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Parametric Lorenz Curves and the Modality of

the Income Density Function

Melanie Krause ∗

Goethe University Frankfurt
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Abstract

Similar looking Lorenz Curves can imply very different income density functions and

potentially lead to wrong policy implications regarding inequality. This paper derives

a relation between a Lorenz Curve and the modality of its underlying income density:

Given a parametric Lorenz Curve, it is the sign of its third derivative which indicates

whether the density is unimodal or zeromodal (i.e. downward-sloping). Several single-

parameter Lorenz Curves such as the Pareto, Chotikapanich and Rohde forms are

associated with zeromodal densities. The paper contrasts these Lorenz Curves with the

ones derived from the (unimodal) Lognormal density and the Weibull density, which,

remarkably, can be zero- or unimodal depending on the parameter. A performance

comparison of these five Lorenz Curves with Monte Carlo simulations and data from

the UNU-WIDER World Income Inequality Database underlines the relevance of the

theoretical result: Curve-fitting of decile data based on criteria such as mean squared

error might lead to a Lorenz Curve implying an incorrectly-shaped density function. It

is therefore important to take into account the modality when selecting a parametric

Lorenz Curve.

JEL Classification: C13, C16, D31, O57

Keywords: Lorenz Curve, Income Distribution, Modality, Inequality, Goodness of Fit

1 Introduction

In the macroeconomic field of growth and development it is not only of interest to analyze

a country’s total GDP but also how it is distributed across the population. A widely used

concept to express inequality is the Lorenz Curve L(π), developed by Lorenz (1905), which

links the cumulative income share L to the cumulative share π of people in the population

earning an income up to this level. When income becomes more equally distributed, the LC
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istration, Chair for International Macroeconomics & Macroeconometrics, Grueneburgplatz 1, House of

Finance, 60323 Frankfurt am Main, Germany; E-mail address: melanie.krause@wiwi.uni-frankfurt.de;
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gung des Vereins für Socialpolitik’ in Göttingen.
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approaches the 45 degree line. An example of different LCs is depicted in Figure (1).
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Figure 1: Illustration of Different Lorenz Curves

Given empirical data, the choice of the appropriate functional form for the LC is usually

based on a goodness of fit criterion such as Mean Squared Error. This paper argues, how-

ever, that such a choice might be misleading because very similar looking LCs can imply

very different shapes of the underlying income density f(x). I propose a way to infer the

modality of an income density from the functional form of the LC so that researchers can

take it into account when choosing among various LC functions.

The modality - the number of modes - vitally determines the shape of a density: Figure (2)

shows three density functions of different modality, namely zeromodal (downward-sloping)

f0(x), the normal distribution as an example of a unimodal density f1(x) and a bimodal

normal mixture f2(x).

In this paper I argue that the third derivative of an LC indicates the modality of its under-

lying income density. So it is not necessary to derive the density explicitly (which can be

tedious).

It is generally acknowledged and pointed out e.g. by Dagum (1999) and Kleiber (2008)

that wealth densities tend to be zeromodal, whereas income densities are typically unimodal

(unless a country is very poor and overpopulated). However, several single-parameter LCs

used in empirical income studies belong to zeromodal densities. These are for example the

Pareto LC (see Arnold (1983)) and the LCs proposed by Chotikapanich (1993) and Rohde

(2009). This paper contrasts these LCs with ones associated with unimodal densities, like

the Lognormal density. A particular focus of my analysis lies on the LC associated with the

Weibull density because, depending on the value of its shape parameter, this density can be

either zeromodal or unimodal.
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Figure 2: Density Functions with Different Modalities

These five LCs are then used in a Monte Carlo simulation highlighting the relevance of

a density’s modality: Draws are taken from a given density and then aggregated to decile

points, the usually available format in large cross-country data sets. Will the LC best fitting

these decile points in a Mean Squared Error way imply a density with the correct shape?

And, given the answer is no, how can the researcher avoid such a situation in practice, when

the underlying modality is unknown? An application of the five LCs to decile data from the

United Nations University - World Institute for Development Economics Research (2008)

gives further insights.

This paper is structured as follows: In Section 2 the theoretical result on the relation

between the LC and the modality of its density function is derived, while in Section 3 it

is applied to the Pareto, Chotikapanich, Rohde, Lognormal and Weibull LCs. The Monte

Carlo Simulation is carried out in Section 4 and the empirical analysis follows in Section 5.

Section 6 briefly concludes. Some technical derivations and large tables have been relegated

to the Appendix.

2 Relation between the Lorenz Curve and the modality

of its density

Let me start with the formal definition of an LC L(π) by Kakwani and Podder (1973) and

Kakwani and Podder (1976):

Definition 1. A function L(π), continuous on [0, 1] and with second derivative L′′(π), is a

Lorenz Curve (LC) if and only if

L(0) = 0, L(1) = 1, L′(0+) ≥ 0, L′′(π) ≥ 0 in (0,1) (1)
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A density f(x) with mean µ, cumulative distribution π = F (x) and its inverse function

x = F−1(π) is related to its LC L(π) by the following formula (see Gastwirth (1971) and

Kakwani (1980)):

F−1(π) = L′(π)µ (2)

Hence, starting with a given income density with f(x) and π = F (x), one can obtain the

LC as follows: Find the inverse cumulative distribution function x = F−1(π) and divide it

by µ to obtain the slope L′(π) of the LC. Integrating with respect to π and making sure

that the properties from (1) are fulfilled gives L(π).

The modality of the density function f(x) can be defined formally in terms of sign

changes in its first derivative f ′(x):

Definition 2. The modality of a continuously differentiable density f(x) on [xL, xU ] is the

number of local maxima x̃ ∈ (xL, xU ) where





f ′(x̃) = 0,

f ′(x) > 0 ∀x ∈ X̃N ∧ x < x̃

f ′(x) < 0 ∀x ∈ X̃N ∧ x > x̃,

(3)

with X̃N denoting the neighborhood of the point x̃.

In the following, I will make use of a result by Arnold (1987), who differentiates (2) with

respect to x and summarizes the relation in his theorem:

Theorem 1. If for the Lorenz Curve L(π) the second derivative L′′(π) exists and is positive

in an interval (x1, x2), then F (x) has a finite positive density in the interval (xL, xU ) =(
µL′(F (x+

1 )), µL
′(F (x−

2 ))
)

which is given by

f(x) =
1

µL′′ (F (x))
(4)

Proof. See Arnold (1987).

I now propose my theorem on the relation between the LC and the modality of its

density:

Theorem 2. If the LC L(π) has a third derivative L′′′(π) and the cumulative distribution

F (x) has a finite positive and differentiable density f(x) in the interval (xL, xU ), it holds:

• If and only if L′′′(π) > 0 ∀π ∈ (0, 1), then f ′(x) < 0 ∀x ∈ (xL, xU ). This means that

f(x) is zeromodal.

• If and only if L′′′(π) < 0 ∀π < π̃ = F (x̃) and L′′′(π) > 0 ∀π > π̃ = F (x̃), then

f ′(x) > 0 ∀x < x̃ and f ′(x) < 0 ∀x > x̃. This means that f(x) is unimodal with mode

x̃.
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• In general: If and only if L′′′(π) has n ≥ 1 sign changes from L′′′(π) < 0 to L′′′(π) > 0

occurring at n points π̃i (with i = 1, ..., n), then f ′(x) shows the corresponding sign

changes from f ′(x) > 0 to f ′(x) < 0 occurring at the n points x̃i (with i = 1, ..., n).

This means that f(x) is n-modal with modes at x̃i (with i = 1, ..., n).

Proof. Differentiating (4) with respect to x, one arrives at

f ′(x) = − f(x)

µ[L′′(F (x))]2
L′′′(F (x)) (5)

Note that f(x), µ and [L′′(F (x))]2 are nonnegative, so there is a negative relation between

f ′(x) and L′′′(F (x)). Combining this relation with Definition (2) gives the theorem.

So it is the sign of the third derivative of the LC which determines the modality of the

underlying density function. By Definition (1), the first and second derivatives of an LC are

positive. If the third derivative is positive as well, the density is zeromodal, but if its sign

changes n-times from negative to positive, the density is n-modal. This means that given

any parametric LC, one can infer the shape of the underlying density just from looking at its

third derivative, without explicitly deriving the density. In the following, I will discuss the

implications of this insight for LC fitting in practice. Because of the empirical importance

for income and wealth distributions, the focus will be on zeromodality and unimodality,

although as shown in (2), my theoretical result applies to distributions of a higher modality

as well.

3 The density modality of some parametric LCs

3.1 The Pareto, Chotikapanich and Rohde LCs

A number of parametric forms have been proposed to fit empirical LCs and they can have

one or more parameter; for an overview see Ryu and Slottje (1999) and Sarabia (2008).1

While multi-parameter LCs, such as the forms suggested by McDonald (1984), Dagum

(1977), Villasenor and Arnold (1989) and Basmann et al. (2002), tend to achieve a better

fit than their single-parameter counterparts, they entail an increased complexity in estimat-

ing the parameters, see e.g. Ryu and Slottje (1999). Single-parameter curves are known for

their simplicity, ease of parameter interpretation, and crucially, feasibility in the presence

of scarce data. In broad cross-country datasets often only decile data points are available,

so this paper will concentrate on single-parameter LCs.

1For the merits and drawbacks of parametric LCs compared to their non-/semiparametric counterparts,

see Ryu and Slottje (1999). Research is advancing in both strands, consider e.g. Sarabia (2008) and Rohde

(2009) on parametric LCs and Hasegawa and Kozumi (2003) and Cowell and Victoria-Feser (2007) on non-

/semiparametric LCs. One should be aware that the structural assumptions underlying parametric LCs

might be a limitation, however, they offer the only feasible estimation approach in the presence of decile

data.
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As examples, I will consider the well-known Pareto LC (see Arnold (1983)) and the forms

proposed by Chotikapanich (1993) and more recently by Rohde (2009). Their parametric

forms L(π) are given in the first three rows of Table (1). There I also present their third

derivatives L′′′(π), which, intriguingly, are all positive on the whole domain. According

to Theorem (2), this means that the income density functions associated with these three

LCs are zeromodal.2 One should bear in mind that these LC parametrizations are used in

empirical studies with income data - which is often unimodal. One could argue that, given

the positivity restriction of L′(π) and L′′(π), it is more obvious to find single-parameter forms

whose third derivative is positive as well rather than sign-changing. Indeed, expressions for

the latter parametric LCs tend to be algebraically more involved, as we will see in the

following, when we consider the Lognormal and Weibull forms.

LC Para- L(π) L′′′(π) Density Gini

meter Modality

Pareto α > 1 1− (1− π)1−
1
α

α2−1
α3 · (1− π)−

1
α
−2 zero 1

2α−1

Rohde β > 1 π β−1
β−π

6β(β−1)

(β−π)4
zero 2β ·

[

(β − 1)

·log
(

β−1
β

)

+ 1
]

− 1

Chotika- k > 0 ekπ−1
ek−1

k3ekπ

ek−1
zero ek+1

ek−1
−

2
k

panich

Lognormal σ > 0 Φ
(

Φ−1(π)− σ
)

see (9) in the text uni 2Φ
(

σ√
2

)

− 1

Weibull b > 0 1−
Γ
(

−log(1−π),1+ 1
b

)

Γ(1+ 1
b
)

(

−log(1−π)
) 1

b
−2

Γ
(

1+ 1
b

)

b2(1−π)2
zero/ 1− 2−

1
b

·

[

1− b+ b
(

−log(1− π)
)

]

uni

Table 1: LC derivatives and density modalities for the Pareto, Rohde, Chotikapanich, Lognormal and Weibull

parametrizations

2Because the density functions of these parametric LCs are known, one could also look at them directly

to check their zeromodality. For instance, Rohde (2009) has derived the income density of his LC as

f(x) = 1
2

√
β(β−1)µ

x3 ∀x ∈

[
(β−1)µ

β
; βµ
β−1

]
. However, Theorem (2) allows to infer its zeromodality without

having to derive the functional form of the density explicitly.
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3.2 The Lognormal LC

A widely-used example of a unimodal income distribution is the Lognormal, whose density

and cumulative distribution function are given by:

f(x) =
1

x
√
2πσ2

e−
(log(x)−µ̄)2

2σ2 (6)

and

F (x) = Φ

(
log(x)− µ̄

σ

)
(7)

with shape parameter σ, scaling parameter µ̄,3 and Φ(x) denoting the cumulative distri-

bution function of the standard normal distribution of x. The one mode is located at

x̃ = eµ̄−σ2

, below the mean of µ = eµ̄+
σ2

2 (see also Aitchison and Brown (1957)). In Row 4

of Table (1) we can see the Lognormal LC as presented by Sarabia (2008)

L(π) = Φ
(
Φ−1(π)− σ

)
(8)

This single-parameter function depends only on σ.4 Crucial for my analysis is again its third

derivative, because according to Theorem (2) the unimodality of the density implies that it

must be sign-changing, unlike the third derivatives of the Pareto, Rohde and Chotikapanich

LCs. In fact, one can show that the Lognormal LC’s third derivative

L′′′(π) =
φ′′(Φ−1(π)− σ) · φ(Φ−1(π))− φ(Φ−1(π)− σ) · φ′′(Φ−1(π))

[φ(Φ−1(π))]4
(9)

−
3
[
φ′(Φ−1(π)− σ) · φ′(Φ−1(π))− φ(Φ−1(π)−σ)

φ(Φ−1(π)) · (φ′)2(Φ−1(π))
]

[φ(Φ−1(π))]4

is indeed sign-changing from negative to positive, with the change occurring at π̃ =

F (x̃) = Φ(−σ).

3.3 The Weibull LC

As this paper focuses on the relation between the LC and the modality of the underlying

income density, one functional form deserves particular attention: The Weibull density and

distribution function given by

f(x) =
b

a

(x
a

)b−1

e−(
x
a )

b

(10)

F (x) = 1− e−(
x
a )

b

(11)

3In the notation of this paper µ stands for the distribution mean, which is why I resort to labeling µ̄ the

parameter of the Lognormal distribution otherwise known as µ.
4Note that while the Lognormal density depends on two parameters, it leads to a uniparametric LC

because the scaling parameter µ̄ drops out in the step of dividing by the distributional mean.
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for x > 0 with scaling parameter a > 0 and shape parameter b > 0.

The reason why this density is so appealing to our analysis lies in the flexibility of b: For

b ≤ 1, the density is zeromodal; for b > 1, it is unimodal.
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Figure 3: Weibull Density Functions with different a and b parameters

Examples of different Weibull densities are depicted in Figure (3) and several properties

become clear: The higher b > 1, the more concentrated is the density around the mode.

The scale parameter a determines the location of the mode and how far the density is

spread out, but the shape is entirely captured by b. The Weibull density allows for positive

skewness; in particular, small values of b > 1 lead to unimodal and strongly positively skewed

densities. These properties make the Weibull density suitable for modeling (unimodal)

income densities, while also representing zeromodal densities with b ≤ 1. The Weibull

distribution is a special case of the Generalized Beta distribution. In this context, its

ability to model income densities has been analyzed by McDonald (1984) and McDonald

and Ransom (2008).

However, the single-parameter LC pertaining to the Weibull density does not seem to

have appeared in the literature yet, so I derive its functional form here.

Theorem 3. The LC associated with a Weibull distributed variable x with π = F (x) given

in (11) has the single-parameter LC

L(π) = 1− Γ
(
−log(1− π), 1 + 1

b

)

Γ(1 + 1
b
)

(12)

where Γ(α) =
∫∞

0
tα−1e−tdt is the Gamma function and Γ(x, α) =

∫∞

x
tα−1e−tdt is the

upper incomplete Gamma function.

Proof. See Appendix A.
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It should be noted that while the Weibull density depends on both the scale parameter

a and the shape parameter b, the LC is a function just of b. Like in the Lognormal case, this

is a result of division by the mean, which makes the LC abstract from scale. Therefore f3

and f4 from Figure (3) have the same LC in Figure (4). This graph also shows that higher

values of b unambiguously imply less inequality.
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Figure 4: Weibull LCs LC(π) with different b parameters

Row 5 of Table (1) presents the Weibull LC and its third derivative, which I derive as

L′′′(π) =

(
−log(1− π)

) 1
b
−2

Γ
(
1 + 1

b

)
b2(1− π)2

[
1− b+ b

(
−log(1− π)

)]
(13)

From Theorem (2) it directly follows that L′′′(π) is positive for b ≤ 1, implying a zero-

modal density, and sign-changing for b > 1, implying a unimodal density. In the latter

case, L′′′(π) = 0 occurs at the point π̃ referring to the mode x̃ = a
(
1− 1

b

) 1
b of the Weibull

density. For an alternative proof of these properties, see Appendix B.

4 Monte Carlo Simulation

Section 3 has illustrated Theorem (2) on the relation between an LC’s third derivative and

the modality of its income density, using as examples of the Pareto, Rohde, Chotikapanich,

Lognormal and Weibull LCs. Let us now turn to the practical importance of this theoretical

insight: When a researcher fits decile data points to different LCs and chooses the one with

the best fit, what will the density of this LC look like?

For the purpose of deciding which of the five parametric LCs has the best fit, I use two

complementary criteria: the Mean Squared Error (MSE) and the Gini difference. While

9



the MSE indicates how well the parametric LC fits the given (decile) data points, the Gini

difference (see Chotikapanich (1993)) exploits the relation between the Gini coefficient and

the LC:

Gini = 1− 2

∫ 1

0

L(π)dπ (14)

Having estimated the parametric LC to fit the data, one can calculate the Gini implied

by the LC according to this formula. The Gini difference is then obtained as the absolute

difference between the implied Gini and the actual one. In contrast to MSE, the Gini dif-

ference captures the overall fit of the shape of the LC rather than only the fit at the decile

data points.

In the last column of Table (1) in Section 3, I present the Gini coefficients implied by the five

parametric LCs.5 One should note the sign of the relation between the functional parameter

and the Gini: A higher Pareto α, Rohde β and Weibull b are associated with less inequal-

ity, while a higher Chotikapanich k and Lognormal σ imply a more inegalitarian distribution.

The MC Simulation is carried out as follows:

1. I begin by taking 10,000 draws from a fixed underlying income density with zeromodal

or unimodal shape and mean 1.

2. The drawn income data is aggregated to decile data points (which is the usually

available data format in large cross-country income inequality datasets).

3. For each of the five parametric forms, I calculate the parameter which best fits the

decile data points by minimizing the MSE.6 This procedure is carried out using the

fminunc-routine in MatLab.

4. The MSE and the Gini difference are calculated for each of the five parametric forms

and stored.

5. Steps 1 to 4 are repeated 10,000 times.

6. Look which of the five parametric forms has the lowest MSE and/or Gini difference

overall: Does the density implied by this LC have the correct shape, that is, does it

look similar to the actual one?

I put the answer upfront - it is clearly no. It is a important conclusion of this paper that

the researcher cannot rely upon decile point MSE or Gini difference to pick an LC whose

5These formulas can be found, respectively, in Arnold (1983) (for the Pareto LC), Rohde (2009), Chotika-

panich (1993) (I use a simplified expression of her formula) and McDonald (1984) (with the Weibull and

Lognormal distributions as special cases of the Generalized Beta).
6When using the Mean Absolute Error rather than the Mean Squared Error for LC fitting at the decile

points, the relative performance of the five parametric forms remains mostly unchanged. Only the Pareto

form tends to obtains a slightly better fit with this criterion, which penalizes large deviations less severely.
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density has the correct shape. Instead he/she should limit their choice upfront to the LCs

with the correct density modality.

Table (7) in Appendix C displays the results when the underlying density is Lognormal

or Weibull, for varying inequality levels.7 Of course, fitting an LC of this given form always

leads to the lowest MSE and Gini difference. But the focus lies on which of the other LC

forms does best, highlighted in bold. For instance, for an underlying egalitarian Weibull

density (with b=3), a fitted Chotikapanich LC leads to the lowest MSE at the decile data

points. If, based on this criterion, the researcher chose the Chotikapanich LC, the implied

density would be zeromodal and very different from the true Weibull density. Figures (5)

and (6) show the LCs and densities for this case. The very similar looking LCs give rise to

considerably varying income densities. A researcher aware of the unimodality of his data

should rather decide on the Lognormal LC, which, despite its slightly higher MSE at the

given decile points, captures the unimodal shape of the Weibull income density. A diverging

shape might lead to incorrect conclusions about the distribution of income, because the

downward-sloping Chotikapanich density misses out on the dominance of the middle class

and implies a larger number of comparatively poor earners. As Table (7) shows, the Gini

difference as goodness of fit criterion would (appropriately) point towards the Lognormal

LC in the above setting. But in other MC simulations, I find no evidence for a general

superiority of the Gini difference over MSE in finding an LC whose density has the correct

shape.
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Figure 5: Parametric LCs fitting decile data from a simulated underlying Weibull density (b = 3, Gini = 0.2063)

For each MC setting, Table (7) also gives two measures of distance from the implied

densities to the true one in order to underline the importance of the correct modality.

7When conducting the simulations with other underlying densities other than the five discussed here, the

overall results and implications of modality and the goodness of fit criteria are similar.
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Figure 6: Normalized Densities associated with the LCs from Figure (5)

The Kullback-Leibler Distance (see Kullback and Leibler (1951)) and the intuitive Integral

Difference between a true density f(x) and an approximating density g(x) are defined as

K-L Dist. =

∫ ∞

−∞

f(x)log

(
f(x)

g(x)

)
dx (15)

and

Int. Diff. =

∫ ∞

−∞

|f(x)− g(x)| dx (16)

Of course, in empirical studies, where the underlying density function is not known, these

measures cannot be calculated. Here they support our MC analysis by confirming e.g. that

the unimodal Lognormal density has the smallest distance from the true unimodal Weibull.

Examining the other Weibull and Lognormal settings in (7), the MSE and Gini difference

criteria often point to different LCs but their density modality is often not correct. For

instance, in the moderately inegalitarian (unimodal) Lognormal setting, MSE is lowest for

the Rohde LC and Gini difference for the Chotikapanich LC, both of which are zeromodal.

But the unimodal density of the Weibull LC correctly captures the shape (which is also

represented in the density distance measures).

In Table (8) in Appendix C, the MC simulation is carried out with underlying zeromodal

Chotikapanich, Rohde and Pareto densities. Only in some cases, LC fitting leads to a density

with the correct modality, like for egalitarian Chotikapanich and Rohde densities, which are

adequately approximated by each other and implied by MSE and Gini difference. But in

general, MSE and Gini difference are not reliable indicators of an LC with the correct density

modality.

One setting deserves particular attention: When the true density is a very inegalitar-

ian zeromdodal of the Rohde form (β=1.1), MSE and Gini difference are lowest for the
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Figure 7: Parametric LCs fitting decile data from a simulated underlying Rohde density (β = 1.1, Gini = 0.6725)

Lognormal LC, the only one to imply a unimodal density. Surprisingly, the density differ-

ence measures are in accordance with this choice and suggest that the unimodal Lognormal

density comes nearer to the true Rohde one than the zeromodal densities.
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Figure 8: Normalized Densities associated with the LCs from Figure (7)

The reason lies at the very high inequality level: Figures (7) and (8) show that the mode

of the Lognormal density is near zero which makes it effectively downward-sloping on most
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of the domain.8

One can conclude that the relevance of choosing an LC with the correctly implied

modality diminishes in extremely inegalitarian settings. This case, with a simulated Gini

coefficient of 0.6725, is however of limited practical importance. For egalitarian and moder-

ately inegalitarian income distributions, the researcher should definitely take the modality

into account because decile point goodness of fit criteria like MSE and Gini difference can

lead to an LC with an incorrect density shape.

5 An Empirical Analysis

After the MC simulations, let us now turn to empirical data. How do the Pareto, Rohde,

Chotikapanich, Lognormal and Weibull LCs fit countries’ decile income data? How can the

researcher pick an LC associated with correct modality, if the true income density modality

is unknown?

5.1 The Dataset

My data is taken from the United Nations University - World Institute for Development

Economics Research (2008). From this database, 1628 LC data rows fulfill the following

criteria:

• Decile data points are given.9

• Only income data is used rather than consumption or expenditure.10

• The data has been given a quality rating of 1, 2 or 3 in the database.11

8In a Lognormal density with mean 1 (and therefore µ̄ = −
σ2

2
), the mode is located at

x̃ = eµ̄−σ2
= e−

3
2
σ2

(17)

Using the Gini of the Lognormal Lorenz Curve 2Φ
(

σ√
2

)
− 1, one can express the location of the mode (17)

as a direct function of the Gini coefficient:

x̃ = e
−3

[
Φ−1

(
Gini+1

2

)]2
(18)

For a Gini of 0.5, the mode is at 0.2554, while in the above case of a Gini at 0.6725, the mode is at very low

0.0563 - keeping in mind that mean income is still 1.
9The availability of decile data points for a wide range of countries is a key asset of this database. Other

worldwide income databases used for inequality measurement include the one compiled by Deininger and

Squire (1996), containing only quintile data, and The World Bank (2011), which has data on quintiles and

just the first and last deciles.
10It is known that consumption is typically more equally distributed than income. Note that wealth would

be even more unequally distributed than income, see e.g. Castañeda et al. (2003). Excluding all data other

than income is a basis for ensuring at least a broad comparability across countries.
11United Nations University - World Institute for Development Economics Research (2008) classifies the

data according to the clarity of the income concept used and the transparency of the survey. Their quality

rating goes from 1 (highest) to 4. Category 4 is reserved for memorandum items and those from particularly
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In cross-country studies with a world-wide sample, there is often a tradeoff between the ex-

tensiveness of the dataset and its reliability and accuracy. For my analysis, the focus is not

to compare inequality across countries for policy recommendations, but rather to analyze

LC performance and its implications for income density modality in a variety of settings and

inequality levels. Therefore, only the three broad criteria stated above are imposed, which

leaves me with a huge dataset comprising 1628 LCs from 120 different countries and many

different time periods. Direct cross-country comparisons are then beset by some caveats, for

instance the slightly varying income definitions across countries (taxable income, disposable

income etc). For some countries, only recent data is available, for others data series range

back decades. Furthermore, some data is of a lower quality than other, according to the

rankings 1, 2 and 3. One should keep all that in mind when proceeding to the analysis and

interpretation.

The decile data on LCs in the database is accompanied by a reported Gini coefficient.12 The

lowest Gini coefficients are below 0.2 and have been reported by Finland (1980s and 1990s),

Czechoslovakia and its succeeding Czech Republic and Slovakia in the 1980s and 1990s, and

Pakistan in the 1960s. At the high end, Ginis above 0.7 are from Mali, Mauritania, Zambia

and Zimbabwe in the 1980s and 1990s.

Region Europe (West) Europe (East) Africa Asia The Americas

# Countries 18 24 25 25 28

# Observations 481 261 53 284 549

Mean Reported Gini 0.3117 0.2921 0.5647 0.3862 0.5040

(Standard Deviation) (0.0563) (0.0726) (0.1118) (0.0836) (0.0702)

# Weibull-implied Unimodals 479 257 10 242 213

# Weibull-implied Zeromodals 2 4 43 42 336

Table 2: Descriptive Overview of the Dataset

The 120 countries in our database can be divided into five regional groups: Europe

(West), Europe (East, referring to the formerly centrally-planned economies), Africa, The

Americas (including the Caribbean) and Asia (which also comprises the Middle East and

Pacific countries). A cross-sectional overview of all countries and reported Gini coefficients

in the year 2000 (or nearest) can be found in Tables (9) and (10) in Appendix C.13 Aggregate

unreliable old sources, which make up 10.3% of all decile data. This is the only data I discard. Data from

Category 3 is still considered intransparent but I deliberately include it in order to have a broad worldwide

dataset. Limiting myself to the highest quality standards 1 and 2 would exclude many developing countries:

Out of my 1628 LC data rows, 662 are classified Category 1, 475 Category 2 and 491 Category 3.
12The Gini coefficients have either been reported directly by the countries or calculated by the World Bank

with the POVCAL software, which is based on extrapolation using a combination of two three-parameter

LCs. For a performance review of POVCAL, see Minoiu and Reddy (2009).
13In the cross-country growth literature following Mankiw et al. (1992), it has become standard not

to consider countries which are predominantly oil-exporting or have a very small population (less than

300,000), because particular economic conditions might apply there. In my dataset, oil-exporting Norway

and Venezuela and tiny Barbados would be affected by these criteria. I find, however, that the LC estimations

in these countries are in line with their neighbors and excluding them from the dataset would not significantly

alter the regional results.
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statistics by regions are given in Table (2): According to the mean reported Ginis, inequality

in formerly Socialist Europe is slightly lower than in Western Europe but its inter-country

dispersion is larger. Income distributions in Asia are more egalitarian than in the Americas,

while Africa is the continent with the highest mean Gini and the highest inter-country

dispersion.

5.2 The use of Weibull-implied Modality

Given the decile data points, the estimation is carried out like in the MC simulation. Each

of the 1628 LCs is estimated separately: For each of the five parametric forms, I calculate

the parameter which best fits the decile data points by minimizing the MSE. MSE and Gini

difference are then calculated accordingly, using the reported Gini as a proxy for the actual

one.14 But when comparing the best-performing LCs and their implied modality, a problem

arises: The true underlying income density and its modality are unknown. Ideally, the re-

searcher should try to obtain additional data for each country and year and combine it with

the general observation that income distributions in poorer, overpopulated countries tend

to be zeromodal and those in more developed countries unimodal. This paper, however,

solely relies on the decile data given and instead exploits the flexibility of the Weibull LC:

It uses the modality implied by the Weibull LC as a proxy for the true one. When the

fitted parameter of the Weibull LC is larger than 1, I conclude that the density is unimodal,

otherwise it is assumed to be zeromodal.

Table (2) and Column 4 of Tables (9) and (10) in Appendix C show that according to

the Weibull parameter, income is predominantly unimodal in Europe and Asia, mostly

zeromodal in Africa and sometimes unimodal, sometimes zeromodal on the American con-

tinent.15

5.3 Empirical LC Fitting Results, classified by Density Modality

In Table (3) the results of fitting the whole dataset of 1628 LCs are shown, while in Table

(4) the sample is split according to the Weibull-implied modality.

As Table (3) shows, the Lognormal LC has the lowest average MSE across the dataset

and its MSE is lower than those of the other forms for 1475 out of 1628 LCs. The picture

is not so clear when the Gini difference is used: The Lognormal LC again has the lowest

average Gini difference across the dataset, but for a relative majority of LCs the Weibull

form leads to the lowest Gini difference. Also, the Gini difference reveals the virtues of

the three LCs associated with zeromodal densities because each of them is the most ap-

propriate in more than particular 100 settings. The performance differences between the

parametrizations are often remarkable: When using the Pareto LC for the whole dataset

14This assumption is not without caveats in settings with low data quality but it is used in the literature

and appears justifiable in light of the broadness of the sample.
15Note that this is very much in line with the reported Gini coefficients: Countries with high Ginis (in

particular higher than 0.45-0.48) tend to have a Weibull-implied zeromodality, those with low Ginis implied

unimodality.
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Parametric LC Pareto Rohde Chotikapanich Lognormal Weibull

Parameter α > 1 β > 1 k > 0 σ > 0 b > 0

Est. Min. Parameter 1.1459 1.0556 0.8672 0.2612 0.4463

Est. Mean Parameter 1.9474 1.5055 2.7338 0.7454 1.5338

Est. Max. Parameter 3.9807 2.8444 9.5550 1.7400 4.4134

MSE 0.001144 0.000201 0.000699 0.000085 0.000480

(Standard Dev.) (0.000627) (0.000219) (0.000713) (0.000196) (0.000461)

MSE/Lowest MSE 13.4588 2.3647 8.2235 1.0000 5.6471

Gini Difference 0.015826 0.010808 0.009502 0.007554 0.009415

(Standard Dev.) (0.009915) (0.009657) (0.010702) (0.011133) (0.012148)

Gini Diff./Lowest Gini Diff. 2.0950 1.4308 1.2579 1.0000 1.2464

# Lowest MSE 40 7 5 1475 101

# Lowest Gini Diff. 200 118 164 519 627

Table 3: Results from fitting 1628 LCs to Parametric Forms

rather than the Lognormal, the average Mean Squared Error is more than 13 times as high.

Due to different measurement units, the magnitudes are not so high for the Gini difference;

still, the average Gini difference is twice as high for the Pareto LC as for the Lognormal.

Still, the five LCs for one individual country setting will generally be very close to each other.

Parametric LC Pareto Rohde Chotikapanich Lognormal Weibull

WEIBULL-IMPLIED UNIMODALS (1201 LCs, Mean Gini 0.3387)

Est. Min. Parameter 1.5426 1.2601 0.8672 0.2612 1.0002

Est. Mean Parameter 2.1319 1.6152 2.1815 0.6222 1.7810

Est. Max. Parameter 3.9807 2.8444 3.4764 0.9417 4.4134

MSE 0.001034 0.000180 0.000417 0.000073 0.000372

(Standard Dev.) (0.000610) (0.000202) (0.000462) (0.000176) (0.000386)

MSE/Lowest MSE 14.1644 2.4658 5.7123 1.0000 5.0959

Gini Difference 0.015550 0.010238 0.009169 0.006672 0.007345

(Standard Dev.) (0.009513) (0.008969) (0.009237) (0.009631) (0.010148)

Gini Diff./Lowest Gini Diff. 2.3306 1.5345 1.3743 1.0000 1.1009

# Lowest MSE 28 4 5 1067 97

# Lowest MSE (uni-mod) - - - 1100 101

# Lowest Gini Diff. 127 61 77 365 571

# Lowest Gini Diff. (uni-mod) - - - 629 572

WEIBULL-IMPLIED ZEROMODALS (427 LCs, Mean Gini 0.5520)

Est. Min. Parameter 1.1459 1.0556 3.4624 0.9394 0.4463

Est. Mean Parameter 1.4306 1.1969 4.2871 1.0917 0.8388

Est. Max. Parameter 1.5534 1.2631 9.5550 1.7400 0.9994

MSE 0.001455 0.000260 0.001493 0.000118 0.000785

(Standard Dev.) (0.000571) (0.000253) (0.000694) (0.000240) (0.000515)

MSE/Lowest MSE 12.3305 2.2034 12.6525 1.0000 6.6525

Gini Difference 0.016602 0.012412 0.010441 0.010037 0.015237

(Standard Dev.) (0.010941) (0.011227) (0.013997) (0.014272) (0.015081)

Gini Diff./Lowest Gini Diff. 1.6541 1.2366 1.0403 1.0000 1.5181

# Lowest MSE 12 3 0 408 4

# Lowest MSE (zero-mod) 17 398 0 - 12

# Lowest Gini Diff. 73 57 87 154 56

# Lowest Gini Diff. (zero-mod) 74 57 217 - 79

Table 4: Results from Fitting LCs where Weibull b > 1 and b ≤ 1 to five Parametric Forms

In the results for the split sample (Table (4)), one notes the similarity of the two groups:

The Lognormal LC also outperforms across the unimodal and zeromodal settings, thereby

erroneously suggesting a unimodal density shape in the latter case. In fact, for 408 out of

the 427 zeromodals, the Lognormal LC has the lowest MSE. When restricting the choice to

the LCs which imply the correct modality, Rohde’s form obtains the lowest MSE for 398

of them. Again the Gini difference leads to a wider range of outperformers: Each of the

five forms has the lowest Gini difference in more than 50 settings and the inappropriate
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Lognormal LC does not dominate as starkly. Among the LCs with a zeromodal density, the

Chotikapanich form achieves the lowest Gini difference most often.

In the unimodal group, the dominance of Lognormal and Weibull LC mostly ensures correct

modality. But in particular the Gini difference as criterion would suggest a considerable

number of incorrect shapes: 127 Pareto LCs, 61 Rohde LCs and 77 Chotikapanich LCs. In

most of these cases the Lognormal LC will be taken, if the researcher restricts the choice

upfront to unimodality-implying LCs.

Comparing the absolute values of the MSEs and Gini differences in the unimodal and

zeromodal group of Table (4), one may conclude that the fit of all parametric forms is worse

in the latter, which is a lot more inegalitarian on average. I investigate this hypothesis as

follows: For each LC of country i at time t I run the following OLS regressions and display

the results in Table (5):

MSEi,t = αi,t + βGinii,t + ǫi,t (19)

Ginidiffi,t = αi,t + βGinii,t + ǫi,t (20)

Parametric form Pareto Rohde Chotikapanich Lognormal Weibull

Mean β in (19) 0.002596∗∗∗ 0.000528∗∗∗ 0.004540∗∗∗ 0.000302∗∗∗ 0.001902∗∗∗

(Standard Error) (0.000116) (0.000044) (0.000100) (0.000041) (0.000085)

R2 0.2356 0.0799 0.5588 0.0326 0.2342

Mean β in (20) 0.011249∗∗∗ 0.012502∗∗∗ 0.007608∗∗∗ 0.017172∗∗∗ 0.034921∗∗∗

(Standard Error) (0.002077) (0.002018) (0.002254) (0.002315) (0.002417)

R2 0.0177 0.0231 0.0070 0.0327 0.1137

*,**,*** indicate significance at 95%, 99%, 99.9% level, respectively.

Table 5: Results of the OLS regressions of equations (19) and (20)

Indeed, for all five parametric forms it holds that the MSEs and Gini differences are

higher, the higher the reported Gini coefficients are. This is noteworthy given that, by their

association with zeromodal densities, the Pareto, Rohde and Chotikapanich LCs should be

able to deal particularly well with inegalitarian distributions. The R2 shows that even a

considerable portion of the each parametrization’s variation in MSEs can be explained by

the Gini levels. Possibly, the lower data quality in some inegalitarian countries is an issue

here. This can be seen as an additional reason why it is not advisable to make LC selections

solely based on MSE or Gini difference without considering the density shape.16

Parametric Form Pareto Rohde Chotikapanich Lognormal Weibull

Corr(MSE, Gini Diff) 0.1725 0.2039 0.1592 0.2251 0.3028

Table 6: Empirical Correlation between MSE and Gini difference for the five Parametric Forms

16On the other hand, when a income distribution becomes extremely inegalitarian, the argumentation

accompanying Figures (7) and (8) applies: Even unimodal distributions are then so skewed that they are

downward-sloping on most of their domain, diminishing the relevance of modality in these special cases.
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The different implications of Tables (3) and (4) according to MSE or Gini difference

also warrant a closer look: Table (6) reveals that the correlation of these two measures over

all 1628 LCs is rather low for all five parametrizations. In fact, for only 554 out of 1628

LCs the same parametric form achieves both the lowest MSE and Gini difference. This is

evidence that these two measures captures different aspects of the goodness of fit of an LC:

A parametric LC may obtain a low MSE at the nine given data points, its overall form,

however, may not be in line with the reported Gini. So both criteria have their virtues,

however, neither unambiguously chooses LCs with the correct modality, thus the researcher

should restrict the choice of LCs upfront.

An analysis of LC fittings and their associated modalities in particular countries or re-

gions yields further insights. In the cross-sectional Tables (9) and (10) in Appendix C, for

each country the LC forms with the lowest MSE or Gini difference are shown - and the LCs

when only those with the correct implied modality are considered. For instance, zeromodal

Ghana (Gini 0.4600) is typical for many African countries in the sense that the Lognormal

LC is MSE-minimizing but the Rohde LC has the lowest MSE among the zeromodality-

implying forms. One again notes that the Gini difference results are very diverse across

countries, even for countries with very similar characteristics: Egalitarian and unimodal

Slovakia and Slovenia both have the Lognormal LC as MSE-minimizing, but the Gini dif-

ference is lowest for the Weibull LC in Slovakia and the Lognormal LC in Slovenia.

These results are borne out by the Regional Tables (11), (12) (13) and (14) in Appendix

C. For every region I consider the Weibull-implied unimodal and zeromodal settings sepa-

rately.17 The results of the performance comparison are very similar for (unimodal) Western

and Eastern European countries: The Lognormal LC obtains the best fit in terms of MSE

and the Weibull in terms of the Gini difference. What is striking about the African esti-

mation is that even among the unimodal settings, the Pareto LC achieves the lowest Gini

difference. Only when the unimodality restriction is imposed, the Lognormal LC outper-

forms. It is also noteworthy that the Weibull LC does poorly in the African sample, both in

the zeromodal and unimodal groups: It has the second-highest MSE and the highest Gini

difference of all five forms. And it does not fare much better in Asia and in the Americas.

In Asia, unimodal settings are best captured by the Lognormal LC, while the Pareto and

Rohde forms do well for the zeromodal observations. In the Americas, MSE and Gini differ-

ence point to the Lognormal LC for both groups; after considering modality, Rohde’s and

Chotikapanich’s forms outperform the others in the zeromodal settings.

Outside Europe, the Weibull LC thus mostly seems to do worse than the other forms. Ob-

viously, its flexibility to encompass unimodal and zeromodal densities - and its ability to

give a hint at the underlying modality - comes at a cost. In many circumstances the other,

more specialized, forms obtain a better fit in terms of MSE or Gini difference. The empirical

analysis has also shown that once modality is correctly taken into account the Lognormal

17In Europe (West) and Europe (East) only the results for the unimodals are reported, because they make

up, respectively, 479 out of 481 and 257 out of 261 LCs.
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LC is the best for most unimodal settings while the Pareto, Rohde and Chotikapanich forms

all have some zeromodal settings where they do best. The results are generally more mixed

with Gini difference rather than MSE as goodness of fit criterion.

6 Conclusion

This paper has derived a relation between the LC and the modality of its density function.

Given any parametric LC, its third derivative gives an indication of how the underlying

density looks like without having to derive it. Even LCs whose graphs appear similar can

have very different densities, as one can see with the zeromodal Pareto, Chotikapanich and

Rohde forms compared to the unimodal Lognormal and the flexible Weibull.

Both the Monte Carlo simulation and the empirical analysis show that LC fitting based on

MSE or Gini difference can lead to an LC whose density has an incorrect modality. The

resulting implications about the relative numbers of rich, middle-class and poor earners

can thus be highly misleading. This paper therefore argues that researchers should limit

their choice of LCs to those forms associated with the appropriate density modality (e.g. by

checking the third derivative of the LC). In case the shape of the income density is unknown,

more information should be gathered, or the parameter estimate of the best-fitting Weibull

LC can give a hint. Indeed, from our empirical analysis one may conclude that one main

asset of the Weibull LC is indicating the modality, while the other, more specialized, LCs

often obtain lower MSE or Gini differences in most unimodal or zeromodal settings.

An extension of this paper would be to go to LCs with more than one parameter. Theorem

(2) on the relation between the LC and the modality of the density holds for all LCs, but

for an empirical analysis one would need a dataset with more than decile points.

Furthermore, the complementarity of the two goodness of fit criteria, MSE and Gini differ-

ence, is worth pointing out. While the MSE focuses on the fit of the curve at the given data

points, the Gini difference takes into account the appropriateness of the overall LC. I find

that on my dataset these two measures have only a weak correlation and frequently lead to

different results. A more thorough investigation into these and alternative goodness of fit

criteria would be interesting for future research.
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7 Appendix

7.1 A: Proof of Theorem (3)

In order to derive the LC associated with the Weibull density (10), I follow the steps outlined

in Section 2. The cumulative Weibull distribution is given in (11):

π = F (x) = 1− e−(
x
a )

b

Its inverse x = F−1(π) can be obtained as

π = 1− e−(
x
a )

b

⇐⇒ −
(x
a

)b

= log(1− π) ⇐⇒ x = F−1(π) = a
(
−log(1− π)

) 1
b

(21)

Using (2), I obtain the slope of the LC by dividing F−1(π) by the distributional mean

µ, which for the Weibull distribution is given by µ = aΓ
(
1 + 1

b

)
(involving the Gamma

function Γ(α) =
∫∞

0
tα−1e−tdt). This leads to the scaling parameter a being canceled out:

L′(π) =
a

µ

(
−log(1− π)

) 1
b

=
a

aΓ
(
1 + 1

b

)
(
−log(1− π)

) 1
b

=

(
−log(1− π)

) 1
b

Γ
(
1 + 1

b

) (22)

The LC is then given by integration:

∫
(
−log(1− π)

) 1
b

Γ
(
1 + 1

b

) dπ = −
Γ
(
−log(1− π), 1 + 1

b

)

Γ
(
1 + 1

b

) + Const (23)
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where Γ(x, α) is the upper incomplete Gamma function Γ(x, α) =
∫∞

x
tα−1e−tdt.18 19

Turning to the additive constant, one can easily verify that it has to equal 1 so that the

LC properties L(0) = 0 and L(1) = 1 (see Definition (1)) are fulfilled:

L(0) = −Γ
(
−log(1− 0), 1 + 1

b

)

Γ
(
1 + 1

b

) + 1 = −
∫∞

0
t1+

1
b
−1e−tdt

∫∞

0
t1+

1
b
−1e−tdt

+ 1 = −1 + 1 = 0 (25)

L(1) = −Γ
(
−log(0), 1 + 1

b

)

Γ
(
1 + 1

b

) + 1 = −
∫∞

∞
t1+

1
b
−1e−tdt

∫∞

0
t1+

1
b
−1e−tdt

+ 1 = 0 + 1 = 1 (26)

This completes the proof that the Weibull LC is

L(π) = 1− Γ
(
−log(1− π), 1 + 1

b

)

Γ
(
1 + 1

b

)

which is the form proposed in Theorem (3).20

7.2 B: Analysis of the Weibull LC’s third derivative (13)

The first three derivatives of the Weibull LC (12) are

L′(π) =

(
−log(1− π)

) 1
b

Γ
(
1 + 1

b

) ; L′′(π) =

(
−log(1− π)

) 1
b
−1

Γ
(
1 + 1

b

)
b(1− π)

(28)

L′′′(π) =

(
−log(1− π)

) 1
b
−2

Γ
(
1 + 1

b

)
b2(1− π)2

[
1− b+ b

(
−log(1− π)

)]
(29)

18The Gamma function Γ(α) =
∫∞
0 tα−1e−tdt is the sum of the lower incomplete Gamma function

γ(x, α) =
∫ x

0 tα−1e−tdt and the upper incomplete Gamma function Γ(x, α) =
∫∞
x

tα−1e−tdt. When working

with the MatLab software, it should be noted that a different definition of the lower incomplete Gamma

function ("gammainc(x,α)") is used there: γ(x, α) =
∫
x
0 ta−1e−tdt

Γ(α)
. So one has to compute "gamma(α)*(1-

gammainc(x,α))" to obtain the values of the upper incomplete Gamma function according to the definition

in this paper.
19In order to verify the primitive (23), one can differentiate it using Leibniz’s Rule for differentiation under

the integral sign, yielding

−
1

Γ
(
1 + 1

b

)
∂
∫∞
− log(1−π) t

1+ 1
b
−1e−tdt

∂π
= −

1

Γ
(
1 + 1

b

)
[
0−

(
−log(1− π)

) 1
b e−[−(log(1−π))] 1

1− π
+ 0

]

=

(
−log(1− π)

) 1
b

Γ
(
1 + 1

b

) (24)

This proves that the given LC is indeed the primitive of its slope (22) .
20Another equally valid expression for the Weibull LC is

1

Γ
(
1 + 1

b

)
[
(π − 1)

(
−log(1− π)

) 1
b −

1

b
Γ

(
−log(1− π),

1

b

)]
+ 1 (27)

because differentiating it also leads to the slope in (22).
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From Theorem (2) it directly follows that L′′′(π) is positive for b ≤ 1, implying a ze-

romodal density, and sign-changing for b > 1, implying a unimodal density. In the latter

case, L′′′(π) = 0 occurs at the point π̃ referring to the mode x̃ = a
(
1− 1

b

) 1
b of the Weibull

density.

One can, however, also verify these properties without relying on Theorem (2), by looking

at (29): Recall that b > 0 and 0 ≤ π ≤ 1, so the ratio in (29) is unambiguously positive. It

is the term in square brackets which determines the sign of L′′′(π): For 0 < b ≤ 1, this term

is positive as well and hence, the third derivative is positive. By (5), f ′(x) is then negative

for all x, which corresponds to the zeromodality of the Weibull density for 0 < b ≤ 1. On

the other hand, if b > 1, the term in square brackets can become negative:

1− b+ b
(
−log(1− π)

)
< 0 ⇐⇒ π < π̃ = 1− e

1
b
−1 (30)

In the case of a unimodal Weibull density, the third derivative of the LC is negative for

π below a threshold value π̃, referring to the upward-sloping part of the density. The more

concentrated the Weibull density (thus the higher b), the higher this threshold because the

higher the mode. In fact, the change from a negative to a positive third LC derivative occurs

just at the Weibull mode x̃ = a
(
1− 1

b

) 1
b :

1− b+ b
(
−log(1− 1 + e−(

x̃
a )

b

)
)
= 0 ⇐⇒ x̃ = a

(
1− 1

b

) 1
b

(31)

This completes the proof.

7.3 C: Large Tables
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Parametric LC Pareto Rohde Chotikapanich Lognormal Weibull

Density Modality zero zero zero uni zero/uni

Parameter α > 1 β > 1 k > 0 b > 0 σ > 0

WEIBULL with b = 3 (unimodal, Gini 0.2063)

Est. Mean Parameter 3.0976 2.2010 1.2372 0.3653 3.0007

(Standard Dev.) (0.0187) (0.0120) (0.0096) (0.0027) (0.0249)

MSE 0.000995 0.000142 0.000073 0.000110 0.000000

(Standard Dev.) (0.000024) (0.000007) (0.000004) (0.000007) (0.000000)

Gini Difference 0.013807 0.006809 0.005177 0.002543 0.001218

(Standard Dev.) (0.001389) (0.001455) (0.001485) (0.001375) (0.000918)

K-L Distance 7.5213 4.5157 4.0850 0.3215 0.0002

Integral Diff. 0.8367 0.4829 0.4249 0.2510 0.0002

WEIBULL with b = 1.5 (unimodal, Gini 0.3700)

Est. Mean Parameter 1.9460 1.4885 2.3695 0.6701 1.5002

(Standard Dev.) (0.0094) (0.0056) (0.0183) (0.0046) (0.0122)

MSE 0.002647 0.000346 0.000092 0.000277 0.000000

(Standard Dev.) (0.000055) (0.000016) (0.000004) (0.000017) (0.000000)

Gini Difference 0.024251 0.013346 0.007750 0.005665 0.001890

(Standard Dev.) (0.002252) (0.002274) (0.002346) (0.002295) (0.001425)

K-L Distance 9.4520 5.8783 4.5657 0.3803 0.0001

Integral Diff. 0.8935 0.5254 0.4161 0.2563 0.0001

WEIBULL with b = 0.5 (zeromodal, Gini 0.7500)

Est. Mean Parameter 1.1771 1.0722 7.9695 1.6074 0.5002

(Standard Dev.) (0.0040) (0.0018) (0.1295) (0.0136) (0.0056)

MSE 0.003299 0.000459 0.000462 0.000303 0.000001

(Standard Dev.) (0.000122) (0.000031) (0.000037) (0.000031) (0.000001)

Gini Difference 0.011570 0.023295 0.003186 0.006033 0.003116

(Standard Dev.) (0.004371) (0.003982) (0.002415) (0.003574) (0.002363)

K-L Distance 25.3942 21.1329 12.7451 5.4718 0.0010

Integral Diff. 1.3470 0.9523 0.6593 0.5500 0.0010

LOGNORMAL with σ = 0.4 (unimodal, Gini 0.2227)

Est. Mean Parameter 2.8449 2.0608 1.3511 0.4000 2.7339

(Standard Dev.) (0.0176) (0.0111) (0.0106) (0.0030) (0.0231)

MSE 0.000534 0.000037 0.000065 0.000000 0.000127

(Standard Dev.) (0.000016) (0.000002) (0.000005) (0.000000) (0.000008)

Gini Difference 0.009462 0.004536 0.004096 0.001321 0.001689

(Standard Dev.) (0.001600) (0.001616) (0.001609) (0.000992) (0.001224)

K-L Distance 7.1015 3.7911 3.3431 0.0001 0.2722

Integral Diff. 0.6738 0.3922 0.3880 0.0001 0.2529

LOGNORMAL with σ = 0.8 (unimodal, Gini 0.4284)

Est. Mean Parameter 1.7162 1.3574 2.8746 0.8000 1.2180

(Standard Dev.) (0.0103) (0.0059) (0.0300) (0.0072) (0.0134)

MSE 0.001532 0.000098 0.000449 0.000001 0.000337

(Standard Dev.) (0.000048) (0.000007) (0.000036) (0.000001) (0.000027)

Gini Difference 0.017261 0.008374 0.004837 0.002781 0.005762

(Standard Dev.) (0.003466) (0.003387) (0.003005) (0.002094) 0.003255

K-L Distance 9.1313 4.4648 2.6921 0.0001 0.2440

Integral Diff. 0.7534 0.4185 0.4078 0.0001 0.2632

LOGNORMAL with σ = 1.5 (unimodal, Gini 0.7112)

Est. Mean Parameter 1.2146 1.0874 7.0251 1.4994 0.5464

(Standard Dev.) (0.0075) (0.0035) (0.1879) (0.0216) 0.0105

MSE 0.001797 0.000077 0.001465 0.000001 0.000339

(Standard Dev.) (0.000113) (0.000006) (0.000088) (0.000002) (0.000035)

Gini Difference 0.011858 0.015570 0.007375 0.005470 0.008452

(Standard Dev.) (0.006513) (0.006530) (0.005557) (0.004258) 0.005834

K-L Distance 12.9917 6.9790 1.2474 0.0006 0.2649

Integral Diff. 0.9196 0.5018 0.5525 0.0006 0.8313

Table 7: MC simulation with Weibull- and Lognormally-distributed income data

*Printed in italics are the results for the LC form associated with the sampled density; printed in bold are the

results for best-performing LC apart from this one.
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Parametric LC Pareto Rohde Chotikapanich Lognormal Weibull

Density Modality zero zero zero uni zero/uni

Parameter α > 1 β > 1 k > 0 b > 0 σ > 0

CHOTIKAPANICH with k = 1.5 (zeromodal, Gini 0.2411)

Est. Mean Parameter 2.6629 1.9289 1.4997 0.4393 2.4466

(Standard Dev.) (0.0100) (0.0063) 0.0076 (0.0021) 0.0132

MSE 0.001058 0.000039 0.000000 0.000085 0.000084

(Standard Dev.) (0.000024) (0.000005) (0.000000) (0.000006) 0.000005

Gini Difference 0.009927 0.001834 0.000905 0.002820 0.005621

(Standard Dev.) (0.001073) (0.001028) (0.000682) (0.001120) (0.001154)

K-L Distance 9.5512 2.8658 0.0078 0.3666 0.3795

Integral Diff. 0.8664 0.2753 0.0004 0.3645 0.4133

CHOTIKAPANICH with k = 6 (zeromodal, Gini 0.6716)

Est. Mean Parameter 1.2680 1.1150 5.9987 1.3620 0.6212

(Standard Dev.) (0.0036) (0.0017) (0.05608) (0.0079) 0.0047

MSE 0.006386 0.001389 0.000001 0.001395 0.000364

(Standard Dev.) (0.000134) (0.000058) (0.000001) (0.000061) (0.000031)

Gini Difference 0.020642 0.024198 0.002263 0.007174 0.002291

(Standard Dev.) (0.003068) (0.002756) (0.001714) (0.007174) (0.002291)

K-L Distance 17.0014 12.4387 0.0013 0.6279 0.3892

Integral Diff. 1.2194 0.7960 0.0003 0.5016 0.4134

ROHDE with β = 2 (zeromodal, Gini 0.2274)

Est. Mean Parameter 2.7622 2.0003 1.4132 0.4165 2.6085

(Standard Dev.) (0.0105) (0.0068) (0.0072) (0.0020) (0.0142)

MSE 0.000652 0.000000 0.000031 0.000039 0.000176

(Standard Dev.) (0.000019) (0.000000) (0.000004) (0.000002) 0.000008

Gini Difference 0.006378 0.000858 0.001019 0.004195 0.005946

(Standard Dev.) (0.001022) (0.000648) (0.000744) (0.001085) (0.001112)

K-L Distance 8.8778 0.0073 1.3711 0.3537 0.4619

Integral Diff. 0.7665 0.0003 0.2602 0.3757 0.4880

ROHDE with β = 1.1 (zeromodal, Gini 0.6725)

Est. Mean Parameter 1.2428 1.1000 6.4609 1.4276 0.5814

(Standard Dev.) (0.0036) (0.0017) (0.0729) (0.0091) 0.0049

MSE 0.001730 0.000001 0.001475 0.000084 0.000503

(Standard Dev.) (0.000080) (0.000001) (0.000071) (0.000005) (0.000034)

Gini Difference 0.002646 0.002377 0.021085 0.014771 0.024003

(Standard Dev.) (0.002013) (0.001815) (0.003267) (0.003077) (0.003052)

K-L Distance 13.4991 0.0008 1.6146 0.4092 0.5860

Integral Diff. 0.9072 0.0002 0.8571 0.4850 0.7034

PARETO with α = 2.5 (zeromodal, Gini 0.2500)

Est. Mean Parameter 2.5015 1.8778 1.5277 0.4574 2.3918

(Standard Dev.) (0.0439) (0.0284) (0.0357) (0.0105) (0.0607)

MSE 0.000000 0.000790 0.001175 0.000692 0.001500

(Standard Dev.) (0.000001) (0.000065) (0.000097) (0.000057) (0.000100)

Gini Difference 0.004301 0.004429 0.005958 0.005108 0.004448

(Standard Dev.) (0.003536) (0.003492) (0.003942) (0.004284) 0.003799

K-L Distance 0.0402 1.9287 2.3998 0.6723 1.1494

Integral Diff. 0.0021 0.7803 0.8790 0.6811 0.8566

PARETO with α = 1.3 (zeromodal, Gini 0.6250)

Est. Mean Parameter 1.3292 1.1407 5.2534 1.2554 0.6971

(Standard Dev.) (0.0563) (0.0284) (1.6184) (0.1481) (0.0817)

MSE 0.000004 0.001823 0.005817 0.001855 0.003940

(Standard Dev.) (0.000005) (0.000153) (0.000566) (0.000153) (0.000293)

Gini Difference 0.039792 0.035512 0.037353 0.032828 0.031848

(Standard Dev.) (0.031952) (0.031415) (0.035946) (0.033818) (0.036224)

K-L Distance 2.9041 0.9601 1.6448 0.7854 1.0591

K-L Distance 0.1641 0.8624 1.1855 0.8491 1.2143

Table 8: MC simulation with Chotikapanich-, Rohde- and Pareto-distributed income data

*Printed in italics are the results for the LC form associated with the sampled density; printed in bold are the

results for best-performing LC apart from this one.
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Country Region Rep. Gini Wei-impl. Mod Lowest MSE Lowest Mod-MSE Lowest Gini D. Lowest Mod-Gini D.

Argentina The Americas 0.5043 zero Log Cho Log Roh

Armenia Europe (East) 0.5551 zero Log Roh Roh Roh

Australia Asia 0.3332 uni Log Log Wei Wei

Austria Europe (West) 0.2926 uni Log Log Wei Wei

Azerbaijan Europe (East) 0.3730 uni Log Log Wei Wei

Bangladesh Asia 0.3869 uni Log Log Par Log

Barbados The Americas 0.4638 uni Wei Wei Wei Wei

Belarus Europe (East) 0.2470 uni Log Log Wei Wei

Belgium Europe (West) 0.3265 uni Log Log Wei Wei

Bolivia The Americas 0.6170 zero Log Roh Wei Wei

Brazil The Americas 0.5879 zero Log Roh Cho Cho

Bulgaria Europe (East) 0.3320 uni Log Log Wei Wei

Burkina Faso Africa 0.6959 zero Log Roh Roh Roh

Cameroon Africa 0.6098 zero Log Roh Wei Wei

Canada The Americas 0.3245 uni Log Log Wei Wei

Central Afr. Rep. Africa 0.6320 zero Log Roh Par Par

Chile The Americas 0.5521 zero Log Roh Cho Cho

China Asia 0.3730 uni Log Log Log Log

Colombia The Americas 0.5684 zero Log Roh Cho Cho

Costa Rica The Americas 0.4579 uni Log Log Log Log

Croatia Europe (East) 0.3800 uni Log Log Wei Wei

Cuba The Americas 0.2700 uni Wei Wei Cho Log

Czech Republic Europe (East) 0.2310 uni Log Log Par Log

Czechoslovakia* Europe (East) 0.2010 uni Log Log Wei Wei

Denmark Europe (West) 0.3500 uni Wei Wei Wei Wei

Dominican Rep. The Americas 0.5202 zero Log Roh Log Cho

Ecuador The Americas 0.5604 zero Log Roh Log Cho

Egypt Africa 0.5378 zero Log Roh Roh Roh

El Salvador The Americas 0.5190 zero Log Roh Log Wei

Estonia Europe (East) 0.3890 uni Log Log Wei Wei

Ethiopia Africa 0.4588 zero Log Roh Par Par

Fiji Asia 0.4600 uni Log Log Wei Wei

Finland Europe (West) 0.2650 uni Log Log Wei Wei

France Europe (West) 0.2800 uni Log Log Par Log

Gambia Africa 0.6923 zero Log Roh Roh Roh

Georgia Europe (East) 0.4580 uni Log Log Par Log

Germany* Europe (West) 0.2988 uni Log Log Log Log

Germany (East)* Europe (East) 0.2332 uni Log Log Wei Wei

Germany (West)* Europe (West) 0.3075 uni Log Log Log Log

Ghana Africa 0.4611 zero Log Roh Par Par

Greece Europe (West) 0.3300 uni Log Log Wei Wei

Guatemala The Americas 0.5980 zero Log Roh Cho Cho

Ghana Africa 0.6852 zero Roh Roh Roh Roh

Guyana The Americas 0.5364 zero Log Par Cho Cho

Haiti The Americas 0.5921 zero Log Roh Cho Cho

Honduras The Americas 0.5111 zero Log Roh Log Cho

Hong Kong Asia 0.5200 zero Log Roh Wei Wei

Hungary Europe (East) 0.2590 uni Log Log Wei Wei

India Asia 0.3900 uni Log Log Log Log

Indonesia Asia 0.3919 uni Log Log Cho Log

Ireland Europe (West) 0.3429 uni Log Log Wei Wei

Israel Asia 0.3722 uni Log Log Log Log

Italy Europe (West) 0.3587 uni Log Log Wei Wei

Jamaica The Americas 0.5507 zero Log Roh Wei Wei

Japan Asia 0.4223 uni Log Log Wei Wei

Jordan Asia 0.3231 uni Log Log Par Log

Kazakhstan Asia 0.5638 zero Log Roh Wei Wei

Kenya Africa 0.5700 zero Log Roh Wei Wei

Korea (Rep) Asia 0.3718 uni Wei Wei Wei Wei

Kyrgyzstan Asia 0.4140 uni Log Log Wei Wei

Table 9: Cross-Sectional Overview: Statistics and Results by Countries (Part 1), Year 2000 or nearest

*The data refers to the year 2000 (or nearest to 2000 in case of unavailability; Czechoslovakia: 1988). German

data is reported both for the whole country and for East and West separately. Par, Roh, Cho, Log, Wei refer to

the Pareto, Rohde, Chotikapanich, Lognormal and Weibull LCs, respectively. The third column gives the reported

Gini and the fourth column the density modality implied by Weibull LC fitting. The fifth and seventh column

show the best-fitting among all five forms (according to MSE or Gini difference); the sixth and eighth just among

those forms with the correct Weibull-implied modality.
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Country Region Rep. Gini Wei-impl. Mod Lowest MSE Lowest Mod-MSE Lowest Gini D. Lowest Mod-Gini D.

Latvia Europe (East) 0.3270 uni Log Log Par Log

Lesotho Africa 0.6850 zero Log Roh Log Par

Lithuania Europe (East) 0.3550 uni Log Log Wei Wei

Luxembourg Europe (West) 0.3029 uni Log Log Log Log

Macedonia Europe (East) 0.3460 uni Wei Wei Wei Wei

Madagascar Africa 0.5950 zero Log Roh Par Par

Malawi Africa 0.5670 zero Log Roh Par Par

Malaysia Asia 0.4848 zero Log Roh Par Par

Mali Africa 0.7862 zero Log Roh Wei Wei

Mauritania Africa 0.6908 zero Log Roh Roh Roh

Mexico The Americas 0.5325 zero Log Roh Log Cho

Moldova Europe (East) 0.4214 uni Log Log Log Log

Morocco Africa 0.5240 zero Roh Roh Par Par

Myanmar Asia 0.3806 zero Roh Log Cho Log

Nepal Asia 0.5046 zero Log Roh Par Par

Netherlands Europe (West) 0.2500 uni Log Log Wei Wei

New Zealand Asia 0.4040 uni Log Log Wei Wei

Nicaragua The Americas 0.5442 zero Log Roh Log Cho

Nigeria Africa 0.5290 zero Log Roh Log Wei

Norway Europe (West) 0.2890 uni Log Log Wei Wei

Pakistan Asia 0.3600 uni Log Log Par Log

Panama The Americas 0.5705 zero Log Roh Roh Roh

Paraguay The Americas 0.56925 zero Log Roh Log Wei

Peru The Americas 0.4962 zero Log Roh Log Wei

Philippines Asia 0.4818 zero Log Roh Par Par

Poland Europe (East) 0.3450 uni Log Log Wei Wei

Portugal Europe (West) 0.3600 uni Log Log Wei Wei

Puerto Rico The Americas 0.3970 zero Log Log Log Log

Romania Europe (East) 0.3100 uni Log Log Wei Wei

Russia Europe (East) 0.4262 uni Log Log Wei Wei

Senegal Africa 0.6117 zero Log Roh Roh Roh

Serbia & Monten. Europe (East) 0.3730 uni Log Log Wei Wei

Sierra Leone Africa 0.4400 uni Log Log Par Log

Slovakia Europe (East) 0.2640 uni Log Log Wei Wei

Slovenia Europe (East) 0.2460 uni Log Log Log Log

Somalia Africa 0.3970 uni Log Log Par Log

South Africa Africa 0.5452 zero Par Par Par Par

Spain Europe (West) 0.3458 uni Log Log Wei Wei

Sri Lanka Asia 0.5665 zero Par Par Par Par

Sudan Africa 0.3980 uni Log Log Cho Log

Suriname The Americas 0.5381 zero Log Roh Log Cho

Sweden Europe (West) 0.2950 uni Log Log Wei Wei

Switzerland Europe (West) 0.3596 uni Log Log Wei Wei

Taiwan Asia 0.3194 uni Log Log Log Log

Tanzania Africa 0.5973 zero Log Roh Log Cho

Thailand Asia 0.5595 zero Log Roh Par Par

Trinidad & Tob. The Americas 0.4027 uni Log Log Log Log

Turkey Asia 0.5679 zero Log Roh Log Cho

Turkmenistan Asia 0.3580 uni Log Log Log Log

Uganda Africa 0.5363 zero Log Roh Par Par

Ukraine Europe (East) 0.4916 zero Log Roh Cho Cho

United Kingdom Europe (West) 0.3459 uni Log Log Wei Wei

United States The Americas 0.4019 uni Log Log Wei Wei

Uruguay The Americas 0.4430 uni Log Log Log Log

USSR* Europe (East) 0.2890 uni Log Log Wei Wei

Uzbekistan Asia 0.4717 uni Log Log Roh Log

Venezuela The Americas 0.4410 uni Log Log Log Log

Yugoslavia* Europe (East) 0.3300 uni Wei Wei Wei Wei

Zambia Africa 0.6473 zero Log Roh Par Par

Zimbabwe Africa 0.7461 zero Log Roh Wei Wei

Table 10: Cross-Sectional Overview: Statistics and Results by Countries (Part 2), Year 2000 or nearest

*The data refers to the year 2000 (or nearest to 2000 in case of unavailability; USSR: 1989, Yugoslavia: 1978). Par,

Roh, Cho, Log, Wei refer to the Pareto, Rohde, Chotikapanich, Lognormal and Weibull LCs, respectively. The

third column gives the reported Gini and the fourth column the density modality implied by Weibull LC fitting.

The fifth and seventh column show the best-fitting among all five forms (according to MSE or Gini difference); the

sixth and eighth just among those forms with the correct Weibull-implied modality.
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Parametric LC Pareto Rohde Chotikapanich Lognormal Weibull

UNIMODAL EUROPE (WEST) (479 out of 481 LCs, mean reported Gini 0.3109)

MSE 0.001034 0.000152 0.000251 0.000054 0.000247

(Standard Dev.) (0.000614) (0.000136) (0.000249) (0.000107) (0.000215)

MSE/Lowest MSE 19.1481 2.8148 4.6481 1.0000 4.5741

Gini Difference 0.015578 0.009506 0.008211 0.004645 0.004128

(Standard Dev.) (0.006301) (0.005427) (0.005124) (0.005543) (0.005659)

Gini Diff./Lowest Gini Diff. 3.7737 2.3028 1.9891 1.1252 1.0000

# Lowest MSE 2 0 0 415 62

# Lowest MSE (uni-mod) - - - 417 62

# Lowest Gini Diff. 23 15 17 121 303

# Lowest Gini Diff. (uni-mod) - - - 176 303

UNIMODAL EUROPE (EAST) (257 out of 261 LCs, mean reported Gini 0.2882))

MSE 0.000771 0.000145 0.000269 0.000051 0.000284

(Standard Dev.) (0.000558) (0.000130) (0.000260) (0.000105) (0.000209)

MSE/Lowest MSE 15.1176 2.8431 5.2745 1.0000 5.5686

Gini Difference 0.018299 0.013849 0.013511 0.009788 0.009144

(Standard Dev.) (0.013201) (0.013177) (0.013554) (0.013397) (0.013579)

Gini Diff./Lowest Gini Diff. 2.0012 1.5145 1.4779 1.0704 1.0000

# Lowest MSE 0 0 0 245 12

# Lowest MSE (uni-mod) - - - 245 12

# Lowest Gini Diff. 20 3 8 50 176

# Lowest Gini Diff. (uni-mod) - - - 80 177

Table 11: Results from fitting LCs from Europe (West) and Europe (East) to five Parametric Forms (settings

with Weibull-implied unimodality)

Parametric LC Pareto Rohde Chotikapanich Lognormal Weibull

UNIMODAL AFRICA (10 out of 53 LCs, mean reported Gini 0.4142))

MSE 0.001017 0.000329 0.001091 0.000162 0.000846

(Standard Dev.) (0.000475) (0.000148) (0.000498) (0.000136) (0.000448)

MSE/Lowest MSE 6.2778 2.0309 6.7346 1.0000 5.2222

Gini Difference 0.016574 0.020897 0.022684 0.028610 0.033753

(Standard Dev.) (0.027227) (0.029384) (0.030704) (0.030209) (0.030922)

Gini Diff./Lowest Gini Diff. 1.0000 1.2608 1.3686 1.7262 2.0365

# Lowest MSE 0 0 0 10 0

# Lowest MSE (uni-mod) - - - 10 0

# Lowest Gini Diff. 8 1 1 0 0

# Lowest Gini Diff. (uni-mod) - - - 10 0

ZEROMODAL AFRICA (43 out of 53 LCs, mean reported Gini 0.5997))

MSE 0.001340 0.000292 0.001861 0.000179 0.000869

(Standard Dev.) (0.000541) (0.000457) (0.000998) (0.000432) (0.000827)

MSE/Lowest MSE 7.4860 1.6312 10.3965 1.0000 4.8547

Gini Difference 0.027235 0.027647 0.031804 0.031391 0.035979

(Standard Dev.) (0.020746) (0.020721) (0.025877) (0.025259) (0.027548)

Gini Diff./Lowest Gini Diff. 1.0000 1.0151 1.1678 1.1525 1.3211

# Lowest MSE 2 2 0 39 0

# Lowest MSE (zero-mod) 2 40 0 - 1

# Lowest Gini Diff. 18 10 3 5 7

# Lowest Gini Diff. (zero-mod) 19 10 5 - 9

Table 12: Results from fitting LCs from Africa to five Parametric Forms (settings with Weibull-implied uni- and

zeromodality)
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Parametric LC Pareto Rohde Chotikapanich Lognormal Weibull

UNIMODAL ASIA (242 out of 284 LCs, mean reported Gini 0.3628))

MSE 0.001005 0.000225 0.000583 0.000109 0.000533

(Standard Dev.) (0.000611) (0.000176) (0.000463) (0.000151) (0.000399)

MSE/Lowest MSE 9.2202 2.0642 5.3486 1.0000 4.8899

Gini Difference 0.013105 0.008290 0.007480 0.006572 0.008477

(Standard Dev.) (0.008409) (0.007327) (0.007190) (0.008260) (0.008866)

Gini Diff./Lowest Gini Diff. 1.9941 1.2614 1.1382 1.0000 1.2899

# Lowest MSE 18 4 4 202 14

# Lowest MSE (uni-mod) - - - 225 17

# Lowest Gini Diff. 36 28 25 100 53

# Lowest Gini Diff. (uni-mod) - - - 189 53

ZEROMODAL ASIA (42 out of 284 LCs, mean reported Gini 0.5208))

MSE 0.001499 0.000328 0.001395 0.000174 0.000832

(Standard Dev.) (0.000915) (0.000349) (0.000793) (0.000309) (0.000624)

MSE/Lowest MSE 8.6149 3.009 12.7982 1.0000 7.6330

Gini Difference 0.015077 0.013929 0.015378 0.015582 0.020701

(Standard Dev.) (0.012817) (0.012605) (0.013749) (0.015226) (0.016278)

Gini Diff./Lowest Gini Diff. 1.0824 1.0000 1.1040 1.1187 1.4862

# Lowest MSE 4 0 0 37 1

# Lowest MSE (zero-mod) 4 37 0 - 1

# Lowest Gini Diff. 17 6 4 9 6

# Lowest Gini Diff. (zero-mod) 17 6 11 - 8

Table 13: Results from fitting LCs from Asia to five Parametric Forms (settings with Weibull-implied uni- and

zeromodality)

Parametric LC Pareto Rohde Chotikapanich Lognormal Weibull

UNIMODAL THE AMERICAS (213 out of 549 LCs, mean reported Gini 0.4313))

MSE 0.001384 0.000228 0.000748 0.000098 0.000554

(Standard Dev.) (0.000487) (0.000350) (0.000694) (0.000327) (0.000616)

MSE/Lowest MSE 14.1224 2.3265 7.6327 1.0000 5.6531

Gini Difference 0.014899 0.009238 0.007366 0.006553 0.009884

(Standard Dev.) (0.008793) (0.007342) (0.007941) (0.008887) (0.009485)

Gini Diff./Lowest Gini Diff. 2.2736 1.4097 1.1241 1.0000 1.5083

# Lowest MSE 8 0 1 195 9

# Lowest MSE (uni-mod) - - - 203 10

# Lowest Gini Diff. 40 14 26 94 39

# Lowest Gini Diff. (uni-mod) - - - 174 39

ZEROMODAL THE AMERICAS (336 out of 549 LCs, mean reported Gini 0.5501))

MSE 0.001463 0.000245 0.001459 0.000102 0.000768

(Standard Dev.) (0.000513) (0.000193) (0.000616) (0.000189) (0.000441)

MSE/Lowest MSE 14.3431 2.4020 14.3039 1.0000 7.5294

Gini Difference 0.015441 0.010322 0.007105 0.006654 0.011989

(Standard Dev.) (0.007768) (0.007146) (0.008286) (0.008733) (0.009530)

Gini Diff./Lowest Gini Diff. 2.3206 1.5512 1.0678 1.0000 1.8018

# Lowest MSE 5 1 0 328 2

# Lowest MSE (zero-mod) 10 317 0 - 9

# Lowest Gini Diff. 38 39 79 139 41

# Lowest Gini Diff. (zero-mod) 38 39 199 - 60

Table 14: Results from fitting LCs from the Americas to five Parametric Forms (settings with Weibull-implied

uni- and zeromodality)
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