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Abstract

In this paper we compare through Monte Carlo simulations the finite sample properties

of estimators of the fractional differencing parameter, d. This involves frequency domain,

time domain, and wavelet based approaches and we consider both parametric and semipara-

metric estimation methods. The estimators are briefly introduced and compared, and the

criteria adopted for measuring finite sample performance are bias and root mean squared

error. Most importantly, the simulations reveal that 1) the frequency domain maximum

likelihood procedure is superior to the time domain parametric methods, 2) all the esti-

mators are fairly robust to conditionally heteroscedastic errors, 3) the local polynomial

Whittle and bias reduced log-periodogram regression estimators are shown to be more ro-

bust to short-run dynamics than other semiparametric (frequency domain and wavelet)

estimators and in some cases even outperform the time domain parametric methods, and

4) without sufficient trimming of scales the wavelet based estimators are heavily biased.
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1 Introduction

The past two decades have witnessed an increasing interest in fractionally integrated processes

as a convenient way of describing the long memory properties of many time series. There

is now a broad range of applications in e.g. finance and macroeconomics, see Baillie (1996),

Henry & Zaffaroni (2003), or the references below for some examples. Fractionally integrated

processes are characterized by a hyperbolically decaying autocorrelation function (contrary

to the faster exponential decay which characterizes traditional autoregressive moving average

(ARMA) models), thus suggesting distant observations to be highly correlated.

There have been many studies to provide a theoretical motivation for fractional integration

and long memory, for instance models based on aggregation have been suggested by Robin-

son (1978) and Granger (1980), error duration models by Parke (1999), and regime switching

models by Diebold & Inoue (2001). In empirical studies, fractional integration and long mem-

ory have been found relevant in many areas in macroeconomics and finance. Some examples

of applications are Diebold & Rudebusch (1989, 1991) and Sowell (1992b) for various GDP

measures, Gil-Alana & Robinson (1997) for the extended Nelson-Plosser data set, Hassler &

Wolters (1995) and Baillie, Chung & Tieslau (1996) for inflation data, Diebold, Husted & Rush

(1991) and Baillie (1996) for real exchange rate data, and Andersen, Bollerslev, Diebold &

Ebens (2001) and Andersen, Bollerslev, Diebold & Labys (2001) for financial volatility series.

See Baillie (1996) or Henry & Zaffaroni (2003) for a survey.

In this paper we consider several estimation methods for fractionally integrated ARMA

models, including parametric, semiparametric, frequency domain, time domain, and wavelet

methods. The methods are compared in an extensive Monte Carlo study using several data

generating processes with different forms of short-run dynamics including the possibility of

errors that exhibit autoregressive conditional heteroskedasticity (ARCH). The criteria we adopt

for measuring the finite sample performance of the estimators are bias and root mean squared

error (RMSE).

Our results show that among the parametric methods the frequency domain maximum

likelihood procedure is superior with respect to both bias and RMSE. However, our results

also show that the (sometimes quite severe) bias of the parametric time domain procedures is

alleviated when larger sample sizes (e.g. 512) are considered.
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Furthermore, according to our results all the methods under consideration are rather robust

to the presence of ARCH effects, which are not parameterized, in the sense that the finite sample

biases and RMSEs do not increase much compared to the case with white noise errors.

Among the semiparametric (frequency domain and wavelet) methods our results clearly

demonstrate the usefulness of the bias reduced log-periodogram regression and local poly-

nomial Whittle estimators of Andrews & Guggenberger (2003) and Andrews & Sun (2004),

respectively. In several cases these two methods even outperform the correctly specified time

domain parametric methods. Furthermore, when other methods are very heavily biased due

to contamination from short-run dynamics, these estimators show a much lower bias at the

expense of an increase in their RMSE. The bias reduction is due to their modelling of the

logarithm of the spectral density of the short-run component by a polynomial instead of a

constant. Finally, without sufficient trimming of scales the wavelet based methods are heavily

biased when short-run dynamics is introduced.

Recent surveys on fractional integration and long memory are Robinson (1994, 2003), Baillie

(1996), and the book by Beran (1994). However, since none of these really cover all the methods

considered in the present study (some of which are very recent), we first briefly describe the

fractionally integrated ARMA model and provide an introduction to the estimation methods

considered in our Monte Carlo study with emphasis on the more recent methods. We shall not

present all the mathematical assumptions underlying each estimation procedure, but rather

describe the methods and their applicability in general, and also briefly discuss and compare

the asymptotic distributions of the various estimators.

Previously, Monte Carlo studies of fractional integration estimators have also been con-

ducted by Hauser (1997) who considers the early semiparametric methods like the rescaled

range statistic, by Cheung & Diebold (1994) and Hauser (1999) who consider parametric max-

imum likelihood estimators, and by Tse, Ahn & Tieng (2002) who consider wavelet based

estimators. However, in our Monte Carlo study we consider all three types of estimators

including recently developed methods, and in particular we attempt to cover all estimators

typically applied in empirical work and compare them with respect to finite sample bias and

RMSE within the same model setup.

The remainder of the paper is organized as follows. In the next section we present the au-

toregressive fractionally integrated moving average (ARFIMA) model and estimation methods
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which are divided into groups of parametric, semiparametric, and wavelet based estimators.

Section 3 presents the results of the Monte Carlo study in terms of the finite sample biases and

RMSEs of the estimators in section 2, and section 4 offers some concluding remarks. Additional

tables of simulation results are given in a separate appendix to this paper, which is available

from the authors’ websites.

2 Estimation of Fractional Integration

In this section we describe the class of autoregressive fractionally integrated moving average

(ARFIMA) processes, introduced by Granger & Joyeux (1980) and Hosking (1981), and review

the estimators that we consider in the Monte Carlo study and their properties.

A process is labelled an ARFIMA(p, d, q) process if its d’th difference is a stationary and

invertible ARMA(p, q) process. Here, d may be any real number such that −1/2 < d < 1/2 (to

ensure stationarity and invertibility). For a precise statement, yt is an ARFIMA(p, d, q) if

φ (L) (1− L)d (yt − µ) = θ (L) εt, (1)

where φ (z) = 1− φ1z − ...− φpz
p and θ (z) = 1 + θ1z + ...+ θqz

q are lag polynomials of order

p and q, respectively, in the lag operator L (Lxt = xt−1) with roots strictly outside the unit

circle, εt is iid(0, σ2), and (1− L)d is defined by its binomial expansion

(1− L)d =
∞X
j=0

Γ (j − d)

Γ (−d)Γ (j + 1)L
j (2)

using the gamma function, Γ (·).
The parameter d determines the (long) memory of the process. If d > −1/2 the process

is invertible and possesses a linear (Wold) representation, and if d < 1/2 it is covariance

stationary. If d = 0 the spectral density is bounded at the origin and the process has only

weak dependence (short memory). Furthermore, if d > 0 the process is said to have long

memory since the autocorrelations die out at a hyperbolic rate (and indeed are no longer

absolutely summable) in contrast to the much faster exponential rate in the weak dependence

case, whereas if d < 0 the process is said to be anti-persistent (Mandelbrot (1982)), and has

mostly negative autocorrelations. The case 0 ≤ d < 1/2 has proved particularly relevant for
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many applications in finance and economics, c.f. the references given in the introduction above,

as well as hydrology, geology, and many other fields.

The autocorrelation function of the process in (1) satisfies

ρk ∼ cρk
2d−1, 0 < cρ <∞, as k →∞, (3)

which decays at a hyperbolic rate, c.f. Granger & Joyeux (1980) and Hosking (1981). The

symbol "∼" means that the ratio of the left and right hand sides tends to one in the limit.
Equivalently, the behavior of the autocorrelations at large lags can be stated in the frequency

domain at small frequencies.

Thus, defining the spectral density function of yt, fy (λ), as

γk =

Z π

−π
fy (λ) e

iλkdλ, (4)

where γk is the k’th autocovariance of yt, it can be shown that the spectral density of the

ARFIMA(p, d, q) process (1) is given by

fy (λ) =
σ2

2π

¯̄̄
1− eiλ

¯̄̄−2d ¯̄θ ¡eiλ¢¯̄2
|φ (eiλ)|2

=
σ2

2π
(2 sinλ/2)−2d

¯̄
θ
¡
eiλ
¢¯̄2

|φ (eiλ)|2 . (5)

Now, the approximation (3) can be restated in the frequency domain as (see Granger & Joyeux

(1980), Hosking (1981), or Beran (1994, p. 53))

fy (λ) ∼ g |λ|−2d , 0 < g <∞, as λ→ 0. (6)

Very general conditions under which (3) and (6) are equivalent are given by Yong (1974)

and Zygmund (2002, Chapter V.2). For a thorough exposition of long memory processes and

ARFIMA models the reader is referred to e.g. the book by Beran (1994).

In the following subsections we describe several estimation methods for the ARFIMA model

(1) that have appeared in the literature. First, we present the parametric methods which are

(approximate or exact) likelihood methods in the time domain or frequency domain. Second,

we describe the semiparametric log-periodogram regression and local Whittle methods and

some of their extensions. Finally, wavelet based estimation methods are considered.
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2.1 Parametric Estimators

Four different parametric maximum likelihood estimators (MLEs) are described in the following:

The exact time domain MLE, modified profile likelihood estimator, conditional time domain

MLE, and frequency domain MLE. The time domain estimators are based on the likelihood

function of the ARFIMA(p, d, q) model with or without conditioning on initial observations,

and the frequency domain estimator is based on Whittle’s approximation to the likelihood

function in the frequency domain.

2.1.1 Maximum Likelihood in the Time Domain

The exact Gaussian maximum likelihood objective function for the model (1) is (when −1/2 <
d < 1/2)

LE

¡
d, φ, θ, σ2, µ

¢
= −T

2
ln |Ω|− 1

2
(Y − µl)0Ω−1 (Y − µl) , (7)

where l = (1, ..., 1)0, Y = (y1, ..., yT )
0, φ and θ are the parameters of φ (L) and θ (L), µ is the

mean of Y , and Ω is the variance matrix of Y , which is a complicated function of d and the

remaining parameters of the model. Sowell (1992a) derived an efficient procedure for solving

this function in terms of hypergeometric functions. However, an important limitation is that

the roots of the autoregressive polynomial cannot be multiple.

Gathering the parameters in the vector γ =
¡
d, φ0, θ0, σ2, µ

¢0, the exact maximum likelihood
(EML) estimator is obtained by maximizing the likelihood function (7) with respect to γ. Sowell

(1992a) showed that the EML estimator of d is
√
T -consistent and asymptotically normal, i.e.

√
T
³
d̂EML − d

´
→d N

³
0,
¡
π2/6−C¢−1´ , (8)

where C = 0 when p = q = 0 and C > 0 otherwise. The variance of the EML estimator may

be derived as the (1, 1)’th element of the inverse of the matrix

1

4π

Z 2π

0

∂ ln fy (λ)

∂γ

∂ ln fy (λ)

∂γ0
dλ.

Although the time and frequency domain (see below) maximum likelihood estimators are

asymptotically equivalent, their finite sample properties differ, and a small Monte Carlo study

carried out by Sowell (1992b) shows that the time domain estimator has better finite sample

properties than the frequency domain estimator when the mean of the process is known. How-

ever, Cheung & Diebold (1994) show that the finite sample efficiency of the discrete Whittle
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frequency domain MLE (see (11) below) relative to time domain EML rises dramatically when

the mean is unknown and has to be estimated.

The modified profile likelihood (MPL) estimator is based on a correction of the parameters

of interest (here d, φ, θ) for second-order effects due to nuisance parameters (here σ2, µ). Thus,

the idea is to reduce the bias by applying a transformation that makes (d, φ, θ) orthogonal to¡
σ2, µ

¢
, see Cox & Reid (1987) and An & Bloomfield (1993). The modified profile log-likelihood

function is given as (without constants)

LM (d, φ, θ; µ̂) = −
µ
1

2
− 1

T

¶
ln |R|− 1

2
ln
¡
l0R−1l

¢−µT − 3
2

¶
ln
£
T−1 (Y − µ̂l)0R−1 (Y − µ̂l)

¤
,

(9)

where R = Ω/σ2 and µ̂ =
¡
l0R−1l

¢−1
l0R−1Y . The asymptotic distribution of the MPL esti-

mator is unchanged compared to the EML estimator on which it is based, and hence it also

satisfies (8).

Imposing the initialization yt = 0, t ≤ 0, the model (1) is valid for any value of d and is a
type II fractional process in the terminology of Marinucci & Robinson (1999). The objective

function corresponding to this DGP considered by Chung & Baillie (1993), Beran (1995),

Tanaka (1999), and Nielsen (2004) is

LC (d, φ, θ, µ) = −T
2
ln

"
TX
t=1

µ
φ (L)

θ (L)
(1− L)d (yt − µ)

¶2#
, (10)

and we call the estimator that maximizes (10) the conditional maximum likelihood (CML)

estimator. Maximizing LC is equivalent to minimizing the usual (conditional) sum of squares

and hence this estimator is also referred to as the CSS estimator by some authors, e.g. Chung

& Baillie (1993) and Beran (1995). The CML estimator has the same asymptotic distribution

(8) as the EML estimator for any value of d and is computationally much less demanding.

Note also that the parametric estimators are asymptotically efficient in the classical sense

when the model is Gaussian and correctly specified.

2.1.2 Maximum Likelihood in the Frequency Domain

An alternative approximate MLE of the ARFIMA(p, d, q) model follows the idea of Whittle

(1951), who noted that for stationary models the covariance matrix Ω can be diagonalized by

transforming the model into the frequency domain. Fox & Taqqu (1986) showed that (when
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d ∈ (−1/2, 1/2)) the log-likelihood can then be approximated by

LF

¡
d, φ, θ, σ2

¢
= −

bT/2cX
j=1

∙
ln fy (λj) +

I (λj)

fy (λj)

¸
, (11)

where λj = 2πj/T are the Fourier frequencies, I (λ) = 1
2πT

¯̄̄PT
t=1 yte

itλ
¯̄̄2
is the periodogram

of yt, fy (λ) is the spectral density of yt given in (5), and bxc denotes the largest integer that
is not greater than x. Note that the FML estimator is invariant to the presence of a non-zero

mean, i.e. µ 6= 0, since j = 0 (the zero-frequency) is left out of the summation in (11).
The approximate frequency domain maximum likelihood (FML) estimator is defined as the

maximizer of (11) and was proposed by Fox & Taqqu (1986), who also proposed a continuously

integrated version of (11). Dahlhaus (1989) also assumed Gaussianity and considered the exact

likelihood function in the frequency domain. The FML estimator has the same asymptotic

properties as the EML estimator, i.e.
√
T -consistency and asymptotic normality, and when

the process is Gaussian, asymptotic efficiency. Finally, Giraitis & Surgailis (1990) relax the

Gaussianity assumption and analyze the Whittle estimate for linear processes, showing that

it is
√
T -consistent and asymptotically normal but no longer efficient, while Hosoya (1997)

extends the previous analysis to a multivariate framework.

2.2 Semiparametric Estimators

The semiparametric frequency domain estimators are based on the approximation (6) to the

spectral density. Two classes of semiparametric estimators have become very popular in empir-

ical work, the log-periodogram regression method suggested by Geweke & Porter-Hudak (1983)

and the local Whittle approach suggested by Künsch (1987). In the following we describe these

two estimators and some of the many extensions and improvements that have appeared in the

literature. Some earlier work on the (adjusted) rescaled range, or "R/S statistic", by Hurst

(1951) and Mandelbrot & Wallis (1969) or its modified version to allow for weak dependence

by Lo (1991) is not considered here. Instead, the reader is referred to Hauser (1997).

The semiparametric estimators enjoy robustness to short-run dynamics since they use only

information from the periodogram ordinates in the vicinity of the origin. Indeed, the short-run

dynamics in the model, i.e. the autoregressive and moving average polynomials φ (·) and θ (·) in
our model (1), does not even have to be specified. The drawback is that only

√
m-consistency
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is achieved, where m = m (T ) is a user-chosen bandwidth parameter, in comparison to
√
T -

consistency (and efficiency) in the parametric case. Thus, the semiparametric approach is much

less efficient than the parametric one since it requires at least m/T → 0.

2.2.1 Log-Periodogram Regression

Probably the most commonly applied semiparametric estimator is the log-periodogram regres-

sion (LPR) estimator introduced by Geweke & Porter-Hudak (1983) and analyzed in detail by

Robinson (1995b). Taking logs in (6) and inserting sample quantities we get the approximate

regression relationship

ln (I (λj)) = constant− 2d ln (λj) + error. (12)

The LPR estimator is defined as the OLS estimator in the regression (12) using j = 1, ...,m,

where m = m (T ) is a bandwidth number which tends to infinity as T → ∞ but at a slower

rate than T . Note that the estimator is invariant to a non-zero mean since j = 0 is left out of

the regression.

Under suitable regularity conditions, including yt being Gaussian (later relaxed by Velasco

(2000)) and a restriction on the bandwidth, Robinson (1995b) derived the asymptotically nor-

mal limit distribution for the LPR estimator when d is in the stationary and invertible range

(−1/2, 1/2) . The proof by Robinson (1995b) also employed trimming of the very lowest fre-
quencies as suggested by Künsch (1986), but following recent research, e.g. Hurvich, Deo &

Brodsky (1998), and the original suggestion of Geweke & Porter-Hudak (1983) the trimming

is not necessary and has been largely ignored in empirical work. We shall follow this practice

in our implementation of the estimator. Recently, Kim & Phillips (1999) and Velasco (1999b)

demonstrated that the range of consistency is d ∈ (−1/2, 1] and the range of asymptotic nor-
mality is d ∈ (−1/2, 3/4).

To reduce the asymptotic order of the bias, which can be severe in finite samples, see

Agiakloglou, Newbold & Wohar (1993), Andrews & Guggenberger (2003) have suggested to

replace the constant in (12) by the polynomial
PR

r=0 ξrλ
2r
j . Thus, the bias is reduced by

modelling the logarithm of the spectral density of the short-run dynamics in the vicinity of the

origin by a polynomial instead of a constant. We set R = 1 in our implementation of the bias

reduced log-periodogram regression (BRLPR) estimator.
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The limiting distribution of the LPR and BRLPR estimators for d ∈ (−1/2, 1/2) is given
by Robinson (1995b) and Andrews & Guggenberger (2003) as

√
m
³
d̂R − d

´
→d N

µ
0,
π2

24
cR

¶
, (13)

where c0 = 1 (R = 0) corresponds to the LPR estimator and c1 = 2.25 (R = 1) corresponds to

the BRLPR estimator. For other values of R see Andrews & Guggenberger (2003). Thus, the

variance of the BRLPR estimator is increased only by a multiplicative constant, but it achieves

a reduction in the asymptotic order of magnitude of the bias.

Another variant of LPR designed to model the short-run component in (12) in a more

flexible way is the pooled log-periodogram regression (PLPR) estimator by Shimotsu & Phillips

(2002b). This procedure allows the short-run component to vary across frequency bands and

at the same time utilizes information in the larger frequencies. The pooled estimator utilizes

(12) for the bands B0, . . . , BL (LPR uses only B0) and is given by

bdPLPR = PL
i=0

P
{j:λj∈Bi}

¡
Yji − Y .i

¢ ¡
Xji −X .i

¢
PL

i=0

P
{j:λj∈Bi}

¡
Xji −X .i

¢2 , (14)

where

Y .i =
1

m

X
{j:λj∈Bi}

Yji =
1

m

X
{j:λj∈Bi}

ln I (λj) ,

X .i =
1

m

X
{j:λj∈Bi}

Xji = − 1
m

X
{j:λj∈Bi}

ln
¡
4 sin2 (λj/2)

¢
,

and

Bi =

⎧⎨⎩
©
λj
¯̄
κi − π

2M < λj < κi +
π
2M

ª
, κi =

(2i+1)π
2M , i = 1, . . .M − 1,©

λj
¯̄
0 < λj <

π
M

ª
, κ0 = 0, i = 0,

are the frequency bands which have width π/M . Thus, M is a parameter that determines the

total number of distinct bands, M = T/(2m), and the procedure uses L bands with L → ∞
and L/M → 0. Note that the estimator still uses frequencies only in the vicinity of the origin

because mL/T → 0. The easiest way to compute (14) and simultaneously derive inference, is

to run the simple least squares model

Yji − Y .i = d
¡
Xji −X .i

¢
+ εji, (15)

10



i.e. the approach is analogous to the treatment of fixed effects in panel data regression.

When d ∈ (−1/2, 1/2) the PLPR estimator is asymptotically distributed according to
√
m
³
d̂PLPR − d

´
→d N

µ
0,

π2

24 (1 + Ξ)

¶
, (16)

where Ξ > 0 is a constant, see Shimotsu & Phillips (2002b). Thus, the asymptotic variance in

(16) is smaller than that of the LPR estimator in (13) at the expense of a potential increase in

the asymptotic bias (from using larger frequencies).

2.2.2 Local Whittle Approach

The other class of semiparametric frequency domain estimators we consider follows the local

Whittle approach suggested by Künsch (1987). The local Whittle (LW) estimator was analyzed

by Robinson (1995a) (who called it a Gaussian semiparametric estimator) and is attractive

because of its likelihood interpretation, nice asymptotic properties, and very mild assumptions.

The LW estimator is defined as the maximizer of the (local Whittle likelihood) function

Q (g, d) = − 1
m

mX
j=1

"
ln
³
gλ−2dj

´
+

I (λj)

gλ−2dj

#
. (17)

One drawback compared to log-periodogram estimation is that numerical optimization is

needed. However, the assumptions underlying this estimator are weaker than those of the LPR

estimator, and Robinson (1995a) showed that when d ∈ (−1/2, 1/2),
√
m(d̂LW − d)→d N(0, 1/4). (18)

Thus, the asymptotic distribution is extremely simple, facilitating easy asymptotic inference,

and in particular the estimator is more efficient than the LPR estimator. The ranges of con-

sistency and asymptotic normality for the LW estimator have been shown by Velasco (1999a)

and Phillips & Shimotsu (2004) to be the same as those of the LPR estimator.

An exact local Whittle (ELW) estimator has been proposed by Shimotsu & Phillips (2002a)

which avoids some of the approximations in the derivation of the LW estimator and is valid for

any value of d. The ELW estimator replaces the objective function (17) by the function

QE (g, d) = − 1
m

mX
j=1

∙
ln
³
gλ−2dj

´
+

I∆dy (λj)

g

¸
, (19)

11



where I∆dy (λ) =
1
2πT

¯̄̄PT
t=1

¡
∆dyt

¢
eitλ
¯̄̄2
is the periodogram of ∆dyt. The ELW estimator

satisfies (18) for any value of d and is thus not confined to any particular range of d values, but

it is however confined to zero-mean processes. In our implementation we use the feasible ELW

(FELW) estimator by Shimotsu (2002) which allows for a non-zero mean.

Andrews & Sun (2004) propose a generalization of the local Whittle estimator in the spirit

of the BRLPR estimator. Instead of approximating the spectral density of the short-run com-

ponent in a shrinking neighborhood of frequency zero by a constant, they approximate its

logarithm by a polynomial. This leads to the following likelihood function,

QR (g, d, β) = − 1
m

mX
j=1

⎡⎣lnµgλ−2dj exp

µ
−
XR

r=1
ξrλ

2r
j

¶¶
+

I (λj)

gλ−2dj exp
³
−PR

r=1 ξrλ
2r
j

´
⎤⎦ .
(20)

The maximization of (20) yields the local polynomial Whittle (LPW) estimator of d for d ∈
(−1/2, 1/2). As shown in Andrews & Sun (2004) this method increases the asymptotic variance
of d in (18) by the multiplicative constant cR (as in the BRLPR estimator (13) above), but

simultaneously reduces the order of magnitude of the asymptotic bias. As with the BRLPR

estimator we use R = 1 in our implementation of the LPW estimator.

For both the log-periodogram regression method and the local Whittle approach we are left

with a choice of bandwidth parameter, m. Results on optimal (mean squared error minimizing)

choice of bandwidth for the log-periodogram regression have been derived by Hurvich et al.

(1998) and results for the local Whittle approach have been derived by Henry & Robinson

(1996). In both cases the optimal bandwidth is found to be a multiple of T 0.8, where the

multiplicative constant depends on the smoothness of the spectral density near the origin, i.e.

on the short-run dynamics of the process. In particular, Hurvich et al. (1998) argued that

performance gains can be obtained by considering larger bandwidths than the
√
T originally

suggested by Geweke & Porter-Hudak (1983). However, generally the optimal bandwidths have

not been applied much in practice so we use two different (arbitrarily chosen) bandwidths,

m =
¥
T 0.5

¦
and m =

¥
T 0.65

¦
, where bxc denotes the integer part of x, in our implementation

below.
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2.3 Wavelet Estimators

An orthogonal wavelet is defined as any function ψ(t), whose collection of dilations (scales), j,

and translations, k,

ψj,k (t) ≡ 2−j/2ψ
¡
2−jt− k

¢
, j, k ∈ Z = {0,±1,±2, . . .} , (21)

form an orthonormal basis of L2, the space of all square integrable functions on the extended

real line. Any continuous function which decreases rapidly to zero as t → ±∞ and oscillates¡R
ψ(t)dt = 0

¢
qualifies as a wavelet.

A function yt ∈ L2 with t = 0, 1, . . . , 2p − 1, where p ∈ Z can be expanded into a wavelet
series,

yt =
∞X

j=−∞

∞X
k=−∞

wj,kψj,k (t) dt, (22)

with coefficients

wj,k = 2
j/2

Z
y (t)ψj,k(t)dt. (23)

By design the wavelets strength rests in its ability to simultaneously localize a process in

time and scale. At high scales, the wavelet has a small centralized time support enabling it

to focus in on short lived time phenomena like a singularity point. At low scales, the wavelet

has a large time support allowing it to identify long periodic behavior. By moving from low

to high scales, the wavelet zooms in on the behavior of a process at a particular point in time,

identifying singularities, jumps, and cusps. Alternatively, the wavelet can zoom out to reveal

the long, smooth features of a series. In our implementation we use the Haar and Daubechies

(1988) wavelets which are most commonly applied in the literature, e.g. the references cited

below.

2.3.1 Wavelet OLS Estimator

Using the logarithmic decay of the autocovariance function of a long memory process, Jensen

(1999) showed that a log-linear relationship (suggested by McCoy & Walden (1996) and John-

stone & Silverman (1997)) exists between the variance of the wavelet coefficient from the long

memory process and its scale, which can be used to estimate d by least squares regression. Leav-

ing out high level wavelet coefficients results in robustness to the short-run dynamics similar

to the LPR estimator above, see McCoy & Walden (1996) and Tse et al. (2002).
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In particular, Jensen (1999) shows that for d ∈ (−1/2, 1/2),

wj,k →d N
³
0, σ22−2jd

´
as j → 0, (24)

when yt is a fractionally integrated noise process, i.e. when p = q = 0. If we define the variance

of wj,k as R (j) the intuitive log-linear relationship

lnR(j) = lnσ2 − d ln 22j (25)

arises. To estimate d through (25), an estimate of the variance is required. Jensen (1999)

proposes

bR(j) = 2−j 2j−1X
k=0

w2j,k, j = 0, ..., p− 1, (26)

and the relationship (25) thus gives rise to the regression

ln R̂(j) = constant− d ln 22j + error, j = J, ..., p− 1−K, (27)

which can be estimated by ordinary least squares yielding the wavelet OLS (WOLS) estimator.

The WOLS estimator is consistent and asymptotically normal when d ∈ (−1/2, 1/2), see Jensen
(1999). The trimming of the lowest J scales was suggested by Jensen (1999) to avoid boundary

effects, and the trimming of the highest K scales was suggested by McCoy & Walden (1996)

and Tse et al. (2002) (for the wavelet MLE, see below) since (24) is valid for small j only.

2.3.2 Maximum Likelihood in Scale and Space (Wavelet MLE)

An alternative to the (approximate) ML estimators described above is to use an approximate

Wavelet ML (WML) estimator. Following the arguments of McCoy & Walden (1996) and

Johnstone & Silverman (1997), see also Jensen (1998, 2000), we assume that (24) is satisfied,

where σ2 depends on other parameters of the model but does not vary with j.

It follows that, ignoring wavelet coefficients j > p−1−K, the approximate wavelet likelihood
function is given by

LW (d, σ
2) = −1

2

p−1−KX
j=0

⎡⎣¡2j − 1¢ ln³σ22−2jd´+ 2j−1X
k=0

w2j,k
σ22−2jd

⎤⎦ (28)

and the WML estimator is obtained by maximizing LW . Since (24) is only valid for small j, we

follow McCoy & Walden (1996) and Tse et al. (2002) and leave out the K largest scales in the
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likelihood function (28) to achieve robustness to the possible presence of short-run dynamics

in the same sense as the semiparametric frequency domain estimators.

3 Finite Sample Comparison

In this section we investigate the finite sample bias and root mean squared error (RMSE) of

the estimation methods outlined in section 2 above. The objective of this exercise is to shed

light on which estimator is most accurate in practical application with realistic sample sizes.

In the next subsections we first present the Monte Carlo setup and subsequently the results.

3.1 Monte Carlo Setup

For each Monte Carlo DGP we generated 1, 000 artificial time series with 128, 256, and 512

observations by premultiplying a vector of i.i.d. standard normal variates by the Choleski

decomposition of the autocovariance matrix of the desired process, i.e. the stationary type I

fractionally integrated process in the terminology of Marinucci & Robinson (1999), see also

Beran (1994, pp. 215-217). The simulations were made using Gauss v3.6 and Ox v3.3 with the

Arfima package, see Doornik (2001) and Doornik & Ooms (2001). The sample sizes were chosen

as powers of two in order to avoid contaminating the results with biases introduced by the effects

of padding used in Fourier and wavelet transforms when the sample size is not a power of two.

Furthermore, they were chosen to reflect realistic empirical samples from macroeconomic or

financial data, see the examples of empirical references given in the introduction. Although

financial samples based on high frequency data sets may some times be many times larger than

the sample sizes considered here, most often empirical analyses are based on some aggregated

measures such as monthly realized volatility/variance in which case the sample sizes considered

here are very relevant.

We consider four different data generating processes (DGPs) in our Monte Carlo study.

The first one is the simple ARFIMA(0,d,0) model,

(1− L)d (yt − µ) = εt, εt ∼ i.i.d.N(0, σ2), (29)

where the parameter values µ = 0 and σ2 = 1 are chosen for the simulations (note that

these values are not enforced in the estimation, i.e. even though µ = 0, the parameter is still
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estimated in the parametric time domain models). For the parameter of interest, d, we consider

the values {−0.25, 0, 0.25, 0.4}. Here, the case d = 0 corresponds to estimating d when in fact
data is not (fractionally) integrated.

The next two models we consider are the ARFIMA(1,d,0) and ARFIMA(0,d,1) models given

by

(1− φL) (1− L)d (yt − µ) = εt, εt ∼ i.i.d.N(0, σ2), (30)

(1− L)d (yt − µ) = (1 + θL) εt, εt ∼ i.i.d.N(0, σ2), (31)

where again µ = 0 and σ2 = 1. For φ and θ we use the values {−0.4, 0, 0.4, 0.8}, where φ = 0
and θ = 0 correspond to the cases where an autoregressive or moving average term is estimated

even though it is not present in the data. For the fractional integration parameter d, we choose

the same values as in the simpler model (29).

Thus, the two DGPs (30) and (31) are more complicated than (29), introducing short-run

dynamics into the model. It is important to note that for the parametric estimation procedures,

(29) is very different from (30) with φ = 0 and from (31) with θ = 0. The DGPs are of course

the same, but in the former case it is assumed known that φ = θ = 0 whereas in the latter two

cases φ or θ is estimated. Obviously, estimating φ or θ when it is not present (i.e. overfitting

the model) may introduce a finite sample bias into the estimate of the parameter of interest,

d. Thus, for the parametric models the cases with φ = 0 or θ = 0 correspond to a weak

form of misspecification where the model is overspecified and irrelevant short-run dynamics is

estimated.

On the other hand, for the semiparametric and wavelet estimation procedures the short-

run dynamics is not specified. That is, there is no need to specify whether or not φ and θ are

estimated and thus the DGP (29) and the DGPs (30) and (31) with φ = θ = 0 will yield the

same results. Hence, for the semiparametric and wavelet methods we do not report the results

for (30) with φ = 0 and (31) with θ = 0.

Finally, we consider the ARFIMA(0,d,0)-ARCH(1) model of, e.g., Baillie et al. (1996) and

Ling & Li (1997),

(1− L)d (yt − µ) = ut, ut = h
1/2
t εt, ht = α+ βu2t−1, εt ∼ i.i.d.N(0, 1), (32)

where µ = 0 as before. For the conditional variance parameters we consider the values {0.4, 0.8}
for β, and the values for α are chosen such that the unconditional variance is unity (i.e.
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α = 1 − β) to match model (29). For the fractional integration parameter d, we choose the

same values as in the simpler model (29).

Unlike the models (30) and (31), the model in (32) is not completely parameterized by our

parametric methods. It thus corresponds to a weak form of model misspecification where the

ARCH part of the model is left unspecified and white noise errors are assumed for the estima-

tion. However, consistency of the parametric methods in section 2.1 relies only on the errors

being martingale differences and thus even though the ARCH part of the model is misspeci-

fied they are still consistent, although probably inefficient compared to a fully parameterized

method that takes the conditional heteroskedasticity into account. In effect, the DGP (32)

extends the simpler DGP (29) by introducing errors that have conditional heteroskedasticity

and hence fat tails, thereby relaxing one of the more restrictive assumptions of the previous

DGPs.

In Tables 1-21 the results of our Monte Carlo study are presented. Tables 1-7 display the

results for the simple DGP (29), and Tables 8-14 and 15-21 display the results for the more

complicated DGPs (30) and (31), respectively. Finally, the results for the DGP (32) in which

the errors exhibit ARCH are in fact very similar to those in Tables 1-7 for the ARFIMA(0,d,0)

model. Hence, to conserve space, the tables with the results for the ARFIMA(0,d,0)-ARCH(1)

DGP (32) are presented in a separate appendix, which is available from the authors’ websites.

For each DGP, the first table (i.e. Tables 1, 8, and 15) presents the results for the parametric

methods of section 2.1. The next three tables (i.e. Tables 2-4, 9-11, and 16-18) present the

results for the semiparametric approaches of section 2.2, and the last three tables for each DGP

(i.e. Tables 5-7, 12-14, and 19-21) present the results for the wavelet methods of section 2.3.

To present the results of the tables in the most comprehensible way, we have marked in bold

font the cases with the lowest biases and the cases with the lowest RMSEs across each class of

estimator (parametric, semiparametric, and wavelet) and for each DGP and parameter value.

3.2 Monte Carlo Results for Parametric Estimators

Consider first the Monte Carlo results for the parametric methods. Recall that these estimation

methods use all available information, both in terms of utilizing all observations but also in

terms of parameterizing the true DGP of the series at hand (except for the cases with φ = 0,

θ = 0, or with ARCH). Thus, it is interesting to see how well these methods perform compared
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to the semiparametric and wavelet methods when handling the contamination caused by the

presence of an AR or MA parameter as the latter estimation methods do not parameterize the

short-run dynamics nor do they use all available observations.

Furthermore, we expect the parametric time domain estimators to be systematically neg-

atively biased compared to the parametric frequency domain estimator, FML. This is caused

by the fact that the methods differ in the treatment of the mean, i.e. of the frequency zero

in the periodogram. While this frequency is excluded from the FML estimator, it is implicitly

included in the time domain estimators through the autocovariance function. As we consider

zero-mean processes in the Monte Carlo study, the periodogram is zero at frequency zero, how-

ever, for d > 0 the spectral density approaches infinity as the frequency approaches zero. Thus,

the time domain estimators will try to model the upward slope of the true spectral density (and

thus of the periodogram) for low frequencies, but at the same time have to take into account

estimating the mean which is at frequency zero. Consequently, we expect these estimators to

suffer from a negative bias, see also Cheung & Diebold (1994) and Hauser (1999).

Turning to the results in Table 1 we find, as expected, that the time domain estimators

generally exhibit a negative bias, which becomes more pronounced when adding short-run noise

in Tables 8 and 15. This downward bias is especially high when the AR coefficient is 0 or .4, but

the estimation methods seem fairly robust towards positive MA noise and curiously also towards

strong, positive AR noise (i.e. φ = .8). The phenomenon that autoregressive coefficients of

moderate size are most troublesome for the parametric estimation methods has previously been

noted from a theoretical viewpoint by Nielsen (2004, p. 131). Thus, the time domain estimators

are very sensitive to the inclusion of short-run dynamics. Among the time domain estimators

we generally find the CML estimator to possess the lowest bias. Furthermore, for relatively

small sample sizes, i.e. for T ≤ 256, Table 8 shows that the time domain estimators suffer from
a rather severe negative bias (of the order -.05 to -.20) when mistaking the true DGP of the

series at hand to be an ARFIMA(1, d, 0) when it is actually an ARFIMA(0, d, 0). Fortunately,

the bias is not as severe for ARFIMA(0, d, 1) processes, see Table 15.

The results in the separate appendix, which illustrate the perhaps more empirically realistic

ARFIMA(0, d, 0)-ARCH(1) scenario (32) where the errors are conditionally heteroskedastic,

show that the biases for the parametric estimators are only slightly more negative compared

to the case of white noise errors. However, as the ARCH effect increases (β increases) the
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estimators generally become a little more biased with slightly higher RMSEs. Hence, the

parametric estimators seem robust towards ARCH innovations which is in accordance with

the theory where the innovations need only be martingale differences for the estimators to be

consistent.

Compared to the time domain estimators, the frequency domain estimator, FML, is vastly

superior with respect to bias. It does not suffer from any of the above mentioned problems,

i.e. it is robust towards both AR and MA noise, ARCH innovations, and it does not possess

noticeable bias when one wrongfully overfits the true DGP. In addition to the lower bias, the

FML estimator also obtains an improvement in the RMSE, especially in the ARFIMA(0, d, 0)

and ARFIMA(1, d, 0) cases (except with φ = 0.8).

Thus, the FML estimator is superior with respect to both bias and RMSE compared to

parametric time domain estimators.

3.3 Monte Carlo Results for Semiparametric Estimators

We next turn to the results for the semiparametric methods described above in section 2.2.

Contrary to the parametric methods the semiparametric methods utilize only frequencies in

a shrinking neighborhood of frequency zero. The number of frequencies used is governed by the

bandwidth m, and in this Monte Carlo study we focus on m =
¥
T 0.5

¦
and m =

¥
T 0.65

¦
, where

bxc denotes the integer part of x. When no short-run dynamics is present in the data it should
be preferable to use the larger bandwidth, but except for the bias correction (local polynomial)

methods the opposite would typically be the case when short-run dynamics is present.

In the ARFIMA(0, d, 0) and ARFIMA(0, d, 0)-ARCH(1) cases the biases are generally very

low as evident from Tables 2-4 and the corresponding tables in the separate appendix. I.e.,

the estimators seem almost unbiased in the case of ARCH innovations indicating that the

theoretical robustness towards such innovations carries over to practice. This is also supported

by the fact that the biases are independent of the size of β (the ARCH parameter).

Comparing the LW estimator with the modifications by Shimotsu & Phillips (2002a) and

Shimotsu (2002) (FELW) and Andrews & Sun (2004) (LPW), we find the accuracy of the FELW

estimator not to be noticeably different neither in bias nor in RMSE, see Table 3. However,

this does not apply for the LPW estimator in Table 4 as this estimator exhibits higher bias and

RMSE. Of course the increase in RMSE was expected in light of the asymptotic variance of
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the estimator, see section 2.2.2. Similarly, the modifications of the LPR estimator by Shimotsu

& Phillips (2002b) (PLPR) has approximately the same accuracy as the LPR estimator (i.e.,

although the PLPR estimator has smaller asymptotic variance than the LPR estimator this

does not seem to carry over to practice), see Table 2, but as expected from (13) the BRLPR

estimator by Andrews & Guggenberger (2003) in Table 4 has a higher RMSE.

When introducing short-run dynamics we generally find the estimators to be biased because

the low frequencies are contaminated by the higher frequencies of the spectral density, especially

in the case of positive AR noise. In the ARFIMA(1, d, 0) case in Tables 9-11 the biases increase

dramatically when the short-run noise becomes more persistent. The methods handle negative

AR noise quite well, but except for the local polynomial methods LPW and BRLPR, it is

still crucial to use a smaller bandwidth as the biases (for all φ) and even RMSEs (for φ = .8)

decrease noticeably whenm is reduced from
¥
T 0.65

¦
to
¥
T 0.5

¦
. On the contrary, with the proper

choice of bandwidth (m =
¥
T 0.5

¦
) the estimation methods seem more robust towards MA noise,

see Tables 16-18 where the biases are fairly small regardless of the size of the MA parameter,

although the lowest biases are obtained for positive values. However, this is expected since MA

noise affects the short-run part of the spectral density, i.e. the higher frequencies, and thus

contaminates the long-run part less than the AR noise does.

For the ARFIMA(1, d, 0) series the FELW and PLPR estimators are again very similar to

their original LW and LPR counterparts with respect to both bias and RMSE (Tables 9 and

10). On the other hand, in the presence of strong autoregressive noise the usefulness of the

LPW and BRLPR estimators is clearly revealed in Table 11. Approximating the logarithm of

the short-run component of the spectral density by a polynomial instead of a constant seems

very much justified when the short-run noise is persistent since the bias of the LPW estimator

is dramatically less than the LW and FELW estimators. As shown by Andrews & Sun (2004)

this reduction does not come without a sacrifice as the variance increases by a multiplicative

constant (in our case with R = 1, the constant is c1 = 2.25), which is also observed from the

RMSEs in Table 11. For the BRLPR estimator, the increase in the RMSE compared to the

LPR estimator is not as pronounced as the increase in RMSE of the LPW estimator compared

to the LW estimator, but the bias improvement is also smaller.

Contrary to the case with AR noise, when focusing on short-run MA contamination our

results in Table 18 give no special justification of the LPW estimator. However, the BRLPR
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estimator still performs favorably compared to the LPR and PLPR estimators in Table 16.

As mentioned above it is generally preferable to use a smaller bandwidth when short-run

dynamics is present in the data. This is actually not the case for the LPW and BRLPR

estimators in the ARFIMA(0, d, 1) case where the opposite is true, see Table 18. That is, the

LPW and BRLPR estimators are very robust to MA noise because of the way they approximate

the spectral density of the short-run noise by a polynomial, and it is thus possible to choose a

higher bandwidth (in the presence of MA noise) without incurring a large increase in bias.

In sum, the results for the semiparametric estimators reveal the need for the LPW and

BRLPR estimators when persistent AR noise is present in the data. With the exception of the

FML estimator, we find that the semiparametric methods perform better than the parametric

methods in several cases. Thus, the semiparametric procedures may be preferred because

of their simplicity, i.e. we do not need to know the true DGP of the investigated series to

consistently estimate the long memory parameter.

3.4 Monte Carlo Results for Wavelet Estimators

Finally, we turn to the results for the wavelet methods described in section 2.3.

As a counterpart to the semiparametric LPR estimator we have the WOLS procedure.

From Tables 5 and 6 and the corresponding tables in teh separate appendix we note that for

the ARFIMA(0, d, 0) and ARFIMA(0, d, 0)-ARCH(1) cases the biases are similar and fairly low

but still higher than for most of the other estimators. Thus, the WOLS estimator is relatively

robust towards ARCH effects in the innovations and the biases remain fairly independent of

the size of β. We typically find that the WOLS estimator is negatively biased using both

the Haar wavelet (Table 5) and the Daubechies4 wavelet (Table 6). Other variants of the

Daubechies wavelet have also been applied and the results are virtually indistinguishable from

the Daubechies4 results presented. For the wavelet MLE in the ARFIMA(0, d, 0) case (Table

7) the bias generally changes sign from negative to positive d. This suggests that the WML

estimator cannot fully capture the extent of the true memory parameter, i.e. the bias is positive

when d is negative and vice versa. Interestingly, this is not the case when the innovations are

conditionally heteroskedastic, see the separate appendix. The most successful of the wavelet

estimators seems to be the WML estimator with trimming of the highest K = 2 scales which

obtains biases in line with the parametric time domain methods in some cases (white noise
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errors, ARCH errors, or weak serial correlation), and thus in particular careful trimming can

render the WML estimator robust to ARCH errors. For the WOLS estimator it seems that

there is something gained from trimming the lowest J = 2 scales to remove boundary effects,

see Jensen (1999), when there is no short-run dynamics present in the data.

When the noise from the AR parameter is large (φ = .8 in Tables 12 and 13) it is preferable

to follow Tse et al. (2002) and trim the highest scales for the WOLS estimator (similar to

choosing a smaller bandwidth in the semiparametric approach), but with moderate AR noise

(φ = .4) it is preferable not to trim at all. If trimming is not used when φ = .8 the estimates

become severely positively biased. Furthermore, the WOLS estimator seems almost useless in

the presence of a negative AR parameter where the biases are very negative even if trimming

is used. Thus, the procedure cannot distinguish short- and long-run dynamics in this case.

When introducing MA dynamics into the series (Tables 19 and 20) one observes a failure of

the WOLS estimator to render reliable estimates of the long memory parameter. If θ > 0, the

method is fairly usable (if no trimming is employed) with biases in line with the parametric

time domain procedures, but if θ < 0 or if any kind of trimming is applied (of low or high

scales) the WOLS estimator becomes heavily biased.

In the presence of short-run dynamics the trimming of the highest scales becomes very

important for the WML estimator, see Tables 14 and 21. With sufficient trimming (K = 4), the

biases in the ARFIMA(1,d,0) case and the ARFIMA(0,d,1) case with a positive MA parameter

are comparable to those of the parametric time domain methods. However, the RMSEs are

noticeable higher because the trimming of the highest scales entails a large decrease in the

sample size effectively used in estimating d.

Generally, in terms of biases, the more smooth Daubechies wavelet filters are preferred to

the Haar filter.

4 Conclusions

In this paper we have compared through Monte Carlo simulations the finite sample properties

of estimators of the fractional differencing parameter, d, in ARFIMA models. We have consid-

ered methods in the frequency domain, time domain, and wavelet based approaches and both

parametric and semiparametric estimation methods, and the methods were compared in terms
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of finite sample bias and RMSE.

Our results show that among the parametric methods the frequency domain maximum

likelihood procedure is superior with respect to both bias and RMSE. However, our results

also show that the (sometimes quite severe) bias of the parametric time domain procedures

is alleviated when larger sample sizes (e.g. 512) are considered. For all the estimators under

consideration we find the bias to improve and the RMSE to decrease as the sample size increases

from 128 to 256 and 512.

Furthermore, according to our results all the methods under consideration are rather robust

to the presence of ARCH effects, which are not parameterized, in the sense that the finite sample

biases and RMSEs do not increase much compared to the case with white noise errors.

Among the semiparametric (frequency domain and wavelet) methods our results clearly

demonstrate the usefulness of the bias reduced log-periodogram regression and local polynomial

Whittle estimators of Andrews & Guggenberger (2003) and Andrews & Sun (2004), respectively.

In several cases these methods even outperform the correctly specified time domain parametric

methods. Furthermore, when other methods are very heavily biased due to contamination from

short-run dynamics, these estimators show a much lower bias at the expense of an increase in

their RMSE. The bias reduction is due to their modelling of the logarithm of the spectral density

of the short-run component by a polynomial instead of a constant. Finally, without sufficient

trimming of scales the wavelet based methods are heavily biased when short-run dynamics is

introduced.

A natural next step towards a deeper understanding of the simulation findings presented

here would be to study the higher-order asymptotic properties of the involved estimators.

Some recent work has already been done in this direction. For example, Lieberman, Rousseau

& Zucker (2003) and Andrews & Lieberman (2005) derive valid Edgeworth expansions for

parametric MLEs of ARFIMA models, Lieberman & Phillips (2004) present an explicit second-

order asymptotic expansion for the MLE in the ARFIMA(0,d,0) case, and Giraitis & Robinson

(2003) derive Edgeworth expansions for the semiparametric local Whittle estimator. For more

details on this course of study, we refer the reader to these articles.

23



References

Agiakloglou, C., Newbold, P. & Wohar, M. (1993), ‘Bias in an estimator of the fractional

difference parameter’, Journal of Time Series Analysis 14, 235—246.

An, S. & Bloomfield, P. (1993), ‘Cox and Reid’s modification in regression models with corre-

lated errors’, Technical Report, North Carolina State University .

Andersen, T. G., Bollerslev, T., Diebold, F. X. & Ebens, H. (2001), ‘The distribution of realized

stock return volatility’, Journal of Financial Economics 61, 43—76.

Andersen, T. G., Bollerslev, T., Diebold, F. X. & Labys, P. (2001), ‘The distribution of exchange

rate volatility’, Journal of the American Statistical Association 96, 42—55.

Andrews, D. W. K. & Guggenberger, P. (2003), ‘A bias-reduced log-periodogram regression

estimator for the long-memory parameter’, Econometrica 71, 675—712.

Andrews, D. W. K. & Lieberman, O. (2005), ‘Valid Edgeworth expansions for the Whittle max-

imum likelihood estimator for stationary long-memory Gaussian time series’, Econometric

Theory 21, 710—734.

Andrews, D. W. K. & Sun, Y. (2004), ‘Adaptive local polynomial Whittle estimation of long-

range dependence’, Econometrica 72, 569—614.

Baillie, R. T. (1996), ‘Long memory processes and fractional integration in econometrics’,

Journal of Econometrics 73, 5—59.

Baillie, R. T., Chung, C.-F. & Tieslau, M. A. (1996), ‘Analysing inflation by the fractionally

integrated ARFIMA-GARCH model’, Journal of Applied Econometrics 11, 23—40.

Beran, J. (1994), Statistics for Long-Memory Processes, Chapman-Hall, New York.

Beran, J. (1995), ‘Maximum likelihood estimation of the differencing parameter for invertible

short and long memory autoregressive integrated moving average models’, Journal of the

Royal Statistical Society Series B 57, 659—672.

24



Cheung, Y.-W. & Diebold, F. X. (1994), ‘On maximum-likelihood estimation of the differencing

parameter of fractionally-integrated noise with unknown mean’, Journal of Econometrics

62, 301—316.

Chung, C.-F. & Baillie, R. T. (1993), ‘Small sample bias in conditional sum of squares estima-

tors of fractionally integrated ARMA models’, Empirical Economics 18, 791—806.

Cox, D. R. & Reid, N. (1987), ‘Parameter orthogonality and approximate conditional inference

(with discussion)’, Journal of the Royal Statistical Society Series B 49, 1—39.

Dahlhaus, R. (1989), ‘Efficient parameter estimation for self-similar processes’, Annals of Sta-

tistics 17, 1749—1766.

Daubechies, I. (1988), ‘Orthonormal bases of compactly supported wavelets’, Communications

on Pure and Applied Mathematics 41, 909—996.

Diebold, F. X., Husted, S. & Rush, M. (1991), ‘Real exchange rates under the gold standard’,

Journal of Political Economy 99, 1252—1271.

Diebold, F. X. & Inoue, A. (2001), ‘Long memory and regime switching’, Journal of Econo-

metrics 105, 131—159.

Diebold, F. X. & Rudebusch, G. D. (1989), ‘Long memory and persistence in aggregate output’,

Journal of Monetary Economics 24, 189—209.

Diebold, F. X. & Rudebusch, G. D. (1991), ‘Is consumption too smooth? Long memory and

the Deaton paradox’, Review of Economics and Statistics 73, 1—9.

Doornik, J. A. (2001), Ox: An Object-Oriented Matrix Language, 4th edn, Timberlake Consul-

tants Press, London.

Doornik, J. A. & Ooms, M. (2001), ‘A package for estimating, forecasting and simulating arfima

models: Arfima package 1.01 for Ox’, Working Paper, Nuffield College, Oxford .

Fox, R. & Taqqu, M. S. (1986), ‘Large-sample properties of parameter estimates for strongly

dependent stationary gaussian series’, Annals of Statistics 14, 517—532.

25



Geweke, J. & Porter-Hudak, S. (1983), ‘The estimation and application of long memory time

series models’, Journal of Time Series Analysis 4, 221—238.

Gil-Alana, L. A. & Robinson, P. M. (1997), ‘Testing of unit root and other non-stationary

hypotheses in macroeconomic time series’, Journal of Econometrics 80, 241—268.

Giraitis, L. & Robinson, P. M. (2003), ‘Edgeworth expansions for the semiparametric Whittle

estimator of long memory’, Annals of Statistics 31, 1325—1375.

Giraitis, L. & Surgailis, D. (1990), ‘A central limit theorem for quadratic forms in strongly de-

pendent linear variables and its application to asymptotic normality of Whittle’s estimate’,

Probability Theory and Related Fields 86, 87—104.

Granger, C. W. J. (1980), ‘Long memory relationships and the aggregation of dynamic models’,

Journal of Econometrics 14, 227—238.

Granger, C. W. J. & Joyeux, R. (1980), ‘An introduction to long memory time series models

and fractional differencing’, Journal of Time Series Analysis 1, 15—29.

Hassler, U. & Wolters, J. (1995), ‘Long memory in inflation rates: International evidence’,

Journal of Business and Economic Statistics 13, 37—45.

Hauser, M. A. (1997), ‘Semiparametric and nonparametric testing for long memory: A Monte

Carlo study’, Empirical Economics 22, 247—271.

Hauser, M. A. (1999), ‘Maximum likelihood estimators for ARMA and ARFIMA models: A

Monte Carlo study’, Journal of Statistical Planning and Inference 80, 229—255.

Henry, M. & Robinson, P. M. (1996), Bandwidth choice in Gaussian semiparametric estimation

of long range dependence, in P. M. Robinson & M. Rosenblatt, eds, ‘Athens Conference

on Applied Probability and Time Series Analysis, Volume II: Time Series Analysis, In

Memory of E. J. Hannan’, Springer, New York, pp. 220—232.

Henry, M. & Zaffaroni, P. (2003), The long range dependence paradigm for macroeconomics

and finance, in P. Doukhan, G. Oppenheim & M. S. Taqqu, eds, ‘Theory and Applications

of Long-Range Dependence’, Birkhäuser, Boston, pp. 417—438.

26



Hosking, J. R. M. (1981), ‘Fractional differencing’, Biometrika 68, 165—176.

Hosoya, Y. (1997), ‘A limit theory for long-range dependence and statistical inference on related

models’, Annals of Statistics 25, 105—137.

Hurst, H. E. (1951), ‘Long-term storage capacity of reservoirs’, Transactions of American Civil

Engineers 116, 770—779.

Hurvich, C. M., Deo, R. S. & Brodsky, J. (1998), ‘The mean squared error of Geweke and

Porter-Hudak’s estimator of the memory paramater of a long memory time series’, Journal

of Time Series Analysis 19, 19—46.

Jensen, M. J. (1998), ‘An approximate wavelet MLE of short- and long-memory parameters’,

Studies in Nonlinear Dynamics and Econometrics 3, 239—253.

Jensen, M. J. (1999), ‘Using wavelets to obtain a consistent ordinary least squares estimator

of the long-memory parameter’, Journal of Forecasting 18, 17—32.

Jensen, M. J. (2000), ‘An alternative maximum likelihood estimator of long-memory processes

using compactly supported wavelets’, Journal of Economic Dynamics and Control 24, 361—

387.

Johnstone, J. M. & Silverman, B. W. (1997), ‘Wavelet threshold estimators for data with

correlated noise’, Journal of the Royal Statistical Society Series B 59, 319—351.

Kim, C. S. & Phillips, P. C. B. (1999), ‘Log periodogram regression in the nonstationary case’,

Mimeo, Yale University .

Künsch, H. R. (1986), ‘Discrimination between monotonic trends and long-range dependence’,

Journal of Applied Probability 23, 1025—1030.

Künsch, H. R. (1987), Statistical aspects of self-similar processes, in Y. Prokhorov & V. V.

Sazanov, eds, ‘Proceedings of the First World Congress of the Bernoulli Society’, VNU

Science Press, Utrecht, pp. 67—74.

Lieberman, O. & Phillips, P. C. B. (2004), ‘Expansions for the distribution of the maximum

likelihood estimator of the fractional difference parameter’, Econometric Theory 20, 464—

484.

27



Lieberman, O., Rousseau, J. & Zucker, D. M. (2003), ‘Valid Edgeworth expansions for the max-

imum likelihood estimator of the parameter of a stationary, Gaussian, strongly dependent

series’, Annals of Statistics 31, 586—612.

Ling, S. & Li, W. K. (1997), ‘On fractionally integrated autoregressive moving-average time

series models with conditional heteroskedasticity’, Journal of the American Statistical

Association 92, 1184—1194.

Lo, A. W. (1991), ‘Long term memory in stock market prices’, Econometrica 59, 1279—1313.

Mandelbrot, B. B. (1982), The Fractal Geometry of Nature, W. H. Freeman and Company,

New York.

Mandelbrot, B. B. &Wallis, T. R. (1969), ‘Robustness of the rescaled range R/S in the measure-

ment of noncyclic long run statistical dependence’,Water Resources Research 5, 967—988.

Marinucci, D. & Robinson, P. M. (1999), ‘Alternative forms of fractional Brownian motion’,

Journal of Statistical Planning and Inference 80, 111—122.

McCoy, E. J. & Walden, A. T. (1996), ‘Wavelet analysis and synthesis of stationary long-

memory processes’, Journal of Computational and Graphical Statistics 5, 26—56.

Nielsen, M. Ø. (2004), ‘Efficient likelihood inference in nonstationary univariate models’, Econo-

metric Theory 20, 116—146.

Parke, W. R. (1999), ‘What is fractional integration?’, Review of Economics and Statistics

81, 632—638.

Phillips, P. C. B. & Shimotsu, K. (2004), ‘Local Whittle estimation in nonstationary and unit

root cases’, Annals of Statistics 32, 656—692.

Robinson, P. M. (1978), ‘Statistical inference for a random coefficient autoregressive model’,

Scandinavian Journal of Statistics 5, 163—168.

Robinson, P. M. (1994), Time series with strong dependence, in C. A. Sims, ed., ‘Advances in

Econometrics’, Cambridge University Press, Cambridge, pp. 47—95.

28



Robinson, P. M. (1995a), ‘Gaussian semiparametric estimation of long range dependence’,

Annals of Statistics 23, 1630—1661.

Robinson, P. M. (1995b), ‘Log-periodogram regression of time series with long range depen-

dence’, Annals of Statistics 23, 1048—1072.

Robinson, P. M. (2003), Long-memory time series, in P. M. Robinson, ed., ‘Time Series With

Long Memory’, Oxford University Press, Oxford, pp. 4—32.

Shimotsu, K. (2002), ‘Exact local Whittle estimation of fractional integration with unknown

mean and time trend’, Department of Economics Discussion Paper No. 543, University of

Essex .

Shimotsu, K. & Phillips, P. C. B. (2002a), ‘Exact local Whittle estimation of fractional inte-

gration’, Forthcoming in Annals of Statistics .

Shimotsu, K. & Phillips, P. C. B. (2002b), ‘Pooled log periodogram regression’, Journal of

Time Series Analysis 23, 57—93.

Sowell, F. B. (1992a), ‘Maximum likelihood estimation of stationary univariate fractionally

integrated time series models’, Journal of Econometrics 53, 165—188.

Sowell, F. B. (1992b), ‘Modeling long run behavior with the fractional ARIMA model’, Journal

of Monetary Economics 29, 277—302.

Tanaka, K. (1999), ‘The nonstationary fractional unit root’, Econometric Theory 15, 549—582.

Tse, Y. K., Ahn, V. V. & Tieng, Q. (2002), ‘Maximum likelihood estimation of the fractional

differencing parameter in an ARFIMAmodel using wavelets’,Mathematics and Computers

in Simulation 59, 153—161.

Velasco, C. (1999a), ‘Gaussian semiparametric estimation of non-stationary time series’, Jour-

nal of Time Series Analysis 20, 87—127.

Velasco, C. (1999b), ‘Non-stationary log-periodogram regression’, Journal of Econometrics

91, 325—371.

Velasco, C. (2000), ‘Non-Gaussian log-periodogram regression’, Econometric Theory 16, 44—79.

29



Whittle, P. (1951), Hypothesis Testing in Time Series Analysis, Almquist and Wiksells, Upp-

sala.

Yong, C. H. (1974), Asymptotic Behaviour of Trigonometric Series, Chinese University of Hong

Kong, Hong Kong.

Zygmund, A. (2002), Trigonometric Series, third edn, Cambridge University Press, Cambridge.

30



Table 1: Parametric Estimators - ARFIMA(0,d,0)
EML MPL CML FML

d T Bias RMSE Bias RMSE Bias RMSE Bias RMSE
-.25 128 -.0290 .0852 -.0290 .0852 -.0284 .0834 -.0053 .0833

256 -.0162 .0553 -.0162 .0553 -.0157 .0550 -.0027 .0537
512 -.0093 .0375 -.0093 .0375 -.0089 .0373 -.0012 .0370

0 128 -.0279 .0818 -.0279 .0818 -.0280 .0830 -.0013 .0791
256 -.0147 .0535 -.0147 .0535 -.0148 .0540 -.0006 .0520
512 -.0084 .0365 -.0084 .0365 -.0084 .0366 -.0008 .0357

.25 128 -.0342 .0821 -.0342 .0821 -.0264 .0834 .0013 .0801
256 -.0198 .0555 -.0198 .0555 -.0156 .0557 -.0007 .0540
512 -.0097 .0365 -.0097 .0365 -.0074 .0365 .0008 .0360

.45 128 -.0656 .0889 -.0656 .0889 -.0327 .0857 -.0022 .0814
256 -.0367 .0559 -.0367 .0559 -.0149 .0556 .0014 .0548
512 -.0200 .0361 -.0200 .0361 -.0066 .0370 .0032 .0377

Table 2: Semiparametric I - ARFIMA (0,d,0)
LPR (m =

¥
T 0.5

¦
) LPR (m =

¥
T 0.65

¦
) PLPR (m =

¥
T 0.5

¦
) PLPR (m =

¥
T 0.65

¦
)

d T Bias RMSE Bias RMSE Bias RMSE Bias RMSE
-.25 128 .0130 .2864 .0056 .1745 .0126 .2767 .0022 .1735

256 .0089 .2158 .0033 .1258 .0054 .2044 .0012 .1248
512 .0115 .1692 .0071 .0973 .0111 .1628 .0069 .0957

0 128 .0047 .2742 .0048 .1641 .0078 .2624 .0051 .1651
256 .0012 .2086 .0013 .1243 .0003 .2004 .0004 .1235
512 -.0019 .1689 -.0015 .0968 -.0034 .1623 -.0015 .0954

.25 128 .0207 .2766 .0090 .1712 .0191 .2605 .0118 .1708
256 .0189 .2087 .0041 .1266 .0206 .2034 .0053 .1247
512 .0124 .1769 .0056 .0958 .0095 .1702 .0074 .0956

.45 128 .0247 .2822 .0084 .1604 .0215 .2733 .0156 .1617
256 .0211 .2136 .0085 .1275 .0223 .2023 .0129 .1262
512 .0203 .1752 .0123 .0994 .0208 .1653 .0154 .0994

Table 3: Semiparametric II - ARFIMA (0,d,0)
LW (m =

¥
T 0.5

¦
) LW (m =

¥
T 0.65

¦
) FELW (m =

¥
T 0.5

¦
) FELW (m =

¥
T 0.65

¦
)

d T Bias RMSE Bias RMSE Bias RMSE Bias RMSE
-.25 128 -.0249 .2461 -.0105 .1454 -.0356 .2574 -.0029 .1467

256 -.0104 .1810 -.0050 .1050 -.0155 .1811 -.0023 .1044
512 -.0061 .1421 -.0004 .0810 -.0125 .1473 .0002 .0816

0 128 -.0196 .2362 -.0083 .1362 -.0146 .2382 .0088 .1381
256 -.0217 .1740 -.0084 .1024 -.0216 .1771 -.0002 .1035
512 -.0203 .1419 -.0079 .0785 -.0193 .1384 -.0032 .0781

.25 128 -.0130 .2424 -.0048 .1442 -.0040 .2454 .0188 .1489
256 .0022 .1745 -.0032 .1021 .0068 .1805 .0074 .1039
512 -.0078 .1428 -.0015 .0793 -.0064 .1443 .0039 .0788

.45 128 -.0160 .2370 -.0091 .1317 -.0039 .2318 .0250 .1399
256 .0000 .1785 .0003 .0999 .0080 .1727 .0217 .1092
512 .0036 .1425 .0027 .0801 .0120 .1436 .0175 .0919
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Table 4: Semiparametric III - ARFIMA (0,d,0)
LPW (m =

¥
T 0.5

¦
) LPW (m =

¥
T 0.65

¦
) BRLPR (m =

¥
T 0.5

¦
) BRLPR (m =

¥
T 0.65

¦
)

d T Bias RMSE Bias RMSE Bias RMSE Bias RMSE
-.25 128 -.1536 .8243 -.0540 .2770 .0177 .5925 .0090 .3097

256 -.0662 .3807 -.0208 .1863 .0134 .4094 .0121 .2229
512 -.0486 .2990 -.0101 .1265 .0199 .3199 .0125 .1517

0 128 -.1408 .5803 -.0526 .2847 -.0186 .5867 .0023 .3036
256 -.0710 .3587 -.0294 .1802 .0053 .4169 .0041 .2138
512 -.0439 .2892 -.0227 .1306 .0001 .3289 -.0011 .1546

.25 128 -.1395 .8602 -.0360 .2765 .0450 .5859 .0222 .3168
256 -.0647 .6790 -.0176 .1798 -.0045 .4139 .0124 .2142
512 -.0555 .2962 -.0136 .1322 .0120 .3303 .0076 .1610

.45 128 -.1272 .8882 -.0351 .2644 .0338 .5788 .0312 .3080
256 -.0594 .4673 -.0096 .1807 .0354 .4106 .0205 .2154
512 -.0383 .3803 -.0037 .1350 .0223 .3034 .0184 .1649

Table 5: Haar Wavelet OLS - ARFIMA (0,d,0)
J = K = 0 J = 2,K = 0 J = 0,K = 2

d T Bias RMSE Bias RMSE Bias RMSE
-.25 128 -.0902 .2141 .0204 .1245 -.1894 .3981

256 -.0573 .1503 .0175 .0962 -.1228 .2623
512 -.0504 .1248 .0185 .0735 -.1048 .2067

0 128 -.1254 .2180 -.0422 .1307 -.1985 .3830
256 -.1026 .1762 -.0322 .0922 -.1562 .2879
512 -.0829 .1401 -.0260 .0705 -.1212 .2150

.25 128 -.1477 .2372 -.0792 .1555 -.2069 .3960
256 -.1212 .1917 -.0583 .1090 -.1628 .2942
512 -.1096 .1714 -.0553 .0929 -.1424 .2521

.45 128 -.1616 .2475 -.0999 .1619 -.2069 .3990
256 -.1253 .1943 -.0824 .1259 -.1519 .2888
512 -.1082 .1611 -.0610 .0952 -.1302 .2282

Table 6: Daubechies4 Wavelet OLS - ARFIMA (0,d,0)
J = K = 0 J = 2,K = 0 J = 0,K = 2

d T Bias RMSE Bias RMSE Bias RMSE
-.25 128 -.0991 .2118 -.0117 .1277 -.1793 .3835

256 -.0765 .1639 -.0088 .0979 -.1354 .2790
512 -.0670 .1396 -.0058 .0698 -.1159 .2255

0 128 -.1212 .2183 -.0436 .1433 -.1880 .3793
256 -.1023 .1832 -.0372 .0997 -.1532 .2987
512 -.0983 .1574 -.0287 .0733 -.1452 .2427

.25 128 -.1042 .2098 -.0650 .1460 -.1365 .3593
256 -.0913 .1736 -.0479 .1077 -.1204 .2733
512 -.0803 .1441 -.0404 .0812 -.1029 .2141

.45 128 .0037 .1844 -.0758 .1457 .0788 .3462
256 .0017 .1426 -.0573 .1095 .0482 .2431
512 -.0059 .1275 -.0433 .0838 .0236 .2009
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Table 7: Wavelet MLE - ARFIMA(0,d,0)
Haar (K = 0) Haar (K = 2) Daub4 (K = 0) Daub4 (K = 2)

d T Bias RMSE Bias RMSE Bias RMSE Bias RMSE
-.25 128 .0611 .0958 -.0001 .1907 .0372 .0833 -.0125 .1966

256 .0643 .0808 .0178 .1175 .0395 .0636 -.0001 .1185
512 .0633 .0723 .0233 .0820 .0398 .0524 .0032 .0767

0 128 -.0041 .0721 -.0270 .2821 -.0060 .0795 -.0283 .3019
256 -.0037 .0462 -.0173 .1590 -.0038 .0470 -.0142 .1760
512 -.0020 .0330 -.0121 .1429 -.0030 .0329 -.0136 .1746

.25 128 -.0473 .0893 -.0358 .1973 -.0266 .0796 .0026 .2347
256 -.0436 .0672 -.0233 .1172 -.0269 .0579 .0039 .1136
512 -.0428 .0553 -.0157 .0753 -.0287 .0452 .0018 .0745

.45 128 -.0740 .1051 -.0400 .1890 .0059 .0897 .1227 .2437
256 -.0668 .0846 -.0202 .1189 -.0103 .0609 .0813 .1515
512 -.0635 .0729 -.0154 .0808 -.0224 .0488 .0520 .1020
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Table 8: Parametric Estimators - ARFIMA(1,d,0)
EML MPL CML FML

φ d T Bias RMSE Bias RMSE Bias RMSE Bias RMSE
-.40 -.25 128 -.0474 .1210 -.0474 .1210 -.0486 .1174 -.0145 .1177

256 -.0205 .0721 -.0205 .0721 -.0216 .0720 -.0004 .0712
512 -.0108 .0466 -.0108 .0466 -.0112 .0466 .0008 .0466

0 128 -.0672 .1375 -.0672 .1375 -.0666 .1363 -.0252 .1187
256 -.0356 .0817 -.0356 .0817 -.0354 .0812 -.0146 .0750
512 -.0195 .0519 -.0195 .0519 -.0188 .0508 -.0083 .0488

.25 128 -.0674 .1297 -.0674 .1297 -.0614 .1384 -.0114 .1098
256 -.0330 .0783 -.0330 .0783 -.0287 .0793 -.0049 .0734
512 -.0157 .0495 -.0157 .0495 -.0131 .0497 -.0002 .0479

.45 128 -.1011 .1359 -.1011 .1359 -.0613 .1293 -.0134 .1122
256 -.0573 .0799 -.0573 .0799 -.0303 .0768 -.0050 .0714
512 -.0322 .0502 -.0322 .0502 -.0149 .0496 -.0004 .0480

0 -.25 128 -.0949 .2185 -.0949 .2185 -.0912 .2193 -.0352 .1979
256 -.0439 .1190 -.0439 .1190 -.0429 .1196 -.0148 .1161
512 -.0221 .0723 -.0221 .0723 -.0216 .0729 -.0044 .0652

0 128 -.1299 .2680 -.1299 .2680 -.1390 .2866 -.0410 .2006
256 -.0603 .1453 -.0603 .1453 -.0619 .1498 -.0202 .1143
512 -.0277 .0712 -.0277 .0712 -.0278 .0717 -.0093 .0653

.25 128 -.1838 .3367 -.1838 .3367 -.1597 .3254 -.0482 .2168
256 -.0718 .1683 -.0718 .1683 -.0614 .1683 -.0201 .1394
512 -.0291 .0770 -.0291 .0770 -.0232 .0760 -.0035 .0661

.45 128 -.2231 .3469 -.2231 .3469 -.1460 .3158 -.0462 .2214
256 -.0998 .1693 -.0998 .1693 -.0546 .1576 -.0112 .1138
512 -.0493 .0800 -.0493 .0800 -.0210 .0730 -.0017 .0699

.40 -.25 128 -.1763 .2909 -.1761 .2906 -.1561 .2743 -.0526 .2462
256 -.1177 .2233 -.1177 .2233 -.1078 .2157 -.0451 .1881
512 -.0679 .1609 -.0679 .1609 -.0625 .1547 -.0282 .1427

0 128 -.2201 .3113 -.2201 .3113 -.1683 .2807 -.0581 .2369
256 -.1533 .2505 -.1533 .2505 -.1207 .2261 -.0513 .1871
512 -.0843 .1686 -.0843 .1686 -.0660 .1501 -.0364 .1382

.25 128 -.2602 .3374 -.2602 .3374 -.1763 .3000 -.0558 .2365
256 -.1792 .2667 -.1797 .2672 -.1304 .2393 -.0546 .1933
512 -.1092 .1907 -.1092 .1907 -.0829 .1744 -.0399 .1444

.45 128 -.3490 .3994 -.3490 .3994 -.1438 .2956 -.0521 .2524
256 -.2349 .3001 -.2349 .3001 -.1015 .2267 -.0474 .1986
512 -.1355 .1993 -.1355 .1993 -.0579 .1608 -.0221 .1362

.80 -.25 128 -.0243 .1455 -.0243 .1455 .0249 .1889 .0326 .1988
256 -.0161 .1304 -.0161 .1304 .0093 .1501 .0244 .1679
512 -.0044 .1056 -.0044 .1056 .0081 .1140 .0202 .1273

0 128 -.0303 .1377 -.0303 .1377 -.0102 .1104 .0489 .2067
256 -.0251 .1194 -.0251 .1194 -.0086 .0954 .0318 .1661
512 -.0151 .0970 -.0151 .0970 -.0042 .0787 .0223 .1277

.25 128 -.0727 .1350 -.0727 .1350 .1386 .2887 .0114 .1987
256 -.0517 .1101 -.0517 .1101 .0911 .2239 .0182 .1689
512 -.0317 .0894 -.0317 .0894 .0499 .1597 .0139 .1292

.45 128 -.1227 .1444 -.1227 .1444 .1940 .3145 -.0355 .2160
256 -.0931 .1145 -.0931 .1145 .1633 .2744 -.0287 .1747
512 -.0653 .0855 -.0653 .0855 .1268 .2215 -.0127 .1376
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Table 9: Semiparametric I - ARFIMA (1,d,0)
LPR (m =

¥
T 0.5

¦
) LPR (m =

¥
T 0.65

¦
) PLPR (m =

¥
T 0.5

¦
) PLPR (m =

¥
T 0.65

¦
)

φ d T Bias RMSE Bias RMSE Bias RMSE Bias RMSE
-.40 -.25 128 .0044 .2893 -.0320 .1793 -.0220 .2798 -.0611 .1857

256 .0068 .2115 -.0163 .1256 -.0150 .2012 -.0437 .1308
512 .0113 .1679 -.0048 .0969 -.0016 .1616 -.0262 .0986

0 128 -.0160 .2716 -.0412 .1697 -.0445 .2665 -.0682 .1785
256 -.0137 .2104 -.0248 .1258 -.0343 .2032 -.0508 .1312
512 -.0004 .1768 -.0153 .0948 -.0143 .1697 -.0359 .0985

.25 128 .0010 .2862 -.0436 .1770 -.0247 .2794 -.0655 .1835
256 .0049 .2170 -.0198 .1307 -.0140 .2079 -.0424 .1345
512 .0027 .1604 -.0092 .0951 -.0112 .1538 -.0293 .0970

.45 128 .0129 .2685 -.0326 .1715 -.0144 .2607 -.0508 .1748
256 .0098 .1993 -.0179 .1294 -.0113 .1907 -.0376 .1314
512 .0116 .1703 -.0043 .0954 -.0022 .1616 -.0225 .0971

.40 -.25 128 .0648 .2797 .1453 .2222 .1001 .2790 .1611 .2323
256 .0339 .2119 .0948 .1599 .0621 .2093 .1144 .1700
512 .0136 .1676 .0588 .1101 .0359 .1649 .0833 .1238

0 128 .0699 .2689 .1461 .2177 .1027 .2722 .1654 .2317
256 .0348 .2174 .0979 .1572 .0609 .2141 .1207 .1715
512 .0214 .1666 .0646 .1142 .0441 .1644 .0884 .1287

.25 128 .0673 .2831 .1387 .2185 .1005 .2785 .1621 .2333
256 .0348 .2188 .0919 .1578 .0651 .2101 .1182 .1729
512 .0279 .1630 .0689 .1162 .0488 .1629 .0957 .1328

.45 128 .0619 .2781 .1434 .2232 .0995 .2815 .1701 .2412
256 .0335 .2123 .1008 .1608 .0658 .2147 .1266 .1771
512 .0252 .1695 .0654 .1163 .0468 .1691 .0913 .1316

.80 -.25 128 .4108 .4920 .5807 .6040 .4536 .5243 .5949 .6178
256 .2729 .3401 .4716 .4880 .3236 .3768 .4932 .5086
512 .1666 .2348 .3862 .3976 .2227 .2732 .4145 .4248

0 128 .3922 .4750 .5758 .5994 .4391 .5099 .5965 .6193
256 .2751 .3453 .4736 .4896 .3286 .3860 .4981 .5134
512 .1606 .2320 .3807 .3915 .2196 .2711 .4100 .4195

.25 128 .3922 .4802 .5652 .5885 .4384 .5121 .5889 .6112
256 .2691 .3433 .4665 .4842 .3214 .3799 .4938 .5104
512 .1538 .2278 .3773 .3893 .2105 .2652 .4071 .4178

.45 128 .3872 .4752 .5387 .5654 .4252 .5014 .5634 .5889
256 .2604 .3398 .4539 .4709 .3126 .3757 .4808 .4967
512 .1585 .2381 .3739 .3860 .2149 .2748 .4041 .4146
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Table 10: Semiparametric II - ARFIMA (1,d,0)
LW (m =

¥
T 0.5

¦
) LW (m =

¥
T 0.65

¦
) FELW (m =

¥
T 0.5

¦
) FELW (m =

¥
T 0.65

¦
)

φ d T Bias RMSE Bias RMSE Bias RMSE Bias RMSE
-.40 -.25 128 -.0335 .2493 -.0494 .1548 -.0499 .2609 -.0465 .1548

256 -.0132 .1812 -.0261 .1087 -.0206 .1811 -.0257 .1073
512 -.0067 .1416 -.0127 .0819 -.0147 .1461 -.0133 .0826

0 128 -.0501 .2426 -.0582 .1494 -.0541 .2505 -.0446 .1483
256 -.0337 .1849 -.0357 .1087 -.0355 .1838 -.0286 .1061
512 -.0182 .1472 -.0220 .0776 -.0188 .1440 -.0181 .0767

.25 128 -.0284 .2491 -.0588 .1497 -.0245 .2483 -.0402 .1445
256 -.0152 .1749 -.0288 .1099 -.0143 .1766 -.0207 .1082
512 -.0114 .1351 -.0185 .0759 -.0105 .1351 -.0135 .0741

.45 128 -.0227 .2366 -.0514 .1478 -.0148 .2297 -.0244 .1451
256 -.0146 .1716 -.0326 .1089 -.0072 .1702 -.0165 .1121
512 -.0105 .1439 -.0148 .0785 -.0080 .1427 -.0060 .0833

.40 -.25 128 .0313 .2387 .1324 .1938 .0258 .2421 .1463 .2059
256 .0150 .1753 .0883 .1368 .0101 .1817 .0939 .1418
512 -.0016 .1410 .0556 .0958 -.0070 .1437 .0576 .0971

0 128 .0344 .2341 .1347 .1929 .0432 .2431 .1567 .2104
256 .0132 .1842 .0906 .1366 .0146 .1859 .1013 .1442
512 .0053 .1373 .0571 .0962 .0057 .1392 .0628 .1000

.25 128 .0394 .2402 .1307 .1936 .0548 .2427 .1645 .2237
256 .0096 .1825 .0846 .1343 .0184 .1852 .1005 .1487
512 .0065 .1388 .0600 .0970 .0115 .1415 .0665 .1012

.45 128 .0334 .2345 .1315 .1934 .0552 .2328 .1685 .2166
256 .0185 .1760 .0913 .1380 .0291 .1727 .1142 .1517
512 .0142 .1392 .0604 .0991 .0241 .1428 .0772 .1132

.80 -.25 128 .3950 .4625 .5928 .6104 .4076 .4796 .6301 .6498
256 .2620 .3151 .4981 .5108 .2639 .3183 .5133 .5265
512 .1542 .2095 .4090 .4176 .1538 .2094 .4161 .4247

0 128 .3812 .4445 .5953 .6137 .4049 .4663 .6423 .6605
256 .2589 .3128 .4975 .5092 .2678 .3225 .5282 .5408
512 .1460 .2071 .4044 .4126 .1496 .2107 .4178 .4272

.25 128 .3763 .4506 .5810 .5996 .4026 .4692 .6303 .6491
256 .2554 .3141 .4929 .5056 .2750 .3319 .5214 .5338
512 .1474 .2019 .4029 .4116 .1578 .2140 .4199 .4281

.45 128 .3653 .4345 .5526 .5718 .3956 .4578 .6200 .6381
256 .2541 .3110 .4804 .4920 .2600 .3107 .5153 .5268
512 .1526 .2105 .3997 .4078 .1574 .2078 .4148 .4232
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Table 11: Semiparametric III - ARFIMA (1,d,0)
LPW (m =

¥
T 0.5

¦
) LPW (m =

¥
T 0.65

¦
) BRLPR (m =

¥
T 0.5

¦
) BRLPR (m =

¥
T 0.65

¦
)

φ d T Bias RMSE Bias RMSE Bias RMSE Bias RMSE
-.40 -.25 128 -.1267 .5805 -.0498 .2794 .0191 .5972 .0125 .3127

256 -.0620 .3795 -.0178 .1860 .0192 .4049 .0152 .2187
512 -.0362 .3083 -.0080 .1263 .0228 .3183 .0148 .1513

0 128 -.1336 .5561 -.0684 .2888 -.0083 .5649 -.0035 .2928
256 -.0901 .3610 -.0413 .1893 -.0137 .4002 -.0048 .2166
512 -.0321 .3055 -.0192 .1317 .0075 .3217 .0040 .1600

.25 128 -.1177 .6445 -.0398 .2683 .0156 .6065 .0117 .3121
256 -.0767 .3694 -.0192 .1782 .0119 .4241 .0126 .2215
512 -.0612 .3003 -.0114 .1247 -.0056 .3116 .0074 .1504

.45 128 -.1089 .6174 -.0352 .2530 .0477 .5697 .0308 .2959
256 -.0725 .3413 -.0196 .1790 .0098 .3830 .0143 .2142
512 -.0636 .2996 -.0125 .1333 .0127 .3161 .0136 .1595

.40 -.25 128 -.1210 .6135 -.0242 .2661 -.0030 .5867 .0295 .3063
256 -.0816 .4016 -.0126 .1839 -.0012 .4120 .0167 .2170
512 -.0598 .3166 -.0134 .1624 .0078 .3189 .0098 .1587

0 128 -.0991 .5391 -.0287 .3196 .0336 .5612 .0425 .2916
256 -.0674 .3561 -.0132 .1830 .0091 .4092 .0221 .2184
512 -.0535 .3043 -.0082 .1294 -.0026 .2982 .0150 .1551

.25 128 -.1421 .9145 -.0124 .2610 .0468 .5798 .0463 .3042
256 -.0571 .8135 -.0143 .1868 .0301 .4280 .0233 .2222
512 -.0409 .2761 -.0076 .1420 .0225 .3063 .0248 .1567

.45 128 -.1607 1.0604 -.0149 .2597 .0247 .5548 .0396 .2998
256 -.0742 .5706 -.0091 .1822 .0376 .4058 .0190 .2177
512 -.0421 .2711 -.0064 .1480 .0082 .3028 .0146 .1574

.80 -.25 128 -.0025 1.0194 .3339 .4258 .1944 .6033 .3744 .4785
256 -.0044 .5101 .2373 .2953 .0946 .4054 .2587 .3317
512 -.0162 .4533 .1160 .2310 .0370 .3013 .1766 .2325

0 128 .0103 .6355 .3192 .4037 .1603 .6029 .3520 .4596
256 -.0208 .3943 .2324 .2907 .0748 .4276 .2566 .3313
512 -.0225 .2715 .1211 .1724 .0329 .3097 .1654 .2241

.25 128 -.0758 1.0032 .3169 .4126 .1492 .5819 .3547 .4697
256 -.0252 .4122 .2246 .2933 .0690 .4159 .2490 .3300
512 -.0329 .2916 .0809 .2096 .0279 .3071 .1661 .2312

.45 128 -.0501 .9960 .3188 .4122 .1575 .5869 .3597 .4694
256 -.0080 .3982 .2342 .2941 .0775 .4151 .2506 .3345
512 -.0136 .2667 .0905 .1979 .0371 .3112 .1673 .2355
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Table 12: Haar Wavelet OLS - ARFIMA (1,d,0)
J = K = 0 J = 2,K = 0 J = 0,K = 2

φ d T Bias RMSE Bias RMSE Bias RMSE
-.40 -.25 128 -.2002 .2783 -.1416 .1884 -.2439 .4242

256 -.1522 .2065 -.1146 .1497 -.1728 .2907
512 -.1336 .1802 -.0919 .1162 -.1509 .2421

0 128 -.2400 .3032 -.2186 .2517 -.2423 .4110
256 -.2034 .2526 -.1780 .2001 -.2019 .3218
512 -.1708 .2112 -.1453 .1610 -.1644 .2550

.25 128 -.2641 .3237 -.2705 .3014 -.2409 .4158
256 -.2131 .2553 -.2033 .2232 -.1878 .2992
512 -.1789 .2150 -.1610 .1748 -.1546 .2431

.45 128 -.2560 .3168 -.2787 .3099 -.2139 .4007
256 -.2209 .2626 -.2114 .2306 -.1917 .3049
512 -.1836 .2214 -.1674 .1814 -.1547 .2480

.40 -.25 128 .0686 .1948 .2426 .2715 -.1042 .3473
256 .0654 .1593 .2003 .2212 -.0694 .2520
512 .0526 .1275 .1706 .1845 -.0626 .1921

0 128 .0229 .1896 .1866 .2229 -.1352 .3692
256 .0271 .1471 .1537 .1775 -.0972 .2597
512 .0195 .1174 .1262 .1439 -.0836 .1999

.25 128 -.0038 .1816 .1417 .1888 -.1458 .3569
256 -.0056 .1498 .1157 .1482 -.1209 .2785
512 .0052 .1130 .0911 .1146 -.0812 .1937

.45 128 -.0360 .1959 .1090 .1644 -.1751 .3912
256 -.0216 .1520 .0875 .1269 -.1254 .2802
512 -.0182 .1164 .0703 .1007 -.1020 .2057

.80 -.25 128 .3769 .4191 .6109 .6237 .1631 .3723
256 .3273 .3568 .5452 .5521 .1309 .2729
512 .2898 .3142 .4765 .4816 .1157 .2233

0 128 .3261 .3836 .5617 .5767 .1073 .3878
256 .2890 .3220 .4973 .5052 .0979 .2587
512 .2547 .2780 .4261 .4320 .0881 .1959

.25 128 .2861 .3400 .5095 .5254 .0820 .3434
256 .2414 .2844 .4449 .4540 .0535 .2587
512 .2080 .2436 .3834 .3898 .0422 .2045

.45 128 .2315 .3058 .4561 .4738 .0230 .3594
256 .2025 .2550 .3982 .4081 .0217 .2593
512 .1806 .2149 .3417 .3489 .0269 .1832
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Table 13: Daubechies4 Wavelet OLS - ARFIMA (1,d,0)
J = K = 0 J = 2,K = 0 J = 0,K = 2

φ d T Bias RMSE Bias RMSE Bias RMSE
-.40 -.25 128 -.2092 .2864 -.2072 .2440 -.1954 .4046

256 -.1671 .2221 -.1594 .1871 -.1507 .2881
512 -.1447 .1906 -.1258 .1439 -.1326 .2355

0 128 -.2424 .3074 -.2396 .2690 -.2249 .4107
256 -.2036 .2540 -.1847 .2043 -.1863 .3162
512 -.1688 .2079 -.1457 .1609 -.1497 .2434

.25 128 -.2176 .2834 -.2644 .2957 -.1526 .3605
256 -.1739 .2207 -.1951 .2160 -.1194 .2560
512 -.1488 .1896 -.1572 .1731 -.1058 .2118

.45 128 -.1023 .2084 -.2646 .2952 .0648 .3344
256 -.0917 .1797 -.2034 .2238 .0264 .2598
512 -.0725 .1405 -.1554 .1720 .0206 .1906

.40 -.25 128 .0646 .1877 .2413 .2726 -.1165 .3438
256 .0508 .1552 .1991 .2193 -.0998 .2639
512 .0405 .1328 .1598 .1737 -.0844 .2154

0 128 .0324 .1898 .2044 .2396 -.1378 .3643
256 .0221 .1486 .1668 .1918 -.1213 .2740
512 .0209 .1226 .1327 .1489 -.0943 .2119

.25 128 .0540 .1963 .1746 .2199 -.0709 .3495
256 .0337 .1522 .1433 .1703 -.0779 .2598
512 .0321 .1193 .1151 .1331 -.0579 .1894

.45 128 .1427 .2413 .1545 .2024 .1116 .3744
256 .1161 .1846 .1281 .1595 .0762 .2529
512 .0919 .1527 .0993 .1238 .0497 .1974

.80 -.25 128 .3767 .4191 .6461 .6586 .1293 .3625
256 .3343 .3674 .5698 .5771 .1176 .2795
512 .2964 .3171 .4926 .4975 .1062 .2067

0 128 .3555 .4051 .6171 .6301 .1135 .3734
256 .3139 .3480 .5447 .5516 .1019 .2731
512 .2700 .2956 .4648 .4698 .0822 .2076

.25 128 .3620 .4069 .5730 .5888 .1643 .3774
256 .3148 .3451 .5071 .5154 .1300 .2697
512 .2718 .2954 .4364 .4418 .1033 .2105

.45 128 .4420 .4831 .5336 .5491 .3494 .4961
256 .3773 .4048 .4777 .4865 .2624 .3587
512 .3194 .3437 .4130 .4188 .1982 .2804
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Table 14: Wavelet MLE - ARFIMA(1,d,0)
Haar (K = 2) Haar (K = 4) Daub4 (K = 2) Daub4 (K = 4)

φ d T Bias RMSE Bias RMSE Bias RMSE Bias RMSE
-.40 -.25 128 -.0626 .2004 -.1432 .6810 -.0511 .2049 -.0466 .6570

256 -.0440 .1261 -.0621 .3354 -.0409 .1270 -.0277 .3584
512 -.0349 .0860 -.0423 .1928 -.0366 .0857 -.0123 .1881

0 128 -.0921 .2292 -.1532 .6914 -.0713 .2008 -.1094 .6667
256 -.0732 .1382 -.0739 .3279 -.0496 .1250 -.0642 .3342
512 -.0651 .1239 -.0443 .1897 -.0403 .0829 -.0300 .1894

.25 128 -.0808 .2036 -.0867 .6377 -.0280 .1881 .0120 .6362
256 -.0648 .1316 -.0535 .3302 -.0248 .1152 -.0073 .3243
512 -.0548 .0903 -.0344 .1854 -.0247 .0757 -.0045 .1854

.45 128 -.0729 .1946 -.0900 .6346 .0941 .2248 .3651 .7383
256 -.0626 .1332 -.0721 .3169 .0565 .1462 .2076 .4040
512 -.0509 .0908 -.0413 .1981 .0335 .0949 .1312 .2483

.40 -.25 128 .1037 .2136 -.0592 .6577 .0838 .2003 -.0553 .6702
256 .1100 .1595 .0119 .3238 .0869 .1439 -.0322 .3377
512 .1082 .1308 .0231 .1818 .0854 .1133 -.0057 .1852

0 128 .0781 .2039 -.0856 .6567 .0751 .2070 -.0822 .6640
256 .0810 .1402 -.0196 .3311 .0751 .1354 -.0407 .3314
512 .0780 .1079 -.0043 .1877 .0750 .1042 -.0177 .1856

.25 128 .0459 .2319 -.0564 .6330 .0867 .2251 .0293 .6687
256 .0532 .1337 -.0295 .3255 .0748 .1394 .0132 .3384
512 .0571 .0925 -.0105 .1772 .0717 .1017 .0143 .1913

.45 128 .0284 .1800 -.1201 .6696 .1823 .2762 .3734 .7656
256 .0357 .1170 -.0495 .3305 .1346 .1852 .2234 .4226
512 .0396 .0862 -.0197 .1844 .1059 .1355 .1296 .2539

.80 -.25 128 .4492 .4851 .1155 .6486 .4550 .4951 .0390 .6423
256 .4261 .4414 .1352 .3553 .4342 .4509 .0841 .3407
512 .4100 .4172 .1319 .2271 .4195 .4268 .0958 .2052

0 128 .3998 .4348 .0779 .6909 .4215 .4612 .0462 .6536
256 .3810 .3957 .1038 .3464 .4091 .4252 .0776 .3349
512 .3632 .3705 .1015 .2139 .3911 .3992 .0814 .2000

.25 128 .3458 .3902 .0299 .6219 .4135 .4567 .1536 .6565
256 .3262 .3456 .0528 .3257 .3874 .4064 .1191 .3490
512 .3154 .3245 .0654 .1956 .3711 .3796 .0947 .2114

.45 128 .2938 .3397 -.0092 .6435 .4772 .5146 .4878 .8281
256 .2814 .3016 .0262 .3145 .4090 .4269 .2968 .4559
512 .2743 .2843 .0484 .1886 .3690 .3779 .1986 .2897
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Table 15: Parametric Estimators - ARFIMA(0,d,1)
EML MPL CML FML

θ d T Bias RMSE Bias RMSE Bias RMSE Bias RMSE
-.40 -.25 128 -.0903 .2059 -.0903 .2059 -.0846 .2066 .0056 .2331

256 -.0479 .1519 -.0477 .1522 -.0454 .1542 .0199 .1823
512 -.0265 .1065 -.0265 .1065 -.0248 .1074 .0167 .1314

0 128 -.1354 .2224 -.1354 .2224 -.1372 .2254 -.0094 .2394
256 -.0798 .1566 -.0798 .1566 -.0830 .1587 -.0036 .1777
512 -.0408 .1029 -.0408 .1029 -.0420 .1054 .0001 .1196

.25 128 -.1624 .2258 -.1624 .2258 -.1443 .2378 -.0032 .2403
256 -.0949 .1475 -.0949 .1475 -.0808 .1583 .0062 .1756
512 -.0476 .0967 -.0476 .0967 -.0378 .1066 .0108 .1256

.45 128 -.1945 .2303 -.1945 .2303 -.1301 .2323 .0004 .2322
256 -.1201 .1508 -.1201 .1508 -.0616 .1618 .0149 .1773
512 -.0732 .0976 -.0732 .0976 -.0296 .1083 .0193 .1302

0 -.25 128 -.0587 .1381 -.0587 .1381 -.0578 .1409 -.0009 .1606
256 -.0344 .0905 -.0344 .0905 -.0346 .0907 -.0051 .0908
512 -.0177 .0629 -.0177 .0629 -.0172 .0624 -.0010 .0634

0 128 -.0723 .1489 -.0723 .1489 -.0718 .1532 -.0036 .1666
256 -.0415 .1008 -.0415 .1008 -.0410 .1041 -.0086 .1032
512 -.0204 .0648 -.0204 .0648 -.0204 .0652 -.0032 .0647

.25 128 -.0838 .1428 -.0838 .1428 -.0639 .1507 .0053 .1667
256 -.0491 .0946 -.0491 .0946 -.0390 .0966 -.0060 .0958
512 -.0231 .0601 -.0231 .0601 -.0175 .0609 .0002 .0603

.45 128 -.1139 .1441 -.1139 .1441 -.0527 .1445 .0117 .1613
256 -.0698 .0937 -.0698 .0937 -.0270 .0981 .0055 .0983
512 -.0399 .0597 -.0399 .0597 -.0123 .0620 .0065 .0633

.40 -.25 128 -.0364 .1099 -.0364 .1099 -.0337 .1076 -.0027 .1112
256 -.0205 .0702 -.0205 .0702 -.0191 .0692 -.0019 .0695
512 -.0107 .0470 -.0107 .0470 -.0097 .0465 -.0002 .0468

0 128 -.0485 .1114 -.0485 .1114 -.0453 .1121 -.0089 .1073
256 -.0245 .0743 -.0245 .0743 -.0230 .0744 -.0039 .0728
512 -.0130 .0484 -.0130 .0484 -.0122 .0484 -.0017 .0478

.25 128 -.0593 .1110 -.0593 .1110 -.0435 .1118 -.0082 .1072
256 -.0324 .0725 -.0324 .0725 -.0240 .0726 -.0051 .0702
512 -.0170 .0479 -.0170 .0479 -.0126 .0478 -.0021 .0469

.45 128 -.0825 .1096 -.0825 .1096 -.0309 .1061 .0035 .1075
256 -.0504 .0721 -.0504 .0721 -.0175 .0719 .0019 .0712
512 -.0277 .0457 -.0277 .0457 -.0071 .0471 .0047 .0476

.80 -.25 128 -.0283 .0925 -.0283 .0925 -.0195 .0896 -.0034 .0922
256 -.0157 .0605 -.0157 .0605 -.0113 .0591 -.0012 .0595
512 -.0091 .0400 -.0091 .0400 -.0067 .0394 -.0007 .0397

0 128 -.0365 .0916 -.0365 .0916 -.0244 .0838 -.0082 .0877
256 -.0196 .0599 -.0196 .0599 -.0150 .0546 -.0044 .0582
512 -.0095 .0387 -.0095 .0387 -.0078 .0358 -.0012 .0379

.25 128 -.0466 .0913 -.0466 .0913 -.0259 .0892 -.0105 .0869
256 -.0234 .0601 -.0234 .0601 -.0127 .0594 -.0024 .0582
512 -.0119 .0392 -.0119 .0392 -.0063 .0388 -.0003 .0383

.45 128 -.0690 .0940 -.0690 .0940 -.0183 .0886 .0002 .0987
256 -.0401 .0600 -.0401 .0600 -.0088 .0595 .0015 .0591
512 -.0219 .0393 -.0219 .0393 -.0028 .0410 .0034 .0417
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Table 16: Semiparametric I - ARFIMA (0,d,1)
LPR (m =

¥
T 0.5

¦
) LPR (m =

¥
T 0.65

¦
) PLPR (m =

¥
T 0.5

¦
) PLPR (m =

¥
T 0.65

¦
)

θ d T Bias RMSE Bias RMSE Bias RMSE Bias RMSE
-.40 -.25 128 -.0157 .2719 -.1166 .2005 -.0604 .2654 -.1402 .2150

256 -.0193 .2262 -.0827 .1539 -.0476 .2234 -.1079 .1671
512 .0003 .1764 -.0506 .1088 -.0202 .1697 -.0774 .1223

0 128 -.0596 .2859 -.1472 .2258 -.0962 .2867 -.1695 .2418
256 -.0327 .2121 -.0978 .1632 -.0627 .2085 -.1202 .1761
512 -.0232 .1781 -.0638 .1173 -.0440 .1752 -.0884 .1314

.25 128 -.0551 .2927 -.1420 .2170 -.0873 .2887 -.1586 .2278
256 -.0236 .2029 -.0919 .1531 -.0547 .2007 -.1134 .1665
512 -.0110 .1712 -.0590 .1115 -.03551 .1661 -.0816 .1239

.45 128 -.0469 .2872 -.1369 .2201 -.0768 .2834 -.1486 .2276
256 -.0184 .2151 -.0855 .1551 -.0492 .2138 -.1054 .1663
512 .0029 .1631 -.0547 .1103 -.0187 .1563 -.0763 .1211

.40 -.25 128 .0189 .2712 .0494 .1718 .0456 .2673 .0694 .1786
256 .0027 .2197 .0268 .1301 .0218 .2102 .0492 .1358
512 .0081 .1716 .0188 .0982 .0213 .1664 .0390 .1024

0 128 .0060 .2559 .0398 .1676 .0332 .2507 .0645 .1741
256 .0001 .2096 .0206 .1274 .0203 .2060 .0461 .1327
512 -.0055 .1674 .0093 .0963 .0070 .1636 .0305 .0983

.25 128 .0207 .2690 .0425 .1689 .0543 .2649 .0740 .1795
256 .0143 .2044 .0194 .1227 .0337 .1984 .0469 .1279
512 .0046 .1641 .0091 .0924 .0175 .1577 .0318 .0961

.45 128 .0287 .2729 .0463 .1708 .0537 .2677 .0784 .1831
256 .0162 .2195 .0301 .1293 .0387 .2123 .0592 .1367
512 .0130 .1756 .0200 .0983 .0239 .1670 .0427 .1037

.80 -.25 128 .0197 .2845 .0560 .1760 .0588 .2796 .0951 .1928
256 .0220 .2069 .0347 .1270 .0484 .2033 .0744 .1417
512 .0052 .1719 .0203 .0984 .0256 .1655 .0542 .1082

0 128 .0128 .2774 .0575 .1766 .0564 .2745 .0960 .1933
256 -.0116 .2179 .0228 .1292 .0219 .2093 .0629 .1404
512 -.0097 .1728 .0100 .0979 .0112 .1650 .0455 .1064

.25 128 .0163 .2752 .0478 .1759 .0579 .2658 .0914 .1921
256 .0083 .2044 .0268 .1257 .0383 .1992 .0708 .1392
512 .0034 .1703 .0208 .1001 .0252 .1643 .0584 .1121

.45 128 .0251 .2666 .0624 .1774 .0673 .2651 .1098 .1992
256 .0184 .2109 .0399 .1342 .0479 .2086 .0850 .1525
512 .0259 .1641 .0285 .1011 .0447 .1638 .0655 .1159
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Table 17: Semiparametric II - ARFIMA (0,d,1)
LW (m =

¥
T 0.5

¦
) LW (m =

¥
T 0.65

¦
) FELW (m =

¥
T 0.5

¦
) FELW (m =

¥
T 0.65

¦
)

θ d T Bias RMSE Bias RMSE Bias RMSE Bias RMSE
-.40 -.25 128 -.0497 .2398 -.1322 .1889 -.0620 .2426 -.1327 .1903

256 -.0365 .1921 -.0910 .1398 -.0463 .1901 -.0914 .1384
512 -.0186 .1507 -.0589 .0997 -.0296 .1484 -.0621 .1006

0 128 -.0826 .2469 -.1624 .2157 -.0891 .2543 -.1531 .2096
256 -.0542 .1821 -.1052 .1489 -.0568 .1840 -.0989 .1451
512 -.0330 .1481 -.0673 .1027 -.0358 .1485 -.0637 .1006

.25 128 -.0809 .2581 -.1593 .2099 -.0773 .2495 -.1410 .1949
256 -.0465 .1823 -.1039 .1452 -.0492 .1811 -.0966 .1398
512 -.0273 .1456 -.0651 .0998 -.0301 .1453 -.0606 .0967

.45 128 -.0757 .2527 -.1553 .2097 -.0702 .2457 -.1321 .1965
256 -.0404 .1892 -.0984 .1448 -.0388 .1843 -.0868 .1406
512 -.0117 .1344 -.0606 .0974 -.0075 .1366 -.0549 .0981

.40 -.25 128 -.0102 .2352 .0370 .1391 -.0184 .2422 .0468 .1457
256 -.0221 .1835 .0193 .1035 -.0281 .1890 .0245 .1052
512 -.0087 .1430 .0119 .0812 -.0152 .1407 .0125 .0806

0 128 -.0219 .2284 .0238 .1374 -.0175 .2322 .0429 .1435
256 -.0210 .1740 .0109 .1012 -.0199 .1756 .0204 .1027
512 -.0178 .1407 .0038 .0762 -.0177 .1392 .0088 .0771

.25 128 -.0023 .2304 .0276 .1374 .0165 .2362 .0551 .1507
256 -.0067 .1679 .0107 .0974 -.0017 .1695 .0224 .1009
512 -.0147 .1395 .0027 .0758 -.0129 .1382 .0088 .0755

.45 128 -.0006 .2387 .0307 .1404 .0133 .2316 .0685 .1533
256 -.0035 .1852 .0223 .1042 .0087 .1828 .0493 .1197
512 -.0009 .1470 .0168 .0794 .0070 .1492 .0320 .0927

.80 -.25 128 -.0126 .2454 .0470 .1463 -.0225 .2525 .0563 .1527
256 -.0007 .1721 .0251 .1024 -.0060 .1774 .0292 .1056
512 -.0081 .1434 .0137 .0797 -.0133 .1452 .0149 .0799

0 128 -.0196 .2471 .0423 .1486 -.0184 .2567 .0609 .1574
256 -.0278 .1884 .0147 .1043 -.0265 .1887 .0248 .1072
512 -.0271 .1475 .0042 .0798 -.0263 .1471 .0094 .0801

.25 128 -.0174 .2374 .0341 .1454 -.0038 .2410 .0628 .1619
256 -.0148 .1781 .0166 .1044 -.0078 .1763 .0298 .1085
512 -.0114 .1436 .0148 .0804 -.0081 .1415 .0207 .0811

.45 128 -.0015 .2324 .0441 .1482 .0134 .2261 .0786 .1628
256 -.0031 .1720 .0266 .1074 .0068 .1702 .0472 .1174
512 .0086 .1366 .0207 .0817 .0178 .1394 .0336 .0907
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Table 18: Semiparametric III - ARFIMA (0,d,1)
LPW (m =

¥
T 0.5

¦
) LPW (m =

¥
T 0.65

¦
) BRLPR (m =

¥
T 0.5

¦
) BRLPR (m =

¥
T 0.65

¦
)

θ d T Bias RMSE Bias RMSE Bias RMSE Bias RMSE
-.40 -.25 128 -.0899 .5671 -.1382 .8197 .0551 .5969 .0244 .3060

256 -.0303 .3446 -.0292 .1991 .0037 .4116 .0025 .2252
512 .0175 .3007 -.0283 .1250 .0055 .3096 .0086 .1595

0 128 -.1504 .5823 -.1100 .5206 -.0207 .5899 -.0354 .3020
256 -.0817 .3599 -.0495 .1880 -.0082 .4124 -.0157 .2188
512 -.0604 .3066 -.0270 .1329 -.0180 .3250 -.0132 .1626

.25 128 -.1527 .5617 -.0795 .3133 -.0250 .5847 -.0335 .3175
256 -.0860 .3562 -.0429 .1861 .0062 .3943 -.0082 .2092
512 -.0569 .3098 -.0230 .1347 .0155 .3103 -.0030 .1622

.45 128 -.1726 .5547 -.0764 .2715 -.0392 .5877 -.0250 .3104
256 -.0689 .3669 -.0319 .1870 .0215 .4084 .0046 .2146
512 -.0776 .3362 -.0248 .1536 .0246 .3151 .0043 .1548

.40 -.25 128 -.1156 .7453 -.1045 .6435 .0000 .5800 .0015 .2960
256 -.0517 .3726 -.0384 .1897 -.0002 .4319 -.0006 .2257
512 -.0076 .2747 -.0202 .1461 .0045 .3103 .0025 .1592

0 128 -.1232 .5294 -.0771 .4340 .0196 .5749 -.0072 .2862
256 -.0626 .3604 -.0396 .1772 .0072 .4207 -.0021 .2145
512 -.0572 .3082 -.0262 .1286 -.0146 .3113 -.0063 .1544

.25 128 -.1339 .6152 -.0539 .2538 -.0002 .5855 .0000 .2926
256 -.0800 .3744 -.0316 .1774 .0169 .4075 .0030 .2085
512 -.0647 .2914 -.0197 .1571 .0038 .3183 .0039 .1548

.45 128 -.1677 .7477 -.0382 .2654 .0119 .5735 .0196 .2993
256 -.0659 .5834 -.0211 .1877 .0088 .4223 .0086 .2253
512 -.0614 .3915 -.0121 .1139 .0172 .3167 .0112 .1684

.80 -.25 128 -.1101 .5728 -.0861 .6038 .0025 .6042 .0065 .3114
256 -.0132 .3504 -.0195 .1783 .0432 .4031 .0164 .2127
512 .0063 .2797 -.0209 .1570 .0157 .3059 .0044 .1583

0 128 -.1184 .5825 -.0871 .4965 .0093 .5788 -.0030 .2970
256 -.1029 .3736 -.0511 .1955 -.0307 .4054 -.0203 .2217
512 -.0781 .3071 -.0332 .1386 -.0235 .3167 -.0108 .1629

.25 128 -.1361 .6247 -.0646 .3387 .0057 .5738 .0003 .3085
256 -.0731 .3743 -.0297 .1896 .0208 .4105 .0036 .2164
512 -.0490 .3081 -.0187 .1314 -.0033 .3172 -.0013 .1555

.45 128 -.1655 .8452 -.0400 .2862 .0208 .5598 .0176 .3041
256 -.0608 .3653 -.0158 .1838 .0363 .4153 .0176 .2193
512 -.0377 .2819 -.0125 .1416 .0323 .3190 .0202 .1601
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Table 19: Haar Wavelet OLS - ARFIMA (0,d,1)
J = K = 0 J = 2,K = 0 J = 0,K = 2

θ d T Bias RMSE Bias RMSE Bias RMSE
-.40 -.25 128 -.2243 .2962 -.1648 .2068 -.2652 .4361

256 -.1941 .2422 -.1508 .1772 -.2198 .3245
512 -.1690 .2067 -.1292 .1468 -.1846 .2613

0 128 -.2936 .3448 -.2753 .3034 -.3008 .4437
256 -.2474 .2865 -.2257 .2425 -.2447 .3457
512 -.2095 .2431 -.1936 .2060 -.1970 .2764

.25 128 -.3278 .3797 -.3297 .3539 -.3067 .4667
256 -.2655 .3014 -.2649 .2794 -.2337 .3342
512 -.2175 .2470 -.2182 .2298 -.1804 .2573

.45 128 -.3344 .3862 -.3448 .3654 -.3005 .4637
256 -.2592 .2966 -.2752 .2897 -.2071 .3158
512 -.2191 .2514 -.2212 .2314 -.1734 .2595

.40 -.25 128 .0134 .1828 .1765 .2144 -.1513 .3669
256 .0134 .1552 .1443 .1696 -.1145 .2807
512 .0093 .1160 .1175 .1360 -.0945 .2040

0 128 -.0403 .1896 .1073 .1638 -.1856 .3857
256 -.0260 .1471 .0816 .1253 -.1327 .2741
512 -.0292 .1150 .0701 .0954 -.1192 .2118

.25 128 -.0610 .1918 .0628 .1374 -.1801 .3762
256 -.0594 .1584 .0450 .1011 -.1566 .2931
512 -.0576 .1398 .0316 .0764 -.1367 .2436

.45 128 -.0868 .2142 -.2212 .2314 -.2017 .4059
256 -.0700 .1691 .0319 .1300 -.1566 .2991
512 -.0630 .1405 .0273 .0940 -.1323 .2368

.80 -.25 128 .0490 .1994 .2406 .2733 -.1475 .3841
256 .0512 .1611 .1852 .2071 -.0947 .2730
512 .0394 .1271 .1552 .1714 -.0815 .2060

0 128 .0014 .1862 .1722 .2112 -.1723 .3828
256 -.0075 .1501 .1294 .1567 -.1465 .2899
512 -.0092 .1233 .0999 .1227 -.1205 .2274

.25 128 -.0387 .1967 .1120 .1734 -.1914 .3968
256 -.0313 .1486 .0838 .1263 -.1482 .2837
512 -.0288 .1305 .0682 .0994 -.1227 .2339

.45 128 -.0518 .1917 .0812 .1508 -.1810 .3789
256 -.0486 .1508 .0582 .1068 -.1524 .2832
512 -.0370 .1244 .0466 .0857 -.1155 .2198
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Table 20: Daubechies4 Wavelet OLS - ARFIMA (0,d,1)
J = K = 0 J = 2,K = 0 J = 0,K = 2

θ d T Bias RMSE Bias RMSE Bias RMSE
-.40 -.25 128 -.2465 .3061 -.2514 .2823 -.2290 .3994

256 -.2170 .2610 -.2179 .2384 -.1976 .3120
512 -.1803 .2158 -.1790 .1937 -.1554 .2413

0 128 -.3047 .3556 -.3087 .3336 -.2840 .4389
256 -.2423 .2777 -.2467 .2628 -.2096 .3081
512 -.2118 .2419 -.2012 .2121 -.1825 .2592

.25 128 -.2848 .3400 -.3312 .3547 -.2193 .4049
256 -.2351 .2820 -.2616 .2759 -.1758 .3131
512 -.1950 .2307 -.2108 .2210 -.1414 .2405

.45 128 -.1616 .2414 -.3366 .3600 .0226 .3269
256 -.1359 .2043 -.2679 .2849 .0033 .2534
512 -.1112 .1604 -.2120 .2236 -.0007 .1797

.40 -.25 128 .0035 .1846 .1693 .2104 -.1669 .3752
256 .0011 .1470 .1244 .1544 -.1314 .2765
512 .0040 .1210 .1011 .1234 -.0988 .2135

0 128 -.0351 .1955 .1245 .1788 -.1933 .4046
256 -.0265 .1497 .0889 .1255 -.1450 .2851
512 -.0310 .1257 .0714 .0982 -.1292 .2313

.25 128 -.0175 .1846 .0897 .1534 -.1287 .3619
256 -.0171 .1399 .0662 .1124 -.1061 .2564
512 -.0249 .1287 .0501 .0836 -.1009 .2235

.45 128 .0923 .2026 .0764 .1496 .0936 .3381
256 .0656 .1608 .0541 .1049 .0488 .2522
512 .0539 .1325 .0442 .0850 .0345 .1934

.80 -.25 128 .0538 .1882 .2439 .2750 -.1468 .3594
256 .0465 .1510 .1756 .1988 -.1066 .2635
512 .0274 .1250 .1399 .1578 -.1013 .2177

0 128 .0116 .1882 .1982 .2334 -.1815 .3858
256 -.0035 .1482 .1450 .1726 -.1585 .2917
512 .0039 .1169 .1089 .1282 -.1133 .2162

.25 128 .0110 .1923 .1531 .1999 -.1417 .3753
256 .0102 .1503 .1147 .1490 -.1069 .2722
512 .0063 .1173 .0897 .1150 -.0886 .2038

.45 128 .1315 .2233 .1338 .1877 .1095 .3502
256 .0967 .1839 .0950 .1367 .0616 .2689
512 .0841 .1425 .0763 .1050 .0516 .1888
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Table 21: Wavelet MLE - ARFIMA(0,d,1)
Haar (K = 2) Haar (K = 4) Daub4 (K = 2) Daub4 (K = 4)

θ d T Bias RMSE Bias RMSE Bias RMSE Bias RMSE
-.40 -.25 128 -.0975 .2160 -.1748 .6737 -.1053 .2175 -.0644 .6654

256 -.0882 .1459 -.1068 .3445 -.1044 .1566 -.0458 .3204
512 -.0782 .1072 -.0765 .2051 -.0937 .1240 -.0325 .1996

0 128 -.1648 .2998 -.1503 .6527 -.1438 .2425 -.1348 .6758
256 -.1326 .1880 -.1084 .3459 -.1138 .1636 -.0631 .3270
512 -.1139 .1386 -.0702 .1977 -.0994 .1245 -.0435 .1865

.25 128 -.1515 .2388 -.1454 .6694 -.1114 .2928 -.0460 .6559
256 -.1286 .1694 -.0868 .3333 -.0894 .1461 -.0271 .3896
512 -.1100 .1324 -.0537 .1911 -.0808 .1101 -.0171 .1919

.45 128 -.1526 .2502 -.1716 .6557 .0419 .2195 .3396 .7912
256 -.1156 .1664 -.0697 .3358 .0086 .1423 .2076 .4128
512 -.0979 .1238 -.0367 .1830 -.0109 .0928 .1307 .2399

.40 -.25 128 .0290 .3640 -.0567 .6422 .0106 .2215 -.0651 .6411
256 .0490 .1610 -.0311 .3790 .0101 .2045 -.0387 .3463
512 .0337 .1568 .0001 .2513 .0192 .1778 -.0058 .2001

0 128 .0073 .1887 -.1013 .6577 .0071 .1773 -.1099 .6599
256 .0204 .1139 -.0394 .3224 .0099 .1116 -.0560 .3272
512 .0238 .0777 -.0224 .1828 .0156 .0759 -.0333 .1847

.25 128 .0018 .1721 -.0935 .6346 .0290 .1782 .0102 .6624
256 .0013 .1106 -.0582 .3341 .0176 .1151 .0051 .3171
512 .0056 .0735 -.0297 .1898 .0164 .0743 -.0014 .1882

.45 128 -.0196 .1904 -.1172 .6681 .1398 .2461 .3591 .7409
256 -.0032 .1134 -.0574 .3383 .0957 .1578 .2060 .4070
512 .0019 .0787 -.0357 .1883 .0686 .1119 .1236 .2456

.80 -.25 128 .0577 .1899 -.0538 .6956 .0252 .1845 -.0757 .6719
256 .0717 .1325 .0052 .3534 .0364 .1146 -.0041 .3253
512 .0701 .1039 .0059 .2121 .0355 .0833 -.0035 .1897

0 128 .0152 .1906 -.0922 .6520 .0090 .1859 -.0893 .6312
256 .0250 .1193 -.0617 .3314 .0129 .1183 -.0745 .3523
512 .0281 .0823 -.0342 .1893 .0201 .0757 -.0328 .1888

.25 128 -.0041 .1952 -.0972 .6595 .0207 .1895 -.0022 .6443
256 .0075 .1195 -.0341 .3310 .0242 .1199 .0069 .3159
512 .0143 .0809 -.0266 .1851 .0243 .0798 .0074 .1829

.45 128 -.0079 .1915 -.1018 .6289 .1560 .2612 .3997 .7596
256 -.0006 .1149 -.0470 .3161 .1060 .1716 .2252 .4160
512 .0089 .0787 -.0171 .1854 .0765 .1139 .1445 .2502
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Table 22: Parametric Estimators - ARFIMA(0,d,0)-ARCH(1)
EML MPL CML FML

β d T Bias RMSE Bias RMSE Bias RMSE Bias RMSE
.40 -.25 128 -.0281 .1041 -.0281 .1041 -.0281 .1027 -.0039 .1043

256 -.0150 .0731 -.0150 .0731 -.0148 .0725 -.0011 .0729
512 -.0088 .0494 -.0088 .0494 -.0084 .0489 -.0012 .0494

0 128 -.0351 .1025 -.0351 .1025 -.0351 .1040 -.0076 .1001
256 -.0162 .0675 -.0162 .0675 -.0162 .0681 -.0016 .0671
512 -.0100 .0479 -.0100 .0479 -.0100 .0481 -.0025 .0473

.25 128 -.0468 .1052 -.0468 .1052 -.0385 .1083 -.0104 .1043
256 -.0250 .0709 -.0250 .0709 -.0207 .0719 -.0058 .0705
512 -.0149 .0497 -.0149 .0497 -.0126 .0501 -.0045 .0492

.45 128 -.0626 .0965 -.0626 .0965 -.0210 .1078 .0086 .1098
256 -.0367 .0639 -.0367 .0639 -.0105 .0719 .0067 .0736
512 -.0225 .0444 -.0225 .0444 -.0073 .0496 .0024 .0502

.80 -.25 128 -.0316 .1471 -.0316 .1471 -.0296 .1445 -.0057 .1499
256 -.0160 .1165 -.0160 .1165 -.0145 .1151 -.0017 .1185
512 -.0112 .0904 -.0112 .0904 -.0103 .0896 -.0032 .0907

0 128 -.0388 .1501 -.0388 .1501 -.0365 .1550 -.0085 .1557
256 -.0202 .1191 -.0202 .1191 -.0193 .1215 -.0048 .1220
512 -.0091 .0931 -.0091 .0931 -.0087 .0943 -.0001 .0949

.25 128 -.0473 .1367 -.0473 .1367 -.0356 .1488 -.0071 .1504
256 -.0281 .1073 -.0281 .1073 -.0218 .1144 -.0070 .1143
512 -.0156 .0883 -.0156 .0883 -.0123 .0922 -.0041 .0926

.45 128 -.0845 .1296 -.0845 .1296 -.0394 .1494 -.0096 .1480
256 -.0493 .0887 -.0493 .0887 -.0150 .1097 .0021 .1112
512 -.0323 .0685 -.0323 .0685 -.0087 .0874 .0007 .0884
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Table 23: Semiparametric I - ARFIMA (0,d,0)-ARCH(1)
LPR (m =

¥
T 0.5

¦
) LPR (m =

¥
T 0.65

¦
) PLPR (m =

¥
T 0.5

¦
) PLPR (m =

¥
T 0.65

¦
)

β d T Bias RMSE Bias RMSE Bias RMSE Bias RMSE
.40 -.25 128 .0100 .2694 .0108 .1683 .0044 .2549 .0066 .1676

256 .0080 .2100 .0020 .1336 .0076 .1999 .0009 .1320
512 .0060 .1708 .0088 .1028 .0040 .1641 .0074 .1010

0 128 .0021 .2707 -.0014 .1673 .0071 .2578 -.0003 .1659
256 .0005 .2053 .0026 .1241 .0006 .1964 .0023 .1219
512 -.0042 .1675 .0014 .0956 -.0045 .1611 .0013 .0942

.25 128 -.0110 .2768 -.0125 .1658 -.0098 .2666 -.0097 .1655
256 -.0101 .2126 -.0116 .1313 -.0078 .2045 -.0077 .1290
512 .0018 .1668 -.0021 .0965 .0048 .1610 -.0020 .0950

.45 128 .0117 .2726 .0042 .1659 .0149 .2641 .0123 .1645
256 .0162 .2072 .0096 .1243 .0135 .2012 .0135 .1232
512 .0085 .1697 .0070 .0947 .0094 .1643 .0092 .0933

.80 -.25 128 .0021 .2782 .0048 .1953 .0008 .2656 -.0009 .1930
256 -.0023 .2017 -.0009 .1460 -.0022 .1960 -.0030 .1408
512 .0002 .1700 .0020 .1129 .0002 .1608 .0009 .1092

0 128 -.0004 .2735 -.0023 .1943 -.0020 .2609 -.0004 .1891
256 .0038 .2085 -.0005 .1486 .0009 .1995 -.0001 .1450
512 .0040 .1727 .0015 .1119 .0036 .1690 .0015 .1082

.25 128 -.0014 .2754 -.0099 .1937 -.0008 .2615 -.0040 .1903
256 -.0069 .2177 -.0044 .1545 -.0096 .2112 -.0027 .1486
512 -.0027 .1658 -.0066 .1173 -.0006 .1594 -.0047 .1121

.45 128 .0037 .2741 -.0113 .1918 .0015 .2616 -.0042 .1877
256 -.0005 .2156 .0028 .1505 .0006 .2041 .0083 .1480
512 .0086 .1710 .0025 .1108 .0097 .1623 .0040 .1074
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Table 24: Semiparametric II - ARFIMA (0,d,0)-ARCH(1)
LW (m =

¥
T 0.5

¦
) LW (m =

¥
T 0.65

¦
) FELW (m =

¥
T 0.5

¦
) FELW (m =

¥
T 0.65

¦
)

β d T Bias RMSE Bias RMSE Bias RMSE Bias RMSE
.40 -.25 128 -.0175 .2337 -.0040 .1424 -.0266 .2410 .0024 .1458

256 -.0102 .1735 -.0046 .1089 -.0181 .1762 -.0032 .1110
512 -.0128 .1395 -.0010 .0815 -.0178 .1413 -.0004 .0824

0 128 -.0320 .2302 -.0175 .1370 -.0309 .2361 -.0019 .1391
256 -.0167 .1744 -.0085 .1024 -.0165 .1754 -.0006 .1039
512 -.0142 .1391 -.0066 .0760 -.0143 .1386 -.0021 .0760

.25 128 -.0465 .2418 -.0233 .1419 -.0368 .2447 .0000 .1447
256 -.0225 .1773 -.0162 .1083 -.0177 .1782 -.0054 .1071
512 -.0149 .1395 -.0113 .0774 -.0134 .1421 -.0056 .0764

.45 128 -.0192 .2262 -.0107 .1385 -.0069 .2273 .0276 .1462
256 -.0099 .1782 -.0010 .1054 -.0007 .1806 .0201 .1144
512 -.0090 .1416 .0012 .0812 -.0035 .1433 .0148 .0914

.80 -.25 128 -.0232 .2381 -.0104 .1644 -.0300 .2486 -.0049 .1689
256 -.0136 .1699 -.0072 .1199 -.0179 .1743 -.0041 .1225
512 -.0134 .1410 -.0033 .0933 -.0188 .1424 -.0028 .0943

0 128 -.0277 .2367 -.0182 .1666 -.0272 .2451 -.0048 .1706
256 -.0169 .1732 -.0132 .1244 -.0164 .1746 -.0042 .1265
512 -.0105 .1372 -.0068 .0932 -.0116 .1399 -.0021 .0942

.25 128 -.0233 .2304 -.0239 .1643 -.0101 .2383 -.0014 .1667
256 -.0266 .1812 -.0178 .1314 -.0222 .1850 -.0064 .1321
512 -.0193 .1397 -.0118 .0974 -.0170 .1446 -.0065 .0973

.45 128 -.0185 .2381 -.0238 .1668 -.0053 .2304 .0085 .1698
256 -.0111 .1798 -.0053 .1224 -.0016 .1730 .0149 .1300
512 -.0063 .1403 -.0043 .0893 .0032 .1421 .0083 .0983
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Table 25: Semiparametric III - ARFIMA (0,d,0)-ARCH(1)
LPW (m =

¥
T 0.5

¦
) LPW (m =

¥
T 0.65

¦
) BRLPR (m =

¥
T 0.5

¦
) BRLPR (m =

¥
T 0.65

¦
)

β d T Bias RMSE Bias RMSE Bias RMSE Bias RMSE
.40 -.25 128 -.1290 .7423 -.0376 .2600 .0105 .5751 .0127 .3003

256 -.0602 .3479 -.0205 .1812 .0122 .4048 .0106 .2198
512 -.0580 .2793 -.0182 .1407 .0024 .2941 .0076 .1601

0 128 -.1253 .5348 -.0607 .2639 .0015 .5819 -.0051 .2999
256 -.0622 .3651 -.0265 .1806 .0105 .3928 .0046 .2131
512 -.0560 .2753 -.0189 .1327 -.0058 .3065 -.0002 .1607

.25 128 -.1439 .8190 -.0684 .2701 .0145 .5883 -.0061 .3022
256 -.0743 .4059 -.0362 .1828 -.0143 .4105 -.0133 .2159
512 -.0637 .3285 -.0250 .1311 -.0060 .3161 -.0059 .1536

.45 128 -.1599 .9706 -.0361 .2549 -.0083 .6041 .0140 .2971
256 -.0891 .5893 -.0154 .1820 .0138 .3973 .0252 .2148
512 -.0255 .4888 -.0145 .1369 .0338 .3183 .0101 .1575

.80 -.25 128 -.1109 .5447 -.0466 .2702 -.0030 .5544 .0005 .3084
256 -.0667 .3441 -.0220 .1740 .0018 .3798 .0025 .2066
512 -.0490 .2644 -.0159 .1381 .0062 .2978 -.0011 .1606

0 128 -.1226 .5194 -.0542 .3227 .0007 .5624 .0066 .3076
256 -.0677 .3361 -.0250 .1798 -.0008 .4016 .0052 .2160
512 -.0431 .2576 -.0161 .1389 -.0074 .3084 .0038 .1584

.25 128 -.1387 .6261 -.0465 .2626 -.0130 .5619 -.0012 .3128
256 -.0768 .4317 -.0320 .1869 .0161 .3894 .0012 .2278
512 -.0693 .2756 -.0250 .1379 -.0150 .3043 -.0047 .1567

.45 128 -.1364 .7163 -.0378 .2601 .0067 .5438 .0141 .3055
256 -.0785 .5197 -.0229 .1853 .0043 .4097 .0012 .2239
512 -.0488 .2919 -.0125 .1296 .0125 .3068 .0063 .1566
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Table 26: Haar Wavelet OLS - ARFIMA (0,d,0)-ARCH(1)
J = K = 0 J = 2,K = 0 J = .K = 2

β d T Bias RMSE Bias RMSE Bias RMSE
.40 -.25 128 -.0823 .2125 .0142 .1402 -.1722 .3938

256 -.0662 .1608 .0163 .0982 -.1365 .2788
512 -.0484 .1251 .0171 .0754 -.1015 .2070

0 128 -.1269 .2216 -.0436 .1401 -.1988 .3833
256 -.1009 .1804 -.0342 .0992 -.1522 .2923
512 -.0918 .1529 -.0289 .0770 -.1349 .2350

.25 128 -.1563 .2502 -.0880 .1628 -.2118 .4088
256 -.1326 .2007 -.0705 .1193 -.1759 .3070
512 -.1130 .1647 -.0571 .0928 -.1452 .2359

.45 128 -.1724 .2650 -.1026 .1699 -.2274 .4325
256 -.1322 .2023 -.0815 .1274 -.1619 .2997
512 -.1094 .1633 -.0685 .1015 -.1297 .2287

.80 -.25 128 -.0873 .2101 .0122 .1624 -.1762 .3731
256 -.0619 .1698 .0151 .1202 -.1262 .2816
512 -.0472 .1303 .0107 .0888 -.0956 .2078

0 128 -.1200 .2272 -.0415 .1685 -.1875 .3810
256 -.1023 .1842 -.0322 .1189 -.1557 .2904
512 -.0863 .1564 -.0245 .0896 -.1275 .2369

.25 128 -.1568 .2544 -.0922 .1854 -.2095 .4071
256 -.1308 .2060 -.0729 .1400 -.1695 .3064
512 -.1159 .1716 -.0571 .1072 -.1478 .2447

.45 128 -.1703 .2542 -.1207 .1980 -.2010 .3884
256 -.1389 .2095 -.0898 .1441 -.1665 .3040
512 -.1179 .1742 -.0678 .1090 -.1390 .2409
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Table 27: Daubechies4 Wavelet OLS - ARFIMA (0,d,0)-ARCH(1)
J = K = 0 J = 2,K = 0 J = .K = 2

β d T Bias RMSE Bias RMSE Bias RMSE
.40 -.25 128 -.1003 .2252 .0005 .1349 -.1905 .4085

256 -.0761 .1657 -.0034 .0998 -.1377 .2799
512 -.0713 .1454 -.0062 .0737 -.1228 .2325

0 128 -.1258 .2219 -.0505 .1440 -.1970 .3851
256 -.1048 .1807 -.0381 .1041 -.1586 .2898
512 -.0912 .1477 -.0269 .0736 -.1334 .2248

.25 128 -.1159 .2169 -.0726 .1501 -.1499 .3631
256 -.1058 .1956 -.0568 .1137 -.1380 .3061
512 -.0814 .1460 -.0422 .0809 -.1020 .2165

.45 128 .0044 .1864 -.0776 .1578 .0786 .3427
256 -.0007 .1467 -.0552 .1124 .0438 .2485
512 -.0066 .1189 -.0484 .0887 .0232 .1874

.80 -.25 128 -.0989 .2218 -.0173 .1660 -.1724 .3819
256 -.0822 .1789 -.0163 .1193 -.1383 .2905
512 -.0684 .1459 -.0153 .0883 -.1106 .2270

0 128 -.1321 .2410 -.0592 .1834 -.1971 .3985
256 -.1034 .1837 -.0372 .1234 -.1513 .2847
512 -.0920 .1550 -.0301 .0947 -.1332 .2311

.25 128 -.1039 .2174 -.0702 .1726 -.1281 .3549
256 -.0883 .1738 -.0565 .1276 -.1079 .2603
512 -.0788 .1448 -.0447 .0971 -.0962 .2070

.45 128 .0082 .1939 -.0859 .1817 .0981 .3591
256 .0006 .1541 -.0624 .1337 .0525 .2607
512 -.0024 .1207 -.0514 .0982 .0332 .1902
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Table 28: Wavelet MLE - ARFIMA(0,d,0)-ARCH(1)
Haar (K = 2) Haar (K = 4) Daub4 (K = 2) Daub4 (K = 4)

β d T Bias RMSE Bias RMSE Bias RMSE Bias RMSE
.40 -.25 128 .0094 .1921 -.0679 .6902 -.0027 .1931 -.0880 .6554

256 .0139 .1254 -.0270 .3335 .0032 .1229 -.0307 .3280
512 .0247 .0825 -.0061 .1807 .0056 .0802 -.0182 .1933

0 128 -.0308 .2394 -.1123 .7189 -.0309 .1854 -.0675 .6532
256 -.0157 .1331 -.0477 .3344 -.0138 .1247 -.0509 .3829
512 -.0134 .1512 -.0249 .1861 -.0119 .1056 -.0259 .2034

.25 128 -.0434 .1981 -.1124 .6516 -.0123 .1935 -.0329 .6366
256 -.0269 .1239 -.0513 .3214 -.0030 .1239 -.0136 .3319
512 -.0207 .0791 -.0367 .1897 -.0036 .0783 -.0051 .1874

.45 128 -.0393 .1989 -.1115 .6747 .1232 .2400 .3907 .7305
256 -.0235 .1282 -.0398 .3416 .0779 .1534 .2212 .3985
512 -.0177 .0842 -.0262 .1917 .0483 .1007 .1236 .2421

.80 -.25 128 .0055 .2334 -.1012 .6475 -.0065 .2310 -.0693 .6389
256 .0218 .1511 -.0280 .3377 -.0021 .1526 -.0250 .3482
512 .0235 .1137 -.0072 .2069 .0041 .1045 -.0049 .2078

0 128 -.0206 .2077 -.1098 .6465 -.0158 .2181 -.0595 .6600
256 -.0137 .1496 -.0507 .3174 -.0110 .1472 -.0414 .3354
512 -.0063 .1018 -.0268 .1959 -.0028 .1101 -.0197 .1901

.25 128 -.0318 .2175 -.1064 .6712 .0046 .2062 -.0121 .6256
256 -.0259 .1464 -.0537 .3421 -.0036 .1432 -.0039 .3295
512 -.0190 .1112 -.0382 .1986 -.0021 .1049 -.0029 .1876

.45 128 -.0331 .2189 -.0988 .6558 .1403 .2632 .3984 .7597
256 -.0204 .1468 -.0464 .3474 .0877 .1907 .2162 .4282
512 -.0147 .1035 -.0271 .2062 .0576 .1231 .1378 .2623
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