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1 Introduction

Empirical research documents that parents in some developing countries systematically

treat their daughters differently than their sons in a number of areas, including mothers’

time allocation, breastfeeding, child health, and educational decisions (see for example

Barcellos et al. 2011, Jayachandran and Kuziemko 2011, Qian 2008, Rose 1999, Rose

2000). Issues surrounding gender discrimination in the intra-household allocation of

resources have received particular attention in the area of educational investments.1

Research on this topic is extensive in the Indian context, for example, where female

school enrollment and attainment significantly lag behind male educational achieve-

ments (see for example Jayachandran 2002, Kingdon 2007).

Anecdotal evidence and predominantly descriptive work have identified gender dis-

crimination in school enrollment and expenditure decisions as a major contributor to

this disparity: Households allocate limited resources to the education of boys rather

than girls across geographic areas and income levels, and school expenditures on girls

tend to be lower than those for boys, especially in private schools (see for example

Filmer and Pritchett 1999, Jejeebhoy 1993, Ramachandran 2002, Tilak 1996, Tilak

2002). The underlying reasons for this pattern are typically believed to be higher op-

portunity costs and lower returns to education for girls than for boys (Bhatty 1998,

Burra 2001, Caldwell et al. 1985, Chanana 1990, Dreze and Saran 1995).

Research in economics, however, has only had limited success in verifying this

importance in a consistent way: Empirical analyses of gender discrimination in the

intra-household allocation literature often find only weak evidence of gender-differential

treatment within the household. Papers usually analyze whether household education

expenditures respond differently to the addition of a boy to the household than to an

1Intra-household gender discrimination is usually defined broadly as parents systematically treat-
ing boys and girls differently, rather than looking narrowly at particular potential explanations like
differences in returns to education or opportunity costs.

2



additional girl by using an Engel curve or hurdle model approach. Results typically

suggest that weak gender-differential effects only exist among children of older ages:

Subramanian and Deaton (1991), for example, only find weak evidence of gender dis-

crimination in rural Maharashtra for 10-14 year olds, but not for other age groups,

while Lancaster, Maitra and Ray (2008) detect significant gender bias in their sample

of rural Bihar and rural Maharashtra only for the age group of 10-16 year olds. Other

papers like Kingdon (2005), Azam and Kingdon (2011), and Zimmermann (2012) have

shown that aggregation of the data from the individual to the household level, and the

estimation technique used may explain some of this empirical pattern, but still find

that significant gender differences are concentrated among older children.

Endogeneity concerns are another potential explanation for these empirical results,

however. Those concerns are addressed in a growing literature on the impact of exoge-

nous shocks like rainfall or price shocks. This strand of research documents the existence

of gender differences in a number of outcomes already for much younger children. While

not all these papers focus directly on the impact of these shocks on children’s educa-

tion, the usual explanation given for the found patterns is that resources are allocated

differently to sons and daughters. Rose (1999), for example, finds that positive devia-

tions of rainfall from the average significantly increase the survival chances of girls in

India. Maccini and Yang (2009) find that higher rainfall in a person’s birth year in

Indonesia has positive effects on women’s long-run socioeconomic outcomes, whereas

there is no effect for men. Jacoby and Skoufias (1997) use rainfall shocks to analyze

the impact of income shocks on school attendance in six Indian villages and find that

households seem to use school attendance as a form of self-insurance to cope with these

shocks. Bjorkman (2008) looks at the impact of income shocks on school enrollment

and cognitive skills of children in Uganda. She finds that negative rainfall shocks lead

to a significant decrease in school enrollment and test scores for girls, but have a smaller
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impact on boys.

Similar patterns arise for other types of shocks. Qian (2008) finds that in China

sex-specific agricultural income shocks occuring to women raise girls’ survival chances

whereas a positive male-specific income shock worsens them. Baird et al. (2011) doc-

ument that negative GDP deviations from trend have a larger impact on female infant

mortality than on that of males in a large sample of births from 59 developing coun-

tries. Duflo (2003) finds that a grandmother’s pension eligibility in South Africa has

an impact on the anthropometric status of young girls, but not that of boys.

Taken together, the empirical results in the existing literature therefore suggest that

intra-household discrimination may be an important factor in educational decisions,

but that we still lack a deep understanding of the age structure of intra-household

gender discrimination in schooling decisions. Do parents only start treating daughters

differently than sons from age 10 onwards when gender-specific returns to education

and opportunity costs like helping around the house become important? Or do parents

already discriminate against much younger children where the opportunity costs of

school enrollment are presumably low?

This paper contributes to answering these questions in two ways. First, I analyze

gender discrimination in educational decisions empirically by focusing on the impact of

rainfall shocks on school enrollment for 6-14 year old children in India. In rural areas,

deviations of rainfall from long-term averages are usually conceptualized as income

shocks for households, as agricultural output is influenced by the weather. As household

income changes in unexpected ways, parents need to make new resource allocation

decisions about their children’s school enrollment, which allows me to analyze whether

boys and girls are treated differently in this process.2

2My analysis focuses on the reduced-form impact of rainfall shocks, however, since rainfall shocks
may also have additional impacts on schooling that are not directly related to household income:
Heavy rainfalls could also make schools inaccessible or change children’s opportunity costs of school
attendance.
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I find that girls are more vulnerable to rainfall shocks than boys with respect to

school enrollment. The results are driven by 8-10 year olds, whereas there are no

significant differences for older children. Higher than average rainfall leads to an increase

in school enrollment for both boys and girls, but the effect is monotonically decreasing

in age. There is little evidence that this is driven by extreme weather phenomena like

floods or droughts, and the findings are robust to a number of alternative specifications.

Second, I set up a simple latent-variable model of school enrollment that demon-

strates that the vulnerability of a child’s enrollment status to shocks depends both on

how close a child is to the cutoff at which the school enrollment status changes (selec-

tion effect), and on how parents reallocate resources after the shock has occurred (cost

effect). This combined effect has often been ignored in the literature, but crucially

affects the interpretation of empirical results. The framework suggests that researchers

should be careful in comparing and overinterpreting empirical results without being

specific about which form of gender discrimination they are estimating.

Overall, this paper supports the idea that intra-household gender discrimination

is a driving factor in school enrollment differences. One potential explanation of the

empirical results is that the combination of selection and cost effects differs depending

on the age of the children, and that parents practice different forms of gender discrim-

ination at different ages: Whereas younger girls suffer predominantly from the biased

reallocation of resources after shocks have occurred, older girls could be much more

affected by being far away from the enrollment status changing cutoff.

The rest of this article is structured as follows: Section 2 provides some background

on education in India and sets up a simple latent-variable model of school enrolment.

Section 3 discusses rainfall in India, and introduces the data and the empirical strategy.

Section 4 presents the main results as well as a number of robustness checks. Section 5

concludes.
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2 Education in India and a Simple Latent-Variable

Model of School Enrollment

2.1 Education in India

Schooling in India is compulsory for all children between 6 and 14 years and spans their

elementary education years in school, which consist of primary and upper primary

school.3 This requirement is often not binding, however. Most Indian states have

not nearly achieved universal school enrollment. Table 1 demonstrates that school

enrollment in rural areas in India is significantly lower for girls than for boys at all ages

and that the disparity is increasing in age. It also shows, however, that while enrollment

rates for both boys and girls have increased substantially over time, they have improved

faster for girls, leading to a narrowing in the gender gap over time. Similar patterns hold

at the sub-national level, even though levels and gender gaps differ markedly between

states: In the 1991 Indian census, for example, primary school enrollment for Indian

children was 35 percent in Bihar but 85 percent in Kerala (Jayachandran 2002, Kingdon

2007). Significant gender differences also hold up for Hindus and Muslims as well as

for Scheduled Castes (SC) and Scheduled Tribes (ST) (see for example Jayachandran

2002, Kingdon 2007, Nambissan 1996). 4 Ramachandran (2002) estimates that about

70 percent of out-of-school children are girls.

Table 1 also reveals an inverse U-shaped pattern of school enrollment with age.

While many children are enrolled in school when they are six years old, enrollment rises

3Elementary education is roughly equivalent to primary and middle school. In general, primary
schooling includes classes I through V, and upper primary school classes VI through VIII, although
there is state variation in the exact classes which fall under primary and upper primary education
(Tilak 2002).

4Scheduled Castes (SCs) is the official name for untouchables or dalits. Scheduled Tribes (STs),
also often called adivasis, are not part of the usual caste hierarchy and often live in secluded hilly or
forest areas. Both SCs and STs are traditionally disadvantaged groups within Indian society and still
tend to have much poorer outcomes than members of other castes.
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until about age nine, and then starts to decline as children drop out of school.

Lower school enrollment for girls than for boys is driven by two phenomena: Girls

are more likely to never attend school at all, and are also more likely to drop out at

any age than boys, especially when moving to upper primary and secondary levels of

schooling. While the number of children who have never been enrolled in school has

decreased markedly over the years, dropouts still remain high. Many children drop

out as early as grades I and II, especially among low-caste children (Caldwell et al.

1985, Nambissan 1996, Ramachandran 2002, Seetharamu and Devi 2007). This pattern

suggests that both entry and exit are important margins at which school enrollment for

girls and boys differ. 5

Since the second half of the 1980s, the Indian government has shown efforts to

actively increase enrollment rates for children, and girls specifically, through a variety

of programs. The national government’s New National Policy of Education (1986) and

the Programme of Action (1992) were meant to target learning achievements, access

and dropouts of 6-14 year olds. A number of specific interventions were made, like

distributing free textbooks and uniforms, giving scholarships to SC and ST students,

or providing mid-day meal schemes in various Indian states (Government of India 2006).

The meal programs were especially successful in raising enrollment rates, particularly

among girls. 6

Public elementary school education in India is supposed to be free. Some evidence

suggests, however, that this may not always be the case. Looking at data from the sec-

ond half of the 1980s which distinguishes between private and public school enrollment,

5It also suggests that while there is a role for sheepskin effects occurring when children for ex-
ample complete primary school, dropout decisions especially at young ages are not driven by such
considerations.

6Problems with a number of these programs persist, however, with textbooks and uniforms for
example not reaching beneficiaries, or not on time. There is also large inter-state variation in the scale
of the programs: In a number of states, beneficiaries amount to less than 7 percent of students, while
in states like Tamil Nadu or Karnataka about 70 percent of children receive free textbooks (Bhatty
1998, Tilak 2002).
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Tilak (1996) finds that less than half of the students in rural India receive free primary

school education in government schools. Expenditures can include tuition or examina-

tion fees or a variety of other fees. Newer evidence suggests that school expenditures

for a child, including tuition fees as well as expenditures on uniforms or stationary, are

around 340 rupees in rural India per year. This implies that for an agricultural laborer

living in Bihar with three children, the complete earnings from more than 40 days of

work would go towards sending his children to primary school (Dreze 2003, Kingdon

2005). Furthermore, there is some evidence that even relatively poor families prefer

sending their children to private schools since government schools often suffer from low

levels of school quality (Dreze and Kingdon 2001, Kingdon 1996).

Overall, most households that send their children to school therefore incur some

form of education expenditures, and at least some households are likely to be credit

constrained because they find themselves unable to borrow against future income to

enroll their children in school.

2.2 A Simple Latent-Variable Model of School Enrollment

When faced with credit constraints and scarce resources, parents in India may often

be unable to send all their children to school. In deciding whether or not to enroll a

child in school, parents therefore take into account the perceived benefits and costs of

school enrollment for this particular child. The benefits of school enrollment include

broadly defined returns to schooling for the child, for example in the form of increased

expected wages and potential marriage partners with a more desirable socio-economic

background. Parents themselves can also benefit from their child’s education both in

monetary terms, since a well-educated child may be better able to take care of them

when they are old, and in non-monetary terms through increased prestige in their

neighborhood.
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Parents will also calculate the costs of the child’s education, including both the mon-

etary costs of paying for school fees, supplies and transportation, and the opportunity

costs of the child’s time. Older children increasingly help at home in India, in farm

work, with working for pay, or with doing household chores (Burra 2001, Caldwell et

al. 1985, Jejeebhoy 1993). Being enrolled in school therefore reduces the productivity

of children in these alternative activities. The costs of education can also include other

factors like the cost of borrowing money if a family is credit constrained.

The difference between benefits and costs then reflects whether parents find it op-

timal to send their child to school. If the difference is positive, the child will attend

school, whereas it will not be enrolled if the difference is negative. If we convert all ben-

efits and costs into their monetary equivalent, then the difference of benefits and costs

of school enrollment will be a continuous variable that reflects parents’ net willingness

to pay (NWTP) for their child’s education.

We cannot observe parents’ NWTP directly empirically, although the child’s school

enrollment status gives us some information about the sign of this latent variable. Nev-

ertheless, imposing some structure on the determinants of the latent variable proves

to be insightful with respect to the correct interpretation of empirically estimated ef-

fects. I model the net willingness to pay of parents in the following reduced form,

where it depends both on observed characteristics like a child’s age and gender, and on

unobservables like parental preferences or child ability:

NWTPi= β0 + β1femalei + β2 agei + β3agei · femalei + β4 shocki +

β5shocki · femalei + β6shocki · agei + β7shocki · agei · femalei + ǫi

shock refers to an exogenous shock that is experienced by the household, like rainfall

shocks. The model therefore does not impose any assumptions on the channel through

which shocks affect parents’ net willingness to pay for education, but just focuses on
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the reduced form impact. For simplicity, the error term ǫ is assumed to be normally

distributed with mean 0 and variance σ2.

Empirically, I analyze the change in the probability of being enrolled in school for

a change in the magnitude of the rainfall shock. In the model, this effect is given by

∂P (schooli=1)
∂shocki

= ∂P (NWTPi>0)
∂shocki

=

φ[−A
σ
] (β4 + β5femalei + β6agei + β7agei · femalei)

where A equals the expectation of NWTP conditional on the observable character-

istics. The first term is the density of the normal distribution and therefore positive.

This is the density of children at the current school enrollment cutoff, and therefore

indicates how many children would be affected by an increase in the rainfall shock.

These children are right on the margin of being affected by a shock, and therefore have

the highest risk of changing their school enrollment status. Because this is a form

of vulnerability that exists even before a shock actually occurs, I refer to this as the

selection effect or the ex ante vulnerability to a shock. 7

The second term’s sign depends on the sign and magnitude of the coefficients so that

the overall sign of the effect of an increased shock on the probability of school enrollment

is ambiguous without imposing more structure on the model. This is therefore an

empirical question. Intuitively, this second term is the change in parents’ willingness

to pay in response to the increased shock. Since this is a form of vulnerability that sets

in after the shock has actually occurred, I refer to this as the cost effect or the ex post

vulnerability to a shock.

This simple theoretical framework suggests that the empirical effects we analyze are

a combination of ex ante and ex post vulnerabilities, which is often neglected in the

7My use of the term ex ante vulnerability is an extension of the concept of ex ante risk used in
a number of papers like Fitzsimons (2007) and Kazianga (2006), which is usually conceptualized as
living in an area that is more prone to shocks than other regions. While in these papers ex ante
risk is identical for all members of a household, ex ante vulnerability in this paper can differ between
individuals living in the same household, for example between boys and girls.
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literature where many papers implicitly interpret the estimated effect of a shock as a

measure of ex post vulnerability. While I cannot separate the two effects empirically,

this has important consequences for the correct interpretation of empirical patterns.

3 Weather in India, Data, and Empirical Strategy

3.1 Weather in India and the Effect of Rainfall Shocks on Agri-

cultural Output

Weather in India varies widely by region and often also at the sub-regional level. India

has six different climatic regions, ranging from humid tropical areas to desert-like dry

regions. While there are local differences, India in general experiences four seasons:

winter (January to February), summer (March to May), the monsoon season (June

to September) and the post-monsoon season (October to December) (De et al. 2005,

Ribot et al. 1996). About 80 percent of annual rainfall occurs during the monsoon

months (Department of Agriculture and Cooperation 2007, Webster and Hoyos 2004).

As about 60 percent of the agricultural sector depends on rain as the only source

of water, agricultural output should be heavily influenced by precipitation levels and

timing (Directorate of Economics and Statistics India). Unfortunately, the dataset that

will be used for the analysis does not ask households about their crop yield or household

income, so we cannot verify directly whether rainfall shocks do indeed feed through

to changes in household income. 8 Figures 1 and 2 therefore show the relationship

between standardized rainfall shocks (actual rainfall - mean rainfall divided by standard

deviation) and analogously standardized district output of rice and wheat, two major

food grains, with data from the Indian Department of Agriculture and Cooperation for

8Most collected information is related to assset ownership, which is a better proxy for permanent
income rather than transitory income changes induced by rainfall shocks.
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Indian districts for the period 1999-2007. 9

Positive numbers signify more rainfall or more agricultural output than usual,

whereas negative numbers mean less rainfall or output than usual. The figures show

the non-parametrically estimated relationship between rainfall and output shocks with

the corresponding point-wise confidence intervals. The estimation in Figure 1 suggests

that the relationship between rainfall shocks and output of rice is close to concave. 10

While more rainfall is always beneficial for rice output, the impact of rainfall shocks on

output shocks is lower for positive shocks than for negative shocks. This suggests that

in my analysis the impact of negative rainfall shocks should be especially pronounced.

Previous literature has usually ignored the potential issue that the impact of rainfall

shocks on agricultural output may vary by crop. Papers such as Levine and Yang

(2006) focus on the relationship between rainfall and rice to motivate the use of rainfall

shocks as income shocks. Rice is a very special kind of crop, however, as rice fields

are often flooded during the planting process. In dry parts of India without extensive

irrigation systems, for example, rice is usually sown immediately after the onset of the

monsoon. Other crops like wheat, on the other hand, are much more vulnerable to

excessive rainfall, so that non-linearities of the impact of rainfall on wheat output are

an important potential concern (Sreenivasan and Banerjee 1973). Figure 2 presents the

results for the relationship between rainfall and wheat output shocks and demonstrates

that at least in India even relatively large positive rainfall shocks do not seem to have

a negative impact on wheat output. There is a positive relationship between more

rain and agricultural output for negative rainfall shocks, but the non-parametrically

9In India, food grain production accounts for about two thirds of total agricultural production and
cropped area. About 37 percent of food grain area was irrigated in the early 1990s, which the time
of the first household survey that I am using (Directorate of Economics and Statistics India). This
percentage is increasing: In 2007-08, about 47 percent of the food grain area was irrigated. To the
extent that irrigation insulates a household from rainfall shocks, this will reduce the observed impact
of rainfall shocks.

10This pattern differs somewhat from Levine and Yang (2006) who estimate an approximately linear
relationship of rainfall shocks and rice output in Indonesia.
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estimated curve quickly flatens out for positive rainfall shocks. 11

Overall, the figures suggest that rainfall shocks affect household income through

agricultural yield and that therefore one channel through which rainfall affects school

enrollment is through the change in household income. The impact of rainfall shocks

on agricultural output is always positive but may be non-linear, especially for negative

rainfall shocks.

3.2 Data and Variable Construction

The primary datasets used in this paper are the National Fertility and Health Sur-

veys (NFHS) of 1992/93 and 1998/99. The NFHS is a cross-sectional dataset that is

nationally representative of India’s population. It includes current school enrollment

for children and other family background characteristics as well as information about

the district in which households currently live, which will be used to match household

survey information to rainfall shocks. 12 Unfortunately, a district variable is missing

for the most recent NFHS of 2005/06, so this data cannot be exploited in this article.

13

Rainfall data comes from the Center of Climatic Research at the University of

Delaware, which includes monthly precipitation values on 0.5 intervals in longitude and

latitude. This grid is achieved by using data from various weather stations and a num-

11The overall less steep relationship between rainfall and wheat is probably heavily influenced by
the prevalence of irrigation. Wheat tends to be much more heavily grown in highly irrigated areas
than rice, which insulates output from rainfall shocks to some degree.

12India’s state and district boundaries change dramatically over time. Between 1971 and 2001,
for example, the number of districts rose from 356 to 593. New districts are not only created by
partitioning existing districts, but may also arise from more complicated rearrangements (Kumar and
Somanathan 2009). This often makes district comparisons across time difficult. Both rounds of NFHS
surveys that I use base the district boundaries on the boundaries of the Indian Census of 1991, however,
and are thus comparable between surveys.

13More detailed geographical information is excluded in the NFHS of 2005/06 to ensure confiden-
tiality since HIV test results were collected simultaneously. See NFHS Supplemental Documentation
(2010) for more details
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ber of different sources of rainfall data to interpolate rainfall in these intervals. Rainfall

data can therefore be matched to districts by using longitude and latitude coordinates.

Rainfall shocks are constructed by subtracting the long-term average rainfall from rain-

fall in a given period and then dividing this term by the standard deviation of rainfall in

that district. A positive number therefore signifies higher than average rainfall, whereas

a negative number implies less rainfall than usual. The long-term average includes rain-

fall from 1970 to 2008, but does not include the current period. Such a construction of

the rainfall shock has the advantage of being readily interpretable in terms of standard

deviations and ensures that geographic differences in rainfall are taken into account:

200mm of additional rainfall, for example, will be a major positive deviation in very

dry parts of the country like Rajasthan, but may not be a large deviation from the

average in wetter regions like Assam.

In the main specification of this paper, a rainfall shock is defined as the deviation

of rainfall in the 12 months before the interview month and year from typical rainfall

in this 12 month interval. For a household interviewed in August 1998, for example,

rainfall in the previous 12 months includes all rainfall in the appropriate district from

August 1997 to July 1998. The expected rainfall in this period is calculated as average

rainfall in a August to July interval between August 1970 and July 2008, excluding

August 1997 to July 1998. Analogously, the standard deviation of rainfall in such a

period is constructed. The rainfall shock for a household interviewed in August 1998

is therefore the deviation of rainfall in the previous 12 months from expected rainfall

in such a period, divided by the standard deviation. In consequence, a rainfall shock is

district-, month- and year-specific, where the important date is the interview date. 14

The moving time window, which depends on the household’s interview month and

year, ensures that rainfall shocks for all households really only refer to past rainfall

14Lags and leads of these rainfall shocks are also constructed, and the construction of these shocks
will be detailed further in the robustness check section.
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and capture the same time span before the interview date, which would not be the

case with the use of the same calendar months for all households in the sample. In

both NFHS surveys, households were interviewed over the span of almost two whole

years, depending on residence within states and districts. 15 In many Indian states,

households were interviewed over the span of a couple of months. This feature makes

the use of rainfall shocks by calendar year a less sensible choice.

The caveat of this specification is that shocks in the previous 12 months are implicitly

taken to have the same impact on school enrollment regardless of the interview month.

Yet, a household that reports the enrollment of children at the beginning of the school

year may be different from a household where children attend school near the end of the

school year: Resources could for example be relatively abundant when children start

the school year, so that shocks in the previous 12 months have a limited impact on

enrollment, but later on resources become scarcer and shocks may have a larger effect

on education outcomes. I will take account of this problem by including month and

year fixed effects into my empirical specifications, which control for seasonality effects

as well as general time trends. I also include district fixed effects.

Time and district fixed effects take account of time-invariant regional effects like

cultural norms, history or educational priorities, and general time trends. Given that I

only have two rounds of data, I am unable to look at changes over time. Therefore, the

effects that I am identifying here will be those that remain important over the whole

time span. As I only know school enrollment in general, but not the school attended,

I am also unable to pick up school transfers in reaction to rainfall shocks, for example

from government schools to private schools. My analysis thus focuses on the extensive

margin of school enrollment.

15In the 1992/93 survey only the Jammu districts of the state Jammu and Kashmir were interviewed.
Households in the state of Tripura were not interviewed in 1992/93 but were interviewed in 2000 as part
of the 1998/99 survey. There is no evidence, however, that in general the interview date is correlated
with state characteristics.
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3.3 Empirical Strategy and Summary Statistics

My main empirical specification is given by the regression equation

schoolijkl= β0 + β1shockjkl + β2 ageijkl + θk + ηl + γj + ǫijkl

where the subscripts refer to individual i in district j in month k and year l. school

is an indicator variable equal to 1 if a child is currently reported to be enrolled in

school and shock is the standardized rainfall shock variable. age is the child’s age.

In all empirical specifications, I include age dummies for every age between 6 and 14

years, with age 6 being the reference category. θ are month fixed effects, η are year

fixed effects and γ are district fixed effects. Standard errors are clustered at the district

level. The coefficient of interest is β1. I run this specification separately for girls and

boys but also test for gender differences by fully interacting the model with gender.

In alternative specifications, I interact the rainfall shock with age dummies to get at

non-linear effects in age. I also include rainfall shock lags and look at non-linear effects

of rainfall shocks on school enrollment by splitting up the rainfall shock variable into

a number of indicator variables depending on the magnitude and sign of the rainfall

shock. Lags are constructed by moving the time window backwards: The main rainfall

shock variable takes into account rainfall deviations in the 12 months prior to the

interview months. Lag 1 of this variable, for example, therefore constructs analogously

standardized rainfall shocks by focusing on rainfall deviations 13-24 months prior to

the interview date.

My identification strategy therefore uses the variation in rainfall shocks within dis-

tricts across months and years to identify the effect on school enrollment. Summary

statistics of the constructed rainfall shocks are presented in Table 2. If deviations of

rainfall from long-term averages were perfectly random and we had an infinite sample

size, we would expect the mean of the rainfall shock variables to be zero, and the dis-
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tribution of the variables to be symmetric around the mean since the probability of a

positive shock of a given magnitude occurring is the same as the probability of getting

a negative rainfall shock of the same size. In reality, however, the mean rainfall shock

will often be different from zero. Table 2 shows that the mean of the rainfall shock

variables tends to be relatively small. All means, however, are statistically significantly

different from zero. Except for the two constructed leads of the rainfall shock variable,

rainfall shocks are relatively symmetric around zero.

Table 2 also splits up the main rainfall shock variable into magnitude categories to

give an overview of the distribution of the rainfall shock. As we can see, the distribution

is skewed towards negative deviations of rainfall from long-term averages: About 27

percent of rainfall shocks fall into the category of 0.5 to 1.5 standard deviations less

rainfall than normal, whereas only about 18 percent of rainfall shocks in my sample

are 0.5 to 1.5 standard deviations higher rainfall than expected. About 40 percent

of rainfall shocks are relatively small deviations from long-term averages within 0.5

positive or negative standard deviations. Extreme rainfall shocks that are larger than

2.5 standard deviations in absolute value are very rare.

Table 3 reports the break-down of children in my sample by age and gender. It

also shows averages for household size, age of the household head, wealth index, and

whether the household owns their house and any agricultural land. As we can see, the

sample contains slightly more boys than girls, but the breakdown within gender by age

is similar: 12 percent of girls are six years old, for example, whereas six-year old boys

make up 13 percent of boys in my sample. Averages for the household variables are

also similar between boys and girls, suggesting that the living conditions for girls and

boys are close to identical. Both girls and boys live in households where the average age

of the household head is 45 years. 95 percent of households own their house and two

thirds own any agricultural land. The typical household size of a household with a boy
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is 7.6, which is only slightly smaller than the average household size for households with

a girl, which is 7.8, although this difference is statistically significant. Households with

boys and girls also perform very similar for the wealth index. Overall, these summary

statistics suggest that at least in my sample there is little room for sample selection

concerns of households with boys and girls. Any results presented below are therefore

not driven by differences in household characteristics. 16

4 Results

4.1 Main Results

The main results are presented in tables 4, 5, 6 and 7. Table 4 reports results with

just rainfall shocks in the past 12 months as an explanatory variable, controlling for

age and including month, year and district fixed effects, while Table 5 interacts the

shock variable with age to look at non-linear effects of rainfall shocks with respect to

age. Table 6 splits the rainfall shock variable up into indicator variables of different

magnitude categories to analyze whether rainfall shocks of different sizes have non-linear

effects on school enrollment. Table 7 presents the results of these magnitude categories

interacted with age categories.

In Table 4, a rainfall shock of one standard deviation in the previous 12 months

translates into an increase in the probability of being enrolled in school of 2.3 percentage

points for girls and 1.3 percentage points for boys. As mean school enrollment in my

sample is 0.66 for girls and 0.8 for boys, this translates into a 3.5 percent increase

16These patterns also hold up when comparing summary statistics for children within the age groups
of 6-10 and 11-14 years. For 11-14 year olds, the gender difference in the wealth index is just significant
at the 10 percent level, with girls living in slightly wealthier households than boys. That boys and girls
seem to live in very similar circumstances is somewhat surprising given typically practiced differential
stopping rules to childbearing in India, which depend on the sex composition of already born children
(see for example Jensen 2002).
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in school enrollment for girls and a 1.6 percent increase in male school enrollment.

Both coefficients are highly statistically significant and the effect for girls is statistically

significantly greater than the effect for boys at the 5 percent level. Results are similar

for the subsample of children aged 6-10 years, where a shock of one standard deviation

increases school enrollment by about 2.5 percentage points (3.7 percent) for girls and

by 1.2 percentage points (1.5 percent) for boys. For 11-14 year olds, there is no longer

a statistically different effect of rainfall shocks on school enrollment by gender. School

enrollment for girls improves by 1.7 percentage points (2.9 percent) and that of boys

increases by 1.3 percentage points (1.6 percent).

Table 5 looks at the non-linear effects of rainfall shocks with respect to age by

interacting dummy variables for each age with the shock variable. The table shows that

the effect of the rainfall shock is monotonically decreasing in age: 6 year old children

experience the largest increases in school enrollment with close to five percentage points,

and the effect decreases as children become older. The table also presents tests for the

gender equality of the magnitude of the rainfall shock for every age. Significant gender

differences occur for 8-10 year olds, where the rainfall shock has significantly larger

effects on school enrollment for girls than for boys. The interaction effects for 8 and 10

year olds are also significantly different from each other for girls and boys, indicating

that the impact of the rainfall shock declines more sharply for boys than girls at these

ages. The rainfall shock remains highly statistically significant in this specification as

well. This confirms that gender differences in the impact of rainfall shocks are driven

by younger children.

Tables 6 and 7 focus on non-linearities in the magnitude of the rainfall shock by

splitting up the rainfall shock variable into a number of dummy variables, depending on

the magnitude of the shock. The reference category in these regressions are relatively

small shocks of a magnitude between -0.5 and 0.5 standard deviations. As Table 6
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shows, the impact of rainfall shocks on school enrollment is concentrated among negative

shocks between -2.5 and -0.5 standard deviations: A rainfall shock between -2.5 and

-1.5 standard deviations, for example, leads to a 6.2 percentage points decrease in

school enrollment for 6-14 year old girls and to a decrease of 3.6 percentage points

for boys of the same age. Except for 6-10 year old girls, where the category of shocks

between 1.5 and 2.5 standard deviations is significant at the 10 percent level, no positive

rainfall shock category is statistically significantly different from zero. Significant gender

differences between girls and boys are also concentrated on negative shocks and are

again driven by 6-10 year old children, where girls experience a significantly greater

decrease in school enrollment after a negative rainfall shock than boys. There is also

little evidence that large absolute shocks of more than 2.5 standard deviations, which

we might think of as floods or droughts, have particularly important effects on children’s

school enrollment. This may be partly due to the fact that, as Table 2 showed, such

extreme rainfall shocks are very rare in my sample and their impact may therefore

be imprecisely estimated. But these results are also consistent with the agricultural

output graph from Figure 2, which showed that large absolute shocks may have no

detrimental effects for some crops such as wheat so that the income shocks of large

rainfall shocks may actually not be that different from income shocks caused by smaller

rainfall deviations.

One big concern with using rainfall shocks is that rainfall shocks may not just act as

income shocks, but may also change the opportunity costs for children. Children may

for example need to help on the farm when the harvest is good. This would work in the

opposite direction of the effect of alleviating credit constraints since more rainfall and

thus a better harvest would now be associated with lower school enrollment. The same

pattern would occur if roads are closed during heavy rainfall or schools inaccessible.

Therefore, the positive relationship between rainfall shocks and school enrollment that
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we find even in this more detailed analysis here suggests that these factors cannot be

dominant.

Table 7 interacts the magnitude categories of the rainfall shock variable with the

age dummies. For an easier overview over the age and magnitude patterns, Table 7

reports the estimated overall effect for a given magnitude and a given age of a child

rather than the full regression table with main and interaction effects. Black borders

show statistically significant gender differences at at least the 10 percent significance

level. The table confirms the results from the previous tables by showing that most

significant results as well as most significant gender differences are concentrated among

6-10 year olds. Consistent with Table 5, Table 7 demonstrates that rainfall shocks

matter most for 6 and 7 year old children, but in a quite symmetric fashion: Negative

rainfall shocks lead to significant decreases in school enrollment for both boys and girls,

whereas positive rainfall shocks increase school enrollment, especially for girls who

experience significantly bigger increases in school enrollment than boys. Significant

gender differences are also present for 8-10 year olds, where girls are significantly more

affected by rainfall shocks than boys. The effects are also more concentrated on the

impacts of negative shocks than positive ones, suggesting that girls are more likely to

be taken out of school after bad shocks rather than being enrolled after positive rainfall

shocks at these ages. As in previous tables, children over 10 years old are relatively

little affected by rainfall shocks.

Overall, the analysis shows that girls tend to be more affected by rainfall shocks than

boys, with results being driven by the primary school aged children rather than children

that are older. If we interpret rainfall shocks as income shocks for these rural households,

then the results suggest that younger children are more vulnerable to income shocks

than older children and that gender differences of income shocks are driven by children in

the 8-10 year age group. Furthermore, younger children in general are more vulnerable
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to rainfall shocks than older children, especially at ages 6 and 7.

4.2 Robustness Checks

While the results in the previous section already suggest a consistent pattern where

the impact of rainfall shocks is decreasing in age and shocks have larger effects on girls

than boys in the 8-10 year range, a number of checks can be performed to ensure that

they are robust to different empirical specifications.

One potentially important concern is the chosen interval of the shock variable. The

constructed rainfall shock takes into account rainfall in the 12 months prior to the in-

terview month. If there are significant lags in the translation of agricultural output into

household income, however, it may be that what matters more for school enrollment

is not rainfall in the previous 12 months, but rainfall that occurred prior to this. In

order to check whether this is an important concern, Table 8 extends the analysis of

Table 4 by also including two lags in addition to the main rainfall shock variable. Lag

1 is constructed by taking into account deviations of rainfall from long-term averages

between 13 and 24 months prior to the interview months, and lag 3 analoguously fo-

cuses on rainfall in the interval of 25 to 36 months prior to the interview date. If these

lags have important effects on school enrollment of children, we should see significant

estimated coefficients in Table 8 or at least changes in the estimated coefficient of our

main rainfall shock variable. Table 8 shows that neither is the case: The estimated

coefficients for the lag variables are in general small and are never statistically signif-

icant; furthermore, the estimated coefficients for the main rainfall shock variable are

very robust to the inclusion of lags and hardly change from the estimates reported in

Table 4. This justifies just focusing on rainfall in the previous 12 months in this paper.

Another potentially important concern is measurement error. Matching rainfall data

to the closest districts necessarily introduces measurement error since local conditions
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will vary in different parts of a district. In their paper, Maccini and Yang (2009) in-

strument for rainfall shocks from the closest source (in their case weather stations) with

rainfall from the next nearest weather stations since rainfall should be correlated, but

measurement error uncorrelated between rainfall data from different weather stations.

I use a similar technique in Table 9 where I instrument for the closest grid point of

rainfall of a district with the 5 next closest points. As the table shows, measurement

error is not much of a concern in my case, since IV results are basically identical to

the main results presented in Table 4 of this paper. 17 The first stage IV results are

documented in appendix table A1.

A third problem that might be driving the results is selection into my sample, for

example through death or migration correlated with rainfall shocks. If selection is not

an issue, then regressing cohort sizes of girls and boys on the rainfall shocks should not

produce any effects: Whether rainfall in the previous 12 months was particularly high

or low should not affect how many children of a particular age and gender interviewers

were able to locate. The results of this analysis are shown in Table 10 and demonstrate

that selection indeed is not an issue since none of the estimated coefficients is close to

being statistically significant. 18

The hypothesis that the effects of rainfall on school enrollment work through the

household income channel, rather than through any other variables correlated with

rainfall, also lends itself to being tested empirically by focusing on a falsification test.

If rainfall shocks lead to household income shocks through the channel of agricultural

output and then influence school enrollment, we should find that the impact of rainfall

shocks on school enrollment is significantly lower in urban areas, where agricultural

17This is probably more driven by the rainfall data that I use, which has already been smoothed by
using data availlable from various rainfall stations rather than due to measurement error not being an
issue in my case.

18This conclusion is robust to the use of the alternative rainfall specifications that include lags of
the rainfall shock or split the rainfall shock variable up into magnitude indicator variables.
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production is less important for household income. Table 11 presents the results for

urban areas, focusing on households living in large cities. 19 The results show that

the impact of rainfall shocks on school enrollment is different in urban areas: A one

standard deviation of additional rainfall here has no statistically significant effect on

school enrollment for girls and older boys, and is even associated with a large negative

effect of 5.5 percentage points for 6-10 year old boys. 20 Table 11 also reports the p-value

of testing the equality of coefficients in urban areas with the rural coefficients estimated

in Table 4; the urban coefficients are significantly lower than those in rural areas for

boys of all ages and for the overall sample of girls, although not for the subgroups of

6-10 and 11-14 year old girls. Overall, however, Table 11 supports the idea that rainfall

shocks matter more in rural areas and are thus working through household income

shocks.

5 Discussion and Conclusion

The preceding analysis has demonstrated that rainfall shocks have a robust impact on

school enrollment for 6-14 year old children in India. The effect is concentrated among

young children, with the magnitude of the effect decreasing in age. 6 and 7 year old

children experience large increases in school enrollment after positive rainfall shocks,

19The NFHS datatsets distinguish between the countryside, towns, small cities and large cities. Only
the countryside gets coded as a rural area, whereas the rest is coded as urban even though towns may
lie in major agricultural areas and have close economic connections to the surrounding rural areas.
Agricultural production may therefore still play an important role in towns and small cities, but should
have much less of an impact on household income in large cities. Consistent with this idea, in results
not shown the impact of rainfall on school enrollment is higher the more rural an area becomes: The
impact of rainfall shocks on school enrollment for both boys and girls is lowest in large cities and then
increases for small cities and towns.

20The large negative effect of rainfall on school enrollment for young urban boys is somewhat puz-
zling. Maccini and Yang (2009) find a similar effect in their paper and hypothesize that this may
be due to water-borne illnesses, since male health is typically more vulnerable than that of females.
Alternatively, high rainfall in cities could have other effects like the flooding of roads, making school
inaccessible. It is unclear, however, why such factors should not have a similar effect on female school
enrollment.
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and important decreases in the probability of attending school after a negative rainfall

shock. Girls in this age category benefit significantly more from a positive rainfall shock

than boys, although there are no gender differences with respect to negative rainfall

shocks. Rainfall shocks also affect girls significantly more than boys in the 8-10 year

age range, where girls seem to be especially vulnerable to being taken out of school

after adverse rainfall shocks. There are no significant gender differences in the impact

of the rainfall shocks at older ages, and 11-14 year old children in general are affected

relatively little by these shocks.

The latent-variable framework developed earlier cautions against interpreting these

results simply as gender discrimination only existing for 8-10 year old children, since the

estimated empirical impacts are a combination of two underlying effects: the selection

effect or ex ante vulnerability, and the cost effect or ex post vulnerability. This is

especially true because it is likely that the relative importance of the two effects changes

with age. Opportunity costs of school enrollment presumably are much less of a concern

for young children than for older children: A six-year old child is less likely to be

productive at home or in working on the field than a 13-year old, for example. Therefore,

parents may decide to have their 13 year-old child permanently drop out of school, but

may make the school enrollment status of the 6 year-old child dependent on whether

they can afford to send him or her to school or not.

These considerations suggest that it would be plausible to assume that for young

children the selection effect is unimportant relative to the cost effect. For older children,

on the other hand, selection or ex ante vulnerability may play an important role. If

many older children have permanently dropped out of school, the average child’s ex ante

vulnerability will be low because they are far away from the income cutoff needed for

parents to send them back to school. This will be especially true for girls who are much

more likely to not attend school at older ages than boys. Since the empirical results
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are a combination of ex ante and ex post vulnerability, this low ex ante vulnerability

will balance out potentially important ex post vulnerability impacts.

One potential explanation for the empirical results found in this paper is there-

fore that different forms of gender discrimination are being practiced at different ages:

Young girls are mostly discriminated against in the re-allocation of resources after

unanticipated shocks, but for older girls the lower ex ante vulnerability dominates. Put

differently, both young boys and girls attend school if possible, but girls may be the first

to be taken out of school when an unexpected shock hits. If this type of discrimination

is present, we would therefore expect that girls benefit more from a positive rainfall

shock than boys at this age since boys are already attending school, so that additional

resources are used to send the girl to school. By the same token, girls are more likely

to be taken out of school after a bad rainfall shock than their brothers. This is what I

find empirically.

At older ages, on the other hand, parents may be much less likely to see the benefits

from educating their girls further because of higher opportunity costs, leading to few

girls being at the margin of being affected by a shock. This will at least partially

balance out any higher female ex post vulnerability to shocks that is still likely to be

present at these ages. If this form of discrimination exists, we would therefore expect

to find no gender differences or even a higher effect of shocks for boys in the empirical

analysis. This is consistent with the empirical results in this paper.

The summary statistics also reveal that in my sample girls and boys live in similar

households, suggesting that sample selection of households that have girls and house-

holds that have boys is not driving these results. While this does not mean that there

is no other channel that could generate these empirical patterns, such a story needs to

match the distinct age and gender patterns of school enrollment.

There is room for important future research in looking more closely at why parents
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discriminate against girls in education decisions in more detail, since intra-household

gender discrimination may be driven by a broad variety of factors, including gender

differences in returns to education, opportunity costs and taste-based discrimination.

21 Only if parents’ motives are better understood can policies be targeted successfully

at improving school enrollment for older children.

The results in this paper have two important implications for economic research

as well as policymaking. First, transitory shocks like deviations in rainfall can poten-

tially have important long-run impacts on socio-economic outcomes in two respects:

Especially for young children, these household-level shocks influence the acquisition of

human capital directly. A child that experienced positive income shocks early in the

school career may be able to accumulate more human capital than a similar child that

did not benefit from higher than average rainfall. This may lead to long-run differences

between otherwise identical children. Additionally, however, just the possibility of be-

ing affected by future household shocks may impact a child’s educational career, with

more vulnerable children likely to permanently drop out of school earlier than others.

This suggests that reducing a household’s exposure to transitory shocks like rainfall

shocks will benefit even children who do not seem to be affected by these shocks in

empirical analyses.

Second, the considerations on gender discrimination in education in India suggest

that policies may need to target girls and their families age-specifically in order to

close the gender gap in school enrollment. While younger girls are most vulnerable to

unanticipated transitory shocks in this paper, the results suggest that school enrollment

for girls in this age group may improve as household income rises permanently. Parents

do seem to see the benefits of sending young girls to school for at least some time, but

choose to prioritize male school enrollment in the face of scarce financial resources. For

21Data limitations do not allow me to convincingly separate different potential channels empirically
in this paper.
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older children in general, and girls especially, however, school enrollment decisions may

be a complicated combination of credit constraints, expectations about future shocks

and opportunity cost considerations, so that just alleviating credit constraints without

changing children’s and parents’ situation and perceptions in the other two respects

may have only limited beneficial effects on children’s school enrollment.
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Table 1: School Enrollment in Rural Areas by Age and Gender
1992/1993 1998/1999 2005/2006
girls boys girls boys girls boys

age
6 0.47 0.57 0.71 0.76 0.51 0.53
7 0.57 0.71 0.78 0.86 0.72 0.75
8 0.56 0.76 0.78 0.85 0.77 0.82
9 0.61 0.78 0.80 0.89 0.85 0.89
10 0.56 0.76 0.72 0.85 0.79 0.87
11 0.58 0.81 0.74 0.87 0.84 0.91
12 0.50 0.73 0.63 0.79 0.74 0.84
13 0.46 0.74 0.60 0.78 0.70 0.81
14 0.39 0.68 0.52 0.72 0.66 0.74

6 - 10 0.55 0.72 0.76 0.84 0.73 0.77
11 - 14 0.48 0.74 0.62 0.79 0.74 0.82

Notes: Author’s calculation using NFHS 1992/93, 1998/99 and 2005/06. Observa-
tions are weighted.
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Table 2: Summary Statistics of Rainfall Shocks
mean std.dev min max

shock -0.2396 0.9919 -3.0739 2.8243
lag 1 -0.0182 0.7901 -2.3098 2.1448
lag 2 0.0901 0.9483 -3.2978 3.7539
lead 1 -0.2054 0.8823 -2.8513 4.0243
lead 2 0.1059 1.1071 -2.7740 4.1786

distribution of shock variable by magnitude (percent of shocks):

shock<-2.5 2.1
-2.5 < shock < -1.5 7.7
-1.5 <shock < -0.5 27.4
-0.5 < shock < 0.5 40.8
0.5 < shock < 1.5 17.9
1.5 < shock < 2.5 3.7
shock > 2.5 0.5

N 158532
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Table 3: Summary Statistics of Children by Age and Gender
girl boy p-value

age 6 0.12 0.13 0.60
age 7 0.11 0.11 0.15
age 8 0.13 0.13 0.77
age 9 0.10 0.10 0.81
age 10 0.13 0.14 0.38
age 11 0.08 0.08 0.22
age 12 0.13 0.13 0.08
age 13 0.09 0.09 0.00
age 14 0.10 0.10 0.63
household size 7.78 7.57 0.00
age of household head 45.28 45.19 0.16
own house 0.95 0.95 0.68
own agricultural land 0.66 0.66 0.54
wealth index 0.38 0.35 0.12
N 76541 81965

Note: Wealth index was created by principal component analysis of asset and living
condition questions for rural households. Own house and own agricultural land are
available only for children in the 98/99 survey. The p-value column reports the results
from a test of equality of female and male characteristics.
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Table 4: The Impact of Rainfall Shocks on School Enrollment in Rural Areas
(1) (2) (3) (4) (5) (6)
girls boys girls boys girls boys
6 - 14 6 - 14 6 - 10 6 - 10 11 - 14 11 - 14

shock 0.0230*** 0.0131** 0.0252*** 0.0123* 0.0174** 0.0129*
(0.0070) (0.0058) (0.0074) (0.0064) (0.0085) (0.0068)

age dummies Yes Yes Yes Yes Yes Yes
fixed effects Yes Yes Yes Yes Yes Yes
p-value of gender equality test 0.047 0.025 0.549
Observations 76228 81549 45700 48920 30528 32629
R-squared 0.191 0.1063 0.1917 0.1299 0.2076 0.1001
mean of dependent variable 0.6556 0.7949 0.6881 0.7985 0.6070 0.7895
percent increase 3.5 1.6 3.7 1.5 2.9 1.6
Robust standard errors for clustering at district level in parenthesis
*** p<0.01, ** p<0.05, * p<0.1
Fixed effects here include month, year and district fixed effects
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Table 5: Age Non-linearities in the Impact of Rainfall Shocks
(1) (2)
girls boys
6 - 14 6 - 14

shock 0.0492*** 0.0474***
(0.0088) (0.0077)

shock-age interactions
shock*age 7 -0.0064 -0.0093

(0.0072) (0.0067)
shock*age 8 -0.0169*** -0.0317***

(0.0059) (0.0065)
shock*age 9 -0.0190** -0.0309***

(0.0073) (0.0067)
shock*age 10 -0.0244*** -0.0432***

(0.0066) (0.0071)
shock*age 11 -0.0370*** -0.0443***

(0.0080) (0.0074)
shock*age 12 -0.0445*** -0.0476***

(0.0077) (0.0080)
shock*age 13 -0.0473*** -0.0588***

(0.0082) (0.0081)
shock*age 14 -0.0526*** -0.0552***

(0.0088) (0.0076)
age dummies Yes Yes
fixed effects Yes Yes
p-value of F test of joint significance 0 0
p-value of gender equality test
shock 0.831
shock at age 7 0.5453
shock at age 8 0.0244
shock at age 9 0.0726
shock at age 10 0.0024
shock at age 11 0.2825
shock at age 12 0.5238
shock at age 13 0.1303
shock at age 14 0.6009
Observations 76228 81549
R-squared 0.1923 0.1084

Robust standard errors for clustering at district level in parenthesis
*** p<0.01, ** p<0.05, * p<0.1
Fixed effects here include month, year and district fixed effects
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Table 6: The Non-linear Impact of Rainfall Shocks on School Enrollment in Rural Areas
(1) (2) (3) (4) (5) (6)
girls boys girls boys girls boys
6 - 14 6 - 14 6 - 10 6 - 10 11 - 14 11 - 14

shock<-2.5 0.0195 -0.0269 0.0390 -0.0101 -0.0033 -0.0396
(0.0285) (0.0467) (0.0277) (0.0457) (0.0373) (0.0633)

-2.5<shock<-1.5 -0.0623*** -0.0363** -0.0603** -0.0235 -0.0581* -0.0542***
(0.0237) (0.0183) (0.0248) (0.0199) (0.0297) (0.0207)

-1.5<shock<-0.5 -0.0352** -0.0207* -0.0353** -0.0160 -0.0327* -0.0285**
(0.0151) (0.0118) (0.0164) (0.0138) (0.0180) (0.0128)

0.5<shock<1.5 0.0044 -0.0016 0.0109 0.0085 -0.0080 -0.0151
(0.0175) (0.0132) (0.0185) (0.0151) (0.0216) (0.0157)

1.5<shock<2.5 0.0423 0.0083 0.0644* 0.0289 0.0128 -0.0260
(0.0295) (0.0238) (0.0350) (0.0273) (0.0361) (0.0243)

shock>2.5 0.0516 0.0212 0.0974 0.0100 -0.0256 0.0230
(0.0731) (0.0554) (0.0671) (0.0680) (0.0819) (0.0469)

age dummies Yes Yes Yes Yes Yes Yes
fixed effects Yes Yes Yes Yes Yes Yes
p-value of F test of joint significance 0.0104 0.2992 0.003 0.545 0.355 0.0577
p-value of gender equality test
shock<-2.5 0.227 0.2520 0.46
-2.5<shock<-1.5 0.076 0.037 0.866
-1.5<shock<-0.5 0.148 0.098 0.789
0.5<shock<1.5 0.571 0.848 0.681
1.5<shock<2.5 0.106 0.146 0.213
shock>2.5 0.257 0.003 0.315
Observations 76228 81549 45700 48920 30528 32629
R-squared 0.1913 0.1063 0.1922 0.1299 0.2078 0.1005
Robust standard errors for clustering at district level in parenthesis
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Table 7: The Non-linear Impact of Rainfall Shocks and Age
shock<-2.5 -2.5<shock<-1.5 -1.5<shock<-0.5

girl boy girl boy girl boy
age
6 -0.0139 -0.0922* -0.0858*** -0.0950*** -0.0810*** -0.0720***
7 -0.0389 -0.1026** -0.0975*** -0.0878*** -0.0556*** -0.0723***
8 0.0339 -0.0378 -0.101*** -0.0179 -0.0441** -0.0104
9 0.0090 -0.0367 -0.0703** -0.0371 -0.0241 -0.0182
10 -0.0197 -0.0118 -0.0675** -0.0091 -0.0305* -0.0019
11 -0.0006 0.0151 -0.0162 -0.0388* -0.0254 0.0040
12 0.0646 0.0156 -0.0151 -0.0101 0.0021 0.0035
13 0.0650 -0.0007 -0.0290 0.0124 -0.0253 0.0094
14 0.12** 0.0695 -0.0419 -0.0313 -0.0241 -0.0166

0.5<shock<1.5 1.5<shock<2.5 shock>2.5
girl boy girl boy girl boy

age
6 0.0358* 0.0252 0.1088** 0.0651** -0.0182 0.0095
7 0.0010 0.0038 0.1033*** 0.0191 0.2008*** 0.0826***
8 0.0071 0.0183 0.0552 0.0192 0.0708 0.0663
9 0.0098 0.0060 0.0907** 0.0169 0.1021 0.0760
10 0.0140 0.0011 0.0103 0.0114 0.0074 -0.0449
11 -0.0031 -0.0206 0.0457 0.0013 -0.0075 0.0891*
12 0.0022 0.0013 0.0384 -0.0174 0.0072 -0.0281
13 -0.0097 -0.0274 -0.0320 -0.0221 0.1003 0.0234
14 -0.0242 -0.0371** -0.0368 -0.0259 0.0036 -0.0664
Robust standard errors for clustering at district level in parenthesis
*** p<0.01, ** p<0.05, * p<0.1
Fixed effects here include month, year and district fixed effects
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Table 8: The Impact of Lagged Rainfall Shocks on School Enrollment
(1) (2) (3) (4) (5) (6)
girls boys girls boys girls boys
6 - 14 6 - 14 6 - 10 6 - 10 11 - 14 11 - 14

shock 0.0233*** 0.0133** 0.0253*** 0.0120* 0.0178** 0.0136**
(0.0069) (0.0058) (0.0073) (0.0065) (0.0084) (0.0068)

lag 1 0.0109 0.0064 0.0103 0.0043 0.0140 0.0104
(0.0081) (0.0063) (0.0086) (0.0072) (0.0096) (0.0070)

lag 2 -0.0021 -0.0017 -0.0011 0.0019 -0.0034 -0.0057
(0.0072) (0.0061) (0.0080) (0.0074) (0.0084) (0.0061)

age dummies Yes Yes Yes Yes Yes Yes
fixed effects Yes Yes Yes Yes Yes Yes
p-value of F test of joint significance 0.004 0.116 0.0037 0.26 0.0847 0.134
p-value of gender equality test
shock 0.048 0.022 0.582
lag 1 0.423 0.334 0.657
lag 2 0.927 0.556 0.722
Observations 76228 81549 45700 48920 30528 32629
R-squared 0.1911 0.1063 0.1918 0.13 0.2078 0.1003
Robust standard errors for clustering at district level in parenthesis
*** p<0.01, ** p<0.05, * p<0.1
Fixed effects here include month, year and district fixed effects
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Table 9: IV Results of the Impact of Rainfall Shocks on School Enrollment
(1) (2) (3) (4) (5) (6)
girls boys girls boys girls boys
6 - 14 6 - 14 6 - 10 6 - 10 11 - 14 11 - 14

shock 0.0239*** 0.0124** 0.0252*** 0.0118* 0.0190** 0.0120*
(0.0075) (0.0062) (0.0080) (0.0071) (0.0086) (0.1004)

age dummies Yes Yes Yes Yes Yes Yes
fixed effects Yes Yes Yes Yes Yes Yes
Observations 76043 81365 45583 48803 30460 32562
R-squared 0.1915 0.1066 0.1922 0.1303 0.2081 0.1004
Robust standard errors for clustering at district level in parenthesis
*** p<0.01, ** p<0.05, * p<0.1
Fixed effects here include month, year and district fixed effects
shock was instrumented using rainfall shocks in the 5 closest districts as instruments
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Table 10: Test for Selection into the Sample
(1) (2)
girls boys
6 - 14 6 - 14

shock 0.1025 0.1432
(0.3393) (0.3455)

age dummies Yes Yes
fixed effects Yes Yes
Observations 8835 8961
R-squared 0.036 0.0368

Robust standard errors for clustering at district level in parenthesis
*** p<0.01, ** p<0.05, * p<0.1
Fixed effects here include month, year and district fixed effects
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Table 11: The Impact of Rainfall Shocks on School Enrollment in Urban Areas

(1) (2) (3) (4) (5) (6)
girls boys girls boys girls boys
6 - 14 6 - 14 6 - 10 6 - 10 11 - 14 11 - 14

shock -0.0046 -0.0545** 0.0190 -0.0479* -0.0340 -0.0637
(0.0144) (0.0266) (0.0231) (0.0253) (0.0364) (0.0397)

age dummies Yes Yes Yes Yes Yes Yes
fixed effects Yes Yes Yes Yes Yes Yes
p-value of gender equality test 0.072 0.002 0.659
p-value of equality with rural 0.093 0.013 0.795 0.02 0.172 0.057
Observations 9095 9841 5106 5574 3989 4267
R-squared 0.0595 0.0528 0.0561 0.0622 0.0735 0.0545
Robust standard errors for clustering at district level in parenthesis
*** p<0.01, ** p<0.05, * p<0.1
Fixed effects here include month, year and district fixed effects
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Figure 1: The Relationship between Rainfall and Rice Output in Indian Districts 1999-
2007
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Note: district-level output data comes from the Indian Department of Agriculture and
Cooperation; rainfall and output shocks have been standardized, see the text for

details; graph shows the non-parametrically estimated relationship between rainfall
and output shocks and the corresponding point-wise confidence interval
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Figure 2: The Relationship between Rainfall and Wheat Output in Indian Districts
1999-2007
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Note: district-level output data comes from the Indian Department of Agriculture and
Cooperation; rainfall and output shocks have been standardized, see the text for

details; graph shows the non-parametrically estimated relationship between rainfall
and output shocks and the corresponding point-wise confidence interval
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Appendix Table A1: First Stage IV Results
(1) (2)
girls boys
6-14 6-14

IV1 0.5611*** 0.5689***
(0.0700) (0.0701)

IV2 0.2323*** 0.2345***
(0.0681) (0.0664)

IV3 0.0586 0.0506
(0.0537) (0.0535)

IV4 0.0885 0.0916
(0.0579) (0.0567)

IV5 0.0332 0.0308
(0.0351) (0.0360)

age dummies Yes Yes
fixed effects Yes Yes

Observations 76043 81365
F statistic 393.4 386.3
R-squared 0.9767 0.9763

Robust standard errors for clustering at district level in parenthesis
*** p<0.01, ** p<0.05, * p<0.1
Fixed effects here include month, year and district fixed effects
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