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1. Introduction

Modern portfolio theory seeks for mean-variance efficient portfolios and
Markowitz (1952) provides a theoretical framework for identifying portfolios that
are optimal with respect to an investor-specific risk aversion. Since the parameters
of the return distribution are not known to the investor, they must be estimated on
a stage preceding the process of portfolio optimization.

Consequently, the effect of parameter uncertainty on the optimal portfolio choice,
or – in other words – the sensitivity of the optimal portfolio weights to small changes
in the input parameters is extensively analyzed (see, e.g., Jobson and Korkie, 1980;
Michaud, 1989). It turns out that the true optimal portfolio can be assumed to be
far from its estimate if the latter is obtained by replacing the true input parameters
with their sample counterparts in the optimization problem.

Chopra and Ziemba (1993) as well as Best and Grauer (1991) clarify that it is
the vector of expected returns, µ that causes the main part of the estimation error.
Hence, µ is the main factor of sub-optimality. Furthermore, and in contrast to the
covariance matrix Σ of the returns, the sample-based estimation of µ can not be
improved by increasing the sample frequency (see Merton, 1980).

Accordingly, one approach to account for the estimation risk is the considera-
tion of portfolios that do not need an explicit estimator for the expected returns.
Some authors propose investing in the global minimum variance portfolio (see, e.g.,
Jagannathan and Ma, 2003; Ledoit and Wolf, 2003). Others suggest consisting of
portfolio optimization at all and investing in the equally-weighted portfolio (see
Jobson and Korkie, 1981, and recently DeMiguel et al., 2009b). We will come back
to these benchmark-forming portfolios later on.

On the other hand, it seems natural to incorporate the parameter uncertainty in
a direct way during the estimation of µ and Σ. The Bayesian framework proves to
be suitable for this purpose since it allows us to combine information from historical
data with prior knowledge. This can lead to robust parameter estimates and to a
well-diversified portfolio. Mao and Särndal (1966) and Kalymon (1971) introduce
the Bayesian calculus to parameter estimation in the context of modern portfolio
theory. Klein and Bawa (1976), and independently Brown (1976), propose using
a diffuse prior for µ and Σ originally derived by Jeffreys (1961). This approach
continues to rely on the sample estimators for µ and Σ. For this reason, Jeffreys’
prior is sometimes referred to as non-informative.

By contrast, Raiffa and Schlaifer (1961) introduce the concept of conjugate pri-
ors, which enjoys great popularity among both practitioners and researchers since
it combines the benefits of an analytically tractable posterior distribution with the
ability to suitably model real problems. Applied to a normal market model, the
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approach of Ando and Kaufman (1965) is used to tackle the problem of a poor sam-
ple estimator for the expected returns by shrinking it toward the assessment of an
expert. This involves the determination of the prior mean µ0 and covariance matrix
Σ0. Finally, it is the role of the investor to express his/her confidence in the expert’s
views by specifying the prior precision parameter τ which has an influence on the
scale of the dispersion.

The main contribution of this paper to the related literature is to provide answers
to the following questions:

1. What does the confidence parameter τ depend on?
2. To what extent does the confidence in prior knowledge influence the perfor-

mance of investment strategies?
3. Which are reasonable values for τ?

In Section 2 we introduce conjugate priors for the market model and discuss some
approaches to parameter estimation that are derived from the general model. We
develop an analytical expression for the confidence parameter τ in order to respond
to question one above. Section 3 is mainly devoted to examining the direct and
indirect influence of the portfolio dimension d on the confidence parameter τ . This
serves to calibrate the confidence of the investor.

Section 4 addresses our second and third research question by evaluating the
results of a simulation study. The performance of well-known portfolio strategies
including the global minimum variance portfolio (MVP) and the equally-weighted
portfolio (EWP) is investigated for reasonable levels of confidence. This is done in the
standard framework of modern portfolio theory and in a more realistic framework
that includes short-selling constraints and a risk-free asset. In contrast to many
empirical studies that evaluate the out-of-sample performance of portfolio models,
we do not aim at finding an outperforming strategy, but rather at conducting a
sensitivity analysis for reasonable values of τ . Section 5 concludes our work.

2. Confidence in A Normal Market Model

2.1. Standard Model and Existing Estimation Approaches

Throughout this paper we assume that the d-dimensional vector of asset excess
returns1 Rt is multivariate normally distributed, viz.

Rt ∼ N (µ,Σ) . (1)

1We will always refer to excess returns, i.e., asset returns minus the corresponding risk-free
interest rate. Therefore, in the following we will drop the prefix excess for convenience.

3



Here, µ is the vector of expected returns and Σ is the covariance matrix of the returns.
Market information is reflected by a random sample R = {r1, . . . , rn} of past return
realizations. This information can be sufficiently2 summarized by the sample mean

µ̂ =
1

n

n∑

t=1

rt , (2)

and the sample covariance matrix

Σ̂ =
1

n

n∑

t=1

(rt − µ̂) (rt − µ̂)′ . (3)

According to Theorem 7.1.4 and 7.1.5 in Press (1972) it holds that

µ̂ ∼ N (µ,Σ/n) and Σ̂ ∼W (n− 1,Σ/n) , (4)

where W (ν,Ψ) denotes a Wishart distributed random matrix with ν degrees of free-
dom and scale parameter Ψ (cf. also Appendix A). As we have already mentioned,
it is meaningful to focus on the estimation of the vector of expected returns. To start
with, assume that the covariance matrix Σ is known or can at least be estimated
with sufficient precision. A conjugate prior for µ with respect to the distribution of
the sample mean – see Eq. (4) – is given by

µ ∼ N (µ0, τΣ0) . (5)

The prior parameters µ0 and Σ0 as well as the confidence parameter τ must be speci-
fied in order to carry out the Bayesian analysis. In our view, the investor should
draw on expert knowledge to specify the location parameter µ0 and the dispersion
parameter Σ0. By contrast, s/he should calibrate the parameter τ to express his/her
confidence on the expert assessments. Note that small values of τ correspond to a
high level of confidence. Following Gelman et al. (2004, p. 85f), the posterior distri-
bution of µ is normal, too, with the posterior parameters

µ1 = ((τΣ0)−1 + nΣ−1)−1((τΣ0)−1µ0 + nΣ−1µ̂) ,

Σ−1
1 = (τΣ0)−1 + nΣ−1 . (6)

Then, the predictive return distribution reads Rn+1|R ∼ N (µ1,Σ + Σ1).

2A proof that µ̂ and Σ̂ are sufficient statistics can be found in Press (1972, Theorem 7.1.1)
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In the following, we look at some well-known estimation procedures which can be
derived within the standard model as presented. We focus on how the parameters of
the prior distribution are specified, especially the confidence parameter τ .

Since the seminal work of Stein (1956) it is well-known that the sample mean µ̂
is dominated by the so-called James-Stein estimator φJSµ0 + (1−φJS)µ̂ in terms of a
quadratic loss function. The James-Stein estimator belongs to the class of shrinkage
estimators which have been used in portfolio optimization for many years (see, e.g.,
Jobson and Korkie, 1979). Jorion (1986) introduces a shrinkage estimator which
can be derived within a Bayesian framework. More precisely, consider the following
specification of the prior parameters in Eq. (5):

µ0 ≡ µ̂MVP1 =
1
′Σ−1µ̂

1′Σ−11
1 and Σ0 = Σ , (7)

where 1 denotes a column vector of ones. Interestingly, the scale factor µ̂MVP equals
the expected return of the global minimum variance portfolio in the conventional
setting which is examined in greater detail later on. With this specific informative
prior, the predictive return distribution is easily shown to be normal with mean

E (Rn+1|R) = φBS
1
′Σ−1µ̂

1′Σ−11
1 + (1− φBS) µ̂ , φBS =

1

1 + τn
. (8)

Consequently, the latter expression is referred to as the Bayes-Stein estimator. Jorion
(1986, Eq. 17) offers a way to estimate the shrinkage weight φBS directly from the
data. His approach corresponds to a specific choice of confidence, viz.

τ =
(µ̂− µ̂MVP1)′Σ−1 (µ̂− µ̂MVP1)

d+ 2
. (9)

Due to the data-driven estimation process, Jorion (1986) refers to it as the empirical

Bayes approach. He claims that ‘this approach will outperform the classical sample
mean because it relies on a richer model’. Even though this has been proven to be
true in many empirical studies, it is still a matter of debate whether this assertion
leads to portfolio strategies which can outperform the naive diversification rule.

Although it is clear that experts eventually fall back on market data in order
to generate forecasts, we should keep in mind that this empirical Bayes approach
uses the same data to specify the prior parameters and to incorporate the market
information. Strictly speaking, this course of action contradicts the principle of
Bayesian analysis. More importantly, the confidence parameter τ cannot be chosen
in an explicit way by the investor but is rather a by-product of the determination of
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the shrinkage weight φBS.
The well-known approach of Black and Litterman (1991, 1992) can also be viewed

in terms of the Bayesian standard model described above. Instead of market infor-
mation, the Black-Litterman model combines prior knowledge with subjective views

on µ. Note that Black and Litterman (1991) proceed on the prior distribution in (5)
and set Σ0 = Σ, following Jorion (1986). The parameter µ0 is replaced by the vector
of implicit returns π, which is the solution of a reverse mean-variance optimization
problem, i.e., π = λΣwopt and wopt = arg maxw w

′µ− λ/2 · w′Σw.
Several specifications of the confidence parameter τ are proposed by the litera-

ture on the Black-Litterman approach. Some authors – including Fusai and Meucci
(2003), Meucci (2010) as well as Satchell and Scowcroft (2000) – set τ to a value of
one. This often goes along with the so-called Alternative Reference Model in which
the prior distribution is defined without an explicit precision parameter. Neglecting
the confidence parameter τ contrasts with the original work of Black and Litterman
(1991) who state that τ will be close to zero. This suggestion is further promoted
by Idzorek (2007). He and Litterman (2002) set τ = 1/n, considering it as the ratio
of the sampling variance to the distribution variance.

Walters (2010, 2011) discusses some empirical ways to calibrate τ , mostly ending
in values close to zero. However, many approaches are built around the implicit
return π and cannot be used in general for the prior parameter µ0. Other contri-
butions concern rules of thumb and suffer from their lack of theoretical foundation.
Nevertheless, it seems to be widely accepted that τ is in practical applications much
less than one, reflecting the fact that the uncertainty in the mean of the return dis-
tribution is much smaller than the (co-)variances of the returns (see also Walters,
2011).

In contrast to Jorion (1986) and Black and Litterman (1991), Kempf et al. (2002)
propose to model the estimation risk3 independently of the innovation risk Σ. To be
precise, they replace Σ0 by the identity matrix I and set µ0 = µ̄01. In other words,
a simplified structure of the prior mean is assumed, indicating that the expected
returns are identical across all d assets. In this setting, the parameters of the posterior
distribution can be expressed as follows (see Memmel, 2004, p. 83f):

µ1 = (I −K) µ̄01 +Kµ̂ ,

Σ1 = τ (I −K)−1 , (10)

3Note that Kempf et al. (2002) consider the prior distribution in Eq. (5) as a model of estimation
risk which can thus be controlled by the dispersion parameter Σ0.
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Table 1: Optimal strategies for extreme constellations of n and τ

homogeneous returns inhomogeneous returns
τ = 0 τ →∞

no history global minimum equally-weighted
n = 0 variance portfolio portfolio

long history global minimum sample-based
n→∞ variance portfolio approach

where the matrix-valued shrinkage weight is defined by K = (Σ/(τn) + I)−1. Based
on the specification in Eq. (10), Kempf et al. (2002) derive optimal portfolio strate-
gies depending on the values τ and n (see Table 1). Taking a closer look at this, we
consider the tangency portfolio (TP),

wTP =
Σ−1µ

1′Σ−1µ
, (11)

which is the unique efficient portfolio consisting of risky assets solely. According
to Tobin’s two-fund separation theorem (Tobin, 1958) the optimal portfolio wopt =
Σ−1µ/λ can be assessed by the combination of the risk-free asset with the tangency
portfolio.4 By contrast, the global minimum variance portfolio (MVP), defined by
the weight vector

wMVP =
Σ−1

1

1′Σ−11
, (12)

is the solution of the optimization problem minw w
′Σw s.t. w′1 = 1 and yields the

lowest portfolio variance if no risk-free asset is assessable. Note that both the global
minimum variance portfolio and the tangency portfolio lie on the efficient frontier in
the case without a risk-free asset whereas the tangency portfolio is also part of the
capital market line. Finally, the equally-weighted portfolio (EWP) is simply defined
by wEWP = 1/d.

In the standard setting without constraining shortsales and with the opportunity
to invest in a risk-free asset, the investor’s main task is to determine the tangency
portfolio (see the explanations above). Kempf et al. (2002) basically show that the
tangency portfolio coincides with the MVP if the investor highly trusts the expert’s

4More generally, the separation theorem holds for every efficient portfolio.
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assessment. This is due to the simple structure of the prior parameter µ0. Mathe-
matically speaking, it holds that limτ→0K = 0d, limτ→0 µ1 = µ̄01, limτ→0 Σ1 = 0d
and, consequently,

lim
τ→0
ŵTP =

Σ−1
1

1′Σ−11
≡ wMVP , (13)

where we define ŵTP := (Σ1 + Σ)−1µ1/(1
′(Σ1 + Σ)−1µ1), and 0d denotes the d × d

zero matrix. By contrast, limτ→∞
n→0
K = 0d, limτ→∞

n→0
τ (Σ1 + Σ)−1 = I and

lim
τ→∞
n→0

ŵTP =
1

d
≡ wEWP , (14)

if we additionally assume τn→ 0 . Thus, the TP corresponds to the EWP if the in-
vestor is suspicious of the expert’s knowledge and no market information is available.
Intuitively, if it is impossible to assess the asset returns ex ante, one should better
pass on portfolio optimization and follow the naive diversification rule. On the other
hand, if the investor can rely on a very large return sample, the sample estimator for
the expected returns comes into play favoring the traditional Markowitz approach of
portfolio optimization.5 Then, limτ,n→∞K = I, limτ,n→∞ µ1 = µ̂, limτ,n→∞Σ1 = 0d
and

lim
τ,n→∞

ŵTP =
Σ−1µ̂

1′Σ−1µ̂
. (15)

A natural question is how far away typical values of τ are from their limits. In
Section 4 we evaluate the performance of the afore-mentioned special portfolios for
different values of τ by simulation. Our special emphasis will be on deducing realistic

values of the confidence parameter. The theoretical findings of Kempf et al. (2002)
might be less relevant from a practical point of view if the performance of portfolio
strategies is very sensitive to changes in the level of confidence.

2.2. Determinants of Confidence in the Normal-Inverse-Wishart Model

The basic advantages of the conjugate prior idea can be extended to a situa-
tion in which the covariance matrix Σ is assumed to be unknown. To this end,
Ando and Kaufman (1965) introduced the normal-inverse-Wishart conjugate prior

µ|Σ ∼ N (µ0, τΣ) ,

Σ ∼ IW (ν0 + d+ 1, ν0Σ0) , (16)

5In contrast to the seminal work of Markowitz (1952), the problem of parameter estimation is
limited here to the vector of expected returns.
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i.e., in addition to the prior for µ we assume that the covariance matrix Σ is a priori
distributed as a d×d random matrix following the inverse Wishart distribution with
ν0 + d + 1 degrees of freedom, precision parameter ν0 and dispersion parameter Σ0

(cf. Appendix A for notational convenience).6

The extended model in Eq. (16) can also be seen as a response to the critique
of Kempf et al. (2002) since it explicitly takes into account the risk inherent in the
estimation of Σ. Note that in the normal-inverse-Wishart (NIW) model, the prior
parameter Σ0 plays a role similar to that in the basic model. This is reflected by the
fact that E(Σ−1) = Σ−1

0 (see Appendix A for the relation between the Wishart and
the inverse Wishart distribution).7 The posterior distributions are given by

µ|Σ,R ∼ N (µ1, τwτΣ) ,

Σ|R ∼ IW (ν1 + d+ 1, ν1Σ1) , (17)

where

wτ = 1/(1 + τn) ,

µ1 = wτµ0 + (1− wτ ) µ̂ ,
ν1 = ν0 + n ,

Σ1 =
(
nΣ̂ + ν0Σ0 + n · wτ (µ̂− µ0) (µ̂− µ0)

′

)
/ν1 . (18)

According to Brown (1976, p. 145) the predictive return distribution reads

Rn+1|R ∼ t (ν1, µ1, (1 + τwτ ) Σ1) , (19)

where t(ν, µ,Σ) denotes the multivariate noncentral t distribution with location pa-
rameter µ, dispersion parameter Σ and ν degrees of freedom (cf. Kotz and Nadarajah,
2004, p. 1). The parameters µ and Σ are replaced in the optimization problem by
the first two moments of the distribution of Rn+1, viz.

E (Rn+1|R) = µ1 ,

Var (Rn+1|R) =
ν1
ν1 − 2

(1 + τwτ ) Σ1 . (20)

6Note that the prior for µ is now modeled conditional on Σ. The corresponding unconditional

prior is multivariate t distributed; see, e.g., Meucci (2005, p. 371) for details.
7By contrast, it holds that E(Σ) = ν0/(ν0 − d− 1) ·Σ0 6= Σ0.
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Note that we have to deal with a further prior parameter ν0 which controls the
investor’s confidence in the expert knowledge concerning the dispersion matrix Σ0.
However, we focus on modeling the confidence parameter τ for three reasons:

1. In terms of the prior distributions, we can completely separate the direct in-
fluence of τ on the expected returns and of ν0 on the covariance matrix of the
returns. Remember that covariance matrices can generally be estimated more
accurately than expected returns (see Merton, 1980). Even more seriously,
the vector of optimal portfolio weights is much more sensitive to changes in
the expected returns (see Best and Grauer, 1991; Chopra and Ziemba, 1993;
Kempf and Memmel, 2002). We therefore believe that choosing a small value
for ν0 is adequate to express the investor’s confidence in that regard.

2. The normal-inverse Wishart prior in (16) is constructed as follows. In a first
step, the covariance matrix Σ is generated. Then, conditional on the realized
covariance matrix, the vector of expected returns is modeled. For this purpose,
ν0 works like a normalization constant and can afterwards be canceled out if
the value for τ is suitably chosen, since both parameters affect the scale of Σ.

3. The confidence parameter τ has an influence on both the first and the second
moment of the predictive return distribution while the parameter ν0 only im-
pacts on the second moment (cf. Eq. (18) and (20)). Moreover, τ controls the
intensity with which the sample mean is shrunk towards the prior mean µ0.

8

Applying Theorem 1.3.4 of Muirhead (1982) we conclude from Eq. (16) that

µ′ (τΣ)−1 µ |Σ ∼ χ2
d(δ) , (21)

where χ2
d(δ) denotes the non-central chi-squared distribution with d degrees of free-

dom and non-centrality parameter δ. In our case, it holds that

δ = µ′0 (τΣ)−1 µ0 . (22)

Note that the expected return and the variance of the tangency portfolio are given
by µTP = µ′Σ−1µ/(1′Σ−1µ) and σ2

TP = µ′Σ−1µ/(1′Σ−1µ)2, respectively. Hence, the
Sharpe ratio of the tangency portfolio is defined as follows:

ShTP :=
µTP

σTP
=
√
µ′Σ−1µ . (23)

8The following holds: τ ↑⇒ µ1,i ↓ if µ0,i > µ̂i and τ ↑⇒ µ1,i ↑ if µ0,i < µ̂i (i = 1, . . . , d).
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Consequently, we can write Sh2
TP|Σ ∼ τχ2(δ) and it holds that

E
(
Sh2

TP|Σ
)

= τ (d+ δ) . (24)

Applying the law of iterated expectations, we get

E
(
Sh2

TP

)
= E

{
E
(
Sh2

TP|Σ
)}

= E (τ(d+ δ)) = τd+ µ′0E
(
Σ−1

)
µ0 . (25)

As already mentioned, it holds that E(Σ−1) = Σ−1
0 and thus

τ =
E
(
Sh2

TP

)
− µ′0Σ−1

0 µ0

d
. (26)

The key observation is that we are able to model τ by undertaking reasonable values
for the Sharpe ratio of the tangency portfolio, e.g., from the relevant literature. One
should not be concerned about the fact that the Sharpe ratio of the TP comes into
play only through its expectation since this reflects the Bayesian point of view.

Note that ν0 is the only prior parameter which does not affect the value of τ . This
confirms the argument in point 1 above that the two confidence parameters τ and
ν0 can be discriminated according to their direct influence on the prior distribution
of µ and Σ, respectively. The investor’s confidence in the prior mean increases as
the true Sharpe ratio of the TP is approximated with increasing accuracy by that
one following from the expert assessments µ0 and Σ0. Furthermore, the value of
τ is inversely proportional to the number of assets d, implying that the investor’s
confidence increases the more assets are on the market. We discuss this point in
greater detail in Section 3.

Frost and Savarino (1986) apply an empirical Bayes approach (cf. Jorion, 1986)
to the normal-inverse-Wishart model. More precisely, the model parameters are
obtained via maximum-likelihood (ML) estimation assuming the following structure
of the location and dispersion parameter, respectively:

µ0 ≡ µ̄01 and Σ0 ≡ σ̄2
0 {ρ011

′ + (1− ρ0)I} . (27)

In other words, it is a priori assumed that the expected returns as well as the return
variances are equal. On top of that, the returns are supposed to be equicorrelated.
These simplifications might be motivated by the fact that the estimation error for
the parameter of a particular asset increases the more its sample estimate differs
from the average for all assets (cf. Frost and Savarino, 1986).

We want to analyze the input parameters in (26) against the backdrop of the
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simplifications proposed by Frost and Savarino (1986). Note that the following holds
due to the equicorrelation structure introduced in (27) (cf. Press, 1972, p. 23):

Σ−1
0 =

1

σ̄2
0

(
I

1− ρ0
− ρ011

′

(1− ρ0) (1 + (d− 1)ρ0)

)
. (28)

In the special case of (28), the expression for τ in (26) can be simplified to

τ =
E
(
Sh2

TP

)

d
− µ̄2

0

σ̄2
0 (1 + (d− 1)ρ0)

. (29)

According to Jobson and Korkie (1982), we can treat E(Sh2
TP) as an indicator for

the potential performance of the d asset set since the slope of the capital market
line is equal to ShTP. The set of feasible portfolios increases the higher the Sharpe
ratio of the TP and thus, better risk-return combinations are attainable for the
investor. Furthermore, the prior parameters µ̄0, σ̄

2
0 and ρ0 can economically be

interpreted as indicators for certain market variables which are assessed by an expert.
More precisely, µ̄0 and σ̄2

0 refer to the expert view on the market potential and the
market variation, respectively, while ρ0 can be seen as an expert assessment on the
average return correlation. Indeed, the confidence parameter τ itself has an economic
interpretation. If we assume µ0 = µ̄01, i.e., all expected returns are a priori equal, it
can be interpreted as a measure of return diversity (cf. also Kempf et al., 2002).

Note that the subtrahend in (29) is a multiple of the Sharpe ratio of the TP
implied by the expert assessment of the prior parameters. Hence, the value of the
confidence parameter τ in Eq. (29) depends on how well the Sharpe ratio of the tan-
gency portfolio is approximated by that one following from the expert assessments;
see also our explanations on the general formula in Eq. (26). According to the
presumed split of roles, the investor uses E(Sh2

TP) in order to calibrate his/her confi-
dence in the expert views. Consequently, in Section 3 we aim at providing reasonable
values for the Sharpe ratio of the tangency portfolio as an aid to decision-making for
the investor.

3. Assessing the Potential Performance of Asset Sets

3.1. Stock Indices as Proxies

First of all, statements about the potential performance of assets, i.e., the Sharpe
ratio of the tangency portfolio, are manifold in the relevant literature. Frahm (2010a)
considers the range of 0.2 and 0.5 as typical values of the annualized Sharpe ratio of
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Table 2: Estimates for the Sharpe ratio of the tangency portfolio

reference data source period Sh2

TP/mo.

MacKinlay (1995) CRSP value-weighted indexa 1963/07-1991/12 0.006
S&P 500 Index 1981/01-1992/06 0.009

Cogley and Sargent (2008) S&P Composite Indexb 1872/01-2003/12 0.004
1934/01-2003/12 0.014

Dimson et al. (2003) world stock portfolioc 1900/12-2002/12 0.010
Jorion (1991) CRSP value-weighted indexa 1931/01-1987/12 0.014

CRSP equal-weighted indexa 1931/01-1987/12 0.020
Brennan et al. (1998) 3 Fama-French factor portfoliosd 1963/01-1995/12 0.067
Kan and Zhou (2007) 10 NYSE size-ranked portfoliosd 1926/01-2003/12 0.025

25 Fama-French size and 1932/01-2003/12 0.118
book-to-market portfoliosd

Gospodinov et al. (2010) 25 Fama-French size and 1952/06-2000/12 0.168
book-to-market portfoliosd

10 NYSE size-ranked portfolios 1952/06-2000/12 0.093
& 12 FF industry portfoliosd

We list the monthly squared Sharpe ratios of the tangency portfolio, estimated using various
indices and portfolios. Note that in most of the references, the Sharpe ratio is estimated on
a quarterly or yearly basis. Thus, the data above are converted appropriately.

a The CRSP value-weighted index uses all issues listed on the NYSE, AMEX and NASDAQ.
b This sample basically corresponds to the S&P 500 Index (prior to March 1957: S&P 90 Index).
c Dimson et al. (2002) explain in detail the composition of the world stock portfolio.
d The data are available on Ken French’s Web site at http://mba.tuck.dartmouth.edu/

pages/faculty/ken.french/. The Fama-French portfolios include all NYSE, AMEX and
NASDAQ stocks.

the tangency portfolio.9 This would approximately coincide with squared monthly
values of 0.003 and 0.021. By contrast, Kan and Robotti (2008) are confident that
values between 0.2 and 0.4 cover a reasonably wide range of monthly Sharpe ratios
corresponding to squared values of 0.040 and 0.160. MacKinlay (1995) asserts that
a reasonable value for the squared monthly Sharpe ratio is 0.031 if a perfect capital
market is assumed.

Assessing the theoretical value of the Sharpe ratio is typically founded on empi-
rical data. More precisely, the Sharpe ratio is often approximated by the empirical
Sharpe ratio of well-diversified stock indices, using long estimation horizons (up
to 100 years). Table 2 gives an overview of the estimates of selected indices and

9The Sharpe ratio of the tangency portfolio is referred to as the Sharpe ratio in this section.
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portfolios. Having a closer look to the data, we notice that the Sharpe ratio estimates
mainly differ due to the following reasons:

• Asset characteristics: It makes a difference whether the proxy for the estimated
Sharpe ratio reproduces the performance of a weighted average of single shares
or of stock portfolios. Among the latter, Fama and French’s portfolios are the
standard test assets in recent empirical studies and yield higher Sharpe ratios
than the CRSP indices or the S&P index.

• Observation period: The squared Sharpe ratio for the CRSP value-weighted
index from the years 1931 to 1987 is more than twice that from 1963 to 1991.
Similarly, the S&P index yields a squared Sharpe ratio of about 0.4% in the
years 1872 to 2003. The respective value for the years 1981 to 1992 is 0.9%
while being more than three times as high in the period from 1934 to 2002
(1.4%). However, the Sharpe ratio level is not primarily influenced by the
sample size but, rather, by the stock market situation and extremal events like
stock market crashes.

3.2. The Impact of the Number of Assets

In addition to these factors, which must be considered carefully by an investor
for a specific asset market, Kan and Zhou (2007) come up with another factor which
generally impacts on the Sharpe ratio. They state that the Sharpe ratio increases
with more assets leading to a reduced or even reversed effect of the number of assets d
on the level of confidence τ (cf. Eq. (26)). Therefore, we investigate the relationship
between d and the Sharpe ratio in greater detail.

To that end, consider a market with d1 assets to which d2 assets are added. After
the addition, there are d = d1+d2 assets on the market. According to the partitioning
of the d assets, we define

µ =

[
µd1
µd2

]
and Σ =

[
Σd1 Σd1-2

Σd2-1
Σd2

]
. (30)

Jobson and Korkie (1984) consider the multivariate regression of the returns from
the d2 new assets on the returns from the original d1 assets, viz.

Rd2,t = α + βRd1,t + ut , (31)

where Rt =
[
Rd1,t Rd2,t

]
′

, i.e., the return vector of the d assets is partitioned

accordingly. The matrix of coefficients is given by β = Σd2-1
Σ−1
d1

. The vector of
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intercept terms α = µd1 −βµd2 can be thought of as the vector of generalized Jensen
measures. For the error term ut it holds that E(ut) = 0, Cov(ut, Rd1,t) = 0 as well as

Cov (ut) := Σu =
(
Σd2 − Σd2-1

Σ−1
d1

Σd1-2

)
. (32)

Note that

Σ−1 =

[
Σ−1
d1

+ β ′Σ−1
u β −β ′Σ−1

u

−Σ−1
u β Σ−1

u

]
. (33)

The squared Sharpe ratio of the new set of assets can be calculated as follows:

Sh2
TP = µΣ−1µ = µ′d1

(
Σ−1
d1

+ β ′Σ−1
u β

)
µd1 − µ′d1β ′Σ−1

u µd2 − µ′d2Σ−1
u βµd1 + µ′d2Σ

−1
u µd2

= µ′d1Σ−1
d1
µd1 + (βµd1 − µd2)′Σ−1

u (βµd1 − µd2) = Sh2
TP(d1) + α′Σ−1

u α , (34)

where Sh2
TP(d1) is the squared Sharpe ratio of the original set of assets. Due to the

positive definiteness of Σu it holds that Sh2
TP ≥ Sh2

TP(d1). The change in squared
Sharpe ratios is equal to the inner product of the vector of Jensen’s alphas weighted
by the inverse of the covariance matrix of the error terms. Hence, we may write
Sh2

TP(d) in order to clarify that the Sharpe ratio depends on the number of assets.
Furthermore, define the quotient

q(d, d1) :=
Sh2

TP(d)

Sh2
TP(d1)

. (35)

In general, it is difficult to assess the strength of the influence of d on the Sharpe
ratio. However, we investigate this question at least for the case in which µ and Σ
are simply structured. More precisely, assume that the returns are equicorrelated
and have equal means and variances, i.e., µ = µ̄1 and Σ = σ̄2{ρ11

′ + (1− ρ)I} (cf.
Frost and Savarino, 1986). Then, it follows that

Sh2
TP(d) =

d µ̄2

σ̄2 (1 + (d− 1)ρ)
(36)

and

q(d, d1) =
d

d1

1 + (d1 − 1)ρ

1 + (d− 1)ρ
. (37)

In Figure 1, we plot on the left hand side the true squared Sharpe ratio as a function
of d according to Eq. (36). In particular, we consider a range between one and 100
assets and assume that all returns exhibit a monthly mean of 0.5% and a monthly
variance of 1%. Obviously, the fraction µ̄2/σ̄2 only affects the steepness of the squared
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Figure 1: True Sharpe ratio (quotient)
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Depicted are the true squared Sharpe ratio (on the left) and the true Sharpe ratio quotient (on the
right) as a function of d if it is assumed that returns are equicorrelated and have equal means and
variances (µ̄ = .005 and σ̄2 = .01). We consider different levels of return correlation.

Sharpe ratio, while the level of return correlation controls the curvature of Sh2
TP (left

hand side of Figure 1). If the asset returns are uncorrelated (ρ = 0), the relationship
between the squared Sharpe ratio and the number of assets is linear. On the contrary,
if the returns are perfectly correlated, the squared Sharpe ratio is constant in d. For
0 < ρ < 1, Sh2

TP is a concave function in d indicating that the squared Sharpe ratio
typically increases less than proportionately to the increase in the number of assets.

On the right hand side of Figure 1, we plot the quotient of two squared Sharpe
ratios if one asset is added to the market, i.e., q(d) = d/(d−1) · (1−ρ/(1+(d−1)ρ))
(cf. also Eq. (37)). The marginal contribution of an additional asset decreases with
an increasing number of assets, as can be seen from the shape of the graphs. By
contrast, the lower the asset correlation, the larger is the quotient q(d).

The question is whether the results from the analysis of true Sharpe ratios under
the restriction of simplified structures for µ and Σ hold also for real market conditions.
In Figure 2 we display estimates for Sh2

TP(d) and q(d) which are implied by the sample
counterparts of µ and Σ using a sample of monthly returns from the CRSP data set
containing 480 observations and 283 assets. The data come from the monthly stock
file of the Center for Research in Security Prices (CRSP) including stocks from NYSE,
AMEX and NASDAQ. We consider all stocks with complete return history between
January 1969 and December 2008. The estimation procedure is as follows:

1. A set of 100 assets is randomly drawn from the whole sample.

2. The sample mean and the sample covariance matrix are estimated in order to
calculate the squared Sharpe ratio.
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Figure 2: Sample estimates of the Sharpe ratio (quotient)
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The estimated Sharpe ratio is pictured on the left as the average over 50,000 draws from a real return
sample, whereas the right figure shows the respective estimated Sharpe ratio quotient. The effect of
different sample sizes is clearly demonstrated.

3. One randomly chosen asset is deleted from the set. The sample mean and
sample covariance matrix as well as the squared Sharpe ratio of the diminished
asset set is computed. Finally, the Sharpe ratio quotient is formed. This step
is repeated until only one asset remains in the set. Then, return to step 1.

Altogether, the steps are S = 50,000 times run through. At the end, the squared
Sharpe ratio and the Sharpe ratio quotient are averaged over all repetitions for a

given d, i.e., Ŝh2
TP(d) = 1/S

∑S
s=1 Ŝh2

TP,s(d) and similarly ¯̂q(d) = 1/S
∑S
s=1 q̂s(d).

After that, the procedure is slightly modified at the first step. Instead of considering
all 480 observations of the assets, we randomly determine a starting point from which
the subsequent 120 (150, 180, 240) monthly observations are used. Figure 2 illustrates
the influence of different sample sizes on the estimation of Sh2

TP(d) and q(d). An
estimation horizon of 480 months provides results similar to those in Figure 1. With
decreasing n, both Sh2

TP(d) and q(d) are more and more overestimated. Moreover, the
squared Sharpe ratio becomes a convex function in d and the Sharpe ratio quotient
is U-shaped, thus contrasting with our findings in the theoretical analysis.

Kan and Zhou (2007) derive the exact distribution of the estimated squared
Sharpe ratio implied by the sample counterparts of µ and Σ if it is assumed that the
underlying asset returns are multivariate normally distributed. They state that

Ŝh
2

TP = µ̂′Σ̂−1µ̂ ∼ d

n− d Fd,n−d
(
n · Sh2

TP

)
, (38)
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Figure 3: Effect of estimation risk on the Sharpe ratio (quotient)
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These figures illustrate the influence of estimation error on the squared Sharpe ratio (left hand side)
and the Sharpe ratio quotient (right hand side). The black solid lines represent true values of Sh2

TP(d)
and q(d), respectively.

where Fd1,d2(δ) denotes the noncentral F distribution with d1 and d2 degrees of free-
dom and noncentrality parameter δ (cf. Muirhead, 1982, p. 24ff). In particular,

E
{

Ŝh
2

TP(d)
}

=
d

n− d− 2
+

n

n− d− 2
Sh2

TP(d) . (39)

By means of the latter expression, we are able to analyze the process of derivation
between the estimated and the true squared Sharpe ratio – at least in terms of the
expected value. This is graphically illustrated on the left hand side of Figure 3. To
set the values of the true squared Sharpe ratio, we use the relationship in (37) and
specify µ̄ = 0.5%, σ̄2 = 1% as well as ρ = 1/64. The expected Sharpe ratio quotient

on the right side of Figure 3 is defined by E{q̂(d)} := E{Ŝh2
TP(d)}/E{Ŝh2

TP(d− 1)}.
Concerning the curvature of the graphs, Figure 2 complies with Figure 3. Hence,

we can proceed from the assumption, that the theoretical Sharpe ratio depicted in
Figure 1 matches the reality, i.e., Sh2

TP is a strictly increasing, concave function in
d. Consequently, the overall effect of the number of assets in Eq. (26) and (29) is
weaker compared to the direct effect of d but the indirect effect does not completely
reverse the direct effect. Furthermore, the true value of the expected squared Sharpe
ratio must be considered very carefully since any sample-based estimation of Sh2

TP

suffers from its strong positive bias.
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4. Simulation Study

4.1. Portfolio Strategies

In Table 3, we list the investment strategies that are considered in the simulation
study. The choice of strategies is motivated by the findings of Kempf et al. (2002).
Focussing on the sample-based approach, the minimum variance portfolio and the
equally-weighted portfolio, they show that each of these strategies can serve as an
optimal allocation rule for extreme constellations of the sample size n and the level of
confidence τ . We aim at sharpening the analysis by differentiating between two set-
tings: in the first one, shortsales are completely unconstrained while the second one
restricts short-selling of assets. The latter is reflected by two additional constraints
in the Markowitz objective function, viz.

max
w
w′µ− λ

2
w′Σw s.t. w ≥ 0 , w′1 ≤ 1 . (40)

The constraint w′1 ≤ 1 represents the fact that borrowing is not allowed. To-
gether with the second constraint, w ≥ 0, this assures that neither the risky assets
nor the risk-free asset is sold short. The impact of additional constraints on port-
folio performance is extensively studied in the literature (see, e.g., Frahm, 2010b;
Frost and Savarino, 1988; Jagannathan and Ma, 2003). DeMiguel et al. (2009b) find
that constraining shortsales leads to a much better portfolio performance than any
unconstrained policy. It is thus worthwhile studying the impact of τ on the portfo-
lio performance in the case of the restricted optimization problem given by (40) in
addition to conducting an analysis in the conventional setting.

The concept of minimum variance portfolios is not affected by these considerations
since the MVP has its own unique optimization problem (cf. the remarks in Section
2). Nevertheless, Frahm et al. (2011) provide a way to extend this concept by noting
that

min
w
w′Σw s.t. w′1 = 1 ⇔ max

w
w′µ̄1− λ

2
w′Σw s.t. w′1 = 1 , (41)

i.e., the minimum variance portfolio can be attained via the Markowitz objective
function if the returns are assumed to have equal means, shortsales are unconstrained
and no risk-free asset is available as an investment alternative. This idea yields

w̃MVP−1 = arg max
w
w′ ˆ̄µ1− λ

2
w′Σ̂w =

ˆ̄µ

λ
Σ̂−1

1 , (42)

if shortsales are unconstrained but a risk-free asset is available. Here, the ML esti-
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Table 3: Overview of the portfolio strategies considered in the simulation study

No. Strategy Abbreviation Formula

1 Optimal portfolio with shortsales unconstrained OPT-U Σ−1µ/λ
2 Optimal portfolio with shortsales constraineda OPT-C —

3 Sample-based approach with shortsales unconstrained SBA-U Σ̂−1µ̂/λ
4 Sample-based approach with shortsales constraineda SBA-C —

5 Bayesian portfolio with shortsales unconstrainedb BAY-U (c1/λ)Σ
−1

1
µ1

6 Bayesian portfolio with shortsales constraineda BAY-C —

7 Minimum variance portfolio (estimated) MVP-E Σ̂−1
1/(1′Σ̂−1

1)

8 Minimum variance portfolio (extension 1) MVP-1 (ˆ̄µ/λ)Σ̂−1
1

9 Minimum variance portfolio (extension 2)a MVP-2 —
10 Minimum variance portfolio (extension 3)a MVP-3 —

11 Equally-weighted portfolio EWP 1/d

a If short-selling is constrained, no closed-form expression is available for any portfolio since the
optimization problem includes an inequality restriction (cf. Eq. (40)). Numerical methods
must then be applied to find a maximum.

b In particular, we apply the empirical Bayes approach of Jorion (1986). Furthermore, we define
the constant c1 = (1 + τn)(ν1 − 2)/(ν1(1 + τn+ τ)) (see Eq. (20)).

mate of µ̄ is given by ˆ̄µ = 1
′Σ̂µ̂/(1′Σ̂1). In the case of an additional short-selling

constraint, we extend the minimum variance concept to

w̃MVP−2 = arg max
w
w′ ˆ̄µ1− λ

2
w′Σ̂w s.t. w ≥ 0 , w′1 ≤ 1 . (43)

By contrast, Jagannathan and Ma (2003) consider the following adaption of the min-
imum variance concept to a setting with short-selling constraint:

w̃MVP−3 = arg min
w
w′Σ̂w s.t. w ≥ 0 , w′1 = 1 . (44)

We include all three extensions in our simulation study. Furthermore, we implement a
Bayesian strategy, i.e., the sample estimators in the respective objective function are
replaced by the first two moments of the predictive return distribution. In particular,
we use the specifications of Jorion (1986) (see Section 2 for details). Finally, we also
apply the naive diversification rule to the data, i.e., wEWP = 1/d.

4.2. Simulation Procedure

Our simulation study is based on stock returns from the CRSP data set that cov-
ers price information of common stocks traded on the NYSE, AMEX and NASDAQ.
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Our sample incorporates monthly returns between January 1969 and December 2008.
The returns of the risk-free asset are proxied by 3-month treasury bill rates provided
by the U.S. Federal Reserve Bank.10

For each year, beginning in 1978, we consider the subsample consisting of those
stocks that exhibit complete return data for the last 10 years. Altogether, 31 such
asset sets are generated for the years 1978-2008. The number of stocks in the respec-
tive set ranges from 1,290 assets in the period 1969-1978 to 3,225 assets in the period
1999-2008. We proceed in this way to ensure that the input data are not affected by
any survivor bias.

For the sensitivity analysis to be robust, we proceed as follows. Before each
simulation run, we randomly draw a ten-year subsample of CRSP stock returns from
the 31 asset sets described above. From this subsample, we independently draw d
stocks. The sample mean and sample covariance matrix of these assets together with
the prior parameters τ , µ0, Σ0 and ν0 are used to generate an a posteriori realization
of µ and Σ. This is done using the normal-inverse-Wishart model from Section 2 (see
Appendix B for details). According to the normal market model given in Eq. (1) we
simulate a return history with a sample size of n to which the portfolio strategies
described in Table 3 are applied.

In order to run the simulation we have to specify the remaining input parameters.
The prior parameter Σ0 is structured according to the proposition of Frost and
Savarino (1986), i.e., Σ0 = σ̄2

0(ρ011 + (1 − ρ0)I). Furthermore, we assume a priori
that the expected returns are equal, i.e., µ0 = µ̄01. The prior parameters are specified
using conservative values, or more specifically σ̄2

0 = 1%, µ̄0 = 0.5% and ρ0 = 0.25.
The confidence parameter ν0 is chosen to equal d + 4. This corresponds to the
smallest possible value if we want to assure the existence of the first two moments
of the distribution of Σ0.11

In our simulation study, the influence of the number of assets is investigated by
varying the portfolio dimension, i.e., d = {5, 30, 100}. Furthermore, the simulation
is conducted using different sample sizes, i.e., n = {12, 60, 120} if d = 5, n =
{60, 120, 240} if d = 30 and n = {120, 240, 480} if d = 100. Concerning the level
of confidence τ , our analysis pursues different goals. First, the findings of Section 3
should be taken into account appropriately, i.e., (i) conservative values are assigned

to E(Sh2
TP) bearing in mind the vast positive bias of the sample-based estimate Ŝh2

TP,

10The data can be accessed online at http://www.federalreserve.gov/releases/H15/data/

Monthly/H15_TB_M3.txt.
11For example, it holds that var(σ2

i ) = 2σ̄4
0
/((ν0 − d − 1)2(ν0 − d − 3)) with Σ =

[
σij
]

and
σ2

i =
√
σii (i = 1, . . . , d) if ν0 ≥ d+ 4 (cf. Press, 1972).
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(ii) we account for the fact that Sh2
TP is strictly increasing, but concave in d. This

assures us that the level of confidence is chosen conservatively and increases with the
number of assets in a less than linear fashion.

Second, we want to reexamine the theoretical findings of Kempf et al. (2002)
(cf. Table 1) who derived optimal strategies by considering the limits of n and τ ,
respectively. This gives rise to values of E(Sh2

TP) which are less conservative but
still refer to reality. More precisely, we set E(Sh2

TP) = {0.03, 0.09, 0.15, 0.21, 0.27} if
d = 30 and divide each value by three if d = 5. For high-dimensional data (d = 100),
the values of the expected squared Sharpe ratio are multiplied by a factor of two.

4.3. Performance Measurement

Given the vector of portfolio weights w̃m,s of the mth strategy, the true mean and
the true variance of the portfolio return for simulation run s are given by µm,s = w̃′m,sµ
and σ2

m,s = w̃′m,sΣw̃m,s. We measure the performance of the portfolio strategies by
computing the true Sharpe ratio of strategy m in simulation run s, defined as

Shm,s =
µm,s
σm,s
. (45)

Note that we are able to evaluate the true performance of each strategy since we know
the true parameters of the return distribution. However, the true performances vary
with the simulation runs owing to the design of our simulation study. Thus, we
average the performances over all simulation runs, viz.

Shm =
1

S

S∑

s=1

Shm,s . (46)

We are not permitted to test for the best strategy if the ranking of the strategies
and, consequently, the benchmark strategy is identified using the simulated return
observations. This is typically referred to as data mining. Instead of conducting
hypothesis tests, we use pure computer power to diminish the standard error of the
estimator for the expected value of the respective performance measure and, thus, to
minimize the probability that the ranking of strategies could be incorrect. For this
purpose, S = 10,000 simulation runs serve well.

4.4. Discussion of Results

Tables C.4 - C.6 in the appendix report the average true Sharpe ratios for the
different portfolios and for various constellations of the number of assets, the sample
size and the parameter of confidence. The major results are graphically represented
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in Figure 4. First, when looking at the pictures on the left-hand side of Figure
4, it becomes clear that an additional short-selling constraint lowers the maximum
attainable Sharpe ratio (black solid lines) while it improves portfolio performance
compared to unrestricted portfolio optimization. Second, we present our findings
with regard to the propositions of Kempf et al. (2002) which can be summarized as
follows:

1. The equally-weighted portfolio is preferable if no market information is available
and the assets are very inhomogeneous.

2. One should rely on the global minimum variance portfolio whenever the assets
are completely homogeneous.

3. The sample-based approach becomes optimal only in the theoretical case of an
infinite sampling period and very inhomogeneous assets.

ad 1. Part (b) of Figure 4 illustrates the average portfolio Sharpe ratios if the mar-
ket consists of five assets, twelve monthly return observations are available for
each asset and shortsales are constrained. In this constellation, the EWP out-
performs the other strategies if the confidence parameter is equal to or higher
than 0.0048. Note that both for d = 30 / n = 60 and for d = 100 / n = 120,
the performance of the EWP diminishes compared to the performance of the
sample-based approach if τ increases (see Tables C.5 and C.6). By definition
of the simulation study, the level of confidence is also an indicator for the in-
homogeneity of the assets. Thus, we can state more precisely that the EWP
is a preferable allocation rule if τ is large, d is small and n/d ց 1. It is note-
worthy that the latter holds only for the standard setting without short-selling
constraints. Otherwise, the EWP is less and less competitive for increasingly
inhomogeneous assets.

ad 2. In accordance with the conclusions of Kempf et al. (2002), we find the MVP
to be an outperforming strategy if the assets are very homogeneous, i.e., the
investor has great confidence in the expert’s prior assessment (see parts (b),
(d) and (h) in Figure 4). However, there is an exception to this rule if d is large
and n/dց 1. Then, the EWP turns out to be the best strategy. If shortsales
are constrained and τ is small, the MVP is in all cases the best strategy (cf.
parts (a), (c), (e) and (g) of Figure 4). One should bear in mind that a setting
with short-selling constraint involves an extended minimum variance concept.
Under these extensions, the MVP-2 strategy proposed by Frahm et al. (2011)
performs best and, consequently, was used as a benchmark.

ad 3. As may be seen from parts (d) and (h) of Figure 4, the SBA is found to be the
best strategy if τ and n/d have large values. This coincides with the findings

23



of Kempf et al. (2002). In addition, the SBA is highly competitive if τ and d
are large and n/dց 1 (cf. part (f) of Figure 4). If shortsales are constrained,
similar results can be derived (see parts (c), (e) and (g) of Figure 4).

In general, we are convinced that the effect of the sample size n on portfolio
performance should be measured relative to the number of assets d. This allows a
more differentiated analysis and leads – in some constellations – to deviating results.
Moreover, our analysis shows that it is not necessary to let the confidence parameter
approach infinity in order to stress its influence on portfolio performance. On the
contrary, relevant values of τ are identified to range between zero and a number much
smaller than one. Note that the upper limit of relevant values for τ mainly depends
on the number of assets (see Section 3).

Figure 4: Performance of the portfolio strategies

(a) shortsales constrained, d = 5 and n = 12
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(b) shortsales unconstrained, d = 5 and n = 12
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(c) shortsales constrained, d = 5 and n = 120
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(d) shortsales unconstrained, d = 5 and n = 120
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Figure 4: Performance of the portfolio strategies (cont’d)

(e) shortsales constrained, d = 100, n = 120
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(f) shortsales unconstrained, d = 100, n = 120
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(g) shortsales constrained, d = 100, n = 480
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(h) shortsales unconstrained, d = 100, n = 480
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The results of empirical studies in the field of portfolio performance (see, e.g.,
Frahm et al., 2011; DeMiguel et al., 2009a,b) may be used to deduce a range of
realistic values for τ . These studies detect that the performance of the sample-based
approach can be slightly improved by instead using the empirical Bayes approach
of Jorion (1986). Furthermore, both strategies are outperformed by the minimum
variance portfolio. While the former coincides with our results (cf. Figure 4), the
latter finding is retrieved in our simulation study only for a sufficiently high level of
confidence. Thus, an upper bound for a realistic value of the confidence parameter
τ may be assessed as follows. Consider the results of our simulation study for a
sample size of n = 120 months. This is a common estimation window used both by
practitioners and researchers in the field of financial data. Next, find the smallest
value of τ for which the performance of the sample-based approach exceeds the
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performance of the minimum variance portfolio. This value is the upper bound to
be selected.

It turns out that this upper bound is in all cases the second smallest of the five
τ values, irrespective of whether short-selling is constrained and how many assets
the market contains. More precisely, it should be realistic to assume τ < 0.0048 if
the market consists of five assets (cf. Table C.4). A larger market produces an even
higher level of confidence, i.e., if the number of assets is 30, it is realistic to assume
that τ takes values below 0.0027, and we expect τ < 0.0017 if d = 100 (see Tables
C.5 and C.6).

Remember that the level of confidence is not a direct input parameter of our
simulation study, but rather is calculated from the range of values for E(Sh2

TP).
Accordingly, the upper bounds for τ found above imply realistic values for the Sharpe
ratio of the tangency portfolio: for d = 5 it may be realistic to assume E(Sh2

TP) <
0.03; for d = 30 it should be the case that E(Sh2

TP) < 0.09 and for d = 100 it can
be expected that E(Sh2

TP) < 0.18. This comes full circle back to our initial claim to
consider possible values for E(Sh2

TP) very carefully; see the remarks in Section 3.

5. Conclusion

We derive an analytical expression for the confidence parameter τ of the normal-
inverse-Wishart prior. By the specification of confidence, the investor is enabled to
optimize his/her portfolio assuming that expectations and the covariance structure
of the asset returns are a priori assessed by an expert. The confidence in prior know-
ledge increases the more assets are on the market and the better the true potential
performance – indicated by the Sharpe ratio of the tangency portfolio – is approxi-
mated by that one following from the expert assessments on the prior parameters.

In the literature, the Sharpe ratio of the tangency portfolio is usually approxi-
mated by the empirical Sharpe ratio of a well-diversified stock index, using long
estimation horizons. We propose to be cautious about relying on these approxima-
tions since any sample-based estimation of Sh2

TP suffers from a strong positive bias.
Furthermore, we show that the Sharpe ratio of the TP increases with the number of
assets. This, in turn, weakens the direct effect of d on the level of confidence τ .

The results of our simulation study show that the performance of investment
strategies is generally very sensitive to changes in the confidence parameter. Addi-
tionally, the relative portfolio performance varies with τ . In our view a meaningful
performance analysis also involves the number of assets d and the ‘effective sample
size’ n/d. The sample-based strategy turns out to be most competitive in a situa-
tion in which it is appropriate to strongly mistrust the prior knowledge – when the
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effective sample size is large. If n/d and d are small, the equally-weighted portfolio
is the best-performing allocation rule. On the contrary, the global minimum vari-
ance portfolio is preferable if it is advisable to place a high level of confidence in the
expert’s prior assessments.

We further contribute to the literature on confidence in prior knowledge in two
ways: first we clarify that – in general – values close to zero should be assigned to
the confidence parameter τ which is in accordance with some of the propositions
in the context of the Black-Litterman model. Second, we derive upper limits for
the confidence parameter depending on the number of assets, i.e., we propose to
choose τ < 0.0048 if d = 5, τ < 0.0027 if d = 30 and τ < 0.0017 if d = 100.
Neglecting the confidence parameter, or – in other words – assuming that τ = 1
would seriously reduce the influence of prior knowledge. As a result, the objective of
a robust parameter estimation would clearly be missed.
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Appendix A. The Wishart and related distributions

Consider a set of d-dimensional random variables {X1, . . . , Xn} that are indepen-
dent and multivariate normally distributed with zero expected value and with the
same covariance matrix:

Xt ∼ N (0,Σ) , t = 1 . . . , n . (A.1)

The Wishart distribution with n degrees of freedom is the distribution of the random
matrix W ≡ X1X

′

1 + . . .+XnX
′

n. We use the following notation to indicate that W
is a Wishart-distributed matrix with n degrees of freedom and dispersion parameter
Σ:

W ∼W (n,Σ) . (A.2)

The expectations and cross-covariances, respectively, can be expressed as follows:

E(W ) = nΣ , (A.3)

Cov (Wmn,Wpq) = n (ΣmpΣnq + ΣmqΣnp) . (A.4)

For the inverse of W , it holds that

W−1 ∼ IW
(
n+ d+ 1,Σ−1

)
. (A.5)

The first- and second-order moments are given by

E
(
W−1

)
=

Σ−1

n− d− 1
, (A.6)

Cov
(
W−1
mn,W

−1
pq

)
=

2
n−d−1

Σ−1
mnΣ

−1
pq + Σ−1

mpΣ
−1
nq + Σ−1

mqΣ
−1
np

(n− d)(n− d− 1)(n− d− 3)
, n− d > 3 . (A.7)

Suppose a generic (k × d) matrix A with k ≤ d. Then, if

W ∼W (n,Σ)⇒ AWA′ ∼W (n,AΣA′) . (A.8)
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Appendix B. Parameter Generation Using the NIW Model

Assume that the prior parameters ν0, µ0 and Σ0 as well as the sample mean µ̂
and the sample covariance matrix Σ̂ are given inputs. The posterior parameters ν1,
µ1 and Σ1 are computed using Eq. (18). Let Zt be a d-dimensional random vector
following the multivariate standard normal distribution. We draw ν1 independent
copies from Zt and calculate

∑ν1
t=1 ZtZ

′

t. With

µ̂Z1
=

1

ν1

ν1∑

t=1

Zt and Σ̂Z1
=

1

ν1

ν1∑

t=1

(Zt − µ̂Z1
) (Zt − µ̂Z1

)′ (B.1)

it follows that
∑ν1
t=1 ZtZ

′

t ≡ ν1Σ̂Z1
+ ν1µ̂Z1

µ̂′Z1
. From Appendix A we know that this

quantity is Wishart-distributed with ν1 degrees of freedom and scale matrix I. Thus,
we conclude that

(
ν1Σ̂Z1

+ ν1µ̂Z1
µ̂′Z1

)
−1 ∼ IW (ν1 + d+ 1, I) . (B.2)

Defining ν1Σ1 ≡ (ν1Σ1)1/2(ν1Σ1)1/2, an a posteriori realization of Σ under the normal-
inverse-Wishart model is given by

Σ = Σ
1/2
1

(
Σ̂Z1

+ µ̂Z1
µ̂′Z1

)
−1

Σ
1/2
1 . (B.3)

This is due to the distribution law of transformations of Wishart matrices (see again
Appendix A). Now we can draw from the conditional posterior distribution of µ by
applying the previously generated a posteriori realization of Σ. At this point, it is
useful to distinguish two cases:

(a) n1 = (1 + τn)/τ is an integer. Then draw n1 independent realizations from
Zt and calculate µ̂Z2

= 1/n1
∑n1

t=1 Zt. An a posteriori realization of µ can be
attained as follows:

µ = µ1 + Σ1/2µ̂Z2
= wτ µ̄1 + (1− wτ ) µ̂+ Σ1/2µ̂Z2

, (B.4)

where we define Σ = Σ1/2Σ1/2.

(b) If n1 = (1 + τn)/τ is not an integer, we draw n independent realizations from
Zt and calculate µ̂Z3

= 1/n
∑n
t=1 Zt. Recall that it holds µ̂Z3

∼ N (0, I/n) (cf.
Press, 1972, p. 183). An a posteriori realization of µ is then calculated as

µ = µ1 +

√
n

n1
Σ1/2µ̂Z3

= wτ µ̄1 + (1− wτ ) µ̂+
√

1− wτΣ1/2µ̂Z3
. (B.5)
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Appendix C. Tables

Table C.4: Portfolio Sharpe ratios, d = 5

τ 0.0008 0.0048 0.0088 0.0128 0.0168

n 12 60 120 12 60 120 12 60 120 12 60 120 12 60 120

Panel A: Parameters µ and Σ known

OPT-U 0.115 0.115 0.114 0.172 0.172 0.172 0.201 0.201 0.202 0.219 0.220 0.220 0.232 0.232 0.229
OPT-C 0.111 0.111 0.111 0.157 0.157 0.156 0.179 0.179 0.179 0.192 0.192 0.193 0.203 0.204 0.202

Panel B: Investor’s perspective

SBA-U 0.016 0.042 0.056 0.037 0.088 0.111 0.050 0.114 0.144 0.060 0.133 0.163 0.066 0.144 0.172
SBA-C 0.064 0.077 0.083 0.088 0.113 0.123 0.102 0.133 0.147 0.110 0.146 0.161 0.117 0.156 0.171
BAY-U 0.021 0.053 0.070 0.039 0.095 0.117 0.050 0.118 0.147 0.059 0.136 0.164 0.065 0.146 0.172
BAY-C 0.077 0.087 0.092 0.102 0.121 0.129 0.115 0.141 0.152 0.123 0.153 0.166 0.131 0.163 0.175
MVP-E 0.081 0.096 0.098 0.090 0.108 0.110 0.096 0.114 0.117 0.099 0.118 0.121 0.103 0.122 0.121
MVP-1 0.017 0.045 0.059 0.028 0.064 0.080 0.033 0.075 0.094 0.037 0.082 0.100 0.042 0.087 0.101
MVP-2 0.091 0.101 0.101 0.111 0.121 0.120 0.120 0.132 0.133 0.124 0.139 0.142 0.131 0.144 0.144
MVP-3 0.088 0.097 0.098 0.102 0.109 0.110 0.108 0.116 0.118 0.111 0.120 0.122 0.115 0.125 0.125
EWP 0.076 0.075 0.075 0.093 0.093 0.093 0.104 0.102 0.104 0.109 0.109 0.110 0.113 0.114 0.110

This table reports the monthly Sharpe ratio for the portfolio strategies listed in Table 3 as an average over the true Sharpe ratios of
the S = 10,000 simulation runs. The market consists of d = 5 risky assets and one risk-free asset. In Panel A, we report the results of
the optimal strategy both with shortsales unconstrained and constrained as well as the results of the true minimum variance portfolio.
Note that these values only serve as a benchmark since the true parameters µ and Σ are not known to the investor. Panel B reflects
the investor’s perspective since here, the parameters µ and Σ are assumed to be unknown and hence must be estimated. According
to Table 3, the strategies are abbreviated as follows: SBA – sample-based approach, BAY – Bayesian strategy, MVP – minimum
variance portfolio, EWP – equally-weighted portfolio. With the ‘C’ and ‘U’ adjunct we indicate whether shortsales are constrained or
unconstrained. For the Bayesian strategy, we use the specification of Jorion (1986). The sample estimate of the minimum variance
portfolio is named with MVP-E, while the abbreviations MVP-1, MVP-2 and MVP-3 refer to the extended concept of minimum variance
portfolios (see Section 4.1 for details).
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Table C.5: Portfolio Sharpe ratios, d = 30

τ 0.0007 0.0027 0.0047 0.0067 0.0087

n 60 120 240 60 120 240 60 120 240 60 120 240 60 120 240

Panel A: Parameters µ and Σ known

OPT-U 0.197 0.197 0.196 0.302 0.302 0.301 0.367 0.368 0.367 0.412 0.412 0.412 0.446 0.447 0.448
OPT-C 0.159 0.158 0.158 0.214 0.214 0.215 0.247 0.247 0.247 0.271 0.271 0.270 0.288 0.288 0.288

Panel B: Investor’s perspective

SBA-U 0.038 0.063 0.090 0.085 0.137 0.184 0.122 0.190 0.249 0.150 0.229 0.294 0.171 0.261 0.330
SBA-C 0.085 0.098 0.111 0.120 0.141 0.162 0.146 0.171 0.196 0.164 0.195 0.220 0.180 0.211 0.239
BAY-U 0.049 0.081 0.110 0.092 0.147 0.193 0.126 0.197 0.254 0.152 0.233 0.297 0.172 0.264 0.332
BAY-C 0.100 0.109 0.120 0.132 0.150 0.168 0.157 0.178 0.201 0.174 0.201 0.224 0.190 0.218 0.243
MVP-E 0.098 0.119 0.127 0.099 0.122 0.131 0.102 0.124 0.134 0.103 0.126 0.135 0.103 0.127 0.135
MVP-1 0.051 0.079 0.103 0.060 0.091 0.111 0.066 0.097 0.116 0.067 0.100 0.119 0.073 0.104 0.121
MVP-2 0.118 0.122 0.125 0.130 0.133 0.135 0.137 0.140 0.142 0.142 0.147 0.146 0.147 0.151 0.152
MVP-3 0.116 0.120 0.124 0.123 0.128 0.132 0.129 0.132 0.136 0.132 0.137 0.139 0.135 0.139 0.143
EWP 0.090 0.089 0.089 0.103 0.104 0.103 0.114 0.113 0.114 0.120 0.122 0.121 0.127 0.126 0.126

This table reports the monthly Sharpe ratio for the portfolio strategies listed in Table 3 as an average over the true Sharpe ratios of
the S = 10,000 simulation runs. The market consists of d = 30 risky assets and one risk-free asset. In Panel A, we report the results of
the optimal strategy both with shortsales unconstrained and constrained as well as the results of the true minimum variance portfolio.
Note that these values only serve as a benchmark since the true parameters µ and Σ are not known to the investor. Panel B reflects
the investor’s perspective since here, the parameters µ and Σ are assumed to be unknown and hence must be estimated. According
to Table 3, the strategies are abbreviated as follows: SBA – sample-based approach, BAY – Bayesian strategy, MVP – minimum
variance portfolio, EWP – equally-weighted portfolio. With the ‘C’ and ‘U’ adjunct we indicate whether shortsales are constrained or
unconstrained. For the Bayesian strategy, we use the specification of Jorion (1986). The sample estimate of the minimum variance
portfolio is named with MVP-E, while the abbreviations MVP-1, MVP-2 and MVP-3 refer to the extended concept of minimum variance
portfolios (see Section 4.1 for details).
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Table C.6: Portfolio Sharpe ratios, d = 100

τ 0.0005 0.0017 0.0029 0.0041 0.0053

n 120 240 480 120 240 480 120 240 480 120 240 480 120 240 480

Panel A: Parameters µ and Σ known

OPT-U 0.256 0.256 0.256 0.417 0.417 0.417 0.521 0.522 0.522 0.599 0.598 0.599 0.661 0.661 0.661
OPT-C 0.149 0.148 0.149 0.205 0.206 0.205 0.242 0.242 0.242 0.270 0.270 0.269 0.290 0.290 0.291

Panel B: Investor’s perspective

SBA-U 0.029 0.072 0.112 0.072 0.173 0.251 0.108 0.252 0.350 0.135 0.311 0.425 0.161 0.362 0.484
SBA-C 0.083 0.095 0.106 0.120 0.140 0.159 0.148 0.174 0.197 0.172 0.201 0.225 0.191 0.222 0.248
BAY-U 0.032 0.083 0.126 0.072 0.178 0.256 0.106 0.255 0.352 0.133 0.313 0.426 0.157 0.363 0.485
BAY-C 0.089 0.100 0.110 0.124 0.143 0.161 0.151 0.176 0.198 0.174 0.203 0.225 0.192 0.223 0.249
MVP-E 0.053 0.098 0.115 0.053 0.098 0.115 0.053 0.100 0.115 0.053 0.099 0.115 0.054 0.100 0.116
MVP-1 0.032 0.075 0.100 0.035 0.076 0.100 0.036 0.079 0.102 0.037 0.081 0.103 0.039 0.083 0.103
MVP-2 0.097 0.101 0.103 0.104 0.107 0.108 0.110 0.113 0.113 0.116 0.119 0.118 0.118 0.122 0.122
MVP-3 0.096 0.100 0.103 0.101 0.105 0.107 0.105 0.109 0.111 0.109 0.112 0.114 0.111 0.115 0.117
EWP 0.077 0.077 0.077 0.085 0.085 0.085 0.092 0.092 0.092 0.097 0.097 0.098 0.101 0.101 0.102

This table reports the monthly Sharpe ratio for the portfolio strategies listed in Table 3 as an average over the true Sharpe ratios of the
S = 10,000 simulation runs. The market consists of d = 100 risky assets and one risk-free asset. In Panel A, we report the results of
the optimal strategy both with shortsales unconstrained and constrained as well as the results of the true minimum variance portfolio.
Note that these values only serve as a benchmark since the true parameters µ and Σ are not known to the investor. Panel B reflects
the investor’s perspective since here, the parameters µ and Σ are assumed to be unknown and hence must be estimated. According
to Table 3, the strategies are abbreviated as follows: SBA – sample-based approach, BAY – Bayesian strategy, MVP – minimum
variance portfolio, EWP – equally-weighted portfolio. With the ‘C’ and ‘U’ adjunct we indicate whether shortsales are constrained or
unconstrained. For the Bayesian strategy, we use the specification of Jorion (1986). The sample estimate of the minimum variance
portfolio is named with MVP-E, while the abbreviations MVP-1, MVP-2 and MVP-3 refer to the extended concept of minimum variance
portfolios (see Section 4.1 for details).
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