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Abstract

This paper proves consistency and asymptotic normality for the conditional-
sum-of-squares (CSS) estimator in fractional time series models. The models are
parametric and quite general. The novelty of the consistency result is that it
applies to an arbitrarily large set of admissible parameter values, for which the
objective function does not converge uniformly in probablity thus making the
proof much more challenging than usual. The neighborhood around the critical
point where uniform convergence fails is handled using a truncation argument.
The only other consistency proof for such models that applies to an arbitrarily
large set of admissible parameter values appears to be Hualde & Robinson (2010),
who require all moments of the innovation process to exist. In contrast, the
present proof requires only a few moments of the innovation process to be finite
(four in the simplest case). Finally, all arguments, assumptions, and proofs in
this paper are stated entirely in the time domain, which is somewhat remarkable
for this literature.
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1 Introduction
This paper considers conditional-sum-of-squares (CSS) estimation of fractional time
series models. The CSS estimator is based on minimizing the sum of squared residuals,
and was applied in classical work on ARIMA models by, e.g., Box & Jenkins (1970).
In later work, CSS estimation was introduced for fractional time series models by Li &
McLeod (1986) and Robinson (1994), in the latter case for hypothesis testing purposes.
The CSS estimator has the anticipated advantage of having the same asymptotic nor-
mal distribution as the Gaussian maximum likelihood estimator and being effi cient
under Gaussianity. However, Gaussianity is not assumed in this paper. Compared
to maximum likelihood estimation, though, CSS estimation is computationally much
simpler.
In the simplest case, the fractional time series model is

∆d
+Xt = εt, (1)

where the operator ∆d
+ is given by ∆d

+Xt = ∆dXt1{t≥1} =
∑t−1

n=0 πn(−d)Xt−n with

πn(u) =
Γ(u+ n)

Γ(u)Γ(n+ 1)
=
u(u+ 1) . . . (u+ n− 1)

n!
. (2)

denoting the coeffi cients in the usual binomial expansion of (1−z)−u and 1{A} denoting
the indicator function of the event A. Note that ∆d

+Xt only depends on Xt for t ≥ 1
and is invertible on the sequences which are zero for t ≤ 0. The inverse operator ∆−d+

is given by ∆−d+ Xt =
∑t−1

n=0 πn(d)Xt−n.
The definition of fractional integration applied in (1), and in the remainder of this

paper, is the so-called “type II” fractional integration. While “type II” is certainly
not the only type of fractional integration, it does have the desirable feature that the
same definition is valid for any value of the fractional parameter, d. Importantly, this
implies that both stationary and nonstationary time series are permitted and that the
range of admissible values of the fractional parameter can be arbitrarily large.
Specifically, this paper proves consistency and asymptotic normality results for CSS

estimators in fractional time series models. Consistency results are important in their
own right and are also necessary prerequisites in any proof of asymptotic normality for
implicitly defined estimators such as the CSS estimator. However, proofs of consistency
have been avoided in the literature due to the non-uniform convergence of the objective
function.
To illustrate the issue, let the true value of the fractional integration parameter

be denoted by d0. Then the data generating process is Xt = ∆−d0+ εt, which is found
by inverting (1), and residuals defined as ∆d

+Xt = ∆d−d0
+ εt appear in the (conditional)

likelihood or in the CSS objective function; see details below. Now, when d−d0 > −1/2,
the residuals are stationary (except for the truncation in the definition of ∆+), and
a law of large numbers can be combined with standard methods to obtain uniform
convergence in probability of the CSS objective function in any compact subset of
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d−d0 > −1/2. On the other hand, when d−d0 < −1/2 the residuals are nonstationary
and a functional central limit theorem applies under addtional moment conditions.
Furthermore, the rate of convergence of the CSS objective function is different in this
case, compared to d − d0 > −1/2. This change in behavior of the objective function
around the critical point d − d0 = −1/2 implies that the objective function does not
converge uniformly in probability on a large parameter space, i.e. one that includes
this point, thus making consistency proofs on a large parameter space much more
challenging than usual.
These diffi culties have previously been avoided, e.g., by restricting the range of

admissible values to an interval of length less than one-half as in, among others, Fox
& Taqqu (1986), Dahlhaus (1989), Giraitis & Surgailis (1990), Hosoya (1996), and
more recently Robinson (2006). Other works, e.g. Li & McLeod (1986) and Beran
(1995), basically assume consistency in application of the usual Taylor expansion of
the score function to derive the asymptotic distribution, while Tanaka (1999) and
Nielsen (2004) give local consistency proofs. Alternatively, with some prior knowledge
of the magnitude of d0 one can fractionally difference the data, estimate d, and add
back. See also Hualde & Robinson (2010, pp. 2-3) for addtional discussion of these
issues.
Only very recently, Hualde & Robinson (2010), Johansen & Nielsen (2010a), and

Lieberman, Rosemarin & Rousseau (2010) have proven consistency for time domain
estimators in parametric fractional time series models1 with a large set of admissible
values of d. The latter paper, however, considers only stationary processes, i.e. the
interval d < 1/2, and do not allow nonstationary processes. Johansen &Nielsen (2010a)
applies methods similar to the ones in this paper, but deals with an entirely different
model that is not nested with the fractional models in this paper. In independent
and concurrent work dealing with the same model, Hualde & Robinson (2010) gives
a consistency proof that requires all moments finite for the innovations even in the
simplest model (1). On the other hand, the proof in this paper requires only four
moments for the model (1), and two additional moments for each additional parameter
to be estimated in more sophisticated models.
The results in this paper apply to an arbitrarily large admissible parameter set

for d, and hence it includes values of d where ∆d
+Xt is asymptotically stationary,

nonstationary, and also critical in the sense that d − d0 ' −1/2. In the proof, each
of these parts of the parameter space needs to be dealt with separately. In particular,
the inclusion of the neighborhood around d − d0 = −1/2 in the proof is achieved by
a truncation argument, making it possible to show that when v = d − d0 ∈ [−1/2 −
κ1,−1/2 + κ2] for (κ1, κ2) suffi ciently small, then the inverse of product moments of
critical processes ∆v

+εt is tight in v, and further that it is convergent uniformly to zero
in probability for (T, κ2)→ (∞, 0).

1In frequency domain estimation, consistency results for admissible parameter intervals of lengths
greater than one-half are more common, for example Robinson (1995) and Shimotsu & Phillips (2005)
for semiparametric estimation and Velasco & Robinson (2000) for tapered Whittle estimation.



M. Ø. Nielsen: CSS estimation in fractional models 4

Another complication in CSS estimation is the truncation of the autoregressive
representation, which is needed both in the definition of the residual to calculate the
objective function and in the “type II”definition of fractional integration. The addi-
tional complications arising from the truncation of the autoregressive filter have often
been ignored in the literature; notable exceptions are Robinson (2005) and Robinson
(2006). The present paper contains a rigorous treatment of the effects of the truncation.
Finally, all arguments, assumptions, proofs, etc., in the present paper are stated

entirely in the time domain. This is somewhat remarkable for this literature, and
demonstrates that frequency domain methods are not in fact necessary, or more simple
for that matter, in proofs of asymptotic properties for fractional time series models.
The remainder of the paper is structured as follows. In the next section a consis-

tency result is presented for a minimal fractionally integrated model under very simple
assumptions. Section 3 presents the corresponding result for a general fractional time
series model which allows a wide range of short memory innovations. In section 4 the
asymptotic distribution theory is given and section 5 concludes. The two consistency
proofs are quite involved and are presented in sections 6 and 7, respectively, followed
by two sections of auxilliary results used in the main proofs.
Some comments on notation: for a sequence of stochastic processes XT (s) ∈ R, s =

(s1, . . . , sm) ∈ S, where S is a compact subset of m-dimensional Euclidean space, the
notation XT ⇒ X or XT (s)⇒ X(s) is used to indicate convergence in distribution of
the sequence, either as continuous processes in C(S) or as cadlag processes in D(S),

whereas XT (s)
D→ X(s) means convergence in distribution in R for a fixed s. The

Euclidean norm is denoted | · | and when E|X|q <∞ the Lq-norm is defined as ||X||q =

(E|X|q)1/q.

2 First consistency result
In this section the simple model (1) is analyzed under the following assumptions on
the errors εt and the true parameter value, which is denoted by subscript zero.

Assumption A The errors εt are i.i.d. with Eεt = 0, Eε2
t = σ2

0 > 0, and E|εt|q <∞
for some q ≥ 4.

Assumption B The true value satisifies d0 ∈ D = [d1, d2] with −∞ < d1 ≤ d2 <∞.

Importantly, only four moments are assumed finite in Assumption A. On the con-
trary, Hualde & Robinson (2010) assume that arbitrarily many moments are finite in
their Assumption A3, which requires that a functional central limit theorem holds for
∆d−d0

+ εt for d− d0 ≤ −1/2− η for arbitrarily small η > 0. However, a necessary con-
dition for such a functional central limit theorem is that E|εt|q < ∞ for q ≥ η−1, see
Johansen & Nielsen (2010c). Since η > 0 can be arbitrarily small, all moments of εt
are required to exist.
Assumption B permits the length of the interval D of admissible values of d to

be arbitrarily large. Specifically, the length of D is not limited to less than 1/2 as in
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most previous studies of fractional models that include proofs of consistency. Thus,
under Assumption B, the model can simultaneously accommodate both nonstationary,
stationary, and overdifferenced processes.
The conditional log-likelihood function is given by

L(d, σ2) = −T
2

log(2πσ2)− 1

2σ2

T∑
t=1

(∆d
+Xt)

2, (3)

and the profile log-likelihood per observation (apart from a constant) is

L(d) = −1

2
log

(
T−1

T∑
t=1

(∆d
+Xt)

2

)
. (4)

The conditional maximum likelihood estimator (CMLE) is found as

d̂ = arg max
d∈D

L(d), (5)

which is the same as minimizing the conditional sum of squared residuals, i.e.,

d̂ = arg min
d∈D

RSS(d), (6)

RSS(d) = T−1

T∑
t=1

(∆d
+Xt)

2. (7)

The estimator (6) is usually denoted the conditional-sum-of-squares (CSS) estimator,
although for both (5) and (6) truncated-sum-of-squares may be more appropriate as
remarked by Hualde & Robinson (2010). The estimator is well-known from e.g. Li &
McLeod (1986) and Beran (1995) in a fractional context and of course Box & Jenkins
(1970) for non-fractional models.
The first main result is the following.

Theorem 1 Suppose Xt is generated by model (1) with errors satisfying Assumption
A and true value satisfying Assumption B, and let the estimator d̂ be defined by either
(5) or equivalently (6). Then d̂ P→ d0 as T →∞.

3 Second consistency result
Now let the model be given by

Xt = ∆−d+ ut, (8)

ut = a(L, ψ)εt, (9)

where ψ is a p-dimensional parameter vector and

a(z, ψ) =
∞∑
n=0

an(ψ)zn. (10)
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The model (8)-(9) generalizes model (1) to allow short-run dynamics in ut. Specifically,
ut is assumed to be a linear process governed by an underlying p-dimensional parameter
vector. For example, ut could be generated by an ARMA model or by the exponential
spectrum model of Bloomfield (1973), which is somewhat popular in the fractional
literature owing to the neat covariance matrix formula it offers in this setting, see
Robinson (1994).
The earlier Assumptions A and B are extended to:

Assumption A’Assumption A is satisfied with q ≥ 2p+ 4.

Assumption B’The true values satisfy (d0, ψ0) ∈ D × Ψ, where D is defined in
Assumption B and the set Ψ ⊆ Rp is convex and compact.

The moment condition in Assumption A’is stronger than the one in Assumption
A, but is needed to apply the moment-bound tightness arguments to obtain uniform
convergence of the objective function in the consistency proof. Note, though, that still
only a limited number of moments are assumed finite unlike in Hualde & Robinson
(2010). The parameter space for d in Assumption B’is the same as in Assumption B,
and the short-run parameters ψ are assumed to be in a compact and convex subset of
Rp.
The following regularity condition is imposed on the coeffi cients of the linear filter

a(z, ψ):

Assumption C
(i) For all ψ ∈ Ψ it holds that a0(ψ) = 1 and the function a(z, ψ) =

∑∞
n=0 an(ψ)zn

is bounded and bounded away from zero on the complex unit disk {z ∈ C : |z| ≤ 1}.
(ii) For all ψ ∈ Ψ the coeffi cients an(ψ) satisfy

∑∞
n=0 n|an(ψ)| <∞.

(iii) For all z the function a(z, ψ) =
∑∞

n=0 an(ψ)zn is continuously differentiable in
ψ and the derivatives ȧn(ψ) = ∂an(ψ)

∂ψ
satisfy

∑∞
n=0 |ȧn(ψ)| <∞ for all ψ ∈ Ψ.

Assumption C(i) ensures invertibility of the model (9). Under this assumption the
function b(z, ψ) = a(z, ψ)−1 is well-defined by its power series expansion for |z| ≤ 1 + δ
for some δ > 0, and is also bounded and bounded away from zero on the complex unit
disk. Thus, letting b(z, ψ) =

∑∞
n=0 bn(ψ)zn and defining the residuals

εt(d, ψ) =
t−1∑
n=0

bn(ψ)∆d
+Xt−n, (11)

the CSS estimator (which is equivalent to the CMLE) is found as

(d̂, ψ̂) = arg min
(d,ψ)∈D×Ψ

RSS(d, ψ), (12)

RSS(d, ψ) = T−1

T∑
t=1

εt(d, ψ)2. (13)
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Note the truncation of the autoregressive representation ofXt in calculating the residual
in (11), which has often been ignored in the literature. Notable exceptions are Robinson
(2005) and Robinson (2006), who include detailed treatments of the consequences of the
truncation. However, Robinson (2005) does not consider consistency for the estimation
of d, and the consistency proof in Robinson (2006) restricts the length of the interval
D to be less than 1/2.
Assumptions C(ii)-(iii) are easily satisfied by the Bloomfield model or by stationary

and invertible ARMA processes due to the exponential decay of their linear represen-
tation coeffi cients. Instead of Assumption C(ii), Hualde & Robinson (2010) make the
assumption that a(eiλ, ψ) is differentiable in λ with derivative in Lip(ζ) for ζ > 1/2.
Assumption C(ii) would follow if, e.g., a(eiλ, ψ) were twice differentiable in λ with sec-
ond order derivative in Lip(ζ) for ζ > 0, in which case an(ψ) = O(n−2−ζ), see Zygmund
(2003, p. 71).
Finally, the following identification condition will also be needed:

Assumption D For all ψ ∈ Ψ\{ψ0} it holds that a(z, ψ) 6= a(z, ψ0) on a subset of
{z ∈ C : |z| = 1} of positive measure.

Assumption D is satisfied, for example, by all stationary and invertible ARMA
processes whose AR and MA polynomials are not both overspecified.
The main result of this section is stated in the following theorem.

Theorem 2 Suppose Xt is generated by model (8)-(9) satisfying Assumptions A’, B’,

C, and D, and let the estimator (d̂, ψ̂) be defined by (12). Then (d̂, ψ̂)
P→ (d0, ψ0) as

T →∞.

4 Asymptotic distribution theory
For the simple model (1) no additional assumptions are needed to prove asymptotic
normality, except having the true value lie in the interior of the parameter space.

Theorem 3 Under the assumptions of Theorem 1 and, in addition, d0 ∈ int(D),

√
T (d̂− d0)

D→ N(0, 6/π2) as T →∞.

Proof. By consistency of d̂, the asymptotic distribution theory for the CSS estimator
is obtained from the usual Taylor series expansion of the score function. That is,

0 = T 1/2∂RSS(d̂)

∂d
= T 1/2∂RSS(d0)

∂d
+ T 1/2(d̂− d0)

∂2RSS(d̄)

∂d2
, (14)

where d̄ is an intermediate value satisfying |d̄− d0| ≤ |d̂− d0|.
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Using (16) and the simple fact that π0(d) = 1 for all d, the normalized score function
evaluated at the true value is

T 1/2∂RSS(d0)

∂d
= 2T−1/2

T∑
t=1

εty1,t−1,

where yk,t−1 =
∑t−1

n=1
∂kπn(d0−d)

∂dk
|d=d0εt−n, k = 1, 2. Furthermore, ∂πn(u)

∂d
|u=0 = n−1 for

n ≥ 1 such that y1,t−1 = −
∑t−1

n=1 n
−1εt−n. Define also the stationary and ergodic

(untruncated) process z1,t−1 = −
∑∞

n=1 n
−1εt−n, which is measurable with respect to

the sigma-algebra Ft−1 = σ({ε1, . . . εt−1}) such that εtz1,t−1 is a martingale difference
sequence with respect to the filtration Ft−1. By the law of large numbers for stationary
and ergodic processes the sum of conditional variances is T−1

∑T
t=1E(ε2

t z
2
1,t−1|Ft−1) =

σ2
0T
−1
∑T

t=1 z
2
1,t−1

P→ σ4
0π

2/6 because
∑∞

n=1 n
−2 = π2/6. The Lindeberg condition is

satisfied since εtz1,t−1 is stationary with finite variance. It therefore follows from
the central limit theorem for martingales, e.g. Hall & Heyde (1980, chp. 3), that

T−1/2
∑T

t=1 εtz1,t−1
D→ N(0, σ4

0π
2/6). Noting that y1,t−1 − z1,t−1 =

∑∞
n=t n

−1εt−n and
E(y1,t−1 − z1,t−1)2 = σ2

0

∑∞
n=t n

−2 ≤ ct−1, it follows that

T 1/2∂RSS(d0)

∂d
= 2T−1/2

T∑
t=1

εtz1,t−1 + oP (1)
D→ N(0, 4σ4

0π
2/6).

Because the second derivative is tight in a neighborhood of d0 (by the criterion (21)
using (46) of Lemma 5) and d̂ is consistent (by Theorem 1) it follows from Lemma A.3
of Johansen & Nielsen (2010b) that the second derivative in (14) can be evaluated at
d0. Hence,

∂2RSS(d0)

∂d2
= 2T−1

T∑
t=1

εty2,t−1 + 2T−1

T∑
t=1

y2
1,t−1,

where εty2,t−1 is a martingale difference sequence such that the first term on the right-
hand side is OP (T−1/2). For the second term, apply the same methods as above to

obtain 2T−1
∑T

t=1 y
2
1,t−1 = 2T−1

∑T
t=1 z

2
1,t−1+oP (1)

P→ 2σ2
0π

2/6, which proves the result.

For the general model (8)-(9), the smoothness conditions on the coeffi cients need
to be strenghtened and an addtional condition is needed to ensure that the asymptotic
variance matrix of the estimator is well-defined. As above, these conditions are easily
satisfied, e.g. by the Bloomfield model or by stationary and invertible ARMA processes.

Assumption E For all z, a(z, ψ) =
∑∞

n=0 an(ψ)zn is three times differentiable in ψ

and the derivatives ∂kan(ψ)

∂ψ(k)
satisfy

∑∞
n=0 |

∂kan(ψ)

∂ψ(k)
| <∞ for all ψ ∈ Ψ and k = 1, 2, 3.

Assumption F The matrix

Σ0 =

[
π2/6 −

∑∞
n=1 γn(ψ0)′/n

−
∑∞

n=1 γn(ψ0)/n
∑∞

n=1 γn(ψ0)γn(ψ0)′

]
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is non-singular, where γn(ψ) =
∑n−1

m=0 am(ψ)ḃn−m(ψ).

Theorem 4 Under the assumptions of Theorem 2, Assumptions E-F, and (d0, ψ0) ∈
int(D ×Ψ), √

T ((d̂, ψ̂)− (d0, ψ0))
D→ N(0,Σ−1

0 ) as T →∞.

Proof. Let θ = (d, ψ). Apply the Taylor series expansion

0 = T 1/2∂RSS(θ̂)

∂θ
= T 1/2∂RSS(θ0)

∂θ
+ T 1/2(θ̂ − θ0)

∂2RSS(θ̄)

∂θ∂θ′
(15)

and examine the score and second derivative.
The normalized score is

T 1/2∂RSS(θ0)

∂θ
= 2T−1/2

T∑
t=1

εt(d0, ψ0)y1,t−1 with y1,t−1 =
∂

∂θ
εt(d, ψ)|θ=θ0 .

Define also

ST = 2T−1/2

T∑
t=1

εtz1,t−1 with z1,t−1 =
∂

∂θ
∆d−d0et(ψ)|θ=θ0 .

It is shown in Robinson (2006, pp. 135-136) that T 1/2 ∂RSS(θ0)
∂θ

− ST = oP (1) under
the assumptions of Theorem 4. The first element of z1,t−1 is −

∑∞
n=1 n

−1εt−n and the
remaining p elements are given by

∑∞
n=1 ḃn(ψ0)ut−n =

∑∞
n=1 γn(ψ0)εt−n. By Assump-

tion A, νt = εtz1,t−1 is a martingale difference sequence with respect to Ft−1 and by
the law of large numbers for stationary and ergodic processes the sum of conditional
variances is T−1

∑T
t=1 E(νtν

′
t|Ft−1) = σ2

0T
−1
∑T

t=1 z1,t−1z
′
1,t−1

P→ σ4
0Σ0. It follows from

the central limit theorem for martingales that ST
D→ N(0, 4σ4

0Σ0) and therefore also

T 1/2 ∂RSS(θ0)
∂θ

D→ N(0, 4σ4
0Σ0).

The second derivative in (15) can be evaluated at the true value for the same
reason as in the proof of Theorem 3 because it is tight by the criterion (33) using
(51) of Lemma 6. Furthermore, from the argument in Robinson (2006, pp. 135-
136) it is enough to consider HT = 2T−1

∑T
t=1 εtz2,t−1 + 2T−1

∑T
t=1 z1,t−1z

′
1,t−1, where

z2,t−1 = ∂2

∂θ∂θ′∆
d−d0et(ψ)|θ=θ0 . Because εtz2,t−1 is a martingale difference sequence with

respect to Ft−1 the first term is OP (T−1/2). By the law of large numbers, it follows

that 2T−1
∑T

t=1 z1,t−1z
′
1,t−1

P→ 2σ2
0Σ0, which proves the result.

Theorems 3 and 4 prove the anticipated result that the CSS estimator has the same
asymptotic distribution as the maximum likelihood estimator. For similar asymptotic
distribution results for the CSS estimator, see also Beran (1995), Tanaka (1999), Nielsen
(2004), and Hualde & Robinson (2010). An important consequence of these results
is that the CSS estimator is effi cient under Gaussianity, c.f. Fox & Taqqu (1986),
Dahlhaus (1989). However, the asymptotic normality results in Theorems 3 and 4 are
valid much more generally because Gaussianity is not assumed in this paper.
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5 Conclusion
This paper has proven consistency and asymptotic normality for the CSS estimator in
general parametric fractional time series models. The consistency proof is important
in its own right and also because it is a required prerequisite for a proof of asymptotic
normality. The only other proof of consistency for the CSS estimator in fractional time
series models which applies to a large set of admissible parameter values is that of
Hualde & Robinson (2010), and the proof in this paper distinguishes itself from their
proof by requiring only a finite number of moments of the innovation process.
Finally, a multivariate extension of the results in this paper should be straightfor-

ward requiring additional and more complicated notation, but does not change the
strategy and method of proof. In fact, Johansen & Nielsen (2010a) applies methods
similar to the ones in this paper to prove consistency in a multivariate fractionally
cointegrated model, although their model is not nested with —and indeed is entirely
different from —the models considered in this paper. This is in contrast with Hualde
& Robinson (2010), whose consistency proof applies only to the univariate case (see
their discussion on p. 19 and p. 21) —and requires all moments finite.

6 Proof of Theorem 1

Defining the residual εt(d) = ∆d
+Xt = ∆d−d0

+ εt, the objective function can be rewritten
as

RSS(d) = T−1

T∑
t=1

εt(d)2, (16)

and it is clear that the convergence properties of RSS(d) will depend on d−d0. Let the
deterministic function r(d) denote the pointwise probability limit of RSS(d), shown
subsequently to be given by

r(d) =

{
E(∆d−d0εt)

2 if d− d0 > −1/2,
∞ if d− d0 ≤ −1/2.

(17)

According to (17) the interval D is partitioned into three disjoint compact subintervals
D1 = D1(κ1) = D∩{d : d−d0 ≤ −1/2−κ1}, D2 = D2(κ1, κ2) = D∩{d : −1/2−κ1 ≤
d − d0 ≤ −1/2 + κ2}, and D3 = D3(κ2) = D ∩ {d : d − d0 ≥ −1/2 + κ2}, for some
constants κi ∈ (0, 1/2), i = 1, 2, to be determined later. Here, special care is taken
with respect to D2, where the convergence of the objective function is non-uniform.
First, it is shown that for any K > 0 there exists a κ2 = κ2(K) such that

Pr( inf
d∈D1∪D2

RSS(d) > K)→ 1 as T →∞. (18)

This implies that Pr(d̂ ∈ D1 ∪ D2) → 0 as T → ∞ and hence Pr(d̂ ∈ D3) → 1 as
T → ∞, so that the relevant parameter space is reduced to D3(κ2). From Theorem
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5.7 of van der Vaart (1998) the desired result then follows if

sup
d∈D3
|RSS(d)− r(d)| P→ 0 as T →∞, (19)

inf
d∈D3∩{d:|d−d0|≥δ}

r(d) > r(d0) for all δ > 0. (20)

The first condition entails uniform convergence of the objective function onD3, and the
second condition ensures that the optimum of the limit function is uniquely attained
at the true value.
To show uniform convergence it is suffi cient to prove pointwise convergence as

T → ∞ and tightness (or stochastic equicontinuity) of the process as a function of d.
Tightness is proven using the moment condition in Billingsley (1968, Theorem 12.3),
which requires showing that RSS(d0) is tight and that

||RSS(d1)−RSS(d2)||2 ≤ c|d1 − d2| (21)

for some constant c > 0 that does not depend on T , d1, or d2.

6.1 Convergence on D1(κ1)

If d ∈ D1(κ1) then εt(d) is nonstationary and the functional central limit theorem of
Marinucci & Robinson (2000) applies if also E|εt|q <∞ for some q > max(2, (d0− d−
1/2)−1). Thus, as T →∞,

T d−d0+1/2∆d−d0
+ ε[Tr] ⇒ Wd0−d−1(r) = Γ(d0 − d)−1

∫ r

0

(r − s)d0−d−1dW (s) in D[0, 1],

(22)
where W denotes Brownian motion generated by εt and Wd0−d−1 is the corresponding
fractional Brownian motion of type II. By the continuous mapping theorem, as T →∞,

T 2(d−d0)+1RSS(d)
D→
∫ 1

0

Wd0−d−1(r)2dr (23)

for fixed d, which shows the pointwise limit.
To show that T 2(d−d0)+1RSS(d) is tight on d ∈ D1 note that the pointwise con-

vergence implies tightness for any fixed d ∈ D1. Tightness of T 2(d−d0)+1RSS(d) then
follows upon verifying the tightness condition (21), which is satisfied by (45) of Lemma
5. Hence the convergence in (23) is strenghtened to

T 2(d−d0)+1RSS(d)⇒
∫ 1

0

Wd0−d−1(r)2dr in C(D1).

By the continuous mapping theorem applied to the infd∈D1 mapping, which is con-
tinuous because D1 is compact, it then holds that

inf
d∈D1

T 2(d−d0)+1RSS(d)
D→ inf

d∈D1

∫ 1

0

Wd0−d−1(r)2dr,
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which is positive almost surely. It follows that, for any K > 0, Pr(infd∈D1 RSS(d) >
K)→ 1 because 2(d− d0) + 1 ≤ −2κ1 < 0.
It remains only to discuss the choice of κ1. In order for (22) to hold (pointwise) for

all d ∈ D1(κ1) it is necessary to assume q > max(2, κ−1
1 ) moments. Thus, to avoid a

very strong moment condition, κ1 cannot be too small, and specifically it is necessary
to choose κ1 > 1/4 in view of Assumption A. On the contrary, in the consistency proof
in Hualde & Robinson (2010), their analysis of the intervals around d − d0 = −1/2
requires them to choose κ1 arbitrarily small, thus needing arbitrarily many moments
of εt, c.f. Johansen & Nielsen (2010c).

6.2 Convergence on D2(κ1, κ2)

Let v = d− d0 ∈ [−1/2− κ1,−1/2 + κ2] and decompose ∆v
+εt as

∆v
+εt =

N−1∑
n=0

πn(−v)εt−n +
t−1∑
n=N

πn(−v)εt−n = w1t + w2t

for some N ≥ 1 to be determined. It then holds that

T−1

T∑
t=1

(∆v
+εt)

2 = T−1

T∑
t=1

w2
1t + T−1

T∑
t=1

w2
2t + 2T−1

T∑
t=1

w1tw2t

≥ T−1

T∑
t=1

w2
1t + 2T−1

T∑
t=1

w1tw2t, (24)

where the second term multiplied by (log T )−2T 1/2−κ1N−1/2−κ1 is tight and OP (1) by
(52) and (53) of Lemma 7. For the first term, (54) and (55) of Lemma 7 show that

(log T )−2T 1/2N−1/2−2κ1

(
T−1

T∑
t=1

w2
1t − σ2

0T
−1(T −N)FN(v)

)
= OP (1)

and that the left-hand side is tight, where FN(v) =
∑N

n=0 πn(−v)2. Setting N = Tα

with 0 < α < min(1/2−κ1
1/2+κ1

, 1/2
1/2+2κ1

), and hence κ1 < 1/2, thus shows that the right-hand
side of (24) minus σ2

0T
−1(T − N)FN(v) converges uniformly in probability to zero as

T →∞.
6.3 Proof of (18): Pr(infd∈D1∪D2 RSS(d) > K)→ 1 as T →∞
The problem is to show that, for any K > 0, η > 0, there exists a κ2 and a T0 such
that

Pr( inf
d∈D1∪D2

RSS(d) < K) ≤ η

for all T ≥ T0. Since

inf
d∈D1∪D2

RSS(d) ≤
2∑
j=1

inf
d∈Dj

RSS(d),
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the two sets D1 and D2 can be considered in turn.
First consider the interval D1(κ1) with κ1 = 1/3 > 1/4, and define D̄1 = D1(1/3).

It holds from section 6.1 that Pr(infd∈D̄1 RSS(d) > K) → 1 as T → ∞, i.e., for any
K > 0, η > 0, there exists a T1 such that

Pr( inf
d∈D̄1

RSS(d) < K) ≤ η/2

for all T ≥ T1.
Second, having already fixed κ1 = 1/3, consider D2(1/3, κ2). From section 6.2 with

κ1 = 1/3 and α = 1/6,

RSS(d) ≥ σ2
0T
−1(T − T 1/6)FT 1/6(d− d0) + µT (d),

where µT (d)
P→ 0 as T → ∞ uniformly in d ∈ D2(1/3, κ2). From Lemma 4(b),

FT 1/6(d− d0) ≥ 1 + c(1− T−κ2/6)/(κ2/6)→∞ as (κ2, T )→ (0,∞). It follows that for
any K > 0, η > 0, there exists κ̄2 (small) and T2 such that

Pr( inf
d∈D̄2

RSS(d) < K) ≤ η/2

for all T ≥ T2 and D̄2 = D2(1/3, κ̄2). Thus, κ1 needs to be relatively large (and fixed)
to allow the weakest possible moment condition in the analysis of D1, whereas κ2 needs
to be very small (→ 0) in the analysis of D2. This illustrates the importance of the
asymmetry of the interval D2 around d− d0 = −1/2.
Combining these results, for any K > 0, η > 0,

Pr( inf
d∈D̄1∪D̄2

RSS(d) < K) ≤
2∑
j=1

Pr( inf
d∈D̄j

RSS(d) < K) ≤
2∑
j=1

η/2 = η

for all T ≥ max(T1, T2) = T0, which proves (18) for κ2 = κ̄2.

6.4 Convergence on D3(κ2) and proof of (19): uniform convergence

If d ∈ D3 then εt(d) is asymptotically stationary for any κ2 > 0. In this case, define also
the stationary and ergodic process ηt(d) = ∆d−d0εt (without truncation) and note that
ηt(d) − εt(d) =

∑∞
n=t πn(d0 − d)εt−n with E(ηt(d) − εt(d))2 = σ2

0

∑∞
n=t πn(d0 − d)2 ≤

c
∑∞

n=t n
2(d0−d)−2 → 0. It follows from the law of large numbers for stationary and

ergodic processes that

RSS(d) = T−1

T∑
t=1

ηt(d)2 + oP (1)
P→ E(∆d−d0εt)

2 as T →∞, (25)

which shows the pointwise limit in probability.
Because RSS(d0) = T−1

∑T
t=1 ε

2
t

P→ σ2
0 as T → ∞ by a law of large numbers, it is

tight. Thus, tightness of RSS(d) follows from condition (21) which is satisfied by (46)
of Lemma 5.
Since this result holds for any κ2 it holds specifically for κ2 = κ̄2 and therefore the

convergence in probability is uniform on d ∈ D̄3 = D3(κ̄2). This proves (19).
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6.5 Proof of (20): uniqueness

Since r(d0) = σ2
0 it is suffi cient to prove that infd∈D3∩{d:|d−d0|≥δ}E(∆d−d0εt)

2 > σ2
0

for all δ > 0. The variance of ∆d−d0εt =
∑∞

n=0 πn(d0 − d)εt−n is E(∆d−d0εt)
2 =

σ2
0

∑∞
n=0 πn(d0 − d)2. Because

∑∞
n=0 πn(d0 − d)2 = 1 +

∑∞
n=1 πn(d0 − d)2 ≥ 1 with

equality if and only if d = d0, this proves (20) by continuity of πn(·) and compactness
of D3.

7 Proof of Theorem 2
The proof of this theorem follows the same general line of reasoning as the proof of
Theorem 1 with the appropriate additional arguments to deal with the added com-
plexity from the extra parameters in the linear process innovations. Let θ = (d, ψ) ∈
D×Ψ = Θ, where the parameter space Θ is partitioned into the subsets Θj = Dj ×Ψ
for j = 1, 2, 3, where Dj is defined as in the proof of Theorem 1. The objective function
and its pointwise limit are

RSS(θ) = T−1

T∑
t=1

εt(θ)
2, (26)

r(θ) =

{
E(∆d−d0et(ψ))2 if d− d0 > −1/2,
∞ if d− d0 ≤ −1/2,

(27)

where the residual is given by εt(θ) =
∑t−1

n=0 bn(ψ)∆d−d0
+ ut−n and the untruncated

process et(ψ) = c(L, ψ)εt is defined using

c(z, ψ) = b(z, ψ)a(z, ψ0) =
a(z, ψ0)

a(z, ψ)
=
∞∑
n=0

cn(ψ)zn. (28)

From Assumption C the coeffi cients cn(ψ) satisfy

∞∑
n=0

n|cn(ψ)| <∞ uniformly in ψ ∈ Ψ. (29)

As in the proof of Theorem 1 it is shown subsequently that for any K > 0 there
exists a κ2 = κ2(K) such that

Pr( inf
θ∈Θ1∪Θ2

RSS(θ) > K)→ 1 as T →∞, (30)

which implies that Pr(θ̂ ∈ Θ3) → 1 as T → ∞. From Theorem 5.7 of van der Vaart
(1998) the desired result follows if

sup
θ∈Θ3

|RSS(θ)− r(θ)| P→ 0 as T →∞, (31)

inf
θ∈Θ3∩{θ:|θ−θ0|≥δ}

r(θ) > r(θ0) for all δ > 0. (32)
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Tightness is now proven using the multiparameter version of (21) given in Kallen-
berg (2001, Corollary 16.9), which requires showing that RSS(θ0) is tight and that

||RSS(θ1)−RSS(θ2)||p+2 ≤ c|θ1 − θ2| (33)

for some constant c > 0 that does not depend on T , θ1, or θ2.
The following lemma shows that the problem can be simplified by considering the

sum of squares of ∆d−d0
+ et(ψ) rather than εt(θ) in the analysis of RSS(θ). This is

the important lemma that analyzes the effect of the truncation in the residual in the
definition of RSS(θ). Note that this result requires κ1 < 1/4 as opposed to κ1 > 1/4
in the moment condition in section 6.1.

Lemma 1 With the notation of this section and under the assumptions of Theorem 2
and κ1 < 1/4 it holds that, as T →∞,

sup
θ∈Θ1

|T 2(d−d0)

T∑
t=1

εt(θ)
2 − T 2(d−d0)

T∑
t=1

(∆d−d0
+ et(ψ))2| P→ 0, (34)

sup
θ∈Θ2∪Θ3

|T−1

T∑
t=1

εt(θ)
2 − T−1

T∑
t=1

(∆d−d0
+ et(ψ))2| P→ 0. (35)

Proof. First it is shown that

sup
ψ∈Ψ

T∑
t=1

(εt(θ)−∆d−d0
+ et(ψ))2 = OP ((log T )2T 2 max(d0−d−1/2,0)). (36)

Note that

εt(θ)−∆d−d0
+ et(ψ) =

t−1∑
j=0

∞∑
n=t−j

πj(d0 − d)bn(ψ)ut−j−n =
∞∑
m=t

φtmut−m,

where φtm =
∑min(m−t,t−1)

k=0 πk(d0 − d)bm−k(ψ) satisfies, see Lemma 3 and Assumption
C,

∞∑
m=t

sup
ψ∈Ψ
|φtm| ≤ c

∞∑
m=t

min(m−t,t−1)∑
k=1

kd0−d−1(m− k)−2

≤ c

t−1∑
k=1

kd0−d−1(t− k)−1 ≤ c(1 + log t)tmax(d0−d−1,−1).

The left-hand side of (36) is

sup
ψ∈Ψ

T∑
t=1

∞∑
m=t

∞∑
n=t

φtmφtnut−nut−m = OP

 T∑
t=1

( ∞∑
m=t

sup
ψ∈Ψ
|φtm|

)2


= OP

(
T∑
t=1

(1 + log t)2t2 max(d0−d−1,−1)

)
= OP

(
(log T )2T 2 max(d0−d−1/2,0)

)
.



M. Ø. Nielsen: CSS estimation in fractional models 16

To prove (34) and (35) write

T∑
t=1

εt(θ)
2 −

T∑
t=1

(∆d−d0
+ et(ψ))2 =

T∑
t=1

(εt(θ)−∆d−d0
+ et(ψ))2

+2
T∑
t=1

(∆d−d0
+ et(ψ))(εt(θ)−∆d−d0

+ et(ψ)).

From (36) it holds that, as T →∞,

sup
θ∈Θ1

|T 2(d−d0)

T∑
t=1

(εt(θ)−∆d−d0
+ et(ψ))2| = OP (T−1(log T )2)

P→ 0,

sup
θ∈Θ2∪Θ3

|T−1

T∑
t=1

(εt(θ)−∆d−d0
+ et(ψ))2| = OP ((log T )2T 2κ1−1)

P→ 0.

Next, by the Cauchy-Schwarz inequality,∣∣∣∣∣
T∑
t=1

(∆d−d0
+ et(ψ))(εt(θ)−∆d−d0

+ et(ψ))

∣∣∣∣∣
≤

(
T∑
t=1

(∆d−d0
+ et(ψ))2

)1/2( T∑
t=1

(εt(θ)−∆d−d0
+ et(ψ))2

)1/2

,

which proves (34) because supθ∈Θ1
T 2(d−d0)

∑T
t=1(∆d−d0

+ et(ψ))2 = OP (1) by (50) of
Lemma 6. To prove (35) note that supθ∈Θ3

T−1
∑T

t=1(∆d−d0
+ et(ψ))2 = OP (1) by (51) of

Lemma 6, which shows the result for θ ∈ Θ3. Finally, for θ ∈ Θ2,

sup
θ∈Θ2

|T−1

T∑
t=1

(∆d−d0
+ et(ψ))(εt(θ)−∆d−d0

+ et(ψ))|

≤
(

sup
θ∈Θ2

T−1

T∑
t=1

(∆d−d0
+ et(ψ))2

)1/2(
sup
θ∈Θ2

T−1

T∑
t=1

(εt(θ)−∆d−d0
+ et(ψ))2

)1/2

= OP (T 2κ1(log T )2T 2κ1−1)

by (36) and Lemma 6. This completes the proof because κ1 < 1/4.

7.1 Convergence on Θ1(κ1)

First of all, if θ ∈ Θ1(κ1) then εt(θ) is nonstationary, and by Lemma 1 the difference
between T 2(d−d0)+1RSS(θ) and T 2(d−d0)

∑T
t=1(∆d−d0

+ et(ψ))2 is negligible in probability
uniformly in θ ∈ Θ1, so it suffi cies to consider the latter product moment. By (29) the
functional central limit theorem of Marinucci & Robinson (2000) applies to ∆d−d0

+ et(ψ)
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for all θ ∈ Θ1 under the moment condtion E|εt|q < ∞ for some q > max(2, κ−1
1 ). By

the continuous mapping theorem,

T 2(d−d0)

T∑
t=1

(∆d−d0
+ et(ψ))2 D→

( ∞∑
n=0

cn(ψ)

)2 ∫ 1

0

Wd0−d−1(r)2dr (37)

as T →∞. The tightness condition (33) follows from (50) of Lemma 6 with m = p+1,
which can be applied by Assumption A’and because

∑∞
n=0 |cn(ψ)| < ∞ uniformly in

ψ ∈ Ψ by (29). Thus, (37) can be strengthened to

T 2(d−d0)

T∑
t=1

(∆d−d0
+ et(ψ))2 ⇒

( ∞∑
n=0

cn(ψ)

)2 ∫ 1

0

Wd0−d−1(r)2dr in C(Θ1),

so that by the continuous mapping theorem,

inf
θ∈Θ1

T 2(d−d0)

T∑
t=1

(∆d−d0
+ et(ψ))2 D→ inf

θ∈Θ1

( ∞∑
n=0

cn(ψ)

)2 ∫ 1

0

Wd0−d−1(r)2dr.

Since 2(d−d0)+1 ≤ −2κ1, infd∈D1
∫ 1

0
Wd0−d−1(r)2dr > 0 almost surely, and infψ∈Ψ(

∑∞
n=0 cn(ψ))2 >

0 by Assumption C, it holds that, for any K > 0, Pr(infθ∈Θ1 RSS(θ) > K)→ 1.

7.2 Convergence on Θ2(κ1, κ2)

First note that by Lemma 1 it suffi cies to prove the result for T−1
∑T

t=1(∆d−d0
+ et(ψ))2

assuming κ1 < 1/4.
Because of (29) the Beveridge-Nelson decomposition

et(ψ) = c(L, ψ)εt =

( ∞∑
n=0

cn(ψ)

)
εt + ∆

∞∑
n=0

c̃n(ψ)εt−n (38)

holds with 0 <
∑∞

n=0 cn(ψ) <∞ and c̃n(ψ) = −
∑∞

k=n+1 ck(ψ) satisfying
∑∞

n=0 |c̃n(ψ)| <
∞ uniformly in ψ ∈ Ψ, see Phillips & Solo (1992, Lemma 2.1). Letting v = d − d0 ∈
[−1/2− κ1,−1/2 + κ2] and applying the decomposition (38) it holds that

∆v
+et(ψ) =

( ∞∑
n=0

cn(ψ)

)
∆v

+εt + ∆1+v
+

∞∑
n=0

c̃n(ψ)εt−n,

such that the relevant product moment is

T−1

T∑
t=1

(∆v
+et(ψ))2 ≥

( ∞∑
n=0

cn(ψ)

)2

T−1

T∑
t=1

(∆v
+εt)

2

+2

( ∞∑
n=0

cn(ψ)

)
T−1

T∑
t=1

(∆v
+εt)

(
∆1+v

+

∞∑
n=0

c̃n(ψ)εt−n

)

=

( ∞∑
n=0

cn(ψ)

)2

R1T (v) + 2

( ∞∑
n=0

cn(ψ)

)
R2T (v, ψ).
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The term R1T (v) is analyzed in section 6.2 from which it follows that R1T (v) −
σ2

0T
−1(T −N)FN(v)

P→ 0 as T →∞ uniformly in d ∈ D2. Since 0 < (
∑∞

n=0 cn(ψ))2 <
∞ uniformly in ψ ∈ Ψ it follows that( ∞∑

n=0

cn(ψ)

)2

R1T (v)−
( ∞∑
n=0

cn(ψ)

)2

σ2
0T
−1(T −N)FN(v)

P→ 0

as T → ∞ uniformly in θ ∈ Θ2. For the second term, R2T (v, ψ), apply Lemma 8 and
combine this with the fact that

∑∞
n=0 cn(ψ) is bounded and bounded away from zero

uniformly in ψ ∈ Ψ to conclude that 2(
∑∞

n=0 cn(ψ))R2T (v, ψ) = OP (1) and is tight in
θ ∈ Θ2.

7.3 Proof of (30): Pr(infθ∈Θ1∪Θ2 RSS(θ) > K)→ 1 as T →∞
In light of the results of sections 7.1-7.2, the arguments in section 6.3 can be used,
changing Dj to Θj, j = 1, 2, 3, and noting that κ1 < 1/4 is needed for Lemma 1.
Thus, setting κ1 = 1/5 requires q > 5 moments in section 7.1, but that is satis-
fied by Assumption A’. In the analysis of Θ2 it is also necessary to remark that
infψ∈Ψ(

∑∞
n=0 cn(ψ))2 > 0 by Assumption C.

7.4 Convergence on Θ3(κ2) and proof of (31): uniform convergence

Again, by Lemma 1, it suffi cies to prove the result for T−1
∑T

t=1(∆d−d0
+ et(ψ))2. As in

section 6.4, define the stationary and ergodic process ηt(θ) = ∆d−d0et(ψ) and note that
ηt(θ)−∆d−d0

+ et(ψ) =
∑∞

n=t πn(d0 − d)et−n(ψ) with

E(ηt(θ)−∆d−d0
+ et(ψ))2 = σ2

0

∞∑
m1=0

∞∑
m2=0

cm1(ψ)cm2(ψ)
∞∑
n=t

πn(d0 − d)πn+m1−m2(d0 − d)

≤ c
∞∑

m1=0

|cm1(ψ)|
∞∑

m2=0

|cm2(ψ)|
∞∑
n=t

nd0−d−1(n+m1 −m2)d0−d−1

≤ c
∞∑

m1=0

|cm1(ψ)|
∞∑

m2=0

|cm2(ψ)|
∞∑
n=t

n2(d0−d−1) ≤ ct2(d0−d)−1 → 0

using (29) and Lemma 3. It follows from the law of large numbers that

RSS(θ) = T−1

T∑
t=1

ηt(θ)
2 + oP (1)

P→ E(∆d−d0et(ψ))2 (39)

as T →∞, which shows the pointwise limit in probability.
Because RSS(θ0) = T−1

∑T
t=1 ε

2
t +oP (1)

P→ σ2
0 as T →∞ by (39), it is tight. Thus,

tightness of RSS(θ) follows from condition (33) which is satisfied by (51) of Lemma 6.
This result holds for any κ2 and specifically for κ2 = κ̄2 chosen in the analysis of

Θ2 in section 7.3, c.f. section 6.3. Therefore the convergence in probability is uniform
on θ ∈ Θ3(κ̄2), which proves (31).
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7.5 Proof of (32): uniqueness

As in the proof of (20) for Theorem 1, it is suffi cient to prove that

inf
θ∈Θ3∩{θ:|θ−θ0|≥δ}

E(∆d−d0et(ψ))2 > σ2
0 for all δ > 0.

Since ∆d−d0et(ψ) =
∑∞

k=0 τ k(d, ψ)εt−k, where τ k(d, ψ) =
∑k

m=0 πm(d0 − d)ck−m(ψ) it
holds that E(∆d−d0et(ψ))2 = σ2

0(1 +
∑∞

k=1 τ k(d, ψ)2) ≥ σ2
0. By Assumption D, the

equality holds if and only if θ = θ0, which proves the result.

8 Inequalities
This section presents some useful inequalities that are used both in the proofs of the
main theorems and in proofs of variation bounds in the next section. First note the
following properties of the Lq-norm,

||X + Y ||q ≤ ||X||q + ||Y ||q, ||XY ||q ≤ ||X||2q||Y ||2q, ||X||q ≤ ||X||r for 1 ≤ q ≤ r.
(40)

The first inequality states that || · ||q is a norm (triangle inequality), the second follows
from the Cauchy-Schwarz inequality, and the third follows from Jensen’s inequality.

Lemma 2 Let εt be i.i.d. with mean zero and E|εt|2q <∞ and define Z =
∑∞

j=0 ξjεj
for some coeffi cients ξj for which

∑∞
j=0 ξ

2
j <∞. Then

||Z||2q ≤ cq||Z||2, (41)

where the constant cq does not depend on the coeffi cients ξj.

Proof. See Lemma B.1 of Johansen & Nielsen (2010b).

Lemma 3 Uniformly in −u0 ≤ ũ ≤ u ≤ u0 and for j ≥ 1 it holds that

|πj(u)| ≤ cju−1, (42)

|πj(u)− πj(ũ)| ≤ c(u− ũ)(1 + log j)ju−1, (43)

where the constants do not depend on u, ũ, or j.
Uniformly in −δ0 ≤ v + 1/2 ≤ δ0 and for j ≥ 1 it holds that

πj(−v) ≥ cj−v−1, (44)

where the constant does not depend on v or j.

Proof. The results (42) and (43) are in Lemma B.3 of Johansen & Nielsen (2010b).
To prove (44) let u = −v ∈ [1/2− δ0, 1/2 + δ0] and apply Stirling’s formula,

πj(u) =
Γ(u+ j)

Γ(u)Γ(j + 1)
=

1

Γ(u)
ju−1(1 + ε(u, j)),

where sup1/2−δ0≤u≤1/2+δ0 |ε(u, j)| → 0 as j →∞. This proves the result and shows that
the constant can be chosen to depend only on δ0.
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Lemma 4 Let ξM(u, v, k) = max1≤n,m≤M
∑M

t=max(n,m) |ζt−n(−u, k)ζt−m(−v, k)| for co-
effi cients ζn(u, k) satisfying ζ0(u, k) = 1 and ζn(u, k) ≤ c(log n)knu−1 for n ≥ 1, where
c > 0 does not depend on u, k, or n, and let FM(v) =

∑M
n=0 πn(−v)2. Then:

(a) Uniformly for min(v + 1, u+ 1, u+ v + 1) ≥ a it holds that

ξM(u, v, k) ≤
{
c(1 + logM)1+2kM−a if a ≤ 0,
c if a > 0,

where c > 0 does not depend on u, v, or M .
(b) For a ≥ 0 and v ≤ −1/2 + a,

FM(v) ≥ 1 + c
1−M−2a

2a
,

where c > 0 does not depend on a, v, or M .

Proof. (a) Only the terms with t ≥ max(n,m) + 1 are considered, those with t = n
or t = m being simpler. First, for a ≤ 0,

M∑
t=max(n,m)+1

|ζt−n(−u, k)ζt−m(−v, k)| ≤ c(1 + logM)2k

M∑
t=max(n,m)+1

(t− n)−u−1(t−m)−v−1

≤ c(1 + logM)2k

M∑
t=max(n,m)+1

(t−max(n,m))−u−v−2,

where
M∑

t=max(n,m)+1

(t−max(n,m))−u−v−2 ≤ c(1 + logM)M−a

because −u − v − 2 ≥ −a − 1 ≥ −1. Next, for a > 0 bound the factors (1 + log(t −
n))k(t− n)−a/3 and (1 + log(t− n))k(t− n)−a/3 by a constant and apply the inequality∑M

t=max(n,m)+1(t−max(n,m))−a+2a/3−1 ≤ c for a > 0.

(b) Using (44) of Lemma 3 and the inequality
∑M

n=1 n
−u−1 ≥ ca−1(1 −M−a) for

u ≤ a it holds that

FM(v) ≥ 1 + c

M∑
n=1

n−2v−2 ≥ 1 + c
1−M−2a

2a
.

9 Variation bounds
This section contains a series of lemmas that are used to verify tightness conditions for
the processes in the previous sections. The first lemma deals with product moments
of nonstationary and stationary processes, and considers tightness conditions for the
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fractional parameter, d. The next lemma extends these results to include tightness in
the short-run parameters, ψ. The third lemma covers product moments of processes
that are nearly stationary, and the final lemma covers mixed product moments with
both stationary and nearly stationary processes.

Lemma 5 Let Zt =
∑∞

n=0 ξnεt−n be a stationary linear process with
∑∞

n=0 |ξn| < ∞
and εt i.i.d. with mean zero, variance σ2 > 0, and E|εt|2m+2 <∞, and define QT (u) =
T−1

∑T
t=1(∆u

+Zt)
2. Then:

(a) Uniformly in v0 ≤ ũ ≤ u ≤ u0 < −1/2,

||T 2u+1QT (u)||m+1 ≤ c and ||T 2u+1QT (u)− T 2ũ+1QT (ũ)||m+1 ≤ c|u− ũ| (45)

for m ≥ 1, where the constants do not depend on u, ũ, or T .
(b) Uniformly in −1/2 < v0 ≤ ũ ≤ u ≤ u0,

||∂
kQT (u)

∂uk
||m+1 ≤ c and ||∂

kQT (u)

∂uk
− ∂kQT (ũ)

∂ũk
||m+1 ≤ c|u− ũ| (46)

for m ≥ 1 and k = 0, 1, 2, where the constants do not depend on u, ũ, or T .

Proof. Proof of (a): Apply the decomposition

QT (u)−QT (ũ) = T−1

T∑
t=1

∆u
+Zt(∆

u
+Zt −∆ũ

+Zt) + T−1

T∑
t=1

∆ũ
+Zt(∆

u
+Zt −∆ũ

+Zt)

and use the properties (40) and Lemma 2 to find

||T 2u+1QT (u)− T 2ũ+1QT (ũ)||m+1 (47)

≤ T−1

T∑
t=1

||T u+1/2∆u
+Zt||2m+2||T u+1/2∆u

+Zt − T ũ+1/2∆ũ
+Zt||2m+2

+T−1

T∑
t=1

||T ũ+1/2∆ũ
+Zt||2m+2||T u+1/2∆u

+Zt − T ũ+1/2∆ũ
+Zt||2m+2

≤ T−1

T∑
t=1

||T u+1/2∆u
+Zt||2||T u+1/2∆u

+Zt − T ũ+1/2∆ũ
+Zt||2

+T−1

T∑
t=1

||T ũ+1/2∆ũ
+Zt||2||T u+1/2∆u

+Zt − T ũ+1/2∆ũ
+Zt||2

In the same way, ||T 2u+1QT (u)||m+1 ≤ T−1
∑T

t=1 ||T u+1/2∆u
+Zt||22. The result now

follows from Johansen & Nielsen (2010b, Lemma C.3), which states that

||T u+1/2∆u
+Zt||2 ≤ c and ||T u+1/2∆u

+Zt − T ũ+1/2∆ũ
+Zt||2 ≤ c|u− ũ| (48)
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uniformly in v0 ≤ ũ ≤ u ≤ u0 < −1/2.
Proof of (b): Apply the same decomposition and proof as for part (a), but instead

of (48) use Johansen & Nielsen (2010b, Lemma C.4), which states that

|| ∂
k

∂uk
∆u

+Zt||2 ≤ c and || ∂
k

∂uk
∆u

+Zt −
∂k

∂ũk
∆ũ

+Zt||2 ≤ c|u− ũ| (49)

uniformly in −1/2 < v0 ≤ ũ ≤ u ≤ u0.

Lemma 6 Let Zt(ψ) =
∑∞

n=0 ξn(ψ)εt−n be a stationary linear process with
∑∞

n=0 |ξn(ψ)| <
∞ uniformly in ψ and let εt be i.i.d. with mean zero, variance σ2 > 0, and E|εt|2m+2 <
∞. Furthermore, suppose the coeffi cients ξn(ψ) are differentiable with derivatives
ξ̇n(ψ) = ∂ξn(ψ)

∂ψ
satisfying

∑∞
n=0 |ξ̇n(ψ)| < ∞ uniformly in ψ, and define QT (u, ψ) =

T−1
∑T

t=1(∆u
+Zt(ψ))2. Then:

(a) Uniformly in (ψ, ψ̃) ∈ Ψ×Ψ and v0 ≤ ũ ≤ u ≤ u0 < −1/2,

||T 2u+1QT (u, ψ)||m+1 ≤ c and ||T 2u+1QT (u, ψ)−T 2ũ+1QT (ũ, ψ̃)||m+1 ≤ c|(u, ψ)−(ũ, ψ̃)|
(50)

for m ≥ 1, where the constants do not depend on u, ũ, ψ, ψ̃, or T .
(b) Suppose the coeffi cients ξn(ψ) are k + 1 times differentiable with derivatives

∂j+1ξn(ψ)

∂ψ(j+1)
satisfying

∑∞
n=0 |

∂j+1ξn(ψ)

∂ψ(j+1)
| < ∞ uniformly in ψ for j ≤ k. Uniformly in

(ψ, ψ̃) ∈ Ψ×Ψ and −1/2 < v0 ≤ ũ ≤ u ≤ u0, for i, j, k = 0, 1, 2 and i+ j = k,

||∂
kQT (u, ψ)

∂ui∂ψ(j)
||m+1 ≤ c and ||∂

kQT (u, ψ)

∂ui∂ψ(j)
− ∂kQT (ũ, ψ̃)

∂ũi∂ψ̃
(j)
||m+1 ≤ c|(u, ψ)− (ũ, ψ̃)| (51)

for m ≥ 1, where the constants do not depend on u, ũ, ψ, ψ̃, or T .

Proof. Proof of (a): The first result follows directly from (48) because
∑∞

n=0 |ξn(ψ)| <
∞ uniformly in ψ. To prove the second result, decompose

||T 2u+1QT (u, ψ)− T 2ũ+1QT (ũ, ψ̃)||m+1 ≤ ||T 2u+1QT (u, ψ)− T 2ũ+1QT (ũ, ψ)||m+1

+||T 2ũ+1QT (ũ, ψ)− T 2ũ+1QT (ũ, ψ̃)||m+1

by the triangle inequality, see (40), so that the increments in u and ψ can be considered
separately. The first term (increment in u) is bounded by c|u − ũ| using the decom-
position (47) and application of (48). For the second term (increment in ψ) note that
QT (ũ, ψ) is differentiable in ψ in the convex set Ψ and apply the mean value theorem,

T 2ũ+1QT (ũ, ψ)− T 2ũ+1QT (ũ, ψ̃) = T 2ũ+1|ψ − ψ̃|∂QT (ũ, ψ̄)

∂ψ
,

where ψ̄ is an intermediate value between ψ and ψ̃. The derivative is

∂QT (ũ, ψ̄)

∂ψ
= 2T−1

T∑
t=1

(∆u
+Zt(ψ̄))(∆u

+Żt(ψ̄)),
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where Żt(ψ) =
∑∞

n=0 ξ̇n(ψ)εt−n. Because
∑∞

n=0 |ξ̇n(ψ)| < ∞, the first result in (48)
applies to fractional differences of Żt(ψ) such that

||T 2ũ+1∂QT (ũ, ψ̄)

∂ψ
||m+1 ≤ T−1

T∑
t=1

||T ũ+1/2∆u
+Zt(ψ̄)||2m+2||T ũ+1/2∆u

+Żt(ψ̄)||2m+2 ≤ c

using also (40) and Lemma 2. Thus ||T 2ũ+1QT (ũ, ψ)− T 2ũ+1QT (ũ, ψ̃)||m+1 ≤ c|ψ− ψ̃|.
Proof of (b): If k = 0 the same proof can be applied as for part (a), but using (49)

instead of (48). The derivatives with respect to u do not change the proof because they
are included in (49). Derivatives with respect to ψ also do not change the proof since
the coeffi cients ∂j+1ξn(ψ)

∂ψ(j+1)
are absolutely summable uniformly in ψ ∈ Ψ.

Lemma 7 Let w1t = w1t(v) =
∑N−1

n=0 πn(−v)εt−n and w2t = w2t(v) =
∑t−1

n=N πn(−v)εt−n,
where εt is i.i.d. with mean zero, variance σ2 > 0, and E|εt|4 < ∞, and define the
product moments Q12NT (v) = T−1

∑T
t=N+1w1tw2t and Q11NT (v) = T−1

∑T
t=N+1w

2
1t −

σ2
0T
−1(T −N)FN(v). Then it holds that, uniformly in −1/2−κ1 ≤ ṽ ≤ v ≤ −1/2+κ2,

||Q12NT (v)||2 ≤ c(log T )T−1/2+κ1N1/2+κ1 , (52)

||Q12NT (v)−Q12NT (ṽ)||2 ≤ c|v − ṽ|(log T )2T−1/2+κ1N1/2+κ1 , (53)

||Q11NT (v)||2 ≤ c(log T )T−1/2N1/2+2κ1 , (54)

||Q11NT (v)−Q11NT (ṽ)||2 ≤ c|v − ṽ|(log T )2T−1/2N1/2+2κ1 , (55)

where the constants do not depend on v, ṽ, or T .

Proof. Proof of (52): First evaluate

EQ12NT (v)2 = T−2E
2∏

k=1

T∑
tk=N+1

N−1∑
nk=0

tk−1∑
mk=N

πnk(−v)πmk
(−v)εtk−nkεtk−mk

.

The term E(
∏2

k=1 εtk−nkεtk−mk
) is non-zero only if the subscripts are equal in pairs.

However, nk < N ≤ mk such that tk − nk > tk − mk for k = 1, 2. There are two
possibilities. First, t1−n1 = t2−m2 and t1−m1 = t2−n2 implies m2−n1 = t2− t1 =
n2−m1, but because m2−n1 > 0 and n2−m1 < 0 this cannot happen. Second, when
t1−n1 = t2−n2 and t1−m1 = t2−m2 eliminate n2 = t2−t1 +n1 andm2 = t2−t1 +m1.
In this case the contribution is

σ4
0T
−2

T∑
t1=N+1

T∑
t2=N+1

N−1∑
n1=0

t1−1∑
m1=N

πn1(−v)πt2−t1+n1(−v)πm1(−v)πt2−t1+m1(−v),

but
∑N−1

n1=0 πn1(−v)πt2−t1+n1(−v) ≤ ξN(v, v, 0) and
∑t1−1

m1=N πm1(−v)πt2−t1+m1(−v) ≤
ξT (v, v, 0) by (42) of Lemma 3, so the contribution is bounded by

cT−2

T∑
t1=N+1

T∑
t2=N+1

ξN(v, v, 0)ξT (v, v, 0).
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The result now follows because |t2 − t1| = |n2 − n1| ≤ N and using Lemma 4(a).
Proof of (53): Next consider ||Q12NT (v)−Q12NT (ṽ)||2 which is bounded by

||T−1

T∑
t=N+1

(w1t(v)− w1t(ṽ))w2t(v)||2 + ||T−1

T∑
t=N+1

w1t(ṽ)(w2t(v)− w2t(ṽ))||2.

For the first term write w1t(v) − w1t(ṽ) =
∑N−1

n=0 (πn(−v) − πn(−ṽ))εt−n = (v −
ṽ)
∑N−1

n=0 ζn(−v, 1)εt−n, see (43) of Lemma 3 and Lemma 4(a). Now apply the same
proof as for (52), noting that only a log-factor is added. The same proof can be used
for the second term.
Proof of (54): The expectation is

EQ11NT (v) = T−1

T∑
t=N+1

N−1∑
n1=0

N−1∑
n2=0

πn1(−v)πn2(−v)E(εt−n1εt−n2)− σ2
0T
−1(T −N)FN(v)

= σ2
0T
−1

T∑
t=N+1

N−1∑
n=0

πn(−v)2 − σ2
0T
−1(T −N)FN(v) = 0. (56)

The second moment is

EQ11NT (v)2 = E(T−1

T∑
t=N+1

w2
1t)

2 + σ4
0T
−2(T −N)2FN(v)2

−2E(T−1

T∑
t=N+1

w2
1t)σ

2
0T
−1(T −N)FN(v)

= E(T−1

T∑
t=N+1

w2
1t)

2 − σ4
0T
−2(T −N)2FN(v)2 (57)

using (56). Now,

E(T−1

T∑
t=N+1

w2
1t)

2 = T−2E

2∏
k=1

T∑
tk=N+1

N−1∑
nk=0

N−1∑
mk=0

πnk(−v)πmk
(−v)εtk−nkεtk−mk

,

where again the subscripts in
∏2

k=1 εtk−nkεtk−mk
have to be equal in pairs. There are

three cases.
1) Suppose first that tk − nk = tk −mk for k = 1, 2, i.e. nk = mk. In this case the

contribution is

σ4
0T
−2

2∏
k=1

T∑
tk=N+1

N−1∑
nk=0

πnk(−v)2 = σ4
0T
−2(T −N)2FN(v)2,

which cancels with the second term of (57).
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2) If t1 − n1 = t2 − n2 and t1 −m1 = t2 −m2 the contribution is

σ4
0T
−2

T∑
t1=N+1

T∑
t2=N+1

(
N−1∑
n=0

πn(−v)πt2−t1+n(−v)

)2

≤ cT−2

T∑
t1=N+1

T∑
t2=N+1

ξN(v, v, 0)2,

which with the restriction |t2− t1| = |n2−n1| ≤ N is bounded by cT−1NξN(v, v, 0)2 ≤
c(log T )2T−1N1+4κ1 by Lemma 4(a).
3) If t1 − n1 = t2 −m2 and t1 −m1 = t2 − n2 the contribution is

σ4
0T
−2

T∑
t1=N+1

T∑
t2=N+1

N−1∑
n1=0

N−1∑
m1=0

πn1(−v)πt2−t1+m1(−v)πm1(−v)πt2−t2+n1(−v)

≤ c(log T )2T−1N1+4κ1

in the same way as in case 2).
Proof of (55): Apply the same decomposition as in the proof of (53) and then use

the same proof as for (54) with an extra log-factor.

Lemma 8 Let Zt(ψ) =
∑∞

n=0 ξn(ψ)εt−n be a stationary linear process with
∑∞

n=0 |ξn(ψ)| <
∞ uniformly in ψ and let εt be i.i.d. with mean zero, variance σ2 > 0, and E|εt|2m+2 <
∞. Furthermore, suppose the coeffi cients ξn(ψ) are differentiable with derivatives
ξ̇n(ψ) = ∂ξn(ψ)

∂ψ
satisfying

∑∞
n=0 |ξ̇n(ψ)| < ∞ uniformly in ψ, and define QT (v, ψ) =

T−1
∑T

t=1(∆v
+εt)(∆

1+v
+ Zt(ψ)). Then, for κi ∈ (0, 1/2), i = 1, 2, it holds uniformly in

(ψ, ψ̃) ∈ Ψ×Ψ and −1/2− κ1 ≤ ṽ ≤ v ≤ −1/2 + κ2 that

||QT (v, ψ)||m+1 ≤ c and ||QT (v, ψ)−QT (ṽ, ψ̃)||m+1 ≤ c|(v, ψ)− (ṽ, ψ̃)| (58)

for m ≥ 1, where the constants do not depend on v, ṽ, ψ, ψ̃, or T .

Proof. First consider

E

(
T−1

T∑
t=1

t∑
n=1

t∑
l=1

πt−n(−v)πt−l(−v − 1)εnZl(ψ)

)m+1

= T−m−1
∑
(1)

(
m+1∏
k=1

πtk−nk(−v)πtk−lk(−v − 1)

)
E

(
m+1∏
k=1

εnkZlk(ψ)

)
,

where the summation
∑

(1) is over 1 ≤ nk, lk ≤ tk ≤ T, k = 1, 2, . . . ,m + 1. This, on
the other hand, is bounded bym+1∏

k=1

max
nk,lk

T∑
tk=max(nk,lk)

|πtk−nk(−v)πtk−lk(−v − 1)|

T−m−1
∑
(2)

|E
m+1∏
k=1

εnkZlk(ψ)|(59)

≤ ξT (v, v + 1, 0)m+1T−m−1
∑
(2)

|E
m+1∏
k=1

εnkZlk(ψ)|,
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where the summation
∑

(2) is over 1 ≤ nk,mk ≤ T, k = 1, 2, . . . ,m+ 1.

Because min(v + 1, v + 2, 2v + 2) ≥ 1/2 − κ1 > 0, it holds by Lemma 4(a) that
ξT (v, v + 1, 0) ≤ c, where c > 0 does not depend on T or v, and the first result in (58)
will follow upon showing that the second factor in (59) is bounded. Thus,

∑
(2)

E

(
m+1∏
k=1

εnkZlk(ψ)

)
=
∑
(3)

(
m+1∏
k=1

ξjk(ψ)

)
E

(
m+1∏
k=1

εnkεlk−jk

)
.

The sum
∑

(3) extends over 1 ≤ nk, lk ≤ T, 0 ≤ jk ≤ ∞, k = 1, 2, . . . ,m+ 1, but most
terms are zero because Eεt = 0. There is a non-zero contribution if the subscripts
nk, lk − jk are equal in pairs, triples, or more. For each pair, there is one constraint,
for each triple there are two constraints, etc., and thus there are fewest constraints —
and hence the largest number of terms —when the subscripts are equal in pairs. This
imposes m+ 1 constraints on the nk, lk summations. Next, because

∑∞
j=0 |ξj(ψ)| <∞

uniformly in ψ ∈ Ψ, the m+ 1 summations over the indices jk, k = 1, 2, . . . ,m+ 1, are
finite and bounded by a constant that does not depend on ψ. This leaves only m + 1
summations over indices nk or lk which results in at most Tm+1 terms and shows that
T−m−1

∑
(2) E(

∏m+1
k=1 εnkZlk(ψ)) is bounded by a coeffi cient that does not depend on

on T or ψ.
To prove the second result apply the triangle inequality,

||QT (v, ψ)−QT (ṽ, ψ̃)||m+1 ≤ ||QT (v, ψ)−QT (ṽ, ψ)||m+1 + ||QT (ṽ, ψ)−QT (ṽ, ψ̃)||m+1.

For the first term (increment in v), apply the same proof as above but replace either
πt−n(−v) by πt−n(−v)−πt−n(−ṽ) = ζt−n(−v, 1)(v−ṽ) or πt−l(−v−1) by πt−l(−v−1)−
πt−l(−ṽ−1) = ζt−l(−v−1, 1)(v−ṽ), see (43), and use Lemma 4(a) with ξT (v, v+1, 1) ≤
c. For the second term (increment in ψ), note that QT (ṽ, ψ) is differentiable in ψ in
the convex set Ψ and apply the mean value theorem,

QT (ṽ, ψ)−QT (ṽ, ψ̃) = |ψ − ψ̃|∂QT (ṽ, ψ̄)

∂ψ
,

where ψ̄ is an intermediate value between ψ and ψ̃. The derivative is

∂QT (ṽ, ψ̄)

∂ψ
= T−1

T∑
t=1

(∆v
+εt)(∆

1+v
+ Żt(ψ)),

where Żt(ψ) =
∑∞

n=0 ξ̇n(ψ)εt−n. Because
∑∞

n=0 |ξ̇n(ψ)| < ∞ uniformly in ψ ∈ Ψ, the
same proof as above can be applied again with ξ̇n(ψ) replacing ξn(ψ).
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