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1. Introduction

Inference in the linear simultaneous equations model is notoriously difficult when the
instruments are weak. Although there has been an enormous amount of work on this
topic since the seminal paper of Staiger and Stock (1997), much of it has focused
on the properties of estimators (especially their bias) and on the properties of test
statistics. Despite important work by Zivot, Startz, and Nelson (1998), Mikusheva
(2010),! and many others, there does not yet appear to be a consensus on the best
way to construct confidence sets when instruments are weak. This paper examines
several procedures that are either easy to use and popular or may be expected to
perform well. We obtain a number of striking results.

In principle, one can construct a confidence set by inverting any suitable test statistic,
possibly after it has been bootstrapped in some way. For the linear simultaneous
equations model, the natural candidates are Wald (that is, ¢) tests, likelihood ratio
(LR) tests, Lagrange multiplier (LM) tests, and the Anderson-Rubin (AR) test.

Partly for reasons of space and readability, we restrict attention to confidence sets
that are based on Wald tests or on the conditional LR (CLR) test of Moreira (2003).
We consider Wald-based confidence sets because they are the most commonly used in
practice and because, contrary to what is widely believed, it is possible to make them
perform well when the instruments are weak by using certain bootstrap methods. We
consider CLR confidence sets because the CLR test often seems to perform very well
and because the results of Mikusheva (2010) suggest that CLR confidence sets also
perform well.

We do not consider confidence sets based on the LM test or the closely related
test of Kleibergen (2002) because the results of Mikusheva (2010) are not at all
encouraging. It is partly for the same reason that we do not consider confidence
sets based on the AR test of Anderson and Rubin (1949). More importantly, as was
shown in Davidson and MacKinnon (2011), AR confidence sets have many undesirable
properties. Although their unconditional coverage is, under classical assumptions,
always correct, their coverage conditional on being bounded intervals can be far from
correct. Moreover, the lengths of AR intervals, when they exist, provide grossly
unreliable information about the precision with which the parameter of interest has
been estimated.

In the next section, we discuss the basic model and some conventional procedures,
both asymptotic and bootstrap, for constructing Wald-based confidence intervals.
In Section 3, we discuss confidence sets based on the CLR test. In Section 4, we
discuss a new procedure for constructing Wald-based bootstrap confidence intervals.
In Section 5, we present a number of simulation results, some of which may be quite
surprising. In Section 6, we summarize our conclusions.

1 We are grateful to Lynda Khalaf for drawing our attention to this paper.
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2. Wald-Based Confidence Intervals

We restrict attention to the two-equation linear model

1 =Py +Zv+w (1)
y2:W7T—|-’LL2:Z7l'1+W27TQ+UQ. (2)

Here y; and y- are n-vectors of observations on endogenous variables, Z is an n X k
matrix of observations on exogenous variables, and W is an n x [ matrix of exogenous
instruments with the property that 8(Z), the subspace spanned by the columns of Z,
lies in §(W), the subspace spanned by the columns of W. The n x (I — k) matrix W5
is constructed in such a way that 8(Z, Ws) = §(W). Equation (1) is a structural
equation, and equation (2) is a reduced-form equation. The parameter of interest
is 3, the coefficient on y, in equation (1).

The disturbance vectors w; and ws are assumed to be serially uncorrelated and
homoskedastic, with mean zero and contemporaneous covariance matrix

2= [ U% /)01202}

PC102 g5
We assume that the model is either exactly identified or overidentified, which implies
that [ > k4 1. The number of overidentifying restrictions is | — k — 1.

Equations (1) and (2) can be estimated in many ways. We restrict attention to
the two most common single-equation methods, namely, generalized instrumental
variables (IV), which is numerically identical to two-stage least squares, and limited-
information maximum likelihood (LIML). The two estimators of 3 are, in self-evident
notation, BIV and BLIML, and their standard errors are 31y and SpvL.

The simplest and most natural way to form a confidence interval for 5 in (1) is to
invert the ¢ statistic for § = By, which is the signed square root of the Wald statistic.
This yields the asymptotic Wald intervals

[Brv — @1 _oj2é1v, Biv + P1_ajaéiv] (3)

and
[Bummr — ®1_qa/25LML, Brmmn + @i 28LML] (4)

where ®;_,, /5 denotes the 1—a/2 quantile of the standard normal distribution. How-
ever, as is well-known and will be seen again in Section 5, these intervals often have
poor finite-sample properties when the instruments are weak. This is particularly
true for (3), in part because BIV can be severely biased in that case.

A natural way in which to attempt to obtain more reliable Wald intervals is to use the
bootstrap. The oldest, and conceptually the simplest, bootstrap method for the linear
simultaneous equations model is the pairs bootstrap, which was proposed by Freed-
man (1984). The idea is simply to resample the rows of the matrix [y, yo Z Wy].
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Each such bootstrap sample, indexed by j = 1,..., B, is then used to compute a
bootstrap t statistic

o s =8

J Ax

s (53 )

where B could be either BIV or ALiML, B; is the corresponding estimate from the j"
bootstrap sample, and 3(6;) is the standard error of 57. Using either Srv and $rv
or By, and Spymr, together with the B values of t;f, one then constructs an equal-
tail percentile ¢ confidence interval (also called a studentized bootstrap confidence
interval) in the usual way; see, among many others, Davison and Hinkley (1997) or
Davidson and MacKinnon (2004, Chapter 5). In the IV case, the interval is

Y

Brv = € _aj2d1v, Brv — ¢ pdiv], (5)

where ¢, , and ¢j_, , denote the estimated «/2 and 1 — /2 quantiles of the 7.
When B =999 and a = 0.05, for example, these are just numbers 25 and 975 in the
list of the ¢} sorted from smallest to largest.

The Wald-based intervals (3), (4), and (5) are easy to construct and commonly
used, but they cannot possibly have correct coverage when the instruments are weak,
because they cannot be unbounded. When the instruments in a linear simultaneous-
equations model are sufficiently weak, a confidence set with correct coverage must
be unbounded with positive probability; see Gleser and Hwang (1987) and Dufour
(1997). Unlike these Wald-based intervals, the confidence sets discussed in the next
two sections can be unbounded with positive probability.

3. CLR Confidence Sets

Because the CLR test of Moreira (2003) seems to work better than other asymptotic
tests for the value of (3, it is natural to consider confidence sets obtained by inverting
CLR tests. Mikusheva (2010) discusses confidence sets of this type. In this section,
we present a different derivation which emphasizes computational issues.

The CLR test statistic and all associated quantities, including BIV, BLIML, and their
standard errors, depend on the data only through the six quantities

P =y Py, Pia=yi'Piys, Pa =yo Piyo,

B . T (6)

My =yir Mwyi, M2 =y1 Mwyz, and M2 = yo Mwyo,
where My = 1-W(W W)~ 'W'T P, = Mz~ Mw,and Mz =1-Z(Z'Z)"'Z".
These six quantities just depend on sums of squared residuals and/or sums of cross-
products of residuals from the regressions of y; and y; on Z and W.



In order to compute the CLR test statistic for the hypothesis that § = [y, we also
need the quantities

Qi1 = P11 —2B0P12 + B3 Pa2, Q12 = Pia — BoPa2, Qoo = Pao,

(7)
N1 = My —280Mi2 + 5(2)M22, Nig = Mg — BoMaz, and Nag = M.
From these, we calculate
SS(Bo) = nQu1/Ni1, (8)
_n Q11N12
ST (Bo) = m( 12 - ), and (9)
n N?
TT(Bo) =  (Q22N11 —2Q12N12 + QuiViy ) (10)
A N1
where
A= N11N22 — N122 = M11M22 — M122 (11)

It is easy to verify that A does not depend on 5y. In Mikusheva (2010), it is shown
that the eigenvalues of the 2 x 2 matrix

[55(50) ST(ﬁo)]
ST(Bo) TT(Bo)

also do not depend on (y. These eigenvalues are

3 (55060 + TT(0) £/ (550h) — TG0 +45T2(50) ).

It follows that I; = S5(80) + TT(Bo) and I = (5S(Bo) — TT(Bo))” + 4ST2(Bo) are
also independent of (.

The LR statistic for testing the hypothesis that § = By takes the form
LR(Bo) = n log(1 + SS(Bo)/n) —n log(1 + (I; — I2)/2n); (12)

see, among others, Davidson and MacKinnon (2008). The LR statistic depends
on fp only through SS(By). The concentrated loglikelihood function for model (3)
is a deterministic, decreasing, function of SS (6o). It is therefore maximized by

minimizing SS(5y), for WhiACh the minimizer is @LIML. It follows that the LR statistic
is also minimized at By = fprivr and that LR(SLivr) = 0.

Following Moreira (2003) and Mikusheva (2010), the LR statistic (12) can be simpli-
fied by Taylor expanding the logarithms and discarding terms that tend to zero as
n — oo. This yields

LRo(B0) = 5 (SS(Bo) = TT(Bo) + I2) = M — TT(8B), (13)
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where M = %(Il—klz). The rightmost expression in (13) tells us that TT(BLaL) = M
and that LRo(Brmmr) = 0. This implies that Sppvr, belongs to any confidence set
found by inverting the test based on LRg(5p).

The idea behind the CLR test is that, even though LR () is not pivotal with weak
instruments, its distribution conditional on TT(8y) is asymptotically pivotal. This
distribution can be estimated in various ways. We discuss two of them, one based on
asymptotic theory and one based on the pairs bootstrap, in the Appendix. For now,
we simply let F (-,T T (Bo)) denote the estimated cumulative distribution function
(CDF) of LRo(fp) conditional on TT(By), and let ¢, denote the 1 — a quantile of
that CDF.

The P value for the hypothesis 8 = Sy is 1 — F(LRo(6o), TT (o)), and so the

confidence set at nominal confidence level 1 — « is

{Bo|1— F(LRo(Bo), TT(Bo)) > c}. (14)

Using (13), we can replace LRo(8y) by M —TT(Bp). The inequality inside the braces
in (14) can then be rearranged as

F(M —TT(B), TT(Bo)) <1 — v (15)

It is shown in the Appendix that, for given M, the function F(M — ¢, c) decreases
monotonically for 0 < ¢ < M. This implies that the equation F(M — ¢,c) =1 — «
has a unique solution ¢, € [0, M] for given o and M, provided that o > 1 — F(M,0).
Because F(M — ¢, c) is decreasing in ¢, it follows that the inequality (15) is satisfied
for all By such that TT(5y) > cq.

The values of fy that satisfy the inequality T7T(8y) > ¢, can now be found. By
using the @Q;; and NN;; from (7) in the definition of TT'(5y), it can be seen after some
algebra that

A M2253 — 2My2 50 + My’

where ) )
A = PyoM{y — 2P1oMioMag + Pr1 My,

B = Py My M5 — PigMyy Moy — Pio M3, + Piy Mo Mas, and (16)
C = PyoyM}, — 2P1o M1y Mys + Py M7,

The inequality TT(Sy) > ¢4 is then equivalent to the quadratic inequality
(EMosAcy — A) B2 — 2(EMisAcy — B)Bo + ~MiAcy —C <0.  (17)
o Ma2Acq 0 L Mi2Acq 0+, MiAcy <0.

Observe that, since TT(3p) is positive, all real values of 5y must satisfy the inequality
TT(Bo) > 0, so that, when ¢, = 0, the confidence set is the entire real line, R. As is
shown in the Appendix, there always exists a small enough that the confidence set
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is R. If « is so small that the inequality o > 1 — F'(M,0) is not satisfied, then the
confidence set is again R.

If the quadratic equation that sets the left-hand side of (17) to zero has real roots,
they are

. MlgACa/n—B
a MQQACa/n—A
D= (MlgACa/?’L — B)Q _ MllACa/TL - C

o (MQQACQ/TL—A)2 MQQACQ/TL—A'

by + VD, where (18)

(19)

If D here is negative, then the left-hand side of (17) is either everywhere positive
or everywhere negative. But if it is positive, then (17) cannot be satisfied, which
would imply an empty confidence set, contrary to the fact already established that
the LIML estimate B always belongs to the confidence set for any a. This implies
that, if D < 0, then the coefficient Ms3Ac,/n — A in (17) must also be negative.

If D > 0, the by are the boundary points of the confidence set. If MaosAc,/n—A > 0,
the set is the bounded interval [b_,by]. If MasAc,/n — A < 0, it is the real line
with a hole in it, the hole being the same bounded interval. In the knife-edge case in
which Moy Ac,/n— A = 0, the confidence set is an unbounded interval which may be
open either to the left or to the right, depending on the signs of the other coefficients
in (17).

We now set out explicitly an algorithm for constructing CLR confidence sets.

1. Compute the six quantities defined in (6) and use them to calculate the quantities
A, B, and C defined in (16).

2. Compute M = TT(fp) using (7), (8), (9), (10), and (11).

3. Obtain either the asymptotic or pairs bootstrap critical value ¢, using one of
the procedures discussed in the Appendix.

4. Evaluate D defined in (19). If D < 0, the confidence set is R.

5. If D > 0, compute b_ and by using (18). If MaaAcy,/n — A > 0, the set is the
bounded interval [b_,b]. Otherwise (ignoring the knife-edge case), it is the real
line except for the bounded interval [b_, b, ].

Note that the CLR confidence set, when it is a bounded interval, is not centered at
BrimL, although, as we have seen, it must always contain Brwvr.

4. RE Bootstrap Confidence Sets

In Davidson and MacKinnon (2008), we proposed the restricted efficient, or RE,
bootstrap in the context of hypothesis tests on 8 in equation (1). In this section,
we discuss how the RE bootstrap can also be used to form confidence sets. The
simulation results of the next section suggest that confidence sets based on the RE
bootstrap generally perform quite well, at least when the instruments are not very
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weak. The main disadvantage of these confidence sets is that they are relatively
complicated and expensive to compute.

The RE bootstrap has two key features. The bootstrap DGP is conditional on a
particular value of 8 (hence “restricted”), and it uses an efficient estimate of =
(hence “efficient”). For any specified value [y, we can run regression (1) to obtain
parameter estimates v and residuals w;. The latter may be rescaled by multiplying
them by a factor of (n/(n — k))*/2. We then run the regression

= W + du; + residuals. (20)

This yields parameter estimates 7w and adjusted residuals uy = yo — War. The latter
should be rescaled by multiplying them by a factor of (n/(n—1))/2. It can be shown
that 7 is asymptotically equivalent to the estimate one would obtain by using FIML
or 3SLS. This estimate was used by Kleibergen (2002) in a different context.

Generating a bootstrap sample using the RE bootstrap is quite simple. We form
two vectors of bootstrap disturbances, u] and w3, with elements u}; and u}, for
i =1,...,n, resampled from the pairs of rescaled residuals. We then set

ys = Wa +uj, and

Y1 = Boys + Z7 + u;.
If we generate B bootstrap samples, we can compute an equal-tail bootstrap P value
for the hypothesis that § = [y. It is simply

B B
p*(Bo) ——m1n<ZIT < T), ZI ]*2 ) (22)
7j=1 7j=1

where I(+) is the indicator function, 7 = (B Bo)/s(B), and T} (6* Bo)/s(B *)- Here
6 may denote either Bry or BLIML, and /B* then denotes the correspondlng estlmate
for the jth bootstrap sample. It is important to calculate the standard errors s(ﬂ)
and s(ﬁj’-‘) in the same way. By using the equal-tail P value (22), we do not impose
symmetry on the distribution of 7.

Using the RE bootstrap to obtain a confidence set is a bit complicated. Consider
the upper limit, 3,. Start with an initial estimate, say 61 (one obvious candidate
is the upper limit of the asymptotic confidence interval) and compute p (6u) using
equation (22). If 5*(31) > a, then BL is too small; if p*(8l) < «, then it is too
large. Try another candidate, say Bﬁ, which must be larger than B& in the former
case and smaller in the latter case. Calculate 13*(35) and repeat if necessary. The
way in which Bﬁ is chosen may have a significant impact on computational cost, but

it should have no effect on the properties of the RE bootstrap confidence set.

If, after m tries, we have found Bm=1 and B such that p* (7 1) — o and p*(6™) — «
have opposite signs, then 5, must lie between them. At this point, various numerical
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methods can be used to find it. Since p*(fp) is not differentiable, we must use a
method that does not need derivatives. In this paper, we use bisection, which is easy
to program and reasonably fast. Note that exactly the same set of random numbers
must be used for all the bootstrap samples. Otherwise, the value of p*(8y) would be
different each time we evaluated it.

The procedure for finding the lower limit, ﬁl, is essentially the same as the one for
finding the upper limit, with obvious changes in sign at various points.

In the above description of the algorithm, we have implicitly assumed that, if Gy is
sufficiently large or sufficiently small, p*(5y) must be less than a. However, that is
not always true. The confidence set has no upper bound if p*(8y) > « as 3y tends to
plus infinity, and it has no lower bound if p*(8y) > «a as By tends to minus infinity.
In practice, we may reasonably conclude that the confidence set is unbounded from
above (below) if p*(5y) > « for a very large positive (negative) value of Sy.

Like CLR confidence sets, unbounded RE bootstrap confidence sets may contain
holes. In fact, simulations suggest that they frequently contain a hole when they
are unbounded. It is therefore important to check for holes and for unboundedness
even if the procedure described above has apparently located both Bu and 31. If
there are values of By greater than Bu or less than Bl for which p*(6p) > «, it is
easy enough to locate the other end of the hole. However, we do not recommend
using unbounded confidence sets to make inferences. The fact that a confidence set
is unbounded strongly suggests that the instruments are so weak as to make reliable
inference impossible.

The fact that RE bootstrap confidence sets may be unbounded (and in fact often are
unbounded when the instruments are very weak) is actually a desirable feature; see
Gleser and Hwang (1987) and Dufour (1997). We noted this fact earlier in the context
of CLR confidence sets. Because RE bootstrap confidence sets can be unbounded, it
is possible for them to have very good coverage.

Unless heteroskedasticity is clearly absent, it is generally wise to use confidence sets
that are robust to it. One advantage of using confidence sets based on t statistics
is that it is very easy to do so. We simply replace the ordinary t statistic with
one based on a heteroskedasticity-consistent standard error and employ a slightly
modified version of the RE bootstrap.

The wild restricted efficient, or WRE, bootstrap was proposed by Davidson and
MacKinnon (2010). It is very similar to the RE bootstrap, except that the i*h
pair of rescaled residuals is always associated with the i*" observation. To generate
the bootstrap disturbances, we simply multiply each pair of rescaled residuals by a
random variable v] with mean zero and variance one. See Davidson and Flachaire
(2008) for more about the wild bootstrap. In samples of reasonable size (more than
a few hundred observations) with heteroskedastic disturbances, this should work just
about as well as using ordinary standard errors and the RE bootstrap when the
disturbances are actually homoskedastic.
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5. Simulation Evidence

Following Davidson and MacKinnon (2008), we use the DGP:

Y1 = By2 + u1, (23)
Y2 = aw + ug,
where w € §(W) is an n-vector with ||lw|* = 1, and
Uq :rv1+pv27 U1 2 2
~N(0,I), 7%+p%=1. (24)
Uo = Vg, V2

It may seem curious that there is just a single instrument w in the DGP when there
are [ of them in equation (2). But the only property of W that matters is S(W),
the subspace spanned by the columns of W. In effect, we have performed a linear
transformation on W so that all of the explanatory power comes from the vector w

and the other columns of W are simply noise. Of course, such a transformation has
no effect on §(W).

The instrument vector w is normalized to have squared length unity; that is,
w'w = 1. By employing this normalization, we are implicitly using weak-instrument
asymptotics; see Staiger and Stock (1997). The strength of the instruments is mea-
sured by the parameter a, the square of which is the scalar concentration parameter;
see Phillips (1983, p. 470) and Stock, Wright, and Yogo (2002). Because we are only
concerned with confidence sets, the error variances have all been normalized to unity,

which is something we could not do if we were concerned with bias.

The first three figures each contain six panels, two for each of the IV Wald, IV
LIML, and CLR confidence sets. In all cases, the left-hand panel of each pair shows
coverage for asymptotic 95% confidence sets (which are based on the standard normal
distribution for the two Wald intervals), and the right-hand panel shows coverage for
95% confidence sets based on the pairs bootstrap. Asymptotic results are based on
500,000 replications, and bootstrap results are based on 100,000 replications, each
with B = 999 bootstrap samples.

Figure 1 shows the effect of varying the number of instruments that are not also
regressors in the structural equation, that is, [ — k, for six values of a®. The six values
are 4, 8, 16, 32, 64, and 128, and [ — k varies from 1 to 18. The sample size is fairly
large (n = 400), and the correlation between the structural and reduced-form errors
is quite high (p = 0.8).

For the asymptotic IV Wald intervals, there is generally severe undercoverage unless
| — k is small and a? is large. The pairs bootstrap generally helps somewhat, except
when [ — k is small. For the bootstrap intervals, undercoverage is moderate when
a®> > 64 and | — k < 10, but it is still severe in most cases.

The asymptotic LIML Wald intervals always work better than the corresponding
asymptotic IV ones. Undercoverage is nonexistent or quite moderate when a? > 64
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for all values of [ — k. However, the pairs bootstrap actually makes undercoverage
worse, especially for small values of a2

The asymptotic CLR confidence sets perform extremely well. They always under-
cover, but only very slightly when [ — £k is small. The undercoverage gradually
increases as [ — k increases, especially when a? is small, but it is never very great. In
contrast, the pairs bootstrap CLR confidence sets almost always overcover, and they
do so severely when a? is small and [ — k is large.

Figure 2 shows the effect of changing the sample size for | — k£ = 10, p = 0.8, and
the same six values of a?. The sample sizes are 50, 70, 100, 141, 200, 282, 400, 565,
800, 1131, and 1600; each of these is approximately v/2 times its predecessor. The
performance of all the Wald intervals is strikingly insensitive to sample size. There
tend to be slight improvements in coverage as n increases, which is most noticeable
for a® = 128.

In contrast, the performance of the CLR confidence sets depends greatly on the
sample size. The undercoverage of the asymptotic CLR confidence sets diminishes
rapidly as n increases. The overcoverage of the pairs bootstrap CLR intervals also
diminishes, but less rapidly, especially for the smaller values of a?.

Figure 3 shows the effect of changing p. For the asymptotic results, there are 100
values between 0.00 and 0.99 increasing by 0.01. For the bootstrap results, there
are 34 values between 0.00 and 0.99 increasing by 0.03. The sample size is 50, and
[ -k =10.

Coverage of all the confidence sets depends strongly on p, except sometimes when
a? is large. This is most true for the asymptotic IV Wald intervals, which actually
overcover for both a? and p small, even though they undercover very severely for a?
small and p large. As in Figure 1, the pairs bootstrap generally improves coverage
for IV Wald intervals (but not when p is small). However, except when a? is large,
it actually causes LIML Wald intervals to undercover more severely.

The CLR confidence sets are only moderately sensitive to p. They do not perform
particularly well in Figure 3, because the sample size is only 50. Based on the results
in Figure 2, we can be confident that the undercoverage of asymptotic CLR intervals
would be very much less severe if n were substantially larger.

Figure 4 shows the coverage of RE bootstrap confidence sets based on both IV and
LIML t statistics for the same case as Figure 1, that is, p = 0.80, n = 400, and [ — k
varying between 1 and 18. Note the scale of the vertical axis. Although coverage is
certainly not perfect, it is vastly better than for the asymptotic and pairs bootstrap
Wald intervals. For larger values of [ — k and a2 it is even better than for the
asymptotic CLR confidence sets.

Figure 5 shows the coverage of RE bootstrap confidence sets for the same case as
Figure 2, that is, p = 0.80, [ — kK = 10, and n varying between 50 and 1600. Once
again, coverage is vastly better than for the asymptotic and pairs bootstrap Wald
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intervals. It is also better than the coverage of the CLR confidence sets for most
sample sizes, but not for the largest sample sizes when a? is small.

The results for the IV and LIML cases in Figure 5 are often quite different, and
there are a few results that are hard to explain. The LIML confidence sets all work
essentially perfectly for n > 200 and a? > 32. However, it is only for a? > 128 that
we can make a similar statement for the IV confidence sets. Not coincidentally, all
of the LIML confidence sets for n > 200 are bounded for a® > 64, and nearly all
are bounded when a? = 32, while a significant fraction of the IV confidence sets are
unbounded even when a? = 64.

Figure 6 shows the coverage of RE bootstrap confidence sets for the same case as
Figure 3, that is, n = 50, [ — k = 10, and p varying from 0.00 to 0.99 by 0.03. Once
again, coverage is very much better in most cases than it was in Figure 3. It generally
deteriorates as p increases, especially for very large values of p in the LIML case when
a® < 16.

Figures 7 and 8 report results from a different set of experiments in which n = 400
and [—k = 2. Thus the sample size is fairly large, and there is only one overidentifying
restriction. This is a situation which may be typical of quite a few applied studies,
and in which we would expect all of the better methods to work well. We do not
report results for coverage, because they do not vary a lot with p and are therefore
similar to the results for | — k = 2 in Figures 1 and 4. The figures show results
only for a® = 8 and a? = 16. For larger values of a?, the asymptotic CLR and RE
bootstrap LIML Wald intervals are bounded almost all the time. That is also the
case for the RE bootstrap IV Wald intervals for a? > 64.

Figure 7 shows the fraction of confidence sets that are bounded intervals. This
fraction is highest for the CLR intervals and lowest for the RE bootstrap IV Wald
intervals. In the case of the latter, it drops sharply as p increases. Figure 8 shows the
median length of bounded confidence intervals. The CLR intervals are, on average,
the longest when a? = 8, probably because there are quite a few cases in which the
CLR interval is bounded and one or both of the RE bootstrap ones are not. When
a®> = 16, the CLR intervals continue to be longer than the bootstrap LIML ones,
but they are a little bit shorter than the bootstrap IV ones for small values of p.
In both cases, the median length of the bootstrap IV intervals drops sharply as p
increases, presumably because the fraction of confidence sets that are bounded also
drops sharply.

The figures do not show results for the two largest values of a? (i.e., reasonably
strong instruments), because they would be very hard to read. In these cases, all
three confidence sets are always bounded (almost always for IV when a? = 64), and
their lengths are very similar, with CLR tending to be very slightly shorter.

Because the performance of the various confidence sets depends on so many aspects
of the experimental design (n, a?, | — k, and p), it is difficult to draw definitive
conclusions. Nevertheless, we tentatively draw several results.
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e Asymptotic CLR confidence sets seem to perform remarkably well whenever
the sample size is sufficiently large, even when the instruments are very weak.
However, there can be substantial undercoverage when the sample size is small.
In contrast, pairs bootstrap CLR confidence sets always overcover, often severely,
even when the sample size is very large.

e RE bootstrap confidence sets based on IV and LIML ¢ statistics perform very
much better than either asymptotic or pairs bootstrap confidence intervals based
on the same test statistics, even when the sample size is small.

e RE bootstrap confidence sets based on LIML ¢ statistics are generally preferable
to ones based on IV ¢ statistics, even though their coverage may be either better
or worse. They more frequently consist of a single, bounded interval, and they
tend to be shorter whenever the instruments are strong enough that all or almost
all the confidence sets of both types are bounded intervals. However, when the
instruments are strong enough for this to be the case, asymptotic CLR intervals
seem to be slightly shorter than RE bootstrap LIML ones.

6. Conclusion

We have proposed a new bootstrap procedure for constructing confidence sets for the
coefficient of the single right-hand-side endogenous variable in a linear equation with
weak instruments. This procedure is based on the RE bootstrap that was proposed in
the context of hypothesis testing in Davidson and MacKinnon (2008). A very similar
procedure based on the WRE bootstrap of Davidson and MacKinnon (2010) can be
used when there may be heteroskedasticity of unknown form. We have also provided a
new derivation of, and computational procedure for, the asymptotic CLR confidence
interval proposed by Mikusheva (2010), along with a pairs bootstrap variant.

Even though the new RE bootstrap procedure is based on ¢ statistics, it generally
produces quite reliable confidence sets. These have far better coverage than asymp-
totic and pairs bootstrap intervals based on the same test statistics. For small sample
sizes, they are often more reliable than asymptotic CLR confidence sets. For large
sample sizes, however, the latter seem to be slightly preferable, especially when the
instruments are very weak, and the CLR intervals are certainly much less computa-
tionally intensive.

One important advantage of the RE bootstrap procedure is that it can easily be
modified to handle heteroskedasticity of unknown form. In principle, it can also deal
with cases in which there are two or more endogenous variables on the right-hand
side of a structural equation. These are both subjects for further research, as is the
possibility of using the RE bootstrap to form CLR confidence sets.
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Appendix: Asymptotic and Bootstrap CLR Critical Values

The asymptotic approximation

The distribution of the CLR statistic LRo(3) evaluated at 8 = By, with Sy the true
value of the parameter, does not depend on fy. Similarly, the distribution of LR (Sy)
conditional on TT(fy) does not depend on fBy. Thus we can without loss of generality
set 8 = 0 in what follows, and drop the explicit dependence of LRq, S5, ST, and TT
on fBy. We denote the CDF of LRy conditional on T'T" by F(-,TT).

We begin with the asymptotic approximation to F'(-,77T). It is shown in Moreira
(2003) and in Davidson and MacKinnon (2008) that, asymptotically, the random
variables Z = ST/VTT and Y = SS — ST?/TT are independent conditionally
on TT, with distributions N(0, 1) and XZQ_ w1, Tespectively. It is easy to see that

2LRg =SS —TT ++/(SS —TT)? + 4ST>
=Y+ 2 -TT+ (Y + 22 -TT)2 +4ATT Z2. (A1)

Thus

F(z,TT) =E[I(LRo < z) | TT]
=E[L(Y +Z> - TT+ /(Y + 22 —TT)? +4TT 22 < 22) | TT].

The inequality in the indicator function above can be rewritten as

VY + 22 —TT)?2 +4TT 72 <2z — (Y + Z*> - TT).
Since the left-hand side is the positive square root, this is equivalent to
(Y 4+ 22 —TT? +4TTZ* < (Y + 2> —TT)*> — 4x(Y + Z> = TT) + 422,
which, since the first term on each side of the inequality is the same, implies that
Y <2+TT—-Z*(1+TT/z) = (x + TT)(1 — Z*/x).

We can now make use of the asymptotic conditional distributions of Y and Z to com-
pute the asymptotic approximation to F(z,TT). Since asymptotically Y ~ x? , ,

F(z,TT) =E[E1(Y < (2 +TT)(1 — Z%/x)| Z) | TT]
~E[F: ((¢+TT)(1-2%/x))|TT], (A2)

X7 g
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where szi _is the CDF of X7 1_1- The argument of this CDF is negative if Z2 > ,

and so its value is zero. Thus, when we approximate (A2) using the asymptotic
distribution Z ~ N(0, 1), the result is

Fou(2,TT) = —/ Fy (o4 TT)(1 = 22/a))e =2 dz

k—1

\[/ Fe ((@+TT)1—22/x))e = /2 dz. (A3)

It is not hard to evaluate this for given arguments x and T'T" by numerical integration.

Mikusheva (2010) and Andrews, Moreira, and Stock (2007) use the following expres-
sion for this approximation:

F(x,TT) ~ 2K, /1Fx? ((z+TT)/Q1+TT2*/z))(1 — 22)(=k=3)/2 g (A4)
0

where Ky, = 1/B(1/2,(l — k — 1)/2), B being the beta function. Expressions (A3)
and (A4) are equal, although derived in different ways.

Recall from (14) that the critical value ¢, used to construct the CLR confidence set
solves the equation F(M — ¢,c¢) = 1 — «, provided a solution exists and is unique.
We now show that, for given M, the function F,q(M — ¢, c) decreases monotonically
for 0 < ¢ < M. From (A3), we have

Fas(M \/7/ Fe (M1 =2%/(M—=c¢)e*/?dz, (A5)
from which it is clear that, for ¢ = M, F,s(M — ¢, c) = Fas(0, M) = 0. The integrand

in (A5) when evaluated at the upper limit z = /M — ¢ is zero, and so the derivative
of Fos(M — ¢, c¢) with respect to ¢ is

[/ X M(l —,22/(M—c)))(]\/jMfZC)Qe_z2/2 dz, (A6)

where le2—k:—1 is the density of x? , ;. It is obvious that this derivative is negative
everywhere for 0 < ¢ < M.

For ¢ =0, (A5) becomes

Fas(M,0) \/7/ Fe  ( M — 2%)e % /2 dz.

With the change of integration variable z? = y, this is

1 M efy/Q M
\/%/0 Fx?_k_l(M_y) \/g dy:/{) Fx? o lfxf(y)dyy
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where fx% is the density of x7. The last expression is thus a convolution, expressing

the CDF of the distribution of the sum of a XlQ—k—l variable and an independent
X7 variable, that is, of a x7_, variable, evaluated at M. Thus Fus(M,0) = Fe (M).

These properties make it clear that the equation Fos(M — ¢,c) = 1 — o has a unique
solution ¢, € [0, M] for given o and M, provided that

a>1—Fu(M0)=1—F. (M). (A7)

Xi—k

The confidence set includes all By for which TT(8y) > ¢o. We saw previously that,
since TT(By) is non-negative, the confidence set is the whole real line when ¢, = 0,
which is the case when a =1 — F,2 (M). Since Fy2 (M) <1 for finite M, there

always exists o small enough that the confidence set is R. If « is so small that (A7)
is not satisfied, then a fortiori the confidence set is again R.

Solving for the critical value c,

The derivative (A6) of F,s(M — ¢,c¢) with respect to ¢ can be expressed in terms
of elementary functions and the gamma function only, since, for any positive d, the
density of x2 is

_ 1 d/2—1 .—2/2
Fa(z) = 2(d/2T(d/2) z ©

where I' is the gamma function. Therefore, the derivative (A6) is

Y

—M/2 N f(l—k—1)/2 1
2(l=k)/2-1 7T(M — C)F((l —k— 1)/2) 0

This expression, although messy in appearance, is readily evaluated numerically.

The ability to do so means that solving the equation Fos(M — ¢,¢) = 1 — « can be
done by Newton’s method, as well as by more basic methods such as bisection. For
any such method, it is good to have a starting point reasonably close to the actual
solution. The graph of the function F,s(M — ¢, c), for large M at least, resembles
an inverted ‘L’; with the value of the function close to Fxlz_k (M) for all values of ¢
until ¢ is close to M, at which point the graph suddenly curves almost vertically
downward to 0 as ¢ — M. If we change the integration variable in (A5) by the

formula y = z\/M /(M — c), we see that

Fos(M =4/ ﬂ\;c/ XlklM y)exp< (]2\4M ))dy, (A8)

which depends on ¢ only through the difference M — c. We expect that difference to
be small relative to M, on the basis of the appearance of the graph.
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In order to find ¢,, we need to solve equation (A8). For the purpose of an approxi-
mation to the solution, let us expand the exponential in the integrand, retaining only
the first two terms of the expansion. This gives the approximate expression

2
M —c¢ 2 _y(M )
Fos (M \/ 7rM / P, M=y )(1 oM )dy

Now make the definitions

Kl \I / Xl b1 M_y2)dy
[ - 2
27‘(‘ / Xl k— 1(M_y )dy'

It is not hard to evaluate K; and K, for given M by numerical integration. The
equation we wish to solve for ¢, is approximated by

1—a=K~VM—c—KyM—¢)*? (A9)

and

A first approximation to the solution of this equation is just c = M — ((1 — a)/K1)?,
where we retain only the first term on the right-hand side of (1). A better approxi-
mation is obtained by retaining both terms and using the first approximate solution
in the second term. This gives

(1—a)? Ks(1 —a)?y?
R M= <1+ IS ) (A10)

Numerical experiments show that this is an excellent approximation, starting from
which Newton’s method usually converges in fewer than 4 or 5 iterations.

In the special case in which [ — k = 1, there is no need to use an iterative procedure
to find ¢,. In this case, Y = 0, which by (A1) implies that LRy is equal to Z?2
independently of T'T". Thus Fys(z,c) = F\2(z), and so the solution to Fos(M —c,c) =
l—aisjustc:M—Fx_il(l—a).

The bootstrap approximation

The test that Davidson and MacKinnon (2008) call the CLRD test is a bootstrap test
in which the conditional distribution of LRy is approximated by generating bootstrap
statistics of the form

LRj = 2 (SS" = TT + /(S5 = TT)? + ATT(ST)?/TT*) (A1)

conditional on TT from the observed data. Here SS* ST* and TT* are calculated
using (8), (9), and (10) from starred versions of the six quantities defined in (6),
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computed using data generated by a bootstrap DGP that is intended to approximate
the true DGP for the model specified by (1) and (2), with 5 = 0. The conditional
CDF F(z,TT) is then approximated by

B
Fos(z,TT) = Z (LRg); < ), (A12)

and the bootstrap P value is just 1 — Fys(LRgo, T'T).

By inverting this procedure, we can obtain a bootstrap version of the critical value c,
needed for a CLR confidence interval. The simplest approach, which was suggested
by Moreira, Porter, and Suarez (2005), is to use the pairs bootstrap DGP described
in Section 2. First, each bootstrap sample is used to calculate starred versions of the
six quantities defined in (6), which are then used to calculate the quantities @Q}; and
N for i = 1,2 using (7) with 8y = BrivL. These in turn are used in (8), (9), and
(10) to calculate SS* ST* and TT™

In order to invert the CLRb test, we have to solve the equation Fys(M —¢,c) = 1—a,
which can be written more explicitly as

B
Z (LR§(c); <M —¢) =1-a. (A13)

Here LR (c) is computed using formula (A11l) with 7T replaced by c.

Solving equation (A13) may require computing LR{(c) for quite a few values of c.
Because the sum in (A13) is a discontinuous function of ¢ for finite B, Newton’s
method is not an appropriate way to solve that equation. However, the approximation
(A10) should still provide an excellent starting point for any method that does not
use derivatives, such as bisection.
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