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Abstract

Investors in equilibrium are modeled as facing investor speci¯c risks across the space of assets.
Personalized asset pricing models re°ect these risks. Averaging across the pool of investors we
obtain a market asset pricing model that re°ects market risk exposures. It is observed on invoking
a law of large numbers applied to an in¯nite population of investors that many personally relevant
risk considerations can be eliminated from the market asset pricing model. Examples illustrating
the e®ects of undiversi¯ed labor income and taste speci¯c price indices are provided. Suggestions
for future work on asset pricing include a need to focus on identifying and explaining investor
speci¯c risk exposures.

1 Introduction

Asset pricing theories explain risk premia on ¯nancial assets as compensating investors
for risk exposures or risks that investors cannot diversify. The theories di®er in their
speci¯cation of these undiversi¯able or systematic risks. In the Sharpe (1964), and Lintner
(1965) Capital Asset Pricing Model investors are only exposed to the risks of the market
portfolio. The Arbitrage Pricing Theory of Ross (1976) has investors exposed to a ¯nite
set of factor risks. While in the consumption beta model of Merton (1973) and Breeden
(1975) investors face real consumption risk. In these theories investors reduce risk by
diversifying their portfolios across the universe of assets.
This paper focuses on another dimension of diversi¯cation and the resulting asset

pricing model, more akin to insurance. By aggregating across the risk exposures of a large
number of investors we derive an asset pricing model that averages out many investor
speci¯c concerns. Hence even if investors have to take positions in many speci¯c risks and
diversi¯cation is incomplete at the individual investor level, many of these nondiversi¯ed
risks need have no impact on the market prices of assets. For emphasis and exactness
we model an economy with in¯nitely many investors, in which each single investor is
insigni¯cant.
Formally, we de¯ne, in a general and abstract setting, the concept of investor speci¯c

risk exposures in equilibrium in terms of measurability with respect to an appropriate
investor speci¯c ¾¡algebra of events. We then identify these investor speci¯c risk ex-
posures and relate them to personalized asset pricing models. An asset pricing model
for the economy or a market asset pricing model is obtained by aggregating personalized
asset pricing models across investors. The risk exposures compensated for in the market
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asset pricing model are similarly de¯ned in terms of measurability and termed market
risk exposures. A precise relationship between market and investor speci¯c risk exposures
modeled as ¾¡ algebras is also developed. The general model we present is abstract, but
includes a range of examples. The general procedure of focusing on investor speci¯c risk
exposures and the associated personalized asset pricing models and then averaging over
the set of investors is suggestive and o®ers considerable guidance for future research into
asset pricing. The important insight gained from our analysis is precisely the proposition
that future work on asset pricing needs to focus on identifying and explaining investor
speci¯c risk exposures across the pool of investors in addition to the more traditional
focus on asset returns.
Section 2 presents the economic model. Investor speci¯c risk exposures and the associ-

ated personalized asset pricing models are de¯ned in Section 3. The relationship between
investor speci¯c and market risk exposures and personalized and market asset pricing
models is presented in Section 4. Examples illustrating the theory for important special
cases are presented in Section 5. Section 6 concludes.

2 The Economic Model

The economic model follows Milne(1988). There are two dates and an abstract set I of
investors. The space of time 1 contingent cash °ows over which investors have preferences
is modeled as a separable Hilbert space V: Let V = L2(;F ; P ) be the space of ¯nite
second moment random variables de¯ned on the probability space (;F ; P ) ; where 
is the set of events, F is a ¾¡ algebra of events and P is a probability measure. For
generality we suppose that preferences are de¯ned over an attainable convex set Xi ½ V:
Each investor i 2 I is supposed to have a monotone increasing, continuous and quasi-

concave utility function ui de¯ned on Xi:
1 Cash °ows at time 1 are obtained by holding

assets at time 0: There are a ¯nite set J of assets indexed by j; with claims to time 1
state contingent cash °ows Zj 2 V for all j = 1; ¢ ¢ ¢ ; J:2 Let the vector ai denote investor
i's holding of the J assets, the associated time 1 cash °ow is given by the linear operator

Z[a] =
JX
j=1

Zjaji;

that maps RJ into V: Each investor also has an initial endowment of assets of ai:
It is easily shown that the set of feasible asset portfolios for i; Ai = Z

¡1 ¡Xi \ Z[RJ ]¢ ;
is convex. De¯ne induced preferences on Ai by

u¤i (a) = ui(Z[a]):

These induced preferences inherit the properties of being continuous and quasi-concave
from ui and the linearity and continuity of the operator Z: Furthermore, we also suppose
nonsatiation of u¤i or the absence of bliss points.
Consider an economy with a countable in¯nity of investors.3 One may therefore

suppose, without loss of generality, that I; the index set for the investors, is the set of
1The utility function could represent the utility of consuming the entire cash °ow at time 1 or it could

represent the optimized utility of a dynamic program beginning at time 1. The utility function could
also be used to represent the immediate one period objectives of institutional investors, ¯rms or other
members of the investing community.

2Extending the results of this paper to the case of in¯nitely many assets ia an interesting and useful
research problem. There are however technical di±culties associated with the double in¯nity of assets
and investors.

3We restrict to a countable in¯nity of individuals since the law of large numbers does not hold for a
continuum, (See Judd(1983), Feldman and Gilles (1985)).
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all natural numbers or positive integers. Since we wish to model individual investors as
insigni¯cant in the in¯nite economy, we follow Aumann (1964) and Ostroy (1984), by
modeling investors as having zero measure. Accordingly we take the space of investors to
be a ¯nitely additive non-atomic measure space (I;A; ¹) ; where I is the set of positive
integers, A is the algebra of all subsets of I and ¹ is a ¯nitely additive measure that gives
measure zero to all ¯nite sets.4 Only large and in particular in¯nite sets of individuals have
positive measure. We normalize the population of investors and suppose that ¹(I) = 1;
whereby ¹(A) is the proportion of investors in the set A:
The speci¯c choice of ¹ among the class of ¯nitely additive non-atomic measures is

not important for the general results we obtain. Di®erent choices correspond to di®erent
limit economies. The measures of sets may be constructed as limits of weighted investor
memberships in the set, with the limit taken over economies with ¯nitely many investors,
as the population size approaches in¯nity and simultaneously the weight of individual
investors approaches zero. For further details on the construction of such ¯nitely additive
non-atomic measures on a countable set, the reader is referred to the Appendix. The
theory of integration with respect to such measures is presented in Dunford and Schwartz
(1988) and Leader (1953). We note here that all bounded functions are integrable in the
L1 sense. Equilibrium theory for exchange economies in this context is studied by Weiss
(1981). We suppose that the endowment function a : I ! RJ de¯ned by the endowments
ai is ¹ integrable in i:
Equilibrium allocations for the limit economy, with ¯nitely additive non-atomic mea-

sure space of investors, are unique up to perturbation by a null function. Formally,
allocations are determined within equivalence classes with two allocations being equiva-
lent if their di®erence is a null function. A function h(i) is said to be a null function if it
has a norm integrating to zero, i.e.

R kh(i)k d¹(i) = 0: In this regard note that there do
exist strictly positive null functions. A function h(i) is null if, for all " > 0; the measure
of the set of investors for which kh(i)k exceeds " is zero. So for example the function
h(i) = 1=i is strictly positive and null. Null perturbations have no e®ect on the limits
of average allocations taken over a sequence of economies with a population tending to
in¯nity and the weighting of single investors approaching zero. It is precisely for this
reason that, from the perspective of the limit economy, such perturbations are admissible
without disturbing the limit equilibrium.
The de¯nition of equilibrium used by Weiss (1981) is in terms of these equivalence

classes of allocations. Equilibria have the property that investors may deviate from their
utility maximizing allocations by a null function without disturbing the market clearing
condition of the limit economy. A competitive equilibrium for the asset exchange economy
over the in¯nite set of investors I is de¯ned as follows:

De¯nition 1An attainable allocation is a ¹ integrable function a : I ! RJ such that
ai 2 Ai for all i and Z

I

aid¹(i) =

Z
I

aid¹(i):

De¯nition 2An attainable allocation is budget feasible for the price system p 2 RJ if
there exists a subset A µ I with ¹(A) = ¹(I) and a null function h : I ! RJ such that

p0 (ai ¡ hi) = p0ai for all i 2 A:
4The measure space is atomic if some subset of positive measure cannot be split into two sets of

strictly lower measure. We shall take our measure space of individuals to be nonatomic, and hence single
individuals have zero measure.
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The de¯nition of budget feasibility permits individual exceptions to the budget con-
straint for a null set of investors and for a non-null set by a null aggregate.

De¯nition 3A competitive equilibrium is an attainable allocation a¤ and a price system
p¤ such that a¤ is budget feasible for p¤ and for some subset A µ I ,¹(A) = ¹(I) and null
functions h¤ : I ! RJ ; k¤ : I ! R1

u¤i (a
¤
i ¡ h¤i ) ¸ u¤i (a0i )¡ ki

where
a0i = ArgMax

ai

[u¤i (ai) jp¤0ai = p¤0ai ] :

This de¯nition of competitive equilibrium permits null function, h¤; perturbations
from a utility maximizing allocations with the resulting utilities also simultaneously per-
turbed by, k¤; another null function. Such perturbations have no e®ect on the limit
economy and cannot be detected in the limit economy.
For the existence of such an equilibrium we require an assumption of uniform continu-

ity on the utility functions across both i and the allocations. Such an assumption would
be satis¯ed if marginal utilities were bounded in absolute value.

Assumption 1. For each " > 0; there exists ± > 0 such that ka¡ bk · ± implies that
ju¤i (a)¡ u¤i (b)j · " for all i 2 I:

Theorem 4Under assumption 1, and supposing that J is ¯nite there exists a competitive
equilibrium.

Proof. (See Appendix)

3 Personalized Asset Pricing Models

Consider an Asset Exchange Economy in equilibrium as described in Section 2. For
the purposes of this section we assume an appropriate di®erentiability of ui: In fact, we
suppose that ui is the restriction to Xi of a function that is Fr¶echet di®erentiable on an
open set containing Xi: This assumption enables us to de¯ne personalized marginal rates
of substitution and identify, in Lemma 5 below, the structure of state contingent marginal
utilities.

Lemma 5For each i, there exist random variables Ãi(!); Ãi0(!) 2 V i, Ãi; Ãi0 ¸ 0 a.e. in
 with respect to P; such that,

@u¤i (a
¤
i )

@aij
=

Z
Ãi(!)Zj(!)P (d!) (1)

@u¤i (a
0
i )

@aij
=

Z
Ãi0(!)Zj(!)P (d!) (2)

Proof. See Appendix.
The random variables Ãi and Ãi0 are the marginal utilities of state contingent cash

°ows evaluated at the cash °ows arising from the equilibrium and optimal asset holdings
a¤i and a0i respectively.
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Theorem 6For all i; the market price of traded assets p¤j satis¯es

p¤j = E
P
£
¸i0Zj

¤
: (3)

Proof. Since u¤i is maximized for all i with respect to the budget constraint, the ¯rst
order condition implies that

@u¤i (ai0)
@aij

= °i0p
¤
j : (4)

The result follows from (2) on de¯ning ¸i0 =
Ãi0
°i0
:

De¯ne the valuation operators, ©i0[x];©
i[x] by

©i0[x] = EP [¸i0x] for x 2 V (5)

©i[x] = EP [¸ix] for x 2 V (6)

where ¸i = Ãi

°i0
:

The random variables ¸i0; ¸
i are state price functions (Du±e (1988)) and de¯ne the

state contingent discount to be applied to future or time 1 cash °ows in determining
their contribution to current values. The linear operator ©i de¯ned by (6) provides a
personalized valuation of x by measuring the sacri¯ce in terms of time 0 wealth that will
compensate investor i for giving up a marginal unit of the time 1 cash °ow x:
These personalized valuations of traded cash °ows Zj ; given by ©

i[Zj ]; do not in
general equal the market price p¤j = ©

i
0[Zj ]: The next section presents su±cient conditions

implying that personalized valuations and market prices di®er by a null function. Under
these conditions, for all but ¯nitely many investors, personalized valuations and market
prices are arbitrarily close. We therefore have in the linear operators ©i a sequence
of personalized asset pricing linear operators. We now wish to propose, in a general
and abstract setting, a de¯nition for the concept of investor speci¯c risk exposures in
equilibrium. The basic intuition motivating this de¯nition is that we may treat investor
i as unconcerned about the risk, or risk neutral in equilibrium, if it is the case that
©i[x] = EP [x]: In this case there are no risks that particularly concern investor i; we have
risk neutrality at the margin for valuation.
More generally, we say that the ¾¡algebra Gi characterizes investor i0s risk exposure

in equilibrium if for all x; ©i[x] = ©i[EP [x
¯̄Gi ]]; or investor i is indi®erent at the margin

between x and EP
£
x
¯̄Gi ¤ : Hence, if we have risk neutrality at the margin conditional on

Gi; then investor speci¯c risk concerns are characterized by Gi:
A simple example illustrates the situation further. De¯ne a tree representing the un-

certainty resolution of two equally likely Bernoulli outcomes. The ¯rst represents good(G)
or bad (B) health for the individual and the second represents cloudy (C) or sunny (S)
weather conditions in some distant country. There are in all four equally states labeled
GC; GS; BC; and BS respectively. Suppose a cash °ow x pays the amounts 1; 2; 3 and
4 thousand dollars in these four states. If the investor's equilibrium state price function
turns out to be insensitive to weather conditions in the distant country but responsive to
her state of health, with the state price function taking on for example the values 0:1; 0:1;
0:3; and 0:3 in the states GC; GS; BC and BS then the weather in the distant country
is not a risk concern while her state of health is. The personal valuation of x; ©i[x] is
the same as the personal valuation of EP [x jstate of health ] ; or the cash °ow 1:5; 1:5;
3:5; and 3:5: The investor may be thought of as ¯rst averaging out events with respect to
which no risk adjustment turns out to be necessary in equilibrium, and then prices the
resulting cash °ow, taking account of personally required risk compensations.
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De¯nition 7The ¾¡algebra Gi de¯nes investor i's risk exposure in equilibrium if Gi is
the smallest ¾¡ algebra satisfying

©i[x] = ©i
£
EP

£
x
¯̄Gi ¤¤ :

If the value of x to i; at the margin equals the value to i of the expectation of x
conditional on Gi; then investor i is marginally, Gi conditionally, risk neutral. Hence
investor i0s risk concerns or relevant risk exposures are captured in the ¾¡algebra Gi:
The example motivating this de¯nition suggests that Gi is related to the sensitivity of
equilibrium marginal rates of substitution to events. This suggestion is con¯rmed in
Theorem 8 below. Speci¯cally let F i = ¾(¸i) be the smallest ¾¡ algebra with respect to
which ¸i is measurable.

Theorem 8Gi = ¾(¸i):
Proof. We ¯rst show that Gi µ F i: This is accomplished by showing that F i satis¯es

the de¯ning condition of Gi:
©i[x] = EP

£
¸ix
¤

= EP [EP
£
¸ix

¯̄F i ¤]
= EP [¸iEP [x

¯̄F i ]]
= ©i[EP [x

¯̄F i ]]
For the inclusion in the other direction, it follows from the de¯nition of Gi; that for all x

©i[x] = ©i[EP [x
¯̄Gi ]]

However, this implies that for all x; as Gi µ F i and ¸i is F i measurable that
EP [¸ix] = EP

£
¸iEP [x

¯̄Gi ¤]
= EP [EP [¸i

¯̄Gi]EP [x ¯̄Gi ]]
= EP

£
EP [¸i

¯̄Gi]x¤
or that equivalently

EP
£¡
¸i ¡EP [x ¯̄Gi ]¢x¤ = 0

for all x:Taking for x the random variable
¡
¸i ¡EP [x ¯̄Gi ]¢ we conclude that ¸i is Gi

measurable or that F i µ Gi.
Risk exposures of concern to investors in equilibrium are most generally and abstractly

given by the ¾¡ algebra of events Gi: Theorem 8 shows that this is precisely the ¾¡
algebra generated by the single random variable ¸i; that essentially describes equilibrium
personalized state prices of events. The key to understanding equilibrium asset pricing
in terms of traditional factor model representations lies in describing the measurability
of ¸i in terms of some factors. Both linear and nonlinear factor representations of linear
pricing rules given by ¸i are possible.
Consider ¯rst linear representations. Invoking the separability of V; letQ = fqk; k = 1; 2; ¢ ¢ ¢ g

be a countable orthonormal basis for V: Since V is self dual, ¸i is in the closed linear span
of Q and we may write that

¸i =
1X
k=1

Ái;kqk (7)

De¯ne
Qi =

©
qk
¯̄
Ái;k 6= 0

ª
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as the set of basis elements that is actually required to span ¸i: For purposes of simpli¯-
cation or empirical approximation we may suppose that Qi is ¯nite. Standard arguments
now enable us to derive the personalized asset pricing model

¹ = °i0 + ¯
i°i1 (8)

where ¹ is the vector of asset mean returns on the traded assets, ¯i is the matrix of
assets betas with respect to the elements of Qi and °i0; °

i
1 are constants. Expression (8) is

written as an approximation for this this economy on two counts. First, asset prices are
approximately given by the operators ©i; with the di®erence being arbitrarily small for
all but ¯nitely many investors, and second an approximation may be involved in getting
Qi to be ¯nite.
The number of factors involved in the linear representation (7) may be unduly large

if ¸i is in fact a nonlinear function of a few factors, say

¸i = ¸(S1; S2; ¢ ¢ ¢ ; SK(i)) (9)

where S1; S2; ¢ ¢ ¢ ; SK(i) are the K(i) factors needed to describe nonlinearly the variations
in the measurability of ¸i: Equation (8) provides us with a K(i) dimensional nonlinear
representation of ¸i: This may be further reduced to a linear model by introducing as
separate factors the products of powers of the primary factors in the nonlinear repre-
sentation. The representation (9) clearly subsumes (7) and allows for more powerful
dimensional reductions of ¸i at the cost of more complex associated asset pricing models
as one loses the representation (8).5

In summary, investor speci¯c risk concerns de¯ned by Gi are identi¯ed as ¾(¸i) and
result in the linear in factors personalized asset pricing models given by equation (8) or
equivalently the nonlinear in factors representation (9). These asset pricing models hold
approximately for almost all investors in equilibrium for economies with a large number
of investors.

4 The Systematic Risk Exposures

The risk exposures relevant to investor i in equilibrium are given by the ¾¡ algebras F i
and yield approximate personalized asset pricing models with respect to the factors Qi

for all i: The risks Qi are relevant for assessing the personalized valuations of cash °ows
by individuals. On the other hand market risk exposures or systematic risks are risks
that are relevant for assessing the market prices of securities or traded state contingent
cash °ows. These risks will be shown to de¯ne a ¾¡ algebra M that is identi¯ed and
related to the Fi0s or Gi0s in this section. In particular we shall observe that M can
be considerably smaller than the union of the F i0s: Alternatively, the factors present in
the market asset pricing model can be smaller than the union of the Qi0s: Many risk
concerns relevant to particular investors in equilibrium can be eliminated from relevance
for market valuation by the law of large numbers applied to the average of the personalized
valuations procedures. In this sense the market can be viewed as an implicit insurer of
personalized risk exposures and this insurer does not face the multitude of speci¯c risk
concerns a®ecting the diverse population of the insured, by essentially an application of
the law of large numbers.
It is ¯rst established that the average of personalized values equals market prices.

This is done by showing that the operator ©i¡©i0 is a null operator in that for all x; the
function ©i[x]¡ ©i0[x] is a null function of i: For this theorem we employ a condition on

5We shall follow the more traditional representations (7) and (8) in the rest of this paper.
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the norm boundedness of the ¯rst and second Fr¶echet di®erentials of the utility functions
ui:
Assumption 2. Suppose that ui is twice Fr¶echet di®erentiable and that there exists

a constant C such that, kDui[x; ¢]k and kD2ui[x; ¢]k is uniformly bounded by C for all x
and i:

Theorem 9Assumption 2 implies that ©i ¡©i0 is a null operator.

Proof. See Appendix
Suppose Assumption 2 and let © be the average of the operators ©i; more precisely

©[x] =

Z
I

©i[x]d¹(i):

The norm boundedness of ©i under assumption 2 implies that © is a continuous linear
functional on V and hence there exists ¸ such that

©[x] = EP [¸x]: (10)

De¯neM to be the smallest ¾¡ algebra with respect to which ¸ is measurable. We
will show that unlike the operators ©i; © agrees with market prices for traded assets. Fur-
thermore, there is a precise relationship between the ¾¡ algebraM and the ¾¡algebras
(F i; i 2 I); wherebyM is considerably smaller than the union of the F i0s: Hence,M is a
candidate for a relatively parsimonious speci¯cation of market risk exposures or system-
atic risks.

Theorem 10For all j 2 J
p¤j = ©[Zj ] = E

P [¸Zj ] (11)

Proof. For all traded assets j
p¤j = ©

i
0[Zj ]

Since ©i ¡©i0 is a null operator by theorem (4), it follows that

p¤j =

Z
I

©i0[Zj ]d¹(i)

=

Z
I

©i[Zj ]d¹(i)

= ©[Zj ]

= EP [¸Zj ]:

Theorem 11M is contained in the asymptotic or tail algebra associated with the sequence
F i

Mµ
1\
n=1

[
k¸n

¾(¸k) (12)

Proof. Let n be an integer and set

Hn =
[
k¸n

¾(¸k)

8



Since the ¯nite set of integers 1; ¢ ¢ ¢ ; n has zero measure, it follows that for all x

©[x] =

Z
k¸n

EP
h
¸kx

i
d¹(k)

=

Z
k¸n

EP
h
¸kEP [x jHn ]

i
d¹(k)

= ©
£
EP [x jHn ]

¤
:

Hence,

EP [¸x] = EP
£
¸EP [x jHn ]

¤
= EP

£
EP [¸ jHn ]EP [x jHn ]

¤
= EP

£
EP [¸ jHn ]x

¤
or that for all x we have

EP
£¡
¸¡EP [¸ jHn ]

¢
x
¤
= 0

which implies that ¸ is Hn measurable for all n and so the result follows.
The inclusion (12) provides the relationship between market and systematic risks and

the risk exposures relevant to individual investors. Formally, M, the ¾¡algebra of the
market risks is contained in the tail algebra of the risks relevant to individual investors.
The tail algebra can be considerably smaller than the union of the individual ¾¡ algebras
¾
¡
¸i
¢
: Hence many risk factors relevant to individual investors need not be important in

the market place for pricing assets. A su±cient condition useful in providing examples
whereM is considerably smaller is given by the following theorem.

Theorem 12If D µ F i for all i and the sequence of ¾¡algebras F i are conditionally
independent, conditional on D ThenM = D:
Proof. This is a consequence of the conditional zero-one law (See Appendix).
The variables de¯ning D measurability can be linked to risks accounted for in deter-

mining insurance premiums, the additional variables needed to de¯ne F i measurability
are personal risks that the insurer avoids through aggregating across the pool of insurers.
Hence, life insurance premiums may vary with smoking habits as this has been isolated
as an important part of D, while many other factors a®ecting personal life risks, elements
of Fi; are ignored for the purpose of setting life insurance premiums.
If we de¯ne by QM the basis elements needed to span ¸ in equation (11) then by

standard arguments we may derive the exact asset pricing model

¹ = °0 + ¯°1 (13)

where ¯ is now the matrix of asset beta's with respect to the elements of QM : Unlike
expression (8), equation (13) is exact as the operator (11) gives asset prices exactly. Since
M is contained in the tail algebra of the F i0s the number of factors represented in (13)
is expected to be considerably smaller than the union of all factors represented in the
personalized asset pricing models.

5 Asset Pricing Examples

Our examples focus on two fundamental sources of investor speci¯c risk exposure in
equilibrium. These are i) the e®ects of non-traded assets or endowment e®ects and ii) the
e®ects of direct utility based variables. We specialize the probability space and suppose
that F is generated by the following:

9



1.a set of K random variables, denoted S = (S1; ¢ ¢ ¢ ; SK);
2.a sequence of investor speci¯c real random variables yi for all i 2 I;
3.a sequence of investor speci¯c vector random variables vi for all i 2 I:
4.a ¯nite set of real random variables uj for j 2 J:

For the individual utility functions, we suppose that each investor i has a state pref-
erence utility function of the form

Ui = ui(wi; S; v
i) (14)

where wi denotes wealth at time 1 attained as a consequence of the portfolio held at time
0; and S,vi are state variables that a®ect the utilities of investor i:
Each individual is also endowed with an initial holding of traded assets ai 2 RJ ; i 2 I:

We suppose that time 1 wealth re°ects the e®ects of both portfolio holdings and non-
traded assets and so

wi = Z[ai] + yi: (15)

De¯ne the linear projection of asset cash °ows on the space generated by the random
variables S; by

Zj = ®j + ¯
0
jS + u

j (16)

where ®j is a constant, ¯j is a K¡dimensional vector. The operator Z[a] can then be
written

Z[a] = ®0a+ S0Ba+ u0a

where ® is the vector of coe±cients ®j and B is a matrix with K rows ¯j ; j = 1; ¢ ¢ ¢ ;K:
The single investor's utility function may now be written as

Ui = ui(®
0ai + S0Bai + u0ai + yi; S; vi):

It follows from the speci¯cation of ui and the Fr¶echet di®erentiability of ui with respect
to the traded time 1 cash °ow w that the Fr¶echet di®erential of ui; ±ui(w; h) takes the
form

±ui(w; h) =

Z


Ãi(w;S; v
i)h(!)P (d!)

from which it follows that investor i0s state price function has the form

¸i = ¤i(®0ai + S0Bai + u0ai + yi; S; vi)

where ¤i = Ãi=°
i
0:

The risk factors priced by investor i in equilibrium are therefore given by

F i = ¾(¸i) µ ¾ ¡S; vi; u0ai + yi¢ = Ki
where ¾(X) refers to the smallest ¾¡ algebra with respect to which the vector of variables
X is measurable. Within this general framework we can discuss a number of special cases
that have received attention in the literature.
First consider models in which both vi and yi are absent. For example, Ross (1976),

Connor(1984), Milne (1988) discuss the diversi¯cation of the idiosyncratic components
u0ai by essentially setting out conditions under which each u0ai is zero for each i: The
factors then reduce to S with no necessity of invoking a law of large numbers. The
associated conditions on preferences and asset returns are however quite strong. Milne

10



(1988) also discusses approximate asset pricing models with u0ai approaching zero as the
number of assets approaches in¯nity.
Another line of attack is exempli¯ed by the work of Grinblatt and Titman (1983) and

Dybvig (1983). This approach obtains approximate asset pricing models by bounding the
sensitivity of ¸i to u0ai via preference restrictions but allows u0ai to be possibly non-zero.
In the light of theorem 11, however, and recognizing that one may aggregate over the

set of investors in obtaining asset pricing models we observe that it is not necessary that
investors be able to diversify away ¯rm speci¯c risks completely to the point that u0ai is
equal to zero. In fact letting "i = u

0ai + yi we have that

¸i = ¤i(®0ai + S0Bai + "i; S; vi) (17)

and provided (vi; "i) are conditionally independent given S; theorem 7 implies that ¸ is
S measurable,M = ¾(S) and we may write

¸ = ¤(S): (18)

A particularly interesting special case is obtained on specializing further. Suppose that
Li represents the e®ects on wealth of labor income, a typically undiversi¯able component
for most investors. Let the utility function be a indirect utility of nominal wealth wi
and a personalized price index pi that takes account of personalized expenditure tastes.
Hence we may write that

¸i = ¦i(Z[ai] + Li; pi) (19)

In order to invoke theorem 7 we need to specify the factors S: For this purpose consider
a vector of portfolios with returns S that are useful in predicting investor speci¯c labor
incomes and price indices by the regression models,

Li = Âi + ³
0
iS + yi

pi = ·i + »
0
iS + vi

Substituting back into (19) we obtain

¸i = ¦i(Z[ai] + Âi + ³
0
iS + yi; ·i + »

0
iS + vi) (20)

Now perform the regression (16) and substitute into (20) to obtain the form (17). To
derive (18) we require conditional independence of (u0ai + yi; vi) conditional on S: This
might require us to expand s to include portfolios that are useful in predicting Zj in
the regression (16) even though they may not be signi¯cant in explaining Li or pi: Un-
der multivariate normality of (S; u; y; v) the conditional independence follows from the
orthogonality of (u; y; v) and S obtained on the three regressions for Zj ; Li; pi:
The factors relevant for asset pricing suggested by our model of an asset exchange

economy include those factors that explain the cross sectional variation across investors
of e®ects on marginal utilities or the investor speci¯c duals ¸i: This may usefully be
contrasted with the more traditional approach of focusing solely on explaining the cross
sectional variation across assets of asset returns. The important insight into asset pricing
gained from our analysis is precisely the proposition that empirical work on asset pricing
needs to focus on factors relevant in explaining the investor speci¯c pricing duals ¸i across
i in addition to identifying factors explaining Zj across the set of assets.
Once we have established the validity of (18) for some set of factors S; a traditional

K factor approximate asset pricing model may be derived by invoking a ¯rst order ap-
proximation to the function ¤ using familiar arguments (See Breeden (1979), Grossman
and Shiller (1982), Madan (1988), Milne (1988) and Back (1991)).

11



Theorem 13The market pricing operator ©[Z] may be approximated by

©[Z] ¼ ±EP [Z] +
X
k

µkCov
P (Sk; Z) (21)

Proof. By the de¯nition of ©;

©[Z] = EP [¸Z] = EP [¤(S1; ¢ ¢ ¢SK)Z]
Now write the expectation of the product ¤Z as the product of the expectations plus the
covariance of ¤ and Z to get

©[Z] = EP [¤]EP [Z] +CovP [¤(S1; ¢ ¢ ¢SK); Z] (22)

Now approximate ¤ by a ¯rst order Taylor series expansion about 0 the expectation
of the S0is;

¤(S1; S2; ¢ ¢ ¢ ; SK) ¼ ¤(0; ¢ ¢ ¢ ; 0) +
X
k

¤kSk (23)

where ¤k refers to the partial of ¤ with respect to Sk: The result follows on substituting
(23) into (22) and noting that ± = EP [¤] and µk = ¤k:
Theorem 8 provides a K¡ systematic factor asset pricing model in which covariances

with the variables S1; ¢ ¢ ¢ ; SK determine risk premia. By the usual arguments this may
be written as a beta pricing model for expected asset returns in which just the beta's
with respect to S1; ¢ ¢ ¢ ; SK are priced.
The approach to obtaining asset pricing models as averages of personalized asset

pricing models can hopefully be used to derive relatively parsimonious but successful
asset pricing models. At an empirical level, the approach is suggestive and o®ers guidance
into directions that may fruitfully be taken in future research on empirical asset pricing
models.

6 Conclusion

Asset pricing in equilibrium is conducted by investors who are in agreement about the
prices of traded assets. The reasons for this agreement however, are varied, typically
re°ecting investor speci¯c risk exposures that arise from incomplete diversi¯cation of
personal risks across the space of assets. Personalized investor speci¯c asset pricing
models re°ect the multitude of these risks. By averaging across the pool of investors,
in a manner akin to how insurers average risks across the pool of the insured, market risk
exposures and asset pricing models are derived. It is observed on invoking a law of large
numbers applied to an in¯nite population of investors that many personally relevant risk
considerations can be eliminated from the market asset pricing model.
Examples illustrating the e®ects of undiversi¯ed labor income and taste speci¯c price

indices are provided. An important insight into asset pricing gained from our analysis is
the proposition that work on asset pricing needs to focus on identifying and explaining
investor speci¯c risk exposures cross sectionally across the pool of investors in addition
to explaining the variation of asset cash °ows. In this sense the approach outlined here
is jointly focused on both the pricing dual and the primal aspects of asset cash °ows.
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7 APPENDIX

7.1 Details on The Construction of Non-Atomic Finitely Additive Measures on
the set of Natural Numbers.

Two general strategies for the construction of ¯nitely additive measures with zero measure
for ¯nite sets are described in Madan and Owings (1988). We present here two examples
that illustrate these constructions.

7.1.1 Example 1.

Let Ak be a sequence of pairwise disjoint in¯nite subsets of the set of natural numbers
whose union is the set of all natural numbers. For example A1 could be the even numbers
while the union of all the other sets is the odd numbers. One could then partition the
odd numbers into two in¯nite sets A2 and the complement of A1 [A2: The sequence Ak
can then be generated by repeated partitioning. Now let pk be any positive sequence of
numbers that satis¯es

P1
k=1 pk = 1: De¯ne the binary valued sequence of set functions

±k on the collection of all subsets of I by

±k(A) = 1 if Ak ¡A \Ak is ¯nite and 0 otherwise
that is ±k(A) = 1 just if A contains all but ¯nitely many elements of Ak: Now de¯ne

¹(A) =
1X
k=1

pk±k(A)

Since no ¯nite set can contain all but ¯nitely many elements of any Ak ±k(A) is zero for
all ¯nite sets for all k; hence ¹(A) = 0: However, though ¯nite sets have zero measure, this
measure ¹ has the feature that for example, A1 with ¹(A1) = p1; cannot be partitioned
into sets of measure less than p1 and hence the measure is atomic with the sets Ak serving
as the atoms.

7.1.2 Example 2.

In this construction we obtain a ¯nitely additive non-atomic measure that is the limit of
measures relevant for ¯nite economies and re°ects the limits of averages.
We ¯rst de¯ne a sequence of ¯nitely additive measures ¹n on the set of all subsets of

I as follows:

¹n(A) =
jA \ L(n)j

n

where L(n) = fk j1 · k · ng ; jXj denotes the cardinality of the set X; and ¹n is the
proportion of elements less than or equal to n that belong to A: it is clear that ¹n is
a ¯nitely additive measure on the set of all subsets of I: Since ¹n is a function from A
the set of all subsets of I into the unit interval I; we may think of ¹n as an element of
the set IA: If we endow IA with the product topology of the Euclidean topology on I
then IA is a compact set by Tychono®'s theorem. Therefore the set f¹n jn 2 I g has an
accumulation point ¹: Note that ¹(A) = limn ¹n(A) whenever this limit exists. Hence,
since for all ¯nite sets A; limn ¹n(A) = 0 the measure ¹ is zero on all ¯nite sets.
For the ¯nite additivity of ¹; suppose that A1 and A2 are two disjoint sets with

A = A1 [A2: Since ¹ is an accumulation point there exists a subsequence ¹nk such that
limnk ¹nk(A1) = ¹(A1); limnk ¹nk(A2) = ¹(A2) and limnk ¹nk(A) = ¹(A): Now by the
¯nite additivity of ¹n we have that for all k

¹nk(A) = ¹nk(A1) + ¹nk(A2)
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and it follows on taking limits that ¹(A) = ¹(A1) + ¹(A2):
To observe that ¹ is non-atomic, observe that for eachmwemay de¯ne setsC1; C2; ¢ ¢ ¢Cm

such that k 2 Ci just if i = 1 + k mod(m): For each i and n equal to mN; ¹n(Ci) = 1
m ;

while for n exceeding mN; we have that

N

mN +m¡ 1 · ¹n(Ci) ·
N + 1

mN + 1

Since as n and N tend to in¯nity these upper and lower bounds converge to 1
m ;

it follows that ¹n(Ci) converges to
1
m and so ¹(Ci) =

1
m for all i: For and A with

¹(A) = p > 0 consider the sets A \Ci and note that

p = ¹(A) =
mX
i=1

¹(A \Ci)

where all the sets ¹(A \ Ci) have measure bounded by 1
m which for large enough m is

less than p
2 : Hence A has two disjoint subsets with positive measure strictly less than p

and hence A is not an atom.
The measure ¹(A) re°ects the asymptotic proportion of the population in the set A:

In fact if ¹(A) = p > 0 then for any " > 0 it must be the case that for in¯nitely many n
jA\L(n)j

n is within " of p:

7.2 Proof of Theorem 4.

The theorem is proved by establishing the equivalence under assumption 1 between a
competitive equilibrium and the Weiss (1981) de¯nition of a competitive equilibrium,
termed here a WCE for a Weiss competitive equilibrium. The proof is completed by
noting that a WCE exists (Weiss (1981) modi¯ed along the lines of Milne (1976) to
account for short sales).
We ¯rst de¯ne a WCE:

De¯nition 14A Weiss attainable allocation for a subset B,¹(B) > 0: is a ¹¡integrable
function aB : B ! RJ , such that aBi 2 Ai; for all i andZ

B

aBi d¹(i) =

Z
B

aBi d¹(i)

We now de¯ne preference orderings and budget feasibility for positive measure sub-
groups of individuals. Null functions are used in the de¯nitions below to ensure that they
apply to equivalence classes of allocations.

De¯nition 15For two allocations aB; aB
0
for subsets B:B0 with S µ B \ B0; ¹(S) > 0;

we de¯ne the relation aB is preferred to aB
0
by the subset S written aB ÂS aB0

; if for all
null functions h; g on I with values in RJ

u¤i (a
B
i + hi) > u

¤
i (a

B0
i + gi)

for almost all i 2 S for which aBi + hi and aB
0

i + gi belong to Ai:

De¯nition 16An allocation is budget feasible for the group B for prices p if there exists
a real valued null function h such that for almost all i 2 B;

paBi + hi · pai:
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De¯nition 17An allocation aB is preference maximal for B if,
a) aB is budget feasible for group B;
b) for every allocation cB of B; if cB ÂB aB then there exists S µ B;¹(S) > 0;
such that the restriction of cB to S is not budget feasible for S:

De¯nition 18A Weiss competitive equilibrium (WCE) for an Asset Exchange Economy
is a price vector p¤ 2 RJ ; and an allocation a¤ such that
1) for all B µ I, ¹(B) > 0; the restriction of a¤ to B is preference maximal for B;
2)
R
a¤i d¹(i) =

R
aid¹(i) = a:

The existence of competitive equilibrium for such an economy can be established using
a modi¯cation of the arguments in Weiss to account for short sales along the lines of Milne
(1976).
We now establish the equivalence between a competitive equilibrium and a WCE

under assumption 1.
Suppose ¯rst that we have a competitive equilibrium. Therefore there exists A µ

I; ¹(A) = ¹(I) and h¤i ; ki null functions satisfying

i) p¤ (a¤i ¡ h¤i ) = p¤ai
ii) u¤i (a

¤
i ¡ h¤i ) ¸ u¤i (a

0
i )¡ ki

De¯ne the real values function hi = p
¤h¤i and note that as h

¤
i is null, so is hi: it follows

from property i) that
p¤a¤i ¡ hi · p¤ai

for all i 2 A \B; which is almost everywhere in B for all B of positive measure. Hence
a¤ is budget feasible for all B;¹(B) > 0:
For preference maximality, suppose that ea ÂB a¤ for some B; ¹(B) > 0: It follows

from de¯nition 15 in particular that for all null functions g; t

u¤i (eai ¡ gi) > u¤i (a¤i ¡ h¤i + ti)
for almost all i in B: Since one can not ¯nd ti null such that

u¤i (a
¤
i ¡ h¤i + ti) = u¤i (a¤i ¡ h¤i ) + ki

it follows from property ii)
u¤i (eai ¡ gi) > u¤i (a0i ):

Because a0i is utility maximal in i
0s budget set we must have that,

p¤eai ¡ p¤gi > p¤a0i
Assumption A.6 and lemma 2 of Milne (1976) (convexity of u¤i ) imply that p

¤a0i = p
¤ai

and therefore
p¤eai ¡ p¤gi > p¤ai

for almost all i 2 B: This contradicts the budget feasibility of ea in B: Hence a¤ is aWCE:
On the other hand suppose that a¤ is a WCE: De¯ne

¡ =
©
h; k

¯̄
p¤(a¤i ¡ hi) · p¤ai and u¤i (a¤i ¡ hi) = u¤i (a0i )¡ ki

ª
We wish to show that there exist null functions h; k that belong to ¡:
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First let gi be smallest in norm such that p
¤(a¤i¡gi) · p¤ai: It follows from principles of

distance minimization that gi = ¸i®; where a is the unique directional vector orthogonal
to the null space of p¤: Of course if a¤i is itself budget feasible for i then gi = 0: Since a

¤

is budget feasible for I there exists a null function k such that

p¤a¤i ¡ ki · p¤ai
By the minimization,

p¤gi = p¤a¤i ¡ p¤ai · ki
or that

j¸ij jp¤®j · jkij :
It follows that

kgik = j¸ij k®k · jkij k®kjp¤®j
and hence g is null.
Therefore there exist null functions h that satisfy the ¯rst of the clauses for entry into

¡: For any such h; let k be de¯ned by

ki = u
¤
i (a

0
i )¡ u¤i (a¤i ¡ hi):

We wish to show that if k is not null then a0 contradicts preference maximality of a¤ for
some set of positive measure.
Suppose that k is not null. Since a¤i ¡ hi is budget feasible for i; ki is non-negative.

k is not null implies that there exists a set of positive measure B such that ki exceeds
a constant c for all i in B: Consider now the restrictions to B of a0 and (a¤ ¡ h) ; that
we denote a0 jB and (a¤ ¡ h) jB respectively. For all i 2 B; u¤i (a0i ) > u¤i (a¤i ¡ hi) + c: By
Assumption 1, choose ± such that ja¡ bj · ± implies that ju¤i (a)¡ u¤i (b)j · c=4: Since for
null functions si and ti the norms are almost everywhere less than ±; we have that

u¤i (a
0
i ¡ si) > u¤i (a¤i ¡ hi + ti)

for almost all i 2 B: Equivalently,

a0 ÂB (a¤ ¡ h) :

As the points a¤ and a¤ ¡ h are in the same equivalence class modulo null functions
this implies that

a0 ÂB a¤

However, a0 jB is budget feasible for all subsets S of B; and so we have a contradiction
of a¤ being preference maximal for B: Therefore k must be null.

7.3 Proof of Theorem 5

Since u¤i = ui(Z[ai]); the di®erential of u¤i with respect to ai is the Fr¶echet di®erential
of ui evaluated at x

¤
i = Z[a

¤
i ] applied to the di®erential of Z with respect to ai; which is

Zj : The Fr¶echet di®erential of ui evaluated at x
¤
i is a linear operator which by the self

duality of V is given by an element of V that we denote ¸i(!); with the application to
Zj being as described in (1). Nonnegativity of ¸

i follows from A:4: The construction of
¸i0(!) is similar, except that we now work with a

0 in place of a¤:
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7.4 Proof of Theorem 9

Let a¤ be an equilibrium allocation. By de¯nition of equilibrium one can make a null
function movement h¤ and reach for almost all i; a point that is both budget feasible with
utilities within a null function k of the individual utility maximizing point a0:
De¯ne a0 from the de¯nition of a competitive equilibrium by a0 = a¤ ¡ h¤: Construct

©im analogously to ©
i, except that we employ the Fr¶echet di®erential Ãim(!) of ui at Z[a

0
i]

in place of Ãi(!); and ¸im = Ãim=°
i
0: The result follows on showing that both ©

i ¡ ©im
and ©i0 ¡©im are null operators.
For ©i ¡ ©im; it is su±cient to show that

°°Ãi ¡ Ãim°° is a null function over i: Let
x¤i = Z[a¤i ]; and x

0
i = Z[a0i]; applying Result 42 (Neustadt (1976) I.7 page 55) to the

derivative of ui we obtain that°°Ãi ¡ Ãim°° = kDui[x¤i ; ¢]¡Dui[x0i; ¢]k
· C kx¤i ¡ x0ik

where C is used here as a bound for the second derivative. Since kx¤i ¡ x0ik is bounded
by kZk kh¤i k ; which is a null function, it follows that

°°Ãi ¡ Ãim°° is a null function.
For the proof of ©i0 ¡©im being null, let ¢i be the set of all ai satisfying

p¤ai · p¤ai
u¤i (ai) = u¤i (a

0
i ):

Each element of ¢i is a utility maximizing point and any point in ¢i can play the role
of a0i in theorem 4: De¯ne the point to set, distance function di(y) for y 2 RJ by

di(y) = inf
©ky ¡ ak ¯̄a 2 ¢iª :

De¯ne the functions ªi(c) by

ªi(c) = u
¤
i (a

0
i )¡Max fu¤i (a) jp¤a · p¤ai and di(a) ¸ cg

By construction ªi(0) = 0;ªi(c) > 0; and ªi is monotone increasing.
Let a0i = a

¤
i ¡ h¤i with a¤ and h¤ satisfying the conditions of theorem 4: Since

u¤i (a
0
i )¡ u¤i (a0i) · ki

it follows that
ªi(di(a

0
i)) · u¤i (a0i )¡ u¤i (a0i) · ki

Now di(a
0
i) ¸ ® implies that ªi(di(a

0
i)) ¸ ªi(®) as ªi is monotone increasing. It

follows then that ki ¸ ªi(®): Since ªi(®) is positive for positive ®; di(a0i) not null implies
ki is not null. But as by theorem 1; ki is null, we must have that di(a

0
i) is null.

Now choose a0i in ¢
i so that

°°a0i ¡ a0i °° · di(a0i) + 1
i and theorem 4 holds for a0i with

a0i¡ a0i being a null function. This implies that Z[a0i]¡Z[a0i ] is a null function and by an
argument similar to that used for ©i ¡©im we have that ©i0 ¡©im is a null operator.

7.5 Proof of Theorem 12

Consider a complete probability space (;=; P ) and a complete ¾¡field D µ =: Suppose
that X1;X2; ¢ ¢ ¢ are random variables on (;=; P ) which are conditionally independent
given D: Write for m > n

=mn = ¾ (Xn;Xn+1; ¢ ¢ ¢Xm)
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and

C =
1\
n=1

=1n

Theorem 19C = D

Proof. Suppose A 2 C: Then A 2 =11 =
S1
m=1=m1 : By the monotone class theorem

there exist sets Am 2 =m1 such that

P (A¢Am jD ) > 0

as m tends to in¯nity. That is,

lim
m
P (Am jD ) = P (A jD )

and
lim
m
P (A \Am jD ) = P (A jD )

But A 2 C µ =1n+1; and soA and An are conditionally independent givenD: Therefore,
P (A jD )P (An jD ) > P (A jD ) and so P (A jD )2 = P (A jD ) for any A 2 C:
That is,

E [IA jD ] (!)2 = E [IA jD ] (!)
and so the random variable E [IA jD ] (!) takes only the values 0 and 1: Write

B = f! jE [IA jD ] (!) = 1g

Then B 2 D and E[IA jD ](!) = IB(!):
Now

E
h
(IA ¡ IB)2 jD

i
= E

£
I2A + I

2
B ¡ 2IBIA jD

¤
= E [IA + IB ¡ 2IBIA jD ]
= IB + IB ¡ 2IBIB = 0

Therefore
E
h
(IA ¡ IB)2

i
= 0

and so IA = IB almost surely. Consequently (modulo a set of measure zero, and D is
complete)

A = B 2 D:
That is C = D:
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