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Abstract 
 

Within a freight transport context, the origin-destination distance and the 

weight of the shipment play an important role in the decision of the most preferred 

transport service and in the way logistics managers evaluate the transport service’s 

attributes. In particular, the attributes commonly used in order to describe a freight 

transport service in a stated choice framework are cost, time, punctuality and risk 

of damages, respectively. This paper investigates the role of origin-destination 

distance and weight of freight transport services introducing a conditioning effect, 

where the standard utility function is conditioned on the freight transport distance. 

We refer to this model form as a heteroskedastic panel multinomial logit (panel H-

MNL) model. This model form outperforms the underlying unconditioned model 

and suggests that an appropriate conditioning effect leads to an improved 

understanding of the derived measures, such as measures for marginal rates of 

substitution. 
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1 Introduction  

 
Within a freight transport context, the origin-destination distance and the weight of the 

shipment play an important role in the decision of the most preferred transport service 

and in the way logistics managers evaluate the transport service’s attributes (Regan 

and Garrido, 2002; Chow et al., 2010). In particular, the attributes commonly used in 

order to describe a freight transport service in a stated choice framework are cost, 

time, punctuality and risk of damages, respectively (see for example, Bolis and Maggi, 

2002; Danielis et al., 2005; Fowkes, 2007). 

The reliability of the stated choice experiment is typically increased by pivoting 

the attribute values of the hypothetical alternatives around revealed values stated by 

the logistics managers for a typical transport service. A set of secondary information is 

then collected about additional details of the typical transport service, such as origin-

destination distance and weight of the shipment, and their significant contribution in 

explaining the logistics managers’ preferences is well documented within random 

utility function specifications. In particular, Masiero and Maggi (2012) suggest the 

significance of these two transport specific variables in capturing the preferences of 

logistics managers towards different modes of transport. However, the theoretical 

nature of discrete choice models, where only differences matters, allows the 

introduction of all choice-invariant characteristics in a maximum of J-1 alternatives 

(where J is the total number of alternatives), unless interacted with specific attributes 

(see, Train 2003). The investigation of transport specific variables is therefore limited, 

especially in the case of stated choice experiment where the choice is restricted 

between a set of unlabeled hypothetical alternatives.  

A recent econometric specification of non-linear mixed logit models have been 

derived by Andersen et al. (2009) in order to capture the risk preferences of the 

respondents in a binary choice over lotteries. In particular, they propose a specification 

that defines non-linear functions over the set of the coefficients associated with the 

attributes of the experiment. Within a stated choice experiment, Hensher and Rose 

(2010, in press) introduce a non-linear utility specification defining the conditioning 

effect as a function of the respondent perceived acceptability of the alternative chosen 

and let it be further conditioned on the threshold attributes whereas Hensher et al. 

(2011) propose a non-linear logit model specification for perceptual conditioning and 

risk attitude in a travel time variability context. As stated by Hensher and Rose (2010, 

in press), the conditioning effect is a form of heteroskedasticity, which specifically 

affects the systematic part of the utility function variables (attributes and alternative 

specific constants). In this context, different discrete choice model specifications have 

been proposed in the literature in order to account for different forms of 

heteroskedasticity. In particular, Munizaga et al. (2000) investigate two forms of 

heteroskedasticity, namely, between options and between observations, whereas 

Greene and Hensher (2007) introduce heteroskedasticity in the parameters within a 

mixed logit model framework. Heteroskedasticity has also been introduced in logit 

models in order to account for design dimensions (Caussade et al., 2005) and design 

complexity (Danthurebandara et al., 2010) in stated choice experiments. Anderson et 

al. (2009) make that point that the conditioning effect introduced in each utility 

function specified in the maximisation problem could also help to overcome the limit 

associated with the identification of choice-invariant characteristics. Indeed, 

depending on the function used, the conditioning effect creates the interactions 

between alternative characteristics and individual (or choice-invariant) characteristics.  
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The aim of this paper is to investigate the role of origin-destination distance and 

weight of freight transport services using a non-linear utility specification where the 

standard utility function is conditioned on the freight transport distance. The analysis 

relies on a stated choice experiment conducted among Swiss logistics managers for the 

valuation of both inbound and outbound freight transports. The particular model 

proposed is a heteroskedastic panel multinomial logit (panel H-MNL) model where 

the heteroskedastic influence that conditions each ‘traditional’ utility expression is 

captured through a dummy variable distinguishing between short/medium-distance 

and long-distance freight transport services. The conditioning effect is further 

expressed in terms of a continuous variable expressing the weight of the shipment. 

Furthermore, the investigation continues allowing the conditioning effect to be also 

explained by the four attributes that characterize the stated choice experiment. In this 

context, the paper proposes the analysis of the impact of both ‘respondent’ specific 

and alternative specific variables on the conditioning effect derived in the first stage of 

the research. Finally, as a further investigation of the models proposed, the paper 

reports the derived willingness to pay for these models. 

The paper is organized as follows. In section two we describe the data used in 

terms of stated choice experiment and descriptive. The theoretical background is 

outlined in section three and model results in section four. Finally, conclusions and 

future directions are presented in section five. 

 

2 Data  
 

The data refers to a freight transport stated choice experiment conducted among Swiss 

logistics managers in 2003 to investigate the preferences for the most relevant 

characteristics in freight transport service
1
. In particular, due to the consistent 

monetary and time costs of field CAPI research, the population target has been 

restricted to medium (50 to 249 employees) and large (more than 249 employees) 

companies of the food and wholesale sector (with a consistent variety of products 

considered), since it represents one of the most relevant market segments. 

Four attributes were considered for the stated choice experiment, transport cost 

(in CHF
2
), transport time (in hours), transport punctuality (as the percentage of 

transport services arriving on time on a yearly base) and damages (as the yearly 

percentage of transport services that result with damages), respectively. Table 1 

provides a description of the attributes and attributes levels used as well as the setting 

of the experiment
3
.  

The experimental design followed a partial reference pivoted approach, where 

cost and time attributes for the hypothetical unlabeled alternatives were generated 

according to deviations from a typical transport previously described by each logistics 

manager interviewed. While logistics managers also reported punctuality and damages 

values for the typical transport described, these two attributes have been treated in 

absolute values in order to avoid inappropriate attribute levels (i.e., above 100 percent 

for punctuality and below zero percent for damages). 

 

 

                                           
1
 For more details on the study, see Maggi and Rudel (2008).. 

2
 Approximate exchange rate 1 CHF = 1.08 USD. 

3
 The values of the attributes levels differ from those reported in the Table in Maggi and Rudel 

(2008) which by mistake are not correctly reported there. 
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Table 1 Description of the stated choice experiments 

 
Attributes and Levels  

Transport Cost (CHF) -40 %, -20 %, Reference, +20 %, +40 % 

Transport time (hours) -40 %, -20 %, Reference, +20 %, +40 % 

Transport Punctuality (%) 96 %, 98 %, 100 % 

Damages (%) 6 %, 4 %, 2 % 

Design  

Experiment Unlabeled 

Alternatives Alternative A and Alternative B 

Reference in Design Not included 

Number of Choice tasks 20 

 

The choice experiment considers two hypothetical and unlabeled alternatives
4
, namely 

alternative A and alternative B. The reference alternative (i.e. the typical transport 

described by the logistics managers) is not included in the choice set forcing the 

respondents to choose either alternative A or alternative B in each choice task. 

Along with the description of the typical freight transport service in terms of 

characteristics used in the stated choice experiment, logistics managers were also 

asked to give additional information such as the origin-destination distance of the 

transport and weight of the shipment. Table 2 reports the descriptive statistics for the 

typical freight transport service described by logistics managers. In particular, a 

typical freight transport service costs on average 673 CHF and the delivery door-to-

door takes on average 11 hours. However, it should be noted the high standard 

deviation for both cost and time distributions, which is consistently narrower for 

punctuality and damages attributes, indicating a consistent homogeneity no matters 

what the price and the time of the transport service. As for additional details of the 

typical transport, the mean origin-destination distance is over 250 kilometres, however 

half of the distribution is concentrated within 153 kilometres, indicating a high 

variation for long-distance transport which in this study we assumed, according to the 

geographical context, all transports longer than 250 kilometres. The average shipment 

weight is 9.1 tons with a pronounced standard deviation. 

 

Table 2 Descriptive statistics for typical transport service 

 

Variable Mean Median SD Min Max 
Cost (CHF) 673.4 550.6 574.0 6.9 3000.0 
Time (hr) 11.2 4.8 22.9 0.4 201.6 
Punctuality (%) 94.3 95.0 3.3 90.0 98.0 
Damages (%) 4.0 4.0 1.6 2.0 6.0 
O-D distance (km) 287.8 153.0 302.7 18.0 1307.0 
Weight (ton) 9.1 6.5 8.4 0.004 26.0 

 

 

                                           
4
 Note that being the hypothetical alternatives unlabeled, the mode of transport is not specified. 

Therefore, the combination of attributes levels proposed to the logistics managers do not 

necessarily refer to the road mode of transport.  
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The collection of the data for the choice experiment involved face-to-face interviews 

based on Computer Assisted Personal Interview (CAPI), where logistics managers 

were asked to indicate their preferred alternative in each of the 20 binary choice tasks. 

A list of companies from the main economic association were contacted by telephone 

and asked to participate in the survey. In total, 35 logistics managers were interviewed 

and, since a subset of respondents agreed to perform the experiment for both inbound 

and outbound freight transport services, 66 experiments were conducted. In particular, 

both inbound and outbound transport services were outsourced by 33 of the 35 

companies included in the sample. From the data gathered, six experiments have been 

removed due to very extreme values. Therefore, the final dataset considered in the 

following analysis is comprised of 60 valid experiments consisting in 1200 choice 

observations.   

 

3 Theoretical Background  
 

In a multinomial logit (MNL) context, the utility function, associated with respondent 

n for alternative j in choice task s, is typically assumed to be linear in parameters and 

defined as follows: 

 

njs njs njs k njsk njsk
U V x     

    
(1)

 
 

where Vnjs is the systematic part of the utility (i.e., the observed part) defined as a 

combination of K parameters associated with K observed attributes and variables (X), 

and εnjs is the random part (i.e., the unobserved part) that is commonly assumed to be 

Independent and Identically Distributed (IID) extreme value type 1. 

In line with Andersen et al. (2009), a non-linear utility specification is obtained 

by defining (non-)linear functions over the set of the coefficients associated with the 

attributes of the experiment. Formally, the utility function takes the following form: 

 

 njs njs njs k njsk njsk
U V H x      

   
(2)

 
 

where H is a (non-)linear function or a conditioning effect that multiplies the 

systematic part of the utility function expressed in equation (1). In particular, Hensher 

and Rose (2010, in press), proposed a conditioning effect that is further expressed in 

terms of other variables, as follows: 

 

 ( | )1 CE CE z p pp
H CE z   

    
(3)

 
 

where βCE is the coefficient associated with the conditioning effect (CE) and β(CE|z)p are 

the coefficients associated with the P explicative variables (Z) that are assumed to 

explain the heterogeneity around the conditioning effect.  

In this line, the first heteroskedastic panel multinomial logit (panel H-MNL) 

model proposed in the following analysis introduces the conditioning effect capturing 

the heteroskedastic influence through a dummy variable built on a characteristic of the 

reference transport service described by logistics managers, namely the origin-

destination distance. In particular we assume that the logistics managers’ perception of 

the attributes and attributes levels differs according to the origin-destination distance 

of the freight transport that each logistics manager is dealing with. In order to 
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accommodate this assumption, we have created a dummy variable for long-distance 

freight transport and treated it as the conditioning effect. The conditioning effect is 

further expressed in terms of another transport specific variable which indicates the 

weight of the shipment. Formally, the utility function is defined as follows: 

 

|(1 ) ( )njs kmd kmd weight j cost j time j punct j damage jV Kmd Weight ASC Cost Time Punct Damage              (4) 

 

where βkmd is the coefficient associated with a dummy variable (Kmd) that takes value 

one for freight transport origin-destination distance above 250 kilometres and zero 

otherwise
5
. This implies that, for long-distance transport, each attribute (in each 

alternative) is conditioned by the distance of the transport (along with the weight of 

the transport). In particular, Equation (4) introduces two forms of heteroskedasticity, 

between short/medium-distance and long-distance transports, as a function of the 

dummy variable (kmd), and within the long-distance transport, as a function of the 

variable associated with the weight of the shipment
6
. Hence, if the conditioning effect 

is positive, the standard deviation of the error term for long-distance transport 

becomes lower than that of the error term for short/medium transport. However, for 

long-distance transport it is reasonable to expect a larger error term and therefore, the 

underlying hypothesis is that the conditioning effect would be negative. The part of 

the function in the second bracket reflects the part of the utility commonly expressed 

within a linear specification and it is used, in the next section, as a base MNL model to 

compare against the H-MNL models proposed. In particular, it accounts for the 

alternative specific constant as well as for the four coefficients associated with the four 

attributes considered in the stated choice experiment, cost, time, punctuality and 

damages, respectively.  

Starting from the specification in equation (4), the following analysis proposes 

the estimation of a second model (M2) where the conditioning effect is not only 

explained by the weight of the shipment but also by the four attributes characterizing 

the stated choice experiment. Formally, 

 

| | | | |(1 )

( )

njs kmd kmd weight kmd cost kmd time kmd punct kmd damage

j cost time punct damage

V Kmd Weight Cost Time Punct Damage

ASC Cost Time Punct Damage

     

   

      

    
 (5) 

 

where βkmd|cost, βkmd|time, βkmd|punct and βkmd|damage are the coefficients explaining the 

heterogeneity of the Kmd dummy variable in terms of cost, time, punctuality and 

damages, respectively. All the other coefficients are the same as in equation (4). As for 

the heteroskedasticity, in Equation (5) we introduce an additional source (in this case 

alternative specific) within the long-distance freight transports as a function of the four 

attributes considered in the stated choice experiment. 

The estimation of models expressed in equations (4) and (5) follows the standard 

random utility maximization paradigm, where the probability that respondent n 

chooses the alternative j in choice task s is given by: 

 

                                           
5
 Note that in this context the choice-invariant characteristics (as origin-destination distance 

and weight of the shipment) are introduced in all J alternatives. 
6
 Note that the two form of heteroskedasticity are individual specific (i.e., transport specific). 
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 

 

exp

exp

k njskk
n

s

k njskj k

H x
P

H x





 
 
 
 




 
   

(6)

 
 

where H is the conditioning effect defined above and s = 1, …, S indicates the panel 

structure of the data represented by the choice tasks. The imposed correlation structure 

makes the numerical integration not computationally feasible (see for example, 

Hensher, 2001) and, therefore, the choice probabilities are simulated.  The estimation 

of the coefficients relies on the following simulated log-likelihood function: 

 

 

 

exp1
ln

exp

k njskk
n

r s

k njskj k

H x
LL

R H x





 
 
 
 


 

 
  

(7)

 
 

where r = 1,…,R indicates the standard random normal draws used for the simulation. 

In particular, the following analysis refers to 1000 replications drawn from the Halton 

sequence
7
.  

 

4 Model results 
 

Two heteroskedastic panel multinomial logit models (panel H-MNL) have been 

estimated by introducing a conditioning effect reflecting long-distance transport (i.e., 

transport origin-destination distance above 250 kilometres). In particular, the first 

model (M1) explains the conditioning effect through a continuous variable expressing 

the weight of the shipment. The second model (M2) further investigates the 

relationship between the conditioning effect and the four attributes considered in the 

analysis. Additionally, a base panel MNL has been also estimated in order to evaluate 

the improvement provided by the conditional effect introduced in the two panel H-

MNL models proposed in the analysis. 

The results of the three estimated models are presented in Table 3. The statistics 

for the model fits are illustrated in the bottom part of the table. In particular, for the 

three models we report the log-likelihood assuming that the all parameters, excluding 

the constant, are equal to zero as well as the log-likelihood at convergence. These two 

statistics are used in order to calculate the third measure reported in the table that is 

the McFadden pseudo rho-squared
8
. The Akaike’s Information Criterion (AIC) is also 

provided as additional measure (the lower the statistic, the better the model fits the 

data). Finally, for models M1 and M2 we report the result of the log-likelihood ratio 

test which corrects for differences in the number of parameters estimated from each 

models, comparing the base model against model M1 and model M1 against model 

M2, respectively.  

Looking at the parameter estimates associated with the four attributes considered, 

we find that all are strongly significant and of the expected sign. In particular, 

coefficients associated with cost, time and damages have a negative sign reflecting a 

decrease of the marginal utility as the values for cost, time and damages increases. On 

the contrary, the more punctual is the freight transport service, the more utility the 

                                           
7
 For details on Halton draws, see Train (2003). 

8
 Calculated as (1-L(β)/L(asc)), where L(β) is the final log-likelihood. 
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logistics managers experience. As expected, the alternative specific constant, 

introduced for alternative A, is not statistically different from zero indicating that none 

of the two unlabeled alternatives have been preferred a priori (i.e., absence of 

lexicographic bias).  

Turning to the conditioning effect for model M1, we note that the dummy 

variable expressing long-distance transport is highly significant (p<0.01) and has a 

negative sign, confirming our underlying hypothesis of larger standard deviation of the 

error term (or, equivalently, a reduction of the response-scale) associated with the 

overall utility function for long-distance freight transport. In particular, this indicates 

that for long-distance transport the overall utility, calculated at the mean values, 

decreases if compared to the overall utility for short/medium-distance transport. 

Interestingly, we note that the weight of the transported goods is significantly related 

to the conditioning effect. In particular, it shows a positive sign indicating that the 

reduction in the overall mean utility experienced for long-distance transport is 

moderated by the weight of the transported goods. In order to better understand this 

concept, we illustrate in Figure 1 the overall mean utility function (model M1) 

calculated for the average values of the attributes (see Table 2). In particular, the 

 

Table 3 Estimation results for panel MNL and panel H-MNL models  

 

 Panel MNL 
(base model) 

Panel H-MNL 
(M1) 

Panel H-MNL 
(M2) 

Coeff. (t-Ratio) Coeff. (t-Ratio) Coeff. (t-Ratio) 

Linear utility coefficients 
Constant Alternative A 0.08016 (1.04) 0.09895 (1.07) 0.09008 (0.97) 
Cost -0.00664 (-12.39) -0.00700 (-15.83) -0.00750 (-16.68) 
Time -0.03828 (-2.73) -0.04577 (-4.07) -0.02954 (-1.94) 
Punctuality 0.13731 (9.66) 0.14464 (12.73) 0.14334 (12.68) 
Damages  -0.40890 (-13.56) -0.42002 (-18.86) -0.41053 (-18.33) 

Conditioning effect 

O-D distance  - - -0.37701 (-3.17) -6.99325 (-2.702) 
Heterogeneity on conditioning effect 

O-D long-distance|Weight  - - 0.02395 (3.16) 0.03220 (2.48) 

O-D long-distance|Cost - - - - -0.00048 (-2.86) 

O-D long-distance|Time - - - - 0.01636 (1.59) 

O-D long-distance|Punct - - - - 0.06281 (2.29) 

O-D long-distance|Damages - - - - 0.22564 (2.00) 
Model fits 

Observations 1200 1200 1200 
Log-likelihood (ASC) -831.40 -831.40 -831.40 
Log-likelihood at 

convergence -560.20 -557.02 -548.38 

Log-Likelihood ratio test  6.36 (p<0.05) 17.28 (p<0.05) 
McFadden pseudo ρ

2 0.326 0.330 0.340 
AIC 1132.40 1128.05 1118.76 
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continuous line represents the utility for short/medium-distance transport (i.e., no 

conditioning effect applies) whereas the three dashed lines indicate the utility for long-

distance transport with a weight of the shipment of 5 tons (green line), 9 tons
9
 (blue 

line) and 15 tons (red line), respectively.  

The improvement of the panel H-MNL specification in model M1 with respect to 

the reference base panel MNL is suggested by the increase of the McFadden pseudo 

rho-squared and the reduction of the AIC statistic. The higher performance of model 

M1 is further supported by the Log-likelihood ratio test that reports a Chi-squared 

statistic of 6.36 with a significance level of 0.05.  

Turning to the conditioning effect for the second panel H-MNL model estimated 

(model M2), we find that is still negative and statistically significant, albeit its 

magnitude is consistently bigger than for model M1. Notably, all the variables 

introduced in order to explain the conditioning effect for long-distance transport are 

statistically significant except for the interaction with the time attribute which is 

significant only at an alpha level of 0.11. In particular, the interpretation of the 

coefficient associated with the weight of the transported goods is similar to what 

discussed for model M1; that is the magnitude of the reduction in the overall mean 

utility for long-distance transport (compared to short/medium-distance transport) 

decreases as the weight increases, namely by 0.0322 per ton of the weight of the long-

distance transport considered. The interaction between the conditioning effect and the 

cost attribute has a positive sign, indicating that the lower overall mean utility 

experienced for long-distance transport further decreases as the cost of the freight 

transport service increases. The interactions with the other three attributes, namely 

time, punctuality and damages, are positive in sign, suggesting that increases in any of 

these attributes tend to temperate the reduction in the overall mean utility as a 

consequence of the conditioning effect.  

 

 

Figure 1 Utility function (model M1) with conditioning effect for different levels of 

weight 

 

                                           
9
 Note that 9.1 tons represents the average value for the weight of the shipment (see Table 1). 
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In terms of model fits, we note that model M2 outperforms model M1, with an 

improvement in the final log-likelihood of 8.64 points giving a statistically significant 

log-likelihood ratio test. The AIC statistic and the McFadden pseudo rho-squared 

further support model M2 against model M1.  

The models proposed in the analysis are further investigated in terms of marginal 

rate of substitution estimates with respect to the price attribute, commonly known as 

willingness to pay (WTP). The estimate for WTP is easily obtained by dividing the 

coefficient associated with a quality attribute (i.e., time, punctuality or damages) by 

the coefficient associated with the cost attribute. However, for model M2 we need to 

account for the interaction between the conditioning effect and the attributes that 

applies for long-distance transport. In particular, the derivation of the mean WTP for 

long-distance transport is as follows: 

 

|

|

2
( )

2

kk k k

nj

X X kmd X
k

k
nj

cost cost kmd cost

V

xX
WTP long distance

V Cost

Cost

  

  




  

 

  

(8)

 
 

Table 4 shows the mean WTP estimates derived for the three models along with the t-

statistics which has been calculated using the Delta method.  

We note that the willingness to pay estimates derived from the base model and 

model M1 are similar for all the three attributes considered. In particular, the 

willingness to pay for time, i.e., value of travel time savings (VTTS), is 5.77 and 6.54 

CHF/hour for the base model and model M1, respectively. Furthermore, the mean 

monetary evaluation for a one percent increase in punctuality is about 21 CHF 

whereas a one percent decrease in the annual probability of experiencing damages is 

evaluated on average about 60 CHF (61.6 CHF) according to the base model (model 

M1).   

 

Table 4 Mean Willingness to pay estimates 

 

 

Panel MNL 

(base model) 

Panel H-MNL 

(M1) 

Panel H-MNL 

(M2) 

 

estimate (t-ratio) estimate (t-ratio) estimate (t-ratio) 

WTP time 5.77 (2.76) 6.54 (4.06) - - 

WTP punctuality 20.68 (8.75) 20.66 (16.10) - - 

WTP damages 61.58 (11.21) 60.00 (19.28) - - 

short/medium-distance 

WTP time - - - - 3.94 (1.93) 

WTP punctuality - - - - 19.11 (16.27) 

WTP damages - - - - 54.74 (19.24) 

long-distance 

WTP time - - - - 15.08 (2.41) 

WTP punctuality - - - - 91.87 (6.90) 

WTP damages - - - - 158.41 (4.72) 
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Regarding the WTP estimates obtained from model M2, different values for 

short/medium-distance and long-distance transports (see Equation (8)) are reported. 

As for the short/medium-distance transport, we note that the WTP for punctuality is 

similar to the estimates obtained for both base and M1 models, whereas the VTTS and 

the WTP for damages result in lower values compared with the first two models (base 

and M1 models), with VTTS reporting a consistent reduction.  

Interestingly, we note that the mean willingness to pay for the three attributes 

considered increases significantly for long-distance transport compared to the values 

estimated for short/medium-distance transport within the same model (model M2). In 

particular, the VTTS increases to 15.1 CHF/hour whereas the monetary evaluations for 

a one percent increase in punctuality and a one percent decrease of damages increase 

to 91.9 CHF and 158.4 CHF, respectively. We also note that the combined values (i.e., 

not conditioned on the transport distance) obtained from both base and M1 models lay 

in between the WTP values estimated within model M2 for short/medium and long 

distances. In this context, it is important to note that we have estimated a base model 

with two different coefficients for each attribute, according to the two distance bands 

(i.e., coefficients associated with short/medium-distance and long-distance transports, 

respectively). The results (available on request) indicate no statistically significant 

differences between the coefficients associated with short/medium-distance and long-

distance transports, for cost, time and damages attributes
10

, respectively. 

 

5 Conclusions 
 

This paper has investigated the origin-destination distance for freight transport service 

as a conditioning effect in the utility specification within an unlabeled stated choice 

experiment conducted with logistics managers in Switzerland. In particular, a choice-

invariant dummy variable for long-distance transport has been introduced in each 

alternative proposed in the choice experiment and conditioned to a linear combination 

of attributes and alternative specific constant. The paper has proposed two 

heteroskedastic panel MNL models (other than a basic panel MNL model for 

comparison purpose) where the conditioning effect is firstly explained by the weight 

of the transported goods and further explained by the four attributes characterizing the 

stated choice experiment.  

The results suggest a negative sign for the conditioning effect indicating that for 

long-distance transport (in comparison to short/medium-distance transport) the overall 

utility, calculated at the mean values
11

, decreases. Results also show that the weight of 

the transported goods is significantly and negatively related to the conditioning effect 

suggesting that the reduction in the overall mean utility experienced for long-distance 

transport is moderated by the weight of the transported goods. Results from the second 

H-MNL model estimated (model M2) further indicate a negative (positive) interaction 

effect between long-distance transport and cost attribute (time, punctuality and 

damages attributes). Both the two H-MNL models proposed outperform the basic 

MNL, with model M2, that introduces the conditioning effect as a function of both 

transport specific variables (i.e., origin-destination distance and weight) and attributes 

(cost, time, punctuality and damages), the most preferred.   

                                           
10

 Asymptotic t-ratio tests for differences between two means. 
11

 Note that the utility can possibly take negative values if calculated at the individual level, making the 

interpretation more complex. This is indeed a direction for future research. 
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The estimates for the marginal rates of substitution suggest that for the three 

attributes considered, namely time, punctuality and damages, the mean willingness to 

pay for long-distance transport increases compared to short/medium-distance 

transport. The results obtained also show how the heteroskedastic specification in 

model M2 can capture different WTP estimates in respect of two different categories 

of origin-destination transport distance.  

The heteroskedastic specification proposed in this paper is appealing for the 

analysis of choice-invariant characteristics within a random utility model framework. 

Indeed, it allows us to better investigate the effect that important characteristics play 

(conditioned to other characteristics and/or choice attributes) in the decision of the 

most preferred alternative. In this context, it is important that the analyst specifies the 

most suitable form of heteroskedasticity. We investigated two heteroskedastic MNL 

models, and although the specifications are intuitive and outperform the base model, 

the heteroskedastic specification conditioned to both transport characteristics and 

choice attributes not only resulted in the best overall goodness-of-fit, it also provided 

more exhaustive indications about derived measures, such as measures for marginal 

rates of substitution.  

Regarding the limitation of the study, the models proposed do not account for 

sources of heterogeneity in any of the four attributes considered in the choice 

experiments leading to a potential bias of the estimates (in particular, we should note 

the values for VTTS which are in general lower than expected) . Indeed, the 

heterogeneity in the attributes (especially cost and time attributes) is well recognized 

in the literature in the framework of both passenger and freight transport. However, 

within the heteroskedastic model specification (and the dataset) used in this analysis, 

the introduction of random parameters did not improved the performance of the 

models. The difficulties experienced in trying to combine the proposed specification 

with random parameters, for this data set, suggest the need for future research. It 

would be interesting to analyse similar models within different datasets and within 

more sophisticated specifications in order to also account for respondents’ 

heterogeneity in choice attributes. 
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