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Abstract
Food security in China affects the livelihood and well-being of one-fifth of the world population.
Climate change is now affecting agriculture and food production in every country of the world.
Here the authors present the IMPACT model results on yield, production, and net trade of major
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1 Introduction	
The world faces multiple challenges to food security ranging from continuous population growth 
and rapid diet transition to decreasing cropland area and insufficient production practices 
(Beddington et al., 2012). The world’s population, for example, has increased from 1.65 billion in 
1900 to over 6 billion in 2000 and further to 7 billion in 2011 (Smith, 2011) . Overall, food 
production per capita has remained stable during the twentieth century, largely due to 
technological advances. Breakthroughs in wheat and rice production, which have been known as 
the Green Revolution (Evenson and Gollin, 2003), have greatly contributed to the ease of the 
population burden in various parts of the world. However, some 800 million to 1 billion people still 
experience chronic and transitory hunger at present, partly due to the rapid rise in food price 
(Sanchez and Swaminathen, 2005; Borlaug, 2007). Global food prices have risen dramatically in the 
past few years and are forecast to rise further and become more volatile, disrupting assumptions 
that stable and declining food prices and assured supplies can be taken for granted (Beddington et 
al., 2012). The food system faces additional pressure as the dominant diet pattern is shifting 
towards higher consumption of calories, fats and animal products. Moreover, as the dominant 
source of the human food supply, the per capita availability of world cropland has been decreasing 
at a rate of 0.8% per year during the twentieth century (Ramankutty et al., 2008) and will continue 
to decrease at the foreseeable future. The demand for cereals will probably grow by 50% until 
2030 and even higher production will have to be achieved through agricultural intensification for a 
world of 9 billion people in 2050 (Tilman et al., 2002; Schmidhuber and Tubiello, 2007). 

Climate change will further exacerbate the already-fragile global food production system and 
the natural resource base. Global surface temperature has increased 0.8C during the twentieth 
century; four thirds of this increase occurred in the last three decades (Hansen et al., 2006). The 
acceleration in global warming and its associated changes in precipitation have already affected 
global agriculture and the food production system in many ways (Godfray et al. 2011). Crop 
production is affected by climatic variables such as rising temperatures, changing precipitation 
regimes and increased atmospheric CO2 levels (Long, 2012); it is also affected by biological 
variables such as the lengths of the crop growth periods and the crop cycle (Ye et al., 2012). 
Experimental findings on wheat and rice under managed environments, for instance, indicated 
decreased crop duration (and hence yield) of wheat as a consequence of warming and reductions 
in yield of rice of ~5% C-1 rise above 32C (Gregory et al., 2005). These effects of temperature 
were considered sufficiently detrimental that they would largely offset any increase in yield as a 
consequence of increased atmospheric CO2 concentration. 

The focus of this paper is the projected impact of climate change on Chinese food security 
through 2050. The paper consists of three parts. The first part is an overview of the current food 
security situation, the underlying natural resources available in China and the drivers that lead to 
the current state, focusing on income and population growth. The second part reviews the China-
specific outcomes of a set of scenarios for the future of global food security in the context of 
climate change. These country-specific outcomes are based on IMPACT model results obtained in 
July 2011. The third part examines available adaptation and mitigation options that are suitable 
and technically implementable in China.  

In the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Working 
Group 1 reports that “climate is often defined as 'average weather'. Climate is usually described in 
terms of the mean and variability of temperature, precipitation and wind over a period of time, 
ranging from months to millions of years (the classical period is 30 years)” (Le Treut et al., 2007). 

Agriculture is vulnerable to climate change in a number of dimensions. Higher temperatures 
eventually reduce yields of desirable crops and tend to encourage weed and pest proliferation. 
Greater variations in precipitation patterns increase the likelihood of short-run crop failures and 
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long-run production declines. Although there might be gains in some crops in some regions of the 
world, the overall impacts of climate change on agriculture are expected to be negative, 
threatening global food security. The impacts are  

 Direct, on crops and livestock productivity domestically  

 Indirect, on availability/prices of food domestically and in international markets  

 Indirect, on income from agricultural production both at the farm and country levels  

1.1 Regional	Impacts	of	Climate	Change	
While the general consequences of climate change are becoming increasingly well known, great 

uncertainty remains about how climate change effects will play out in specific locations1. Figure 1 
shows changes in average precipitation globally between 2000 and 2050 for four General Circulation 
Models (GCMs), each using the A1B emission scenario. Figure 2 shows the change in average maximum 
temperature. In each set of figures, the legend colors are identical; a specific color represents the 
same change in temperature or precipitation across the models. 

A quick glance at these figures shows that substantial differences exist. For example, in Figure 1 the 
MIROC GCM predicts that Southeast Asia will be much drier, while the ECHAM model has the same 
region getting wetter. In South Asia, the MIROC GCM has an increase in precipitation, especially in the 
northeast, while the CSIRO GCM has a drier South Asia. In northeast Brazil, the CNRM GCM shows 
significant drying while the MIROC scenario has a sizeable increase in precipitation. In Figure 2, we see 
that the MIROC and ECHAM GCMs predict very big temperature increases for northeast South Asia, but 
they differ on whether northwest South Asia will also experience such a severe temperature increase. 
These figures illustrate qualitatively the range of potential climate outcomes using current modeling 
capabilities and provide an indication of the uncertainty in climate-change impacts. The differences 
across models are why policymakers must avoid seeking specific solutions for specific locations – unless 
there is significant agreement across models. Rather, it is important to note general trends and to 
consider policies that are helpful and robust across the range of climate outcomes. 

 

                                                            
1 To understand the significant uncertainty  in how these effects play out over the surface of the earth  it  is useful to describe 
briefly  the  process  by which  the  results  depicted  in  the  figures  are  derived.  They  start with  global  (or  general)  circulation 
models (GCMs) that model the physics and chemistry of the atmosphere and its interactions with oceans and the land surface. 
Several GCMs have been developed independently around the world. Next, integrated assessment models (IAMs) simulate the 
interactions between humans and their surroundings,  including industrial activities, transportation, agriculture and other  land 
uses and estimate  the emissions of  the various greenhouse gasses  (carbon dioxide, methane and nitrous oxide are  the most 
important). Several  independent  IAMs exist as well. The emissions  simulation  results of  the  IAMs are made available  to  the 
GCM models as inputs that alter atmospheric chemistry. The end result is a set of estimates of precipitation and temperature 
values  around  the  globe  often  at  2  degree  intervals  (about  200  km  at  the  equator)  for  most  models.  Periodically,  the 
Intergovernmental Panel on Climate Change  (IPCC)  issues  assessment  reports on  the  state of our understanding of  climate 
science and interactions with the oceans, land and human activities. 
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Figure 1. Changes in mean annual precipitation between 2000 and 2050 using the A1B scenario (mm per year). 

CNRM‐CM3 GCM  CSIRO‐MK3 GCM 

Change in annual
precipitation (millimeters) 

 

ECHAM5 GCM  MIROC3.2 medium resolution GCM 

Source: IFPRI calculations based on downscaled climate data available at http://ccafs‐climate.org.  
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Figure 2. Changes in annual maximum temperature between 2000 and 2050 using the A1B scenario (C) 

CNRM‐CM3 GCM  CSIRO‐MK3 GCM 

Change in annual maximum 

temperature (C)  

 

ECHAM5 GCM  MIROC3.2 medium resolution GCM 

Source: IFPRI calculations based on downscaled climate data available at http://ccafs‐climate.org/.  
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2 Agriculture,	Food	Security	and	Chinese	Development	
China embarked on economic reform more than three decades ago when the government 
introduced the household responsibility system (HRS) in agriculture. Price distortions were 
reduced, and key land rights were reallocated from collective farms to individual households. Bold 
policies and institutional reforms motivated higher grain production and dramatically improved 
food security, which resulted in what was considered as ‘‘the greatest increase in economic 
wellbeing within a 15-year period in all of human history’’ (Sachs et al., 1994). During the past few 
decades, agricultural productivity rose steadily, and per capita grain output reached a level similar 
to that in developed countries. With sustained growth in agriculture, rural incomes rose 
significantly, permanently lifting millions of people out of poverty (Ye and Van Ranst, 2009). The 
Chinese population has increased over 30% since 1980, reaching 1.34 billion in 2010. The 
production of staple grains has generally come up with the population growth, enabling China to 
feed approximately 20% of the world’s population on less than 7% of the world’s cropland. As the 
world’s biggest grain producer, China produced ~550 million tons of staple grains in 2010, renewing 
the harvest record for yet another time in seven consecutive years since 2004. 

2.1 Review	of	the	Current	Situation	
This section reviews China’s economic performance since the beginning of reforms in early 1980s 
using population and income as indicators.  

2.1.1 Population	
The population size and its associated growth rate are key parameters to determine food demand 
and to predict the future trends of it. Figure 3 shows total and rural population and counts (left 
axis) and the share of urban population (right axis), and Table 1 provides additional information on 
rates of population growth. China adopted the so-called “one-child” population control policy in 
late 1970s. As a result, total population growth fell sharply over the second half of the 20th 
century, reaching a level of 0.6 percent per year in the first decade of the 21st century. In the 
meanwhile, the share of the urban population increased sharply, with an average acceleration of 
nearly 1 percent per year since early 1980s. The rapid urbanization will, on one hand, hopefully 
propel further economic growth since urbanization plays a central role in China’s national 
development strategy (Change and Brada, 2006). But on the other hand, urban expansion will 
likely cause more cropland to be taken away from food production, casting negative impacts on 
China’s ability to maintain a stable food self-sufficiency level. 

Table 1. Population growth rates, 1960-2008 (%) 

Decade   Total Growth 
Rate  

Rural Growth 
Rate  

Urban Growth Rate 

1960‐1969  0.02  0.02  0.02 

1970‐1979  0.02  0.02  0.03

1980‐1989  0.01  0.00  0.05 

1990‐1999  0.01  0.00  0.00 

2000‐2008  0.01  ‐0.01  0.03 

Source: IFPRI calculations, based on World Development Indicators (World Bank, 2009) 
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Figure 3. Population trends: total population, rural population, and percent urban, 1960-2008 

  

Source: World Development Indicators (World Bank, 2009) 

 
Figure 4 shows the geographic distribution of population within China, based on census data and 

other sources compiled by CIESIN (2004). It clearly shows that China is densely populated in the 
eastern seaboard, overlapping with the socio-economic development centers of the Bohai 
Economic Rim around Beijing, the Yangtz River Delta around Shanghai and the Pearl River Delta 
around Guangzhou and Hong Kong. The region along the border with Mongolia and the Tarim Basin 
in the west are extremely sparsely populated. This regional disparity in population distribution has 
importance consequences for regional food security. 

Figure 4. Population distribution (persons per square kilometer) 

 

 

Source: IFPRI estimates from GRUMP for the year 2000 (CIESIN, 2004). 
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Figure 5 shows population projections by the UN Population office through 2050. Under the 
medium variant, Chinese population is expected to plateau around 2030 and then declines. The 
low variant has the decline starting sooner, while the high variant has population growth 
continuing beyond 2050. 

Figure 5. Population scenarios for 2010 to 2050 

   
Source: UN Population Projections (United Nations, 2008). 

2.1.2 Income	
The income available to an individual is the single best indicator of their resilience to stresses. 
Figure 6 shows trends in GDP per capita and proportion of GDP from agriculture. The agricultural 
share is included both because of its vulnerability to climate change impacts and as an indicator of 
the national development level. As development increases, the importance of agriculture in GDP 
tends to decline. The figure indicates both the enormous growth of the Chinese economy since late 
1970s and the corresponding reduction in the size of the agricultural sector relative to the rest of 
the economy. 

Figure 6. Per capita GDP (constant 2000 US$) and share of GDP from agriculture 

 

 
Source: World Development Indicators (World Bank, 2009). 
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2.1.3 Vulnerability	
Vulnerability is the lack of ability to recover from stress. Poor people are vulnerable to many 
different kinds of stresses because they lack the financial resources to respond. In agriculture, 
poor people are particularly vulnerable to the stresses of an uncertain climate. This paper focuses 
on income, both level and sources. At the national level, vulnerability arises in the interactions 
among population and income growth and the availability of natural and manufactured resources. 
National per capita income statistics reported above show averages but potentially conceal large 
variations across sectors or regions.  

Although the average figures show substantial improvements in economic performance, 
improvement in resilience and human well-being, substantial regional differences remain.  

Figure 7 shows the distribution of the proportion of the population living on less than $2.00 per 
day. Regional disparities are clearly shown. The poverty rates of the densely populated provinces 
on the eastern seaboard, shaded in blue colors, are mostly lower than 20 percent of the 
population, while in the western provinces, shaded in red colors on map, the poverty rate is much 
higher; 60 to 90 percent of the population there earn less than the equivalent of US$2 per day. 

Figure 7. Poverty as measured by population share (%) living on US$2 per day or less 

 

 

Source: Wood et al. (2010) available at labs.harvestchoice.org/2010/08/poverty‐maps 

Table 2 provides additional indicators of vulnerability and resilience to economic shocks 
including the level of school education, adult literacy, concentration of labor in agriculture, and 
malnutrition.  
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Table 2. Education and labor statistics 

Indicator   Year  Value 

Primary school enrollment: Percent gross (3‐year average)  2007 112.3

Secondary school enrollment: Percent gross (3‐year average) 2007 77.3

Adult literacy rate  2007 93.3

Percent employed in agriculture  2002 44.1

Under‐5 malnutrition (weight for age)  2002 6.8

Source: World Development Indicators (World Bank 2009). 

The outcomes of significant vulnerability include low life expectancy and high infant mortality. 
Figure 8 shows the trajectories of these two parameters during the past 50 years. China has made 
remarkable progress in vulnerability reduction. The life expectancy at birth jumped from less than 
40 years in early 1960s to over 60 years in early 1970s and then increased steadily to over 70 years 
in 2008. China also made significant progress in child malnutrition control. The under-5 mortality 
rate was measured at 6% in early 1970s, the number declined to 2% by the early 2000s. 

Figure 8. Well-being indicators: life expectancy at birth and under-5 mortality rate 

  

Source: World Development Indicators (World Bank, 2009) 

 

2.2 Review	of	Land	Use	and	Agriculture	
Agricultural production is dependent on the availability of land with sufficient water, soil quality 
and an adequate growing season.  

2.2.1 Land	use	overview	
Satellite-based land cover inventory in year 2000, as mapped in Figure 9, shows that crop 
production is largely limited to the Three River Plain in the northeast, the North China Plain, the 
Loess Plateau, the lower Yangtz River Basin, and the Sichuan Basin as indicated by the “cultivated 
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and managed areas” land cover type. Croplands in southeast, south, and southwest China are much 
fragmented, as indicated by the two “mosaic” land cover types, and are thus of secondary 
importance to agriculture. Aggregate, cropland is accounted for only 14% of the total land mass, 
which is equivalent to 0.1 hectares per capita. 

 Figure 9. Land cover inventory as in year 2000 

 
Source: Source: GLC2000 (JRC, 2000). 
 

Figure 10 shows the locations of protected areas, including parks and natural reserves. These 
locations provide important protection of environmentally fragile regions. 

Figure 10. Protected areas 

 

 

Source: World Database on Protected Areas (UNEP, 2009). Water is from Global Lakes and 
Wetlands Database (WWF) (Lehner and Döll, 2004).
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2.2.2 Agriculture	overview	
Tables 3 and 4 give key agricultural commodities in terms of area harvested and value for the 
period of 2006-2008, respectively. Rice, maize and wheat are traditionally the most important 
crops in China. They take nearly half of the total area of major agricultural harvests. In monetary 
terms, these big three plus cotton account for 47% of the total value of key agricultural 
commodities listed in Table 4. Rice and maize are still in the top two positions, while cotton is in 
the third position with wheat ranking the fourth.  
 
Table 3. Harvest area of leading agricultural commodities, 2006-2008 average 

Rank   Crop   % of total  Area harvested 
(000 hectares)

1  Paddy rice  17.7% 29,291

2  Maize  17.7% 29,288

3  Wheat  14.3% 23,650

4  Soybeans  5.5% 9,062

5  Fresh vegetables   5.2% 8,532

6  Rapeseed  3.7% 6,073

7  Seed cotton  3.5% 5,834

8  Potatoes  2.6% 4,367

9  Groundnuts with shell  2.5% 4,190

10  Sweet potatoes  2.2% 3,673

  Total  100.0% 165,072

Source: FAOSTAT (FAO, 2010)  

Table 4. Value of production for leading agricultural commodities, 2006-2008 average 

Rank   Crop   % of total  Value of Production
(million US$)

1  Paddy rice  20.7% 65,377

2  Maize  11.6% 36,573

3  Seed cotton  7.3% 22,988

4  Wheat  7.2% 22,713

5  Fresh vegetables  6.4% 20,049

6  Apples  4.9% 15,306

7  Asparagus  3.1% 9,747

8  Groundnuts with shell  2.3% 7,222

9  Lettuce and chicory  2.2% 7,065

10  Soybeans  2.0% 6,367

  Total  100.0% 315,479

Source: FAOSTAT (FAO, 2010) 

Figure 11 to Figure 16 show the spatial-explicit maps of the irrigated and rainfed production of 
major food crops of wheat, maize and rice in terms of estimated yield and harvest area. These 
figures are based on the SPAM dataset (You et al., 2009), a plausible allocation of crop production 
both at the national and the subnational scales. The agricultural important regions can be more 
easily identified in these figures than in Figure 9. 
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Figure 11. Yield and harvest area density of irrigated wheat in year 2000 

Yield  Harvest area density 

Yield legend

 

Harvest area  
density legend 

 

Source: SPAM Dataset (You et al., 2009) 

Figure 12. Yield and harvest area density of rainfed wheat in year 2000 

Yield  Harvest area density 

Yield legend

 

Harvest area  
density legend 

 

Source: SPAM Dataset (You et al., 2009) 
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Figure 13. Yield and harvest area density of irrigated maize in year 2000 

Yield  Harvest area density 

Yield legend
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density legend 

 

Source: SPAM Dataset (You et al., 2009) 

Figure 14. Yield and harvest area density of rainfed maize in year 2000 

Yield  Harvest area density 

Yield legend

 

Harvest area  
density legend 

 

Source: SPAM Dataset (You et al., 2009) 
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Figure 15. Yield and harvest area density of irrigated rice in year 2000 

Yield  Harvest area density 

Yield legend
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density legend 

 

Source: SPAM Dataset (You et al., 2009) 

Figure 16. Yield and harvest area density of rainfed rice in year 2000 

Yield  Harvest area density 

Yield legend

 

Harvest area  
density legend 

 

Source: SPAM Dataset (You et al., 2009) 
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3 Scenarios	for	Adaptation	
The current status of the country with respect to vulnerability is reviewed in this section. This 
includes a brief overview of current population trends, per capita income growth and its 
distribution, and the state of agriculture. 

To better understand the possible vulnerability to climate change, it is necessary to develop 
plausible scenarios. Scenarios are defined by Raskin et al. (2005) as “plausible, challenging, and 
relevant stories about how the future might unfold, which can be told in both words and numbers. 
Scenarios are not forecasts, projections, predictions, or recommendations. They are about 
envisioning future pathways and accounting for critical uncertainties”. 

In this paper, combinations of economic and demographic drivers have been selected that 
collectively result in three pathways – a baseline scenario that is “middle of the road”, a 
pessimistic scenario that chooses driver combinations that, while plausible, are likely to result in 
more negative outcomes for human well-being, and an optimistic scenario that is likely to result in 
improved outcomes relative to the baseline. These three overall scenarios are further qualified by 
four climate scenarios: plausible changes in climate conditions based on scenarios of greenhouse 
gas emissions. 

3.1 Biophysical	Scenarios	
This section presents the climate scenarios used in the analysis and the crop physiological response 
to the changes in climate between 2000 and 2050. 

3.1.1 Climate	scenarios	
Four climate scenarios, downscaled from 4 GCMs – CNRM, CSIRO, ECHAM, and MIROC – driven by 
SRES emission scenario A1B or B1, were used to accommodate the likely ranges of future 
temperature and precipitation changes. The CSIRO scenario, for example, represents a dry and 
relatively cool future, while the MIROC scenario represents a wet and warmer future. The 
scenario-based temperature and precipitation were then utilized for crop modeling analysis. 

Figure 17 shows precipitation changes between 2010 and 2050 for China from 4 downscaled 
GCMs driven by the A1B emission scenario; Figure 18 shows changes in maximum temperature for 
the month with the highest mean daily maximum temperature between 2010 and 2050 for China 
from the same GCMs. 

In one of the major agricultural regions in China, the North China Plain, for example, climate is 
expected to be drier according to the CNRM scenario; the annual precipitation can decrease by 100 
mm (Figure 17). To the contrary, the MIROC GCM depicts a much wetter future in the same region 
– annual precipitation can be 100 mm higher in 2050 than in 2010. The same amount of 
precipitation can be expected in the North China Plain by 2050 under the other two GCMs – CSIRO 
and ECHAM. The disparity among GCM results explains why the multi-model ensemble approach is 
used to deal simulated crop yields under climate change scenarios. 

The GCM results are more unanimous on temperature change. They all depict a warmer future 
(Figure 18). The disagreement on temperature is much smaller than on precipitation. In North 
China Plain, temperature will increase 1-2C under CNRM, ECHAM, and MIROC, while the CSIRO 
GCM predicts a less warmer future of less than 1C. The general picture is that the higher 
latitudinal (e.g., Northeast) and higher altitudinal regions (e.g., Tibetan Plateau) are expected to 
receive higher warming, compared to the lower latitudinal/altitudinal regions.  
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Figure 17. Changes in mean annual precipitation for China between 2000 and 2050 using the A1B scenario (millimeters) 

CNRM‐CM3 GCM  CSIRO‐MK3 GCM 

Change in annual precipitation 
(millimeters )

 
 

ECHAM5 GCM  MIROC3.2 medium resolution GCM 

Source: IFPRI calculations based on downscaled climate data available at http://ccafs‐climate.org/.   
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Figure 18. Changes in normal annual maximum temperature for China between 2000 and 2050 using the A1B scenario (C) 

CNRM‐CM3 GCM  CSIRO‐MK3 GCM 

Change in annual maximum 

temperature (C) 

 

ECHAM5 GCM  MIROC3.2 medium resolution GCM 

Source: IFPRI calculations based on downscaled climate data available at http://ccafs‐climate.org/.
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3.1.2 Crop	physiological	response	to	climate	change	
The crop-specific CERES models of the DSSAT crop modeling system (Jones et al., 2003) were used 
to simulate responses of major crops (rice, wheat, maize, soybeans, and groundnuts) to climate, 
soil, and nutrient availability at the current locations based on the SPAM dataset of crop location 
and management techniques (You and Wood, 2006). In addition to temperature and precipitation, 
we also used soil data, assumptions about fertilizer application and planting month, and additional 
climatic parameters such as the length of sunshine duration. 

We then repeated the exercise for each of the 4 future scenarios through 2050. For all 
locations, variety, soil and management practices were held constant. The simulated future yields 
were subsequently compared to the current or baseline yields – which were also simulated using 
DSSAT – to drive the yield differences. The obtained results for wheat, maize, and rice – under 
both irrigated and rainfed farming – were mapped in Figure 19 to Figure 24, respectively, for 
qualitative evaluation of climate change impact on crop yield in 2050 relative to yield under 
current climate in 2000. The legends of these figures were intentionally kept identical. Yield loss 
was mapped in yellowish/brownish colors and yield gain was mapped in greenish/bluish colors.  

The changes of the yields of maize, rice, and wheat under two typical GCMs – CSIRO and MIROC 
– cross-driven by the A1B and B1 emission scenarios, respectively, in 2050 over 2000 were 
summarized in Table 5. Chinese crops respond mildly to climate change. Irrigated yields tend to 
decrease, as in the case of maize in particular (Figure 21). This decrease would probably be caused 
by the decreasing availability of irrigation water due to more intense competition of water use 
from urban sprawl and due to groundwater depletion in major maize regions such as the North 
China Plain. Rainfed yields tend to increase because the expected warmer and wetter climates 
under both CSIRO and MIROC scenarios are favorable to these rainfed varieties (Figure 17). Overall, 
the yields of maize and rice will increase slightly, but the yield of wheat will decrease only 
marginally, by 2050 under the climate change scenarios considered. 

 
Table 5. Yield change under climate change scenarios in 2050 over 2000, % 

Scenario  Maize  Rice  Wheat 

Irrigated 

CSIRO A1B  ‐3.49  0.44 2.96

CSIRO B1  ‐4.08  0.02 1.39

MIROC A1B  ‐4.18  ‐5.09 ‐9.81

MIROC B1  ‐3.96  ‐1.92 ‐4.53

Rainfed 

CSIRO A1B  3.75  12.38 2.01

CSIRO B1  3.7  3.46 ‐2.11

MIROC A1B  2.51  14.32 2.89

MIROC B1  1.93  12.08 2.97

Average 

CSIRO A1B  0.85  2.83 2.37

CSIRO B1  0.59  0.71 ‐0.78

MIROC A1B  ‐0.17  ‐1.21 ‐1.94

MIROC B1  ‐0.43  0.88 0.12

All scenarios  0.21  0.80 ‐0.06
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Figure 19. Yield change between 2000 and 2050 under four climate change scenarios: irrigated wheat 

CNRM‐CM3 GCM  CSIRO‐MK3 GCM 

Legend for yield change 
figures 

 
 

ECHAM5 GCM  MIROC3.2 medium resolution GCM 

Source: IFPRI calculations based on downscaled climate data and DSSAT model runs 
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Figure 20. Yield change between 2000 and 2050 under four climate change scenarios: rainfed wheat 

CNRM‐CM3 GCM  CSIRO‐MK3 GCM 

Legend for yield change 
figures 

 
 

ECHAM5 GCM  MIROC3.2 medium resolution GCM 

Source: IFPRI calculations based on downscaled climate data and DSSAT model runs  
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Figure 21. Yield change between 2000 and 2050 under four climate change scenarios: irrigated maize 

CNRM‐CM3 GCM  CSIRO‐MK3 GCM 

Legend for yield change 
figures 

 
 

ECHAM5 GCM  MIROC3.2 medium resolution GCM 

Source: IFPRI calculations based on downscaled climate data and DSSAT model runs  
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Figure 22. Yield change between 2000 and 2050 under four climate change scenarios: rainfed maize 

CNRM‐CM3 GCM  CSIRO‐MK3 GCM 

Legend for yield change 
figures 

 
 

ECHAM5 GCM  MIROC3.2 medium resolution GCM 

Source: IFPRI calculations based on downscaled climate data and DSSAT model runs  
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Figure 23. Yield change between 2000 and 2050 under four climate change scenarios: irrigated rice 

CNRM‐CM3 GCM  CSIRO‐MK3 GCM 

Legend for yield change 
figures 

 
 

ECHAM5 GCM  MIROC3.2 medium resolution GCM 

Source: IFPRI calculations based on downscaled climate data and DSSAT model runs  
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Figure 24. Yield change between 2000 and 2050 under four climate change scenarios: rainfed rice 

CNRM‐CM3 GCM  CSIRO‐MK3 GCM 

Legend for yield change 
figures 

 
 

ECHAM5 GCM  MIROC3.2 medium resolution GCM 

Source: IFPRI calculations based on downscaled climate data and DSSAT model runs 
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3.1.3 From	biophysical	scenarios	to	socioeconomic	consequences:	the	IMPACT	model	
Figure 25 provides a diagram of the links among the three models used in this analysis: IFPRI’s IMPACT model (Cline 
and Zhu, 2008), a partial equilibrium agriculture model that emphasizes policy simulations; a hydrology model and 
an associated water-supply demand model incorporated into IMPACT; and the DSSAT crop modeling suite (Jones et 
al., 2003) that estimates yields of selected crops under varying management systems and climate change 
scenarios. The modeling methodology reconciles the limited spatial resolution of macro-level economic models 
that operate through equilibrium-driven relationships at a national level with detailed models of biophysical 
processes at high spatial resolution. The DSSAT system is used to simulate responses of five important crops (rice, 
wheat, maize, soybeans, and groundnuts) to climate, soil, and nutrient availability, at current locations based on 
the SPAM dataset of crop location and management techniques. This analysis is done at a spatial resolution of 15 
arc minutes, or about 30 km at the equator. These results are aggregated up to the IMPACT model’s 281 spatial 
units, called food production units (FPUs, Figure 26). The FPUs are defined by political boundaries at the river 
basin scale (See Appendix for FPUs in China).  

Figure 25. The IMPACT modeling framework 

 

Source: Nelson et al. (2010). 
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Figure 26. The 281 FPUs adopted by the IMPACT model 

  

Source: Nelson et al. (2010) 

3.2 Income	and	Demographic	Scenarios	
IFPRI’s IMPACT model has a wide variety of options for exploring plausible scenarios. The drivers used for 
simulations include: population, GDP, climate scenarios, rainfed and irrigated exogenous productivity and crop-
specific area growth rates, and irrigation efficiency. In all cases except climate, the country-specific (or more 
disaggregated) values can be adjusted individually. Differences in GDP and population growth define the overall 
scenarios analyzed here, with all other driver values remaining the same across all the three socio-economic 
pathway scenarios.  

Table 6 documents the GDP and population growth choices for these three overall scenarios adopted in this 
analysis. 

 
Table 6. GDP and population choices for the three overall socio‐economic pathway scenarios 

Parameter  Pessimistic   Baseline  Optimistic 

GDP, constant 
2000 US$ 

Lowest of the four GDP growth rate 
scenarios from the Millennium 
Ecosystem Assessment GDP 
scenarios (Millennium Ecosystem 
Assessment, 2005) and the rate 
used in the baseline (next column) 

Based on rates from World 
Bank EACC study (World 
Bank, 2010), updated for 
Sub‐Saharan Africa and 
South Asian countries 

Highest of the four GDP 
growth rates from the 
Millennium Ecosystem 
Assessment GDP scenarios 
and the rate used in the 
baseline (previous column) 

Population  UN High variant, 2008 revision  UN medium variant, 2008 
revision 

UN low variant, 2008 
revision 

Source: Based on analysis conducted for Nelson et al. (2010). 
 

The IMPACT modeling suite was run with four climate model and scenario combinations; the CSIRO and the 
MIROC GCMs with the A1B and the B1 scenarios. Those four outputs were used with each of the three GDP per 
capita scenarios. Table 7 shows the annual growth rates for different regional groupings as well as for China. 
Figure 27 illustrates the pathways of per-capita income growth for China under these scenarios. In all scenarios, 
China’s income growth exceeds those of the developed group of countries and most developing countries, although 
it is expected to slow from the current rapid pace. 
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Table 7. Average scenario per capita GDP growth rates (percent per year) 

Category  1990–2000  2010–2050 

  Pessimistic  Baseline  Optimistic 

China  8.09  3.65  5.18  6.24 

Developed  2.7  0.74  2.17  2.56 

Developing  3.9  2.09  3.86  5 

Low‐income developing  4.7  2.6  3.6  4.94 

Middle‐income developing  3.8  2.21  4.01  5.11 

World  2.9  0.86  2.49  3.22 

Source: World Development Indicators for 1990–2000 and authors’ calculations for 2010–2050. 

Figure 27 graphs the three GDP per capita scenario pathways, derived from the three GDP projections and the 
three population projections obtained from the United Nations Population office. The "optimistic scenario" 
combines high GDP with low population. The "baseline scenario" combines the medium GDP projection with the 
medium population projection. Finally, the "pessimistic scenario" combines the low GDP projection with the high 
population projection. 

Figure 27. GDP per capita scenarios 

 

Source: Based on IMPACT results of July 2011, computed from World Bank and United Nations population estimates 

(2008 revision).  

Note that the scenarios used apply to all countries; that is, in the optimistic scenario, every country in the 
world is assumed to experience high GDP growth and low population growth.  

The GDP per capita scenario results for China and the U.S. are summarized in Table 8. In the pessimistic 
scenario, U.S. per capita income increases less than 2 times while in the optimistic scenario, it almost triples 
between 2010 and 2050. The Chinese per capita income triples in the pessimistic scenario and increases almost 12 
times in the optimistic scenario. However, despite China’s much more rapid growth than in the U.S. its per capita 
income in 2050 is still only one-fifth of that in the U.S. 
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Table 8. China and U.S. per capita income scenario outcomes for 2010, 2030, and 2050 (2000US$ per person) 

  2010  2030  2050 

Pessimistic 

 China   1,264  2,699  5,640 

 U.S.   37,504  51,132  58,291 

Baseline 

 China  1,627  4,590  13,584 

 U.S.  37,723  56,517  88,841 

Optimistic 

 China  1,551  6,433  20,000 

 U.S.  39,218  67,531  101,853 

 

3.3 Crop‐specific	Agricultural	Vulnerability	Scenarios	
Figure 28 to Figure 30 show simulation results from the IMPACT model for wheat, maize, and rice. Each crop has 
five graphs, showing production, yield, area, net export, and world price, respectively. 

Several of the figures below use box and whisker plots to present the effects of climate change modeled by the 
MIROC and CSIRO GCMs under the A1B and B1 emission scenarios in the context of each of the economic and 
demographic pathways (optimistic, baseline, and pessimistic). Each box has 3 lines. The top line represents the 
75th percentile, the middle line represents the median, and the bottom line represents the 25th percentile.2 

Wheat yield in China will increase steadily from 2010 to 2050 by 17%, partly due to the increase in factor inputs 
stimulated by the significant increase of world wheat price by 60% (Figure 28). Accordingly, wheat production will 
increase from 100 million tons in 2010 to 123 million tons in 2050, although the wheat area remains constant at 
24—25 million hectares during 2010—2050 under all scenarios.  

World maize price is projected to increase more than other cereals in percentage terms. Maize price doubles 
from about US$100 in 2010 to US$200 in 2050 under all scenarios (Figure 29). As a result, the maize yield will jump 
by 45% from 5.1 tons per hectare in 2010 to 7.4 tons per hectare in 2050, despite the marginal effect of climate 
change on maize yield (Table 5). In line with the price crease, maize area will expand by 18% from 28 million 
hectares in 2010 to 33 million hectares in 2050. Consequently, maize production will increase significantly by 70%, 
from 140 million tons in 2010 to 240 million tons in 2050.  

Although world prices of key commodities are all expected to rise under all scenarios, the pattern of rice price 
increase is more distinct. The rice price pathways diverge significantly depending on the overall scenario, with the 
pessimistic scenario leading to the highest prices (Figure 30) – a consequence of higher population and lower 
income in countries where rice is a staple for the poor. Even under the optimistic scenario, rice price will still rise 
by 40% during 2010—2050. Despite price increases, rice yield is expected to increase only slightly from 4.1 tons per 
hectare in 2010 to 4.7 tons per hectare in 2050. Rice production remains roughly constant until 2025 at 125 million 
tons, or a 3% increase over 2010, and then declines to 90% of current levels in 2050 as area devoted to rice 
declines from around 30 million hectares in 2010 to 23 million hectares in 2050.  

The discrepancy between price increase and area decrease reflects the fact that demand for rice tends to 
decrease as income increases due to the effect of higher income on rice consumption and diet pattern change 
(Chern et al., 2003; Kearney, 2010). It is interesting to observe that China will probably turn from a net importer 
of rice (slightly less than 5 million tons in 2010) to a net exporter by 2020 (Figure 30). Under the baseline and the 
optimistic overall scenarios in 2050, China is expected to have a surplus of 5—9 million tons of rice for export. 
Under the pessimistic scenario, China remains a net importer of rice by 2050 but with a much smaller volume of 1 
million tons. 

                                                            
2
 These graphs were generated using Stata with Tukey's  (Tukey, 1977)  formula  for setting  the whisker values.  If  the  interquartile  range  (IQR)  is 
defined as the difference between the 75th and 25th percentiles, the top whisker is equal to the 75th percentile plus 1.5 times the IQR. The bottom 
whisker is equal to the 25th percentile minus 1.5 times the IQR (StataCorp, 2009). 
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Perhaps the most promising scenario result is that China will remain a major importer of maize from the world 
food market at the scale of ~20 million tons per year, although the domestic production capacity is expected to 
grow constantly during 2010—2050, resulted from yield improvements and area expansions (Figure 29). Obviously, 
the imported maize will be overwhelmingly used as feed to meet the domestic demands of animal products (Chern 
et al., 2003). 

China is expected to become a smaller and smaller importer of wheat (Figure 28). The wheat self-sufficiency 
level will approach 100% by 2050 under all scenarios. 
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Figure 28. Scenario outcomes for wheat production, yield, area, net export, and price 

Production  Yield 

Area  Net Exports 

Prices 

 

Source: Based on IMPACT results of July 2011. 
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Figure 29. Scenario outcomes for maize production, yield, area, net export, and price 
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Source: Based on IMPACT results of July 2011. 
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Figure 30. Scenario outcomes for rice production, yield, area, net export, and price 
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Area  Net Exports 

Prices 

 

Source: Based on IMPACT results of July 2011. 
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3.4 Human	Vulnerability	Scenarios	
Figure 31 shows scenario outcomes for the average daily kilocalories per capita and Figure 32 the number of 
malnourished children under five. The story is much the same in both figures in qualitative terms. The baseline 
and optimistic scenarios show increases in calorie availability. The pessimistic scenario shows no increase but a 
stable level at about 3,000 kilocalories per day across the period 2010—2050. Climate change has relatively little 
effect within an overall scenario. 

These scenario levels of calorie availability are well above the 2020 goal of 2,600 kilocalories per day stipulated 
by the Chinese Food and Nutrition Development Strategy (MOA, 2002; Xu, 2011). These levels allow sufficient 
development rooms to meet higher nutrition requirements in China by 2050. The Chinese food security in terms of 
per capita calorie availability will be unlikely compromised by 2050.  

Figure 31. Average daily kilocalories availability under multiple income and climate scenarios (kilocalories per person per day) 

 

Source: Based on IMPACT results of July 2011. 

As expected, the baseline and optimistic scenarios do best in reducing malnourished children. In the optimistic 
scenario the count drops close to zero, while with the baseline it falls from about 8 million children in 2010 to 
about 2 million in 2050. The pessimistic scenario is also the least desirable from the perspective of reducing 
malnourished children. After a slow decline to just below 6 million by the mid-2020s, the decline stops and the 
number increases slightly.  

As the box and whiskers plots indicate, within a particular overall scenario climate change has relatively little 
impact on the number of malnourished children. The range in 2050 from the different climate scenarios is typically 
less than 1 million children malnourished. The reason, as discussed above, is the function of trade to buffer the 
impact of climate change on domestic food production. 
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Figure 32. Number of malnourished children under 5 years of age under multiple income and climate scenarios 

 

Source: Based on IMPACT results of July 2011. 

4 Agriculture	and	Greenhouse	Gas	Mitigation	

4.1 Agricultural	Emissions	History	

Global atmospheric concentrations of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) have 
increased markedly as a result of human activities since 1750 and now far exceed pre-industrial values 
determined from ice cores spanning many thousands of years. The global increases in CO2 concentration are due 
primarily to fossil fuel use and land use change, while those of CH4 and N2O are primarily due to agriculture. A 
wide range of direct and indirect measurements confirm that the atmospheric mixing ratio of CO2 has increased 
globally by about 100 ppm (36%) over the last 250 years, from a range of 275 to 285 ppm in the pre-industrial era 
(1000–1750 CE) to 379 ppm in 2005. The global average abundance of CH4 was measured at 1,774 ppb in 2005, 
unprecedented in at least the last 650,000 years. Ice core data for N2O have shown relatively little changes over 
the first 1,800 years of this record extending back 2,000 years. Since 1750, atmospheric N2O levels have risen 
rapidly from 270 ppb to 319 ppb in 2005 (Forster et al., 2007). 

Agriculture is known as one of the major sources of greenhouse has (GHG) emissions. CO2 is released largely 
from microbial decay or burning of plant litter and soil organic matter. Methane is produced when organic 
materials decompose under anoxic conditions, notably from fermentative digestion by ruminant livestock, stored 
manures and rice grown under flooded conditions. N2O is produced by the microbial transformations of nitrogen 
(N) in soils and manures, and is often enhanced where available N exceeds plant requirements, especially under 
wet conditions (Smith and Olesen, 2010).  

Systematic researches (WRI, 2011) showed that Chinese agriculture emitted 1,136 million tons of CO2 
equivalent (CO2-eq) in 2005, increasing by 12% from 1,015 million tons in 1995 (Figure 33), measured in terms of 
the commonly referred IPCC global warming potential. The results from an independent Chinese inventory in 
1994 (Dong et al., 2008) revealed that CH4 from agriculture accounted for 50% of China’s total CH4 emission, and 
that at least 90% N2O emission in China was released from agriculture. 

Agriculture has been the second largest GHG emitter in China, only next to the energy sector at least for the 
past two decades (Figure 33). In 2005, agricultural emissions contributed 16% -- while emissions from energy 
production contributed 72% -- to China’s total GHG emission of ~7,200 million tons CO2-eq as similarly reported 
by Chen and Zhang (2010).  
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Figure 33. GHG emissions (CO2, CH4, N2O, PFCs, HFCs, SF6) in China by sector, million ton 

Source: Climate Analysis Indicators Tool (CAIT) Version 8.0. (WRI, 2011) 

4.2 Agricultural	Mitigation	Potential	
There is a significant potential for GHG mitigation in agriculture through active management of agricultural systems. 
Integrated assessment (Smith et al., 2008) indicated that the technical potential of global agricultural mitigation would 
be in the range of 5,500—6,000 million tons CO2-eq per year by 2030 for all gases. However, this biophysical potential 
can never be fully achieved due to institutional, educational, social, and political constraints (Freibauer et al., 2004). 
In other words, the full implementation of the biophysical mitigation potential will have exceptionally high costs at 
e.g., 5,000 US$ per ton of CO2-eq. Economic evaluation suggested that much lower prices of 20, 50, and 100 US$ per 
ton of CO2-eq would deliver 35%, 43%, and 56% of total mitigation potential by 2030, respectively. Therefore, global 
agricultural mitigation potential achievable at carbon prices of 20, 50, and 100 US$ per ton of CO2-eq is evaluated as 
1,900—2,100, 2,400—2,500, and 3,100—3,300 million tons of CO2-eq per year, respectively (Smith et al., 2008). 

In 2010, China produced 550 million tons of staple grains on 110 million hectares of cropland, of which 27% was rice. 
As the world’s biggest producer and applicator of chemical fertilizers (Jin, 2012), China consumed 56 million tons of 
fertilizers in 2010, of which 43% was nitrogen (N) fertilizers. A recent national assessment (Editorial Board, 2011) 
showed that improved agronomic practices associated with rice management could mitigate 30—40% of CH4 from the 
Chinese rice field, equivalent to 130—170 million tons of CO2-eq. Intermittent irrigation, a practice of draining the 
wetland rice once or several times during the rice growing season, for example, can effectively reduce CH4 emissions 
(Yan et al., 2003). In the off-rice season, CH4 emissions can be reduced by keeping the soil as dry as possible to avoid 
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waterlogging. Animal waste management also has the potential to reduce CH4 and N2O emissions. Anaerobic digestion, 
composting, proper temperature of storage tanks, compacting, and coverage were identified as approaches with the 
potential of 40—60% GHG emission reduction compared to traditional handling and use of farmyard manure (Bellarby et 
al., 2013). Fertilizer optimization practices, such as precision fertilization (placing N more precisely into the soil to 
make it more accessible to crop roots), fertilizer prescription (adjusting application rates on precise estimation of crop 
needs; avoiding overdose), slow-release fertilizer forms, and nitrification inhibitor use, all have the potential to reduce 
cropland N2O emissions (Venterea et al., 2012). Moreover, cropland carbon management measures have the potential 
of soil carbon sequestration at 47—96 ton C per km2 per year. The number of household biogas tank users in rural China 
is expected to reach 60 million by 2015, offering a capacity of 23.3 billion m3 in biogas production; 8,000 centralized 
biogas facilities are planned to be built by 2015, with an additional capacity of 670 million m3. Household tanks and 
centralized facilities will jointly deliver a mitigation potential of 81—123 million tons of CO2-eq per year through 
reduction of CH4 emissions from animal wastes and displacement of CO2 emissions from fossil fuels.  

4.3 Adaptation	and	Mitigation	Synergies	
The challenges facing the Chinese agriculture within the climate change context are to ensure food security and to 
adapt to a changing and more variable climate while reducing emissions. As already discussed above, mitigation options 
are basically practices engaged to reduce methane or nitrous oxide emissions or to increase soil carbon stocks. 
Essentially, all mitigation options affect the carbon and/or nitrogen cycle of the agroecosystem (Smith and Olesen, 
2010). Adaptation measures involve enhancing the resilience of the production systems through improved management. 
Most categories of adaptation measures for climate change have positive impacts on mitigation, although some 
mitigation measures may have negative impact on the adaptive capacity of farming systems. Priorities should be given 
to the following measures: 

 Cropland management. The aim of cropland management in the context of climate change is two-fold, both to 
mitigate GHG emissions and to increase soil C storage. The most important GHGs from dry croplands are N2O 
and CO2, while the dominant gas from rice wetlands is CH4. Agronomic practices thus focus on enhancing C 
input and retention in soils and at the same time aim to reduce N2O by avoiding periods of excessive N contents 
in soils and by minimizing N losses from the agroecosystem (Jin, 2012). For paddy rice, innovative water 
management schemes, such as intermittent irrigation in combination with prolonged off-rice drainage, are 
practiced to reduce CH4 and N2O emissions (Yan et al., 2003). Adding organic matter in soil, primarily a 
mitigation option, can enhance crop yield and improve yield stability (Ye et al., 2008; Pan et al., 2009) and at 
the same time strengthen the adaptive capacity of soils; it is thus a “win-win-win” option (Smith and Olesen, 
2010) which is almost always desirable (Powlson et al., 2011). The common practice of adding cereal straw to 
soil usually leads to an increase in soil C content. Typically under temperate climate, about one-third of plant 
material added to soil is returned after one year, with two-thirds being emitted; under tropical conditions less 
is retained in soil. Some of the organic materials such as animal manures, composts or residue from biogas 
production have the additional benefit of nutrient recycling which could in turn decrease fertilizer 
dependency. However, care has to be taken in managing these nutrients, especially N and P, to avoid excess 
inputs and/or availability at times of small crop uptake and large risks of losses (Jordan-Meille et al., 2012). 
Adoption of conservation tillage (Baker et al., 2007) but under suitable soil and climatic conditions (Antle and 
Ogle, 2012), agroforestry (Mutuo et al., 2005), and reversion of marginal or degraded croplands to native 
vegetation (Yin and Yin, 2010) are also good examples of adaptation and mitigation synergies; 

 Farming system design. Intensive farming systems in China generally have a low sensitivity to climate change, 
given the magnitude of yield change under future scenarios (Table 5). However, there is a large variation 
across China in climatic, soil, land use and economic conditions which are expected to influence the adaptive 
capacity of farming systems (Olesen et al., 2011). Adaptation to increased variability of temperature and 
rainfall involves increasing the resilience of the farming systems. This may be done by improving soil water 
holding capacity through adding organic materials into arable soils (see above) or by adding diversity to crop 
rotations (Mäder et al., 2002) by, e.g., selecting crops or varieties that follow better in a rotation and adding 
legumes to cereal-based systems, the latter of which reduces reliance on N inputs and thus limits N2O 
emissions. The effects of extremely high temperatures on crops may be reduced through modifying the 
microclimate, e.g. by adding shade and shelter as in agroforestry systems (Lin et al., 2008). Farming systems 
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can be fine-tuned to a changed climate by e.g. providing temporary vegetative cover between conventional 
crops. These “catch” or “cover” crops conserve soil moisture, add C to soils (Freibauer et al., 2004) and may 
also extract plant-available N left over by the preceding crop, thereby reducing N2O emissions. Farming 
systems can also be more actively modified by shifting the planting dates of crops either to maximize the 
utilization of climatic resources or to minimize the impacts of unfavorable conditions (Jalota et al., 2012). 
These adaptation options will in general, if properly applied, reduce GHG emissions by improving N use 
efficiency and enhancing soil C storage; 

 Water management. About 18% of the world’s croplands receive supplementary water through irrigation 
(Millennium Ecosystem Assessment, 2005). This number is even higher in China. The average irrigation rates for 
two of the key crops in China, maize and wheat, are evaluated at 52% and 38%, respectively, using satellite 
remote sensing (Ye et al., 2012). Irrigation can enhance C storage in soil though improved yields and residue 
returns. But some of these gains may be offset by CO2 from energy use or from N2O from higher moisture and N 
inputs. Drainage of croplands in humid environments can promote productivity and perhaps suppress N2O 
emissions by improving aeration (Monteny et al., 2006). Any N lost through drainage, however, is susceptible to 
loss as N2O. Therefore, altering amounts and timing of irrigation (or drainage as in the case of rice) forms the 
basis for valid adaptation options (Howden et al., 2007). In regions receiving more rainfall, water management 
should focus on the prevention of water logging, erosion, and nutrient leaching; in areas expecting less rainfall, 
attention should be given to wider use of technologies to harvest water, conserve soil moisture, and use and 
transport water more effectively. As a newly developed adaptation option in China’s erosion-prone Loess 
Plateau, for example, bio-fencing, that is, using shrubs such as amorpha and Korshinsk peashrub around straw-
mulched fields as a biological fence, produces additional benefits (extra 10 mm water storage over 1 m soil 
depth; and nearly 20% higher yield for spring wheat) if used in combination with terracing and straw mulching 
on soil water storage (e.g. additional 26 mm over 1 m soil depth under straw mulching) and yield (15% higher 
spring wheat yield under mulching) and erosion control (Bindraban et al., 2012); 

 Bioenergy. Agricultural crops and residues are seen as sources of feedstock for bioenergy to displace fossil 
fuels. Biofuels release CO2 when burned, but this CO2 is of recent atmospheric origin and displaces CO2 which 
otherwise would have come from fossil C. The net benefit to atmospheric CO2, however, depends on energy 
used in growing and processing the bioenergy feedstock, and on emissions from land use change in case, e.g., if 
forest is cleared to grow energy crops (Smith et al., 2008). As the third largest producer of bio-ethanol, China 
used some 5 million tons of maize and wheat, or 1% of its total grain harvest, to produce 1.6 million tons of 
ethanol in 2005. The Chinese ethanol output is expected to rise to 10 million tons in 2020 and to 13 million tons 
in 2030, threatening future Chinese food security (Ye and Van Ranst, 2009). There is a particularly high risk of 
negative effects of mitigation measures related to the increased removal of crop residues from cropping 
systems for use in bioenergy, if this means that soil C contents are being depleted (Smith and Olesen, 2010). 
The outlook for bioenergy in China and elsewhere is to grow energy crops – preferably innovative perennials 
which have low water demand – on suitable wasteland. Turning this outlook into a plausible option needs 
coordinated efforts through international cooperation on research and development in this particular field and 
beyond. 

5 Conclusions	
China has been extraordinarily successful in transforming its highly planned economy into a free market-based system 
within a considerably short period of a few decades, especially in the agricultural sector which enables China to feed 
approximately 20% of the world’s population on less than 7% of the world’s cropland. The analysis of the IMPACT model 
results presented in this paper suggests that Chinese agriculture is relatively resilient to climate change compared to 
other parts of the world. In light of the slowing in population growth before ~2030 and of the outlook of a decreasing 
population size thereafter, the overall status of the Chinese food security by the middle of the twenty-first century will 
unlikely be substantially compromised in the context of climate change. The human vulnerability outcomes shows that 
the daily calorie availability will be well above the officially stipulated level of 2,600 kilocalories per day, and that the 
mortality count of children under five years due to malnutrition will be continuously decreasing from the current 
levels, even under the most pessimistic scenario by 2050. The major challenges, however, will rise from the increasing 
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demand of a richer diet – driven by the rapid growth in income levels which are expected to double against the current 
levels in 2020 – coupled with regional disparities in the adaptive capacity to climate change. There is a particularly 
high level of uncertainty as to how climate change will play out in specific locations. The immediate implication of this 
point is that the grain handling and transportation facilities need to be reexamined, and repositioned if necessary, to 
ensure a fair spatial distribution. Smooth and timely shipments of large quantities of grains across regions should be 
considered as one of the first steps in China’s adaptive capacity building. 

The scenario outcomes of grain production, derived from the IMPACT results and shown in Figure 28 to Figure 30, 
depict a relatively optimistic outlook on yield, production and trade toward 2050. The maize yield, for example, is 
predicted to jump by 45% during 2010—2050, contrasting with the simulated effect of climate change on maize yield 
using the DSSAT crop model (Table 5). DSSAT simulation shows that climate change can cause max. 4% change in maize 
yield, either increase or decrease, between 2010 and 2050. The multi-scenario ensemble effect of 0.2% (Table 5) 
suggests that overall effect of climate change can even be neutral over a large country like China in this particular 
case. The fundamental drivers behind these two differential rates of yield change, 45% versus 4%, are technology and 
trade. Technology development in terms of varietal performance and input use efficiency has been a major driver of 
yield improvements globally, as in the case of Green Revolution (Evenson and Gollin, 2003). But over a shorter period 
of time, food price may play a more important role on raising crop yield by means of higher inputs. The jump of maize 
yield by 45%, as predicted by the IMPACT model, was associated with a sharp price increase by 100% during 2010—2050. 
These two important processes of yield change, either biophysical or economic, were both considered by the IMPACT 
model but not by DSSAT. This simple observation of yield change drivers has profound implications on future food 
security. 

The first implication is on the importance of crop breeding for food security under climate change. Breeding and 
agronomic improvements have, on average, achieved a linear increase in global food production, at an average rate of 
32 million tons per year (Tester and Langridge, 2010). This rate has been sustained for more than 40 years. An even 
higher rate is needed for a growing population with a richer diet. This requires substantial changes for methods in 
agronomic processes and management practices. In China, production growth can only be realized through higher 
yields, given the decreasing trend and outlook in crop areas. As a recent study (Ye et al., 2012) suggested, maintaining 
yield growth rate on a yearly basis has great significance in ensuring food security in China. Therefore, continued 
investment in enhancing agriculture productivity should remain a key policy element in managing climate risks facing 
Chinese agriculture. Joint efforts on crop breeding are needed to produce innovative varieties that maintain yields but 
tolerate drought, salinity, pests and diseases, and other climate shocks (Trethowan et al., 2010). The second 
implication is on the role of international trade in climate change adaptation, which is notably missing in the current 
thinking of climate change in China. As the IMPACT results show, open international trade is key to buffer the impact of 
climate change on domestic production and thus to maintain a stable supply through price and market effects. This 
illustrates the importance of keeping international trade open for Chinese food security; it also indicates the 
importance of vulnerability alleviation for the rural poor in designing adaptation strategies to cope with climate 
change. 

In a broader context, challenges of ensuring food security under climate change require urgent and substantial 
increase in the focus of research, innovation, transformation of knowledge, and education at all levels across all 
sectors related to agriculture (Smith and Olesen, 2010). This is only possible through capacity building actions toward a 
harmonized system of climate change adaptation and mitigation through agricultural intensification for food security. 
Such actions involve not only national and local governments but also international organizations and the international 
research community. It is important to note that investment in agricultural research is an efficient long-term 
mitigation strategy since investment in yield improvements compares favorably with other commonly proposed 
mitigation strategies (Burney et al., 2010). It is also important to note that reforms in the governing scheme of the 
intellectual property rights are much needed to facilitate effective transfer of climate change- and food security-
related knowledge.  
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Appendix	
This appendix presents figures for each food production unit (FPU) in China of monthly average precipitation, minimum temperature and maximum 

temperature for 2000 and in 2050 for 5 climate scenarios. 
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Huanghe/Yellow River 
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Lancangjiang 
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Zhujiang/Pearl River 
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