –1 (or it would not be a O* pair) and the change in h is given

by (B16). That change is null only if Pr (n + 1 ≤ bP ≤ m − 1) = 0. This requires that at

least one P* pair, the pair (m − 1, m − 2) have probability zero. This pair does not

receive any probability in the last transfer, the pair (m, m − 1) does. Therefore after the

last probability transfer either h’ < h’’ or the resulting p+ distribution will not be p*,

and again h* < h’.

A different p+ distribution could have been obtained without changing g by

transferring the probability of (m, n) to other pairs. That does not invalidate our
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argument. The procedures we followed transform any non-p+ distribution into p’ ∈ p+

without changing g. Then we showed that either h’ < h or p’ is not p* and therefore h*

< h’.

2. Maximising h given g

Rather than maximise h = Pr(bP > b$) given g we will maximise Pr(bP ≥ b$) also

given g. This is a much simpler task, and the difference is negligible (only because we

are ruling out indifference). To maximise Pr(bP ≥ b$) given that Pr(bPi > b$i) = g is the

same as to minimise 1 − Pr(bP ≥ b$), or minimise Pr(b$ > bP) given that Pr(b$i > bPi) = 1 −

g. This is the problem we have just solved, but formulated in terms of the

probabilities that $ be ranked above P. If in conditions (B6a) to (B6c) pij*  is interpreted

as the probability that the optimal $ bid be i and the optimal P bid be j, contrary to

what we have been doing, then p* will be the distribution that minimises Pr(b$ > bP)

given that Pr(b$i > bPi) = g. Condition (B6a) would be valid for j = mP only, as this is the

maximum admissible bid for P. If we then swap the indices we will have the same

distribution, and the probabilities will regain the usual interpretation. Finally,

substituting 1 − g for g we will have the probability distribution that minimises Pr(b$ >

bP), or maximises Pr(bp ≥ b$), given that Pr(b$i > bPi) = 1 − g or Pr(bPi > b$i) = g, and g too

regains the usual interpretation. The resulting probability distribution, to be called p#,

is shown in (B18a) to (B18c).

pmP ,
#

0  = g, (B18a)

p g
mm m
P

− =
−

1
1

,
#    for m = 1,…, mP, (B18b)

pmn
#  = 0   for all other (m, n). (B18c)

The maximum value of Pr(bP ≥ b$) may be computed by substituting the above

distribution in the function below, which results from extending expression (B1) to

include the probability that Pr(bp = b$).
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We can compute it in a less cumbersome way though. h*, given by expression

(B11), is also the minimum value of Pr(b$ > bP) given that Pr(b$i > bPi) = g. If Pr(b$i > bPi) =

1 − g (that is, Pr(bPi > b$i) = g), then 

min Pr(b$i > bPi) = ( ) ( )1
2

1
2

2 2−
+

−g g
mP

.

The maximum of Pr(bP ≥ b$) given that Pr(bPi > b$i) = g is then

h# = 1 − ( ) ( )1
2

1
2

2 2−
+

−g g
mP

= g g g
mP

+
−

−
−1

2
1
2

2

. (B19)
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