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Abstract

A generation of new models has been proposed to handle some complex
human behaviors. These models account for the data ambiguity, and there-
fore extend the application field of the discrete choice modeling. The facial
expression recognition (FER) is highly relevant in this context. We develop
a dynamic facial expression recognition (DFER) framework based on dis-
crete choice models (DCM). The DFER consists in modeling the choice of
a person who has to label a video sequence representing a facial expression.
The originality is based on the the analysis of videos with discrete choice
models as well as the explicit modeling of causal effects between the facial
features and the recognition of the expression. Five models are proposed.
The first assumes that only the last frame of the video triggers the choice of
the expression. The second model has two components. The first captures
the perception of the facial expression within each frame in the sequence,
while the second determines which frame triggers the choice. The third
model is an extension of the second model and assumes that the choice of
the expression results from the average of perceptions within a group of
frames. The fourth and fifth models integrate the panel effect inherent to
the estimation data and are respectively extensing the first and second mod-
els. The models are estimated using videos from the Facial Expressions and
Emotions Database (FEED). Labeling data on the videos has been obtained
using an internet survey available at http://transp-or2.epfl.ch/videosurvey/.
The prediction capability of the models is studied in order to check their
validity by cross-validation using the estimation data.
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1 Introduction

A new generation of models has been proposed to account for the complexity of
the human behavior. Hybrid choice models allow handling of several behavioral
aspects, such as discrete and continuous choices, or attitudes (Ben-Akiva et al.,
2002). Models have also been proposed to capture the dynamics of phenomena,
such as the integration of planning and action in discrete choice models (Ben-
Akiva, 2010).

Regarding data, new technologies allow to collect a huge amount of detailed
information, coming from several sources. Data is often dynamic and ambiguous.
The ambiguity comes from the difficulty to identify real decisions, decisional con-
texts, and the inaccuracy of sensors. The dynamics comes from the observation
of single individual behaviors across time. The underlying behavioral phenomena
need complex models to be addressed, therefore DCM appears to be relevant. In
this context, some attempts have been made to model the route choice using am-
biguous GPS data provided by smart phones (Bierlaire et al., 2010), or by GPS
devices (Bierlaire and Frejinger, 2008). The ambiguity of the data is directly
taken into account while developing models. Another emerging way for collect-
ing data is the video. Video devices are nowadays cheap and easy to install. They
allow to collect detailed information about behaviors. Despite this quality, these
data remains difficult to exploit due to their complexity.

In this paper, we propose a complete methodology for analyzing videos using
DCM. Rare literature has been reported on this subject. We perform a detailed
analysis, which underlines the added-value of the modeling method and provides
a complete modeling framework, starting from the data collection and ending to
the model validation. We focus on the facial expression recognition (FER). A fa-
cial expression is a mixture of several pure expressions, and a face is described by
a large number of variables. This leads to ambiguity. In addition, the associated
data is dynamic when facial videos are used. Facial expressions represent a pow-
erful way used by human beings to relate to each other. When developing human
machine interfaces, where computers have to take into account human emotions,
automatic recognition of facial expressions plays a central role. In addition, the
emotion is essential in many choice processes (Lerner and Keltner, 2000; Mellers
and McGraw, 2001) and the facial expression is one of its main indicators.

Some coding systems have been proposed to describe facial expressions. Ek-
man and Friesen (1978) introduced the facial action coding system (FACS). They
identified a list of fundamental expressions and associated groups of muscles tense-
ness or relaxations, called action units (AU) to each basic expression. A FACS
expert can recognize AU activated on a human face, and then deducts the facial
expression mixture precisely. This is the coding system of reference to character-
ize facial expressions.

The dynamic facial expression recognition (DFER) refers to the recognition
of facial expressions in videos, whereas the static facial expression recognition
(SFER) concerns the recognition of facial expressions in images. The DFER
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is an extension of the SFER. A great deal of research has been conducted in
the field. Cohen et al. (2003) have developed an expression classifier based on a
Bayesian network. They also propose a new architecture of hidden Markov model
(HMM) for automatic segmentation and recognition of human facial expression
from video sequences. Pantic and Patras (2006) present a dynamic system capable
of recognizing facial AU and expressions based on a particle filtering method.
In this context, Bartlett et al. (2003) use a Support Vector Machine (SVM)
classifier. Finally, Fasel and Luettin (2003) study and compare methods and
systems presented in the literature to deal with the DFER. They focus on the
robustness in case of environmental changes.

There is a recent interest in quantifying facial expressions in different fields
such as robotics, marketing or transportation. In robotics, Tojo et al. (2000)
have implemented facial and body expressions for a conversational robot. With
some experiments, they showed the added value of such a system in the commu-
nications between humans and the robot. Miwa et al. (2004) have also developed
a humanoid robot able to reproduce human expressions and associated human
hand movements. In marketing, Weinberg and Gottwald (1982) have investigated
human behavior characterizing impulse purchases. Emotions play a key role and
facial expressions appeared to be one of the main indicators. Small and Verrochi
(2009) studied how the victim faces displayed on advertisements for charities
affect both sympathy and giving.

Measuring user emotions has become an important research topic in trans-
portation behavior analysis. Some car manufacturers are currently working on
the driver’s mood recognition in order to warn the driver about possible dan-
gers generated by other users. This aims at preventing road rage. Currently, the
mood recognition is based only on the driver’s voice. For routine trips, Abou-Zeid
(2009) conducted experiments to measure the travel well-being for both public
transportation and car modes. Collected data was employed to estimate mode
choice models. Well-being measures were used as utility indicators, in addition
to standard choice indicators.

Contrary to computer vision algorithms which are calibrated using a ground
truth, the proposed models are estimated using behavioral data. Computer vi-
sion algorithms can be often considered as a “black box”, as their parameters are
difficult to interpret. In our case, a specification is proposed where causal links
between facial characteristics and expressions are explicitly modeled. The output
of the model is a probability distribution between facial expressions. We have
successfully applied the approach for SFER (Sorci et al., 2010a,b). We proposed
a logit model, with nine alternatives corresponding to the nine expressions that
are considered. Each utility is a function of measures related to the AU asso-
ciated to the expression, as defined by the FACS. Sorci et al. (2010a) have also
introduced the concept of expression descriptive units (EDU), that capture inter-
actions between AU. Moreover, some outputs of the computer vision algorithm
used to extract measures on facial images are also included in the utility, so that
the global facial perception can be accounted for.
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Since, the DFER does not fit into the usual discrete choice applications,
certain adjustments have to be done. We took inspiration from the work of
Choudhury (2007). They used a dynamic behavioral framework to model car
lane changing, and more generally from the framework developed by Ben-Akiva
(2010) for the concept of “planning and action”. Five models are presented in
this analysis. Different modeling assumptions are tested and compared. We first
present the behavioral data used to estimate the models. Then, we present the
specification of the proposed models and the associated estimation results. We fi-
nally describe the cross-validation and the predictions of the proposed models. In
order to ease the understanding of the mentioned acronyms, Table 4 in Appendix
A summarizes them and their definitions.

2 Data

The data is derived from a set of video sequences from the facial expressions
and emotions database (FEED) collected by Wallhoff (2004). This collection
has recordings of students watching television. Different types of TV programs
are presented to the subjects in order to generate a large spectrum of facial
expressions. The database contains 95 sequences from 18 subjects. The videos
last between 3 and 6 seconds. In each video, the subject starts with a neutral
face (see example in Figure 1). Then, at some point the TV program triggers a
facial expression (see example in Figure 2).
We have selected 65 videos from 17 subjects. The videos of subject No17 were
removed because of the lack of variability in facial characteristics, and due to

Figure 1: Snapshot of a FEED database video: neutral face (subject No2)
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Figure 2: Snapshot of a FEED database video: expression produced by the TV
program (subject No2)
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Figure 3: Numbers of considered videos per subject

some discontinuities in the recording. The number of selected videos per subject
is shown in Figure 3. We have no access to the type of expression that was meant
to be triggered during the experiment.

A video is a sequence of images. For each image, numerical data is extracted
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Figure 4: Mask tracked by AAM along a video sequence

using an active appearance model (AAM), see Cootes et al. (2002). It allows
to extract facial distances and angles as well as facial texture information (such
as levels of grey) from each image. This technique is based on several principal
component analysis (PCA) performed on the image treated as an array of pixel
values. The algorithm tracks a facial mask composed of 55 points (see Figure
4) used to measure various facial distances and angles. A total of 88 variables
capturing distances (number of pixels) and angles (radians), as well as 100 ele-
ments of the vector C, are generated for each image in each video. This leads to
188 variables per image. We describe these explanatory variables in Appendix B.
Note that the complete description of these variables can be found in Sorci et al.
(2010a).
The video is discretized in groups of 25 images, each corresponding to one second
clipping, i.e. the number of groups of images is equal to the duration in seconds
of the video. The features associated with each group of images are the features
of the first image of the group. In the following, we use the word “frame” to refer
to what is actually the first image of a group. The features of the 24 remaining
images are used to compute variances (refer Equation (2)).

For a given frame t and video o, three sets of variables are introduced:
{xk,t,o}k=1,...,188, {yk,t,o}k=1,...,188, {zk,t,o}k=1,...,188. {xk,t,o}k=1,...,188 are the fea-
tures extracted using the AAM (188 = 88 variables capturing distances + 100
elements of the C vector).

Frame dynamics is captured by variables yk,t,o. For each xk,t,o, k = 1, . . . , 188,
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yk,t,o is defined as

yk,t,o = xk,t,o − xk,t−1,o for t = 2, . . . , To, (1)

where To is the number of frames in the video o. As each frame corresponds to
one second, yk,t,o can be interpreted as the first derivative of xk,t,o with respect
to time, approximated by finite differences. It quantifies the level of variation of
the facial characteristics between two consecutive frames.

Finally, another set of variables zk,t,o, is introduced to capture the variation
of xk,t,o within a frame. For each xk,t,o, k = 1, . . . , 188, zk,t,o is defined as

zk,t,o = V ar(xk,t,o). (2)

It is the variance of the features calculated over the 25 images preceding the frame
t. It characterizes the short time variations of the facial characteristic xk,t,o. For
logical reasons, we have fixed

yk,1,o = zk,1,o = 0 ∀k, o , (3)

implying that the derivative and the variance of a variable in the first frame of
all videos is fixed to 0. We have a database of 564 (= 188 × 3) variables for
each frame t in each video o. The variables have been normalized in the interval
[−1, 1], in order to harmonize their scale: each variable has been divided by the
maximum in absolute value between its observed maximum and minimum over
all frames and videos.

An internet survey has been conducted in order to obtain labels of FEED
videos. The list of labels is composed of the seven basic expressions described
by Keltner (2000): happiness (H), surprise (SU), fear (F), disgust (D), sadness
(SA), anger (A), neutral (N). We have also added “Other” (O) and “I don’t
know” (DK), to avoid ambiguities in the survey. It is available at http://transp-
or2.epfl.ch/videosurvey/ since august 2008. A screen snapshot is shown at Figure
5.

For this analysis, we have collected 369 labels from 40 respondents. The
break-up of the observations among the expressions is displayed in Figure 6.

3 Model specification

We consider a decision-maker who has to label a video sequence by choosing
among the list of facial expressions described in Section 2 (happiness (H), surprise
(SU), fear (F), disgust (D), sadness (SA), anger (A), neutral (N), other (O), not
known (DK)). Five models based on different assumptions have been developed.
We suppose that the perception of the respondent starts at the first frame of the
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Figure 5: Snapshot of the internet survey screen (subject No15)
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Figure 6: Distribution of the collected labels between expressions

video. Then, we assume that the respondent updates her perception every second,
corresponding to every frame (see Section 2). In the first model we assume that
only the last frame of the video influences the observed choice of label. This is
the simplest model presented in this analysis because it does not include dynamic
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features and it is considered as a reference point for comparison. This model is
called reduced model. In the second model, only the most impressive frame
is supposed to be influential on the choice of label. It is called latent model.
In the third model, we assume that it is the average perception of a group of
consecutive frames which generates the choice of label. This is called smoothed
model. Two supplementary models are proposed in order to account for the
panel nature of the data, they are based on the first and second models and
called reduced model with panel effect and latent model with panel
effect. A smoothed model with panel effect is not considered here due to
its estimation complexity.

The theoretical details and specification for each model are described in Sec-
tions 3.1, 3.2, 3.3, 3.4.1 and 3.4.2. They are all extensions to the model proposed
by Sorci et al. (2010a), which is refered to as static model. Due to the small
number of respondents, their socio-economic characteristics have not been in-
cluded in the models.

3.1 The reduced model

We first assume that the perception of the last frame of a video is suggesting the
choice of label. The filmed subject starts with a neutral face and evolves towards
a certain expression which is triggered by the TV program that she is watching.
The subject’s face on the last frame should be expressive. The model is a direct
application of the static model in the last frame. The model associated to the
perception of expressions is denoted by PM1(i|o, θM1). It is the probability for an
individual to label the video o with the expression i, given the vector of unknown
parameters θM1 . The last frame is supposed to be the only information used by
the respondent to label the video o. The utility function associated with each
expression is defined in Equation (4).

VM1(H|To, o, θM1) = ASCM1,H +

KM1∑
j=1

IM1,H,jθM1,j

188∑
k=1

IM1,j,kxk,To,o ,

VM1(SU |To, o, θM1) = ASCM1,SU +

KM1∑
j=1

IM1,SU,jθM1,j

188∑
k=1

IM1,j,kxk,To,o ,

VM1(F |To, o, θM1) = ASCM1,F +

KM1∑
j=1

IM1,F,jθM1,j

188∑
k=1

IM1,j,kxk,To,o ,

VM1(D|To, o, θM1) = ASCM1,D +

KM1∑
j=1

IM1,D,jθM1,j

188∑
k=1

IM1,j,kxk,To,o ,

VM1(SA|To, o, θM1) = ASCM1,SA +

KM1∑
j=1

IM1,SA,jθM1,j

188∑
k=1

IM1,j,kxk,To,o ,
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VM1(A|To, o, θM1) = ASCM1,A +

KM1∑
j=1

IM1,A,jθM1,j

188∑
k=1

IM1,j,kxk,To,o ,

VM1(N |To, o, θM1) = 0 ,

VM1(O|To, o, θM1) = ASCM1,O +

KM1∑
j=1

IM1,O,jθM1,j

188∑
k=1

IM1,j,kxk,To,o ,

VM1(DK|To, o, θM1) = ASCM1,DK , (4)

where To denotes the length of the video o in seconds, which is also the index of
the last frame of the video o. KM1 is the total number of parameters associated to
facial measurements {xk,t,o} in the reduced model. IM1,i,j is an indicator equal
to 1 if the parameter j is present in the utility of expression i, 0 otherwise. IM1,j,k

is an indicator equal to 1 if the parameter j is related to the facial measurement
xk,To,o collected in the last frame of the video o, 0 otherwise. We have

188∑
k=1

IM1,j,k = 1 ∀j , (5)

implying that a parameter θM1,j is related to only one facial measurement xk,To,o.
Each utility contains an alternative specific constant ASCM1,i except the neutral,
which is taken as the reference, and its utility is fixed to 0. Note that there is
no expression specific attributes, as the facial characteristics do not vary across
the expressions. The details of the utility specifications are presented in Tables
7 and 8. For each parameter θM1,j , if IM1,i,j is equal to 1, there is a “×” in the
column of the corresponding expression i. This notations is used in all Tables
in Appendix C. If IM1,j,k is equal to 1, the relative facial characteristic xk,To,o is
indicated. The model is a logit, so the probability is

PM1(i|o, θM1) =
eVM1

(i|To,o,θM1
)∑9

j=1 e
VM1

(j|To,o,θM1
)
. (6)

Then the log-likelihood is

L(θM1) =

O∑
o=1

9∑
i=1

wi,o log(PM1(i|o, θM1)), (7)

where wi,o is a weight, corresponding to the number of times the expression i has
been chosen for the video o in the collected database of annotations (see Section
2).
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Sorci et al. (2010a) employed the database proposed by Kanade et al. (2000)
when collecting behavioral data. The estimated parameters of the static model
cannot be used directly in our analysis due to problems of facial position and
scale between this database and the FEED (see Section 2). The filmed subjects
are further from the camera in the FEED, compared to the Cohn-Kanade. Con-
sequently, the model has to be re-estimated. In addition, the specifications of
the utilities have been adapted to this analysis because of the lower number of
available data. We use 369 observations of labels against 38110 for the work of
Sorci et al. (2010a). This implies the estimation of a lower number of parameters:
the utility specifications have been simplified and parameters have been grouped
together regarding their sign and interpretability. The proposed model contains
32 parameters against 135 for the static model.

3.2 The latent model

The assumption supporting this model is that one frame in the video has influ-
enced the observed choice of label, but the analyst does not know which one. The
DFER model consists of a combination of two models. The first model quanti-
fies the perception of expressions in a given frame. It is similar to the reduced
model presented in Section 3.1. The second model predicts which frame has
influenced the chosen label. It is a latent choice model where the choice set is
composed of all frames in the video. The instantaneous perception of expressions
and the most influential frame are not observed. Only the final choice of label
for the video is observed.

The first model provides the probability for a respondent to choose the ex-
pression i when exposed to the frame t of the video sequence o, and is written
PM2(i|t, o, θM2,1, αM2). The second model provides the probability for the frame
t of video o to trigger the choice, and is denoted by PM2(t|o, θM2,2). The prob-
ability for a respondent to label the video o with expression i, is denoted by
PM2(i|o, θM2 , αM2), which is observable. θM2,1 and θM2,2 are the vectors of un-
known parameters to be estimated, merged into the vector θM2 . αM2 is a vector
of parameters capturing the memory effects, which will be introduced in Equation
(11), and has to be estimated (αM2 = {αM2,i}i=H,SU,F,D,SA,A,O). We obtain

PM2(i|o, θM2 , αM2) =

To∑
t=1

PM2(i|t, o, θM2,1, αM2)PM2(t|o, θM2,2). (8)

For specifying the model PM2(i|t, o, θM2,1, αM2), we need to define a utility func-
tion associated to each expression. We hypothesize that the perception of an
expression i in frame t depends on the instantaneous perceptions of this expres-
sion i in the frames t and t − 1. VM2(i|t, o, θM2,1, αM2,i) is a utility reflecting
the perception of the expression i in frame t for the video o. We decompose
it into two parts. First V s

M2
(i|t, o, θM2,1) concerns the instantaneous perception
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t o PM2
(t|o, θM2,2)

o i

PM2
(i|o, θM2

, αM2
) θM2,1 θM2,2

θM2
αM2

αM2
= {αM2,i}i=H,SU,F,D,SA,A,O

PM2
(i|o, θM2

, αM2
) =

To∑

t=1

PM2
(i|t, o, θM2,1, αM2

)PM2
(t|o, θM2,2).

PM2
(i|t, o, θM2,1, αM2

)

i t
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Figure 7: The dynamic process of the latent model

of the frame t in the video o. Second, V s
M2

(i|t − 1, o, θM2,1) concerns the in-
stantaneous perception of the frame t − 1 in the video o. This is designed to
capture the dynamic nature of the decision making process, as illustrated in Fig-
ure 7. In this figure, the facial measurements {xk,t,o} and {zk,t,o} (introduced in
Equation (2)) are observed, they are enclosed in rectangles and their influences
are represented by plain arrows; whereas the utilities are latent, they are en-
closed in ellipses and their influences are marked by dashed arrows. {xk,t,o} and
{zk,t,o} influence V s

M2
(i|t, o, θM2,1), while VM2(i|t, o, θM2,1, αM2,i) is only function

of V s
M2

(i|t, o, θM2,1) and V s
M2

(i|t− 1, o, θM2,1).
The specification of {V s

M2
(i|t, o, θM2,1)} is presented in Equation (9)

V s
M2

(H|t, o, θM2,1) = ASCM2,H +

KM2∑
j=1

IM2,1,H,jθM2,1,j

188∑
k=1

IM2,j,kxk,t,o ,

V s
M2

(SU |t, o, θM2,1) = ASCM2,SU +

KM2∑
j=1

IM2,1,SU,jθM2,1,j

188∑
k=1

IM2,j,kxk,t,o

+

Kz
M2∑
j=1

IzM2,SU,jθ
z
M2,1,j

188∑
k=1

IzM2,j,kzk,t,o ,

V s
M2

(F |t, o, θM2,1) = ASCM2,F +

KM2∑
j=1

IM2,F,jθM2,1,j

188∑
k=1

IM2,j,kxk,t,o ,

V s
M2

(D|t, o, θM2,1) = ASCM2,D +

KM2∑
j=1

IM2,D,jθM2,1,j

188∑
k=1

IM2,j,kxk,t,o ,
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V s
M2

(SA|t, o, θM2,1) = ASCM2,SA +

KM2∑
j=1

IM2,SA,jθM2,1,j

188∑
k=1

IM2,j,kxk,t,o ,

V s
M2

(A|t, o, θM2,1) = ASCM2,A +

KM2∑
j=1

IM2,A,jθM2,1,j

188∑
k=1

IM2,j,kxk,t,o ,

V s
M2

(N |t, o, θM2,1) = 0 ,

V s
M2

(O|t, o, θM2,1) = ASCM2,O +

KM2∑
j=1

IM2,O,jθM2,1,j

188∑
k=1

IM2,j,kxk,t,o ,

V s
M2

(DK|t, o, θM2,1) = ASCM2,DK , (9)

where KM2 is the total number of parameters related to {xk,t,o}. Kz
M2

is the
total number of parameters related to {zk,t,o}. The indicators are similar to
those introduced in Section 3.1. IM2,i,j is an indicator equal to 1 if the parameter
j is included in the utility of expression i, 0 otherwise. IM2,j,k is an indicator
equal to 1 if the parameter j is related to the facial measurement xk,t,o collected
in the frame t of the video o, 0 otherwise. We have

188∑
k=1

IM2,j,k = 1 ∀j , (10)

meaning that a parameter θM2,j is related to only one xk,t,o. I
z
M2,SU,j

and IzM2,j,k

have exactly the same role as IM2,i,j and IM2,j,k, but they concern the parameter
θzM2,j

which is related to zk,t,o. Each utility contains a constant, except for the
neutral expression, whose utility is the reference and is fixed to 0. The presence
of {zk,t,o} (short time variations of facial characteristics) in the surprise utility
accounts for the perception of suddenness. {zkto} are better than {yk,t,o} in this
case, because they capture faster variations of facial characteristics. This does
not lead necessarily to the surprise facial expression, but according to the col-
lected data, fast variations of facial characteristics could be perceived as surprise
by respondents. {zkto} have been tested in the reduced model, but the associ-
ated parameters did not appear to be significant, certainly due to the simplistic
assumption about the last frame triggering the expression choice. The detailed
specification of V s

M2
(i|t, o, θM2,1)} is described in Tables 9 and 10. The reading of

the tables is exactly the same as for Table 7 described in Section 3.1.
The utility function VM2(i|t, o, θM2,1, αM2,i) is supposed to be the sum of

V s
M2

(i|t, o, θM2,1) and {V s
M2

(i|t − 1, o, θM2,1) weighted by αM2,i, the parameter of
memory effect. The specification of VM2(i|t, o, θM2,1, αM2,i) is defined in Equation
(11).
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VM2(H|t, o, θM2,1, αM2,H) = V s
M2

(H|t, o, θM2,1)

+ αM2,HV
s
M2

(H|t− 1, o, θM2,1),

VM2(SU |t, o, θM2,1, αM2,SU ) = V s
M2

(SU |t, o, θM2,1),

VM2(F |t, o, θM2,1, αM2,F ) = V s
M2

(F |t, o, θM2,1)

+ αM2,FV
s
M2

(F |t− 1, o, θM2,1),

VM2(D|t, o, θM2,1, αM2,D) = V s
M2

(D|t, o, θM2,1),

VM2(SA|t, o, θM2,1, αM2,SA) = V s
M2

(SA|t, o, θM2,1)

+ αM2,SAV
s
M2

(SA|t, o, θM2,1),

VM2(A|t, o, θM2,1, αM2,A) = V s
M2

(A|t, o, θM2,1),

VM2(N |t, o, θM2,1, αM2,N ) = V s
M2

(N |t, o, θM2,1) = 0,

VM2(O|t, o, θM2,1, αM2,O) = V s
M2

(O|t, o, θM2,1)

+ αM2,OV
s
M2

(O|t, o, θM2,1),

VM2(DK|t, o, θM2,1, αM2,DK) = V s
M2

(DK|t, o, θM2,1). (11)

Note that this is not anymore a linear-in-parameter specification for happiness,
fear, sadness and anger, since {αi} are estimated. Five memory effect parameters
{αM2,i}i=SU,D,A,N,DK have been fixed to 0 : for neutral because it is the referent
alternative, so its utility is fixed to zero; and for “I don’t know” because its utility
contains only ASCM2,DK , which is invariant across the frames. For surprise,
disgust and anger, they do not appeared to be significant in previous specifications
of the model (see Section 5 and Table 11). {αM2,i}i=H,F,SA,O are supposed to be
in the interval [−1, 1] because we hypothesize that the instantaneous perception
of expression i at time t is more influenced by the instantaneous perception of
expression i at frame t than at frame t − 1. This dynamic specification has not
been tested in the reduced model, as in this model we hypothesized that only
the last frame of the video was triggering the expression (and not the two last
frames). The model for PM2(i|t, o, θM2,1, αM2) is a logit model, that is

PM2(i|t, o, θM2,1, αM2) =
eVM2

(i|t,o,θM2,1
,αM2,i

)∑
j e

VM2
(j|t,o,θM2,1

,αM2,j
)
. (12)

The model PM2(t|o, θM2,2) is also specified as a logit model. Note that we decide
to ignore here the potential correlation between error terms of successive frames.
A utility VM2(t|o, θM2,2) is associated to each frame t in the video o. The utility
depends on variables {yk,t,o} (see Equation (1)), and {zk,t,o} (see Equation (2)).
We define VM2(1|o, θM2,2) = 0 and, for t = 2, . . . , To,
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VM2(t|o, θM2,2) =

Ky
M2,2∑
j=1

θyM2,2,j

188∑
k=1

IyM2,2,j,k
yk,t,o

+

Kz
M2,2∑
j=1

θzM2,2,j

188∑
k=1

IzM2,2,j,kzk,t,o , (13)

and

PM2(t|o; θM2,2) =
eVM2

(t|o,θM2,2
)∑To

`=1 e
VM2

(`|o,θM2,2
)
. (14)

Ky
M2,2

and Kz
M2,2

are numbers of parameters associated to {yk,t,o}, and {zk,t,o}
respectively, in the utility related to each frame. IyM2,2,j,k

is an indicator equal

to 1 if the parameter θyM2,2,j
is associated to yk,t,o, 0 otherwise. As for the other

indicators, it is related to only one yk,t,o, we have

188∑
k=1

IyM2,2,j,k
= 1 ∀j , (15)

IzM2,2,j,k
is similar to IyM2,2,j,k

, but is associated to zk,t,o. The vector of parameters
θM2,2 is described in Table 12. Finally, the log-likelihood function is

L(θM2 , αM2) =

O∑
o=1

9∑
i=1

wi,o logPM2(i|o, θM2 , αM2)

=

O∑
o=1

9∑
i=1

wi,o log(

To∑
t=1

PM2(i|t, o, θM2,1, αM2)PM2(t|o, θM2,2)). (16)

3.3 The smoothed model

In this model, we hypothesize that the behavior of the respondent is composed of
two consecutive phases, when watching a video. In the first phase, the respondent
is waiting for information, no perception of expressions is influencing the observed
choice of label. At a certain point in time, the respondent starts to use the
information of the frames to make her choice of label. This consideration of
information is continued until the end of the video and constitutes the second
phase. The model combines a model related to the perception of expressions and
a model which detects the changing of phase. The observed choice of label is
supposed to be the average across the frames of the perception of expressions in
the second phase. Both models are latent as only the choice of label is observed.
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The first model provides the probability for a respondent to choose the ex-
pression i when exposed to frame ` of the video sequence o, and is written
PM3(i|l, o, θM3,1). The second model PM3(t|o, θM3,2) provides the probability for a
respondent to enter in her second phase when being exposed to the frame t. The
probability for a respondent to label the video o with expression i, is denoted by
PM3(i|o, θM3), which is observable. θM3,1 and θM3,2 are the vectors of unknown
parameters to be estimated within each of the two models, merged into the vec-
tor θM3 . PM3(i|o, θM3) is the average of {PM3(i|l, o, θM3,1)}l=t...To , weighted by
PM3,n(t|o, θM3,2), sum up over t = 1 . . . To. We obtain

PM3(i|o, θM3) =

To∑
t=1

PM3(t|o, θM3,2)
1

To − t+ 1

To∑
l=t

PM3(i|l, o, θM3,1). (17)

For PM3(i|t, o, θM3,1), a utility VM3(i|t, o, θM3,1) is associated to each expression
i. The specification of {VM3(i|t, o, θM3,1)} is defined in Equation (18).

VM3(H|t, o, θM3,1) = ASCM3,H +

KM3∑
j=1

IM3,1,H,jθM3,1,j

188∑
k=1

IM3,j,kxk,t,o ,

VM3(SU |t, o, θM3,1) = ASCM3,SU +

KM3∑
j=1

IM3,1,SU,jθM3,1,j

188∑
k=1

IM3,j,kxk,t,o

+

Kz
M3∑
j=1

IzM3,SU,jθ
z
M3,1,j

188∑
k=1

IzM3,j,kzk,t,o ,

VM3(F |t, o, θM3,1) = ASCM3,F +

KM3∑
j=1

IM3,F,jθM3,1,j

188∑
k=1

IM3,j,kxk,t,o ,

VM3(D|t, o, θM3,1) = ASCM3,D +

KM3∑
j=1

IM3,D,jθM3,1,j

188∑
k=1

IM3,j,kxk,t,o ,

VM3(SA|t, o, θM3,1) = ASCM3,SA +

KM3∑
j=1

IM3,SA,jθM3,1,j

188∑
k=1

IM3,j,kxk,t,o ,

VM3(A|t, o, θM3,1) = ASCM3,A +

KM3∑
j=1

IM3,A,jθM3,1,j

188∑
k=1

IM3,j,kxk,t,o ,

VM3(N |t, o, θM3,1) = 0 ,

VM3(O|t, o, θM3,1) = ASCM3,O +

KM3∑
j=1

IM3,O,jθM3,1,j

188∑
k=1

IM3,j,kxk,t,o ,

VM3(O|t, o, θM3,1) = ASCM3,DK . (18)
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The general description of the utilities is exactly the same as for the utilities
in Equation (9). The detailed specifications of {VM3(i|t, o, θM3,1)} are presented
in Tables 13 and 14. Note that a dynamic formulation, as presented in Equation
(11), has been tested in the expression utilities. It did not appear to be relevant,
certainly due to the fact that the dynamics is already accounted for, by the
consideration of the two phases. A logit form is postulated for PM3(i|t, o, θM3,1)

PM3(i|t, o, θM3,1) =
eVM3

(i|t,o,θM3,1
)∑

j e
VM3

(j|t,o,θM3,1
)
. (19)

The second model PM3(t|o, θM3,2) captures the change of phases. A utility
VM3(t|o, θM3,2) is associated to each frame t in the video o

VM3(t|o, θM3,2) =

Ky
M3,2∑
k=1

θyM3,2,k

188∑
k=1

IyM3,2,j,k
yk,t,o, (20)

where Ky
M3,2

is the number of parameters associated to this model. The specifi-

cation of VM3(t|o, θM3,2) is generic. IyM3,2,j,k
is an indicator equal to 1 if θyM3,2,k

is

associated to yk,t,o, 0 otherwise. θyM3,2,k
is linked to only one yk,t,o, we have

188∑
k=1

IyM3,2,j,k
= 1 ∀j . (21)

The model contains only {yk,t,o}, {zk,t,o} have been tested but do not appear
to be significant. {yk,t,o} measure more drastic changes in the face compared to
{zk,t,o} (see Section 5.3). The detailed specifications of the utilities are presented
in Table 15. Finally, PM3(t|o, θM3,2) is a logit model

PM3(t|o, θM3,2) =
eVM3

(t|o,θM3,2
)∑To

`=1 e
VM3

(`|o,θM3,2
)
, (22)

and the log-likelihood function is

L(θM3) =
O∑
o=1

9∑
i=1

wi,o logPM3(i|o, θM3)

=

O∑
o=1

9∑
i=1

wi,o log(

To∑
t=1

PM3(t|o, θM3,2)
1

To − t+ 1

To∑
k=t

PM3(i|k, o, θM3,1)).

(23)
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3.4 Models with panel effect

The models presented in Sections 3.1, 3.2 and 3.3 do not account for the corre-
lation between labels obtained through the internet survey. In this section, we
assume that the labels are correlated through the filmed subject. Other panel
structures have been tested (over respondents and videos) but this one appears
to be the most relevant. Two models are developed based on the reduced and
latent models.

3.4.1 The reduced model with panel effect

This is a direct extension of the reduced model presented in Section 3.2. The
utilities shown in equation 4 become

VM4(H|To, o, θM4 , εM4,s) = ASCM4,H +

KM4∑
j=1

IM4,H,jθM4,j

188∑
k=1

IM4,j,kxk,To,o +

17∑
s=1

Io,sεM4,s,

VM4(SU |To, o, θM4,εM4,s
) = ASCM4,SU +

KM4∑
j=1

IM4,SU,jθM4,j

188∑
k=1

IM4,j,kxk,To,o +
17∑
s=1

Io,sεM4,s,

VM4(F |To, o, θM4 , εM4,s) = ASCM4,F +

KM4∑
j=1

IM4,F,jθM4,j

188∑
k=1

IM4,j,kxk,To,o +
17∑
s=1

Io,sεM4,s,

VM4(D|To, o, θM4 , εM4,s) = ASCM4,D +

KM4∑
j=1

IM4,D,jθM4,j

188∑
k=1

IM4,j,kxk,To,o +
17∑
s=1

Io,sεM4,s,

VM4(SA|To, o, θM4 , εM4,s) = ASCM4,SA +

KM4∑
j=1

IM4,SA,jθM4,j

188∑
k=1

IM4,j,kxk,To,o +
17∑
s=1

Io,sεM4,s,

VM4(A|To, o, θM4 , εM4,s) = ASCM4,A +

KM4∑
j=1

IM4,A,jθM4,j

188∑
k=1

IM4,j,kxk,To,o +

17∑
s=1

Io,sεM4,s,

VM4(N |To, o, θM4 , εM4,s) = 0 ,

VM4(O|To, o, θM4 , εM4,s) = ASCM4,O +

KM4∑
j=1

IM4,O,jθM4,j

188∑
k=1

IM4,j,kxk,To,o +
17∑
s=1

Io,sεM4,s,

VM4(DK|To, o, θM4 , εM4,s) = ASCM4,DK +
17∑
s=1

Io,sεM4,s, (24)

where εM4,s is an error term capturing the correlation between observations as-
sociated to the filmed subject s. It is supposed normally distributed, εM4,s ∼
N(0, σM4). Io,s is an indicator equal to 1 if the subject s appears in video o, 0
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otherwise. The probability of choosing the expression i is

PM4(i|o, θM4 , εM4,s) =
eVM4

(i|To,o,θM4
,εM4,s

)∑9
j=1 e

VM1
(j|To,o,θM4

,εM4,s
)
. (25)

Then, for the calculation of the log-likelihood, we have to integrate on εM4,s

L(θM4 , σM4) =
17∑
s=1

log

(∫
(
O∏
o=1

9∏
i=1

PM4(i|o, θM4 , εM4,s)
wi,oIo,s)f(εM4,s)dεM4,s

)
,

(26)

where f(εM4,s) is the probability density function (pdf) of εM4,s.

3.4.2 The latent model with panel effect

This model generalizes the model proposed in Section 3.2. The utilities introduced
in equation 11 are reformulated

VM5(H|t, o, θM5,1, αM5,H , εM5,s) = V s
M5

(H|t, o, θM5,1) +
17∑
s=1

Io,sεM5,s

+ αM5,HV
s
M5

(H|t− 1, o, θM5,1),

VM5(SU |t, o, θM5,1, αM5,SU , εM5,s) = V s
M5

(SU |t, o, θM5,1) +
17∑
s=1

Io,sεM5,s,

VM5(F |t, o, θM5,1, αM5,F , εM5,s) = V s
M5

(F |t, o, θM5,1) +
17∑
s=1

Io,sεM5,s

+ αM5,FV
s
M5

(F |t− 1, o, θM5,1),

VM5(D|t, o, θM5,1, αM5,D, εM5,s) = V s
M5

(D|t, o, θM5,1) +
17∑
s=1

Io,sεM5,s,

VM5(SA|t, o, θM5,1, αM5,SA, εM5,s) = V s
M5

(SA|t, o, θM5,1) +
17∑
s=1

Io,sεM5,s

+ αM5,SAV
s
M5

(SA|t, o, θM5,1),

VM5(A|t, o, θM5,1, αM5,A, εM5,s) = V s
M5

(A|t, o, θM5,1) +
17∑
s=1

Io,sεM5,s,

VM5(N |t, o, θM5,1, αM5,N , εM5,s) = V s
M5

(N |t, o, θM5,1) = 0,

VM5(O|t, o, θM5,1, αM5,O, εM5,s) = V s
M5

(O|t, o, θM5,1) +
17∑
s=1

Io,sεM5,s
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+ αM5,OV
s
M5

(O|t, o, θM5,1),

VM5(DK|t, o, θM5,1, αM5,DK , εM5,s) = V s
M5

(DK|t, o, θM5,1) +
17∑
s=1

Io,sεM5,s.

(27)

where εM5,s is an error term capturing the correlation between observations im-
plicating the same filmed subject s. εM5,s is supposed normally distributed,
εM5,s ∼ N(0, σM5). Note that {V s

M5
(i|t, o, θM5,1)} are free of the error compo-

nents, so there is no double counting of the error terms. The probability of
choosing the expression i, within frame t of video o is

PM5(i|t, o, θM5,1, αM5) =
eVM5

(i|t,o,θM5,1
,αM5,i

,εM5,s
)∑9

j=1 e
VM5

(j|t,o,θM5,1
,αM5,j

,εM5,s
)
, (28)

and the probability of choosing the expression i for video o is

PM5(i|o, θM5 , αM5 , εM5,s) =

To∑
t=1

PM5(i|t, o, θM5,1, αM5)PM5(t|o, θM5,2), (29)

where PM5(t|o, θM5,2) is the influence of the frame t of video o on the choice of
label. It is the same than for the latent model (equation 14). The calculation
of the log-likelihood function requires to integrate on εM5,s

L(θM5 , αM5 , σM5) =
17∑
s=1

log

(∫
(
O∏
o=1

9∏
i=1

PM5(i|o, θM5 , αM5 , εM5,s)
wi,oIo,s)f(εM5,s)dεM5,s

)
,

(30)

where f(εM5,s) is the pdf of the normal distribution N(0, σM5).

4 Intermediary specification steps

The five models presented in this paper are the products of an extensive modeling
process, where several intermediary models are generated. We started from the
work of Sorci et al. (2010a) and first applied their model. The results were not
satisfactory as the face positions and scales were not the same in the FEED and
Cohn-Kanade databases as explained in Section 3.1. The model not only has been
re-estimated, but also has been adapted due to the small number of observations
available for this analysis. The obtained model is the reduced model, which
has a strong basis for the development of the four other models. In the other
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proposed models, the model managing the expression perception are extensions
of this reduced model.

Next, we focus on the latent model (Section 3.1). In a first step, the model
did not include any dynamics (Equation (11)). It came after the study of HMM
and the dynamic formulation appeared to be meaningful in our work. Note
that the accounting for previous probabilities instead of previous utilities was
also tested, but it appeared heavy to manipulate. The incorporation of {zk,t,o}
(Equation (2)) in the utility of surprise (Equation (9)) follows an analysis of
the observed labels. Respondents have tendency to answer “surprise” when they
perceive suddenness, and {zk,t,o} is well adapted to reflect it. Several specifica-
tions have been tested for the model managing the frame influence. We began
with a model giving equal probabilities to all the frames, but the estimated re-
sults were not good. Regarding the frame utilities (Equation (13)), we started
by incorporating only {xk,t,o} (Section 2), but parameters were not significant.
We continued with models integrating only {yk,t,o} (Equation (1)), in order to
account for the facial changes, which made a lot of sense. Finally we refined
the model using both {yk,t,o} and {zk,t,o} in order to capture more details in the
perception of the changes.

The study of the latent model predictions shows an instability of the model
in case of several impressive frames (in the video) which are presenting different
expressions. The improvement of this model passed by a smoothing of its behav-
ior, by introducing the smoothed model (see Section 3.3). This new model is
relevant for forecasting, because it is more robust to tiny fluctuations of facial
descriptors, which can appear in noisy data. The dynamic formulation of the
utilities has also been tested in the smoothed model, but it did not improve.
It is certainly due to the fact that the dynamics is already accounted for with the
assumption about the two behavioral phases (see Section 3.4.1). Several utility
specifications of the model managing the phase changing have been tested (see
Equation (20)). Only {zk,t,o} appeared to be significant, perhaps due to the fact
that facial changes should be drastic for passing from one behavioral phase to
the other.

We decided to refine the quality of the estimates for the reduced and latent
models by accounting for the correlation between the observations in the data.
It was not considered in the smoothed model due to practical difficulties in
estimation, and modeling complexity. We obtained the reduced and latent
models with panel effect. We sequentially considered the correlation per
respondents, per videos and per filmed subjects. We retained this latter, the
reasons are explained in Section 5.5. In this model, we additionally tried several
specifications of the error term related to the panel effect. We tried to include
i.i.d. and homoscedastic error terms in every alternatives (see Equation (24) and
(27)). But the estimation results were similar. We retained the final specifications
because it captured the panel effect as well as the correlation between all the
alternatives, excepting the neutral. This mimics a nested structure, which makes
sense as the neutral is the default expression.
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5 Model estimation

The models are estimated by maximum likelihood (see Equations (7), (16), (23),
(26) and (30)) using the biogeme software (Bierlaire, 2003; Bierlaire and Fetiari-
son, 2009). Except for the reduced models (with and without panel effect),
these models are complex to estimate. The estimation results for the latent and
smoothed models have been also obtained using codes based on biogeme. The
estimation of models with panel effects required to perform numerical integration.
A Monte-Carlo simulation with 1000 draws has been used. General estimation
results are presented in Table 1.

5.1 The reduced model

The Reduced model is the simplest model as it only accounts for the influence
of the last frame on the observed choice of label. The values of the 32 estimated
parameters and associated t-tests are presented in Tables 7 and 8. Fourteen
parameters are related to facial measurements characterizing AU (see Section
3.1). The parameter signs are consistent with the work of Sorci et al. (2010a),
and with the FACS (Ekman and Friesen, 1978). The asymmetry of the face
is taken into account by associating different parameters to the left and right
measurements of a same type.

All parameters related to AU are significantly different from 0 (t-test ≥ 1.96).
This is also the case for the five parameters related to EDU and for the five
parameters associated to elements of the vector C. Their signs are coherent with
the work of Sorci et al. (2010a).

Some of the eight {ASCi} do not appear to be significant, which is a good
feature because they are designed to absorb the unobserved perception of respon-
dents.

5.2 The latent model

For the latent model, the values and associated t-tests of the 34 parameters
related to the model handling the expression perception are presented in Tables
9 and 10.

Signs and significance of parameters associated to AU, EDU and elements of
the vector C are correct and consistent with the estimated parameters obtained
for the reduced model. In addition, the model contains two more parameters.
The parameter θM2,1,22 associated to the height of the mouth (“mouth h” ), ap-
pears to be significant, while it was not the case for the reduced model. This is
due to the fact that the reduced model accounts only for the perception of the
last frame in a video, compared to all the frames here. So the reduced model
could not be as precisely specified as this model. θzM2,1,1

is related to the variance
of the height of the mouth (“mouth h”). It is positive indicating that the more
the height of the mouth varies during the previous second, the more the surprise
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will be favored, which is logical.
Four parameters of memory effect (αM2,H , αM2F , αM2SA, αM2O) appear to be

significantly different from zero (see Table 11), and have the same magnitude.
When unconstrained, their estimated values are in [−1, 1] implying that the
present perception is predominant, as expected.

Seven parameters related to the model characterizing the influence of the
frames are estimated significantly different from zero (see Table 12). Six are as-
sociated to {yk,t,o} and one to z2,t,o, which is the variance of the distance between
eyebrows (“brow dist”). Their magnitude is larger than for the parameters asso-
ciated to the model of perception of the expressions. This means that the model
is sensitive to small variations of features and tends to produce a sharp proba-
bility distribution among the frames. The signs of the parameters are logical, for
example θM2,2,5 is attached to the height of the eyes (“eye h”) and is negative.
This implies that the more a subject has the eye closed on a frame, the more the
frame has influence on the observed choice of label.

5.3 The smoothed model

For the smoothed model, the model dealing with the perception of the expres-
sions contains 36 parameters (see Tables 13 and 14).

Signs and significance of parameters associated to AU, EDU and C parame-
ters are the same as that of the reduced model. This model contains 4 more
parameters. θM3,1,4 and θM3,1,12 are respectively associated to the EDU corre-
sponding to the fraction between the height of the eyebrows and their width
(“RAP brow”), and to the fifth element of the vector C (“C 5 ”). Both are in the
utility of disgust. Compared to the reduced model, they appear to be signifi-
cant due to the fact that we now account for the total number of frames. θzM3,1,1

and θzM3,1,2
are respectively related to the variance of the height of the mouth

(“mouth h”) and the variance of the height of the left eye (“leye h”). They are
included in the utility of surprise in order to capture the perception of sudden-
ness. They are positive as expected, implying that the higher z1,t,o and z3,t,o are,
the more the surprise is favored, which is logical.

The model designed to detect the first frame of the relevant group of frames
contains 8 parameters (see Table 15). They are all linked with {yk,t,o}. None of
the parameters associated with {zk,t,o} appeared to be significant. The perception
of the short time variations of facial characteristics is not relevant to activate
the second phase of behavior, which seems logical. The change in the facial
characteristics should be more drastic, which explains why {yk,t,o} are better
adapted. As for the latent model, the magnitude of the parameters is larger
than the parameters of the model handling the perception of the expressions.
The interpretation remains the same as tht of the latent model.
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5.4 Models with panel effect

For the models with panel effect, the parameters of the reduced model with
panel effect are shown in Tables 16 and 17. The parameters of the latent
model with panel effect are presented in Tables 18, 19, 20 and 21. In both
cases, the parameter values are the same as that of reduced and latent models.
Their interpretations remain unchanged. The standard errors σM4 and σM5 are
significant, thereby verifying the hypothesis of correlation between labels associ-
ated to the same filmed subject.

5.5 Comparison of the five models

The final log-likelihood is improved between the reduced and latent models,
and the reduced and smoothed models. The three first models cannot be
compared using likelihood ratio-tests. We use ρ̄2 as a goodness of fit to identify
the best model. Looking at Table 1 for the models without panel effect, the
latent model appears to be the best model, closely followed by the smoothed
model. The improvement brought by the dynamic modeling is substantial. This
is due to the nature of the videos (see Section 2). At the beginning of the
videos, the facial expressions are neutral, and then they evolve towards other
expressions, thereby making the faces distinclty expressive by the last frame of
the video. This would explain why the reduced models tend to work well.
Nevertheless, the proposed behavioral hypothesis makes sense. The assumption
about one single frame triggering the choice seems to be the most relevant (latent
model), closely followed by the assumption about the two behavioral phases
(smoothed model). This order seems to be logical as the latent model focuses
on a “pure” and “strong” perception, which is intuitively important, especially
in short facial videos. Compared to this latter model, the smoothed model
polishes the perceptions in the second behavioral phase. The main advantage
of the smoothed model is its less sensitivity to data errors, compared to the
latent model.

For the models with panel effect, the log-likelihood is improved between the
reduced model and reduced model with panel effect, and the latent
model and latent model with panel effect. Out of the five proposed models,
the latent model with panel effect is the best in terms of fit. The account-
ing for the correlations between observations related to the same filmed subject,
improves significantly the fit. A correlation by respondents has been tested but
it did not appear to meaningful as the perception of the respondents seems to be
homogeneous. This is logical as the respondents are also homogeneous in terms of
socio-economic characteristics (they are mainly in Switzerland with an academic
background). A correlation per videos has been checked and it showed similar
results for the correlation per filmed subjects. It has not been kept because this
model was very heavy to manipulate. Since the number of videos is higher than
the number of filmed subjects, we increased the number of draws, resulting in a
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Table 1: General estimation results

Reduced Latent Smoothed Reduced panel Latent panel

Nb obs. 369 369 369 369 369

Nb param. 32 45 44 33 46

Null L -810.78 -810.78 -810.78 -810.78 -810.78

Final L -475.79 -441.28 -447.67 -470.26 -435.14

ρ̄2 0.374 0.400 0.394 0.379 0.406

dramatic increase of the estimation time, making the cross-validation (see Section
6.2) impossible.

The magnitude of the parameter values and signs are the same for the five
models. For example, θM1,4, θM2,1,4, θM3,1,5, θM4,4 and θM5,1,4 are associated to
the mouth opening (“RAP mouth”), defined as the fraction between the height
of the mouth (“mouth h”) and the width of the mouth (“mouth w”). These
paameters are in the utilities of surprise and fear. The associated parameters are
all positive, indicating the stability of the models. Their positive sign is logical
because when a person opens the mouth, the perceived facial expression is likely
to be fear or surprise.

The specifications of the model related to the detection of the most impressive
frame in the latent models (with and without panel effect) and to the detection
of the first frame of the relevant group of frames in the smoothed model are
quite similar. For the latent models, it contains parameters associated with
both {yk,t,o} and {zk,t,o} and for the smoothed model, only associated with
{yk,t,o}. For example, y2,t,o is present in both models and is related to the height
of the mouth (“mouth h”). Figure 8 displays the variation of this feature among
frames of a video which are displayed at the top. The sign of the parameters
associated with y2,t,o (θM2,2,6, θM5,2,6 and θM3,2,8) is positive for both latent and
smoothed models, which is logical. The higher the difference of mouth height
between two consecutive frames, the more important the second frame is. In that
special case and regarding only y2,t,o, frame 3 seems to be the most important.

In conclusion, the parameters of the models are significant and interpretable.
Moreover, the addition of a dynamic feature in the models significantly improves
the fit. The accounting of the panel effect is successful as the latent model with
panel effect has the best fit.

6 Prediction capability

The prediction capability is tested in order to ensure the quality of the models.
The dataset used in this section is the same as the one used for estimation (see
Section 5). We proceed in three steps: the first one consists of comparing the per-
centages of badly predicted observations for the proposed models. In the second

119



Robin et al., Journal of Choice Modelling, 4(2), pp. 95-148

-1

-0.5

0

0.5

1

1 2 3 4

F
ac

ia
l

m
ea

su
re

m
en

t

Frame

Figure 8: Examples of the variations of y2,t,o, associated to the height of the
mouth (“mouth h”), for a video

step, the models are validated using the method of cross-validation. In the third
step, we study the predictions of the proposed models at a more disaggregated
level. This consists of picking a certain video and analyzing the predictions of
the models in detail.

6.1 Aggregate prediction

An observation is considered to be poorly predicted if its forecasted choice proba-
bility is less than 1

9 , which corresponds to the probability predicted by a uniform
probability on the number of alternatives. Table 2 summarizes the percentage
of poorly predicted observations per model. The percentages are consistent with
the fitting results presented in Section 5, which is good sign. The percentage
of poorly predicted observations is already low for the reduced model. The
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Table 2: Percentages of badly predicted observations on the estimation data

Reduced Latent Smoothed Reduced panel Latent panel

17.89 17.34 15.45 18.43 14.45

improvement brought by the latent and smoothed models compared to the
reduced model is minor in terms of prediction. This can be explained by the
structure of the considered facial videos. Since the “peak” emotion is often ob-
served at the end of the video, there are fewer observations where the dynamic
models could out perform. However the latent model with panel effect is the
best.
The cumulative distributions of the choice probabilities predicted by the models
are displayed in Figure 9. If the models were perfect, the curves would have been
flat with a peack for choice probabilities equal to one. This would mean that the
models replicate the observed choices of labels exactly. Of course this is not the
case. The five curves are close in the “poorly predicted” interval (choice proba-
bilities less than 1

9 = 0.11). This is consistent with the results shown in Table 2.
In the interval [0, 0.78] the latent model with panel effect performs the best.
In the last interval, it is the latent model that predicts the highest probabilities
(its curve is the last to reach the level of one). The smoothed model, is better
than the reduced model, except on [0.68, 1]. Moreover the latent model with
panel effect is always better than the reduced models (with and without panel
effect), which demonstrates the added value of the dynamic modeling.

6.2 Cross-validation

The study of the poorly predicted observations, described in Section 6.1, is done
on the estimation data presented in Section 2. The finality of the models is
to be used on some data not involved in the estimation process for prediction.
Consequently the model quality should be tested on some new data, but we do
not have access to such data. In this situation, the cross-validation allows us
to validate the models. The methodology is inspired from the work of Robin
et al. (2009) that successfully cross-validates a model for pedestrian behavior.
The dataset is split into an estimation and a validation subset. The dataset is
randomly split across the videos into five equal subsets of 13 videos out of 65.
Four subsets are combined into the estimation dataset. After estimation, the
model is applied on the remaining subset. This operation is repeated five times.
The percentages of poorly predicted observations, calculated over the validation
subsets are presented in Table 3.

For the models without panel effect, the two dynamic models (the latent and
smoothed models) are always better than the reduced model. In addition,
the percentages of badly predicted observations are close to those obtained on the
entire estimation data (see Table 2) for the latent and smoothed models, but
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Figure 9: Cumulative distributions of the choice probabilities predicted by the
five proposed models, on the estimation data

not the reduced model. The dynamic models appear to be much more robust
than the reduced model. This justifies the approach and the validity of the
dynamic models.

For the models with panel effect, results for the reduced model with panel
effect are worse than the reduced model. This is also the case for the latent
model with panel effect compared to the latent model. Note that for experi-
ence 4, the estimation of the latent model with panel effect did not converge
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Table 3: Percentages of badly predicted observations calculated over the valida-
tion subsets, obtained when cross-validating the models

Validation subsets 1 2 3 4 5

Reduced 28.74 26.15 21.31 21.87 28.26

Latent 24.14 13.85 11.48 17.19 21.74

Smoothed 20.69 16.92 18.03 15.63 10.87

Reduced panel 28.73 26.15 22.95 23.43 28.26

Latent panel 28.70 15.38 21.29 ∗ 35.87

(this model is very difficult to estimate due to its complexity). We conclude that
the two models with panel effect tend to over-fit the data.

6.3 Disaggregate prediction

We looked at the power of prediction over the estimation dataset, at the aggre-
gate level. The study of a particular video allows us to precisely describe the
predictions of the five models. The video is the same as the one considered in
Figure 8. The detailed predictions of the models are shown in Figure 10 for the
reduced model, Figure 11 for the latent model, Figure 12 for the smoothed
model, Figure 13 for the reduced model with panel effect and Figure 14 for
the latent model with panel effect. On these figures, each column is associ-
ated to a frame, except the one of the extreme right. The top row displays the
considered frames. As mentioned in Section 2, each frame is the first of a group
of images corresponding to one second of time in a video. The second row reflects
the predictions of the model associated to the perception of the expressions. For
each frame, the probability distribution of the expressions is shown. The third
row shows the influence of the frames. The contributions of the frames sum up
to one. For the reduced models (with and without panel effect), only the last
frame is considered relevant. Therefore the peak is justified on this last frame.
For the latent models (with and without panel effect), it shows the influence
of each frame on the final expression choice. For the smoothed model, the
peak measures the contribution of the average perception of the following group
of frames (until the end of the video), including the frame of the peak. Finally
in the extreme right column, we can find on the second row the final probability
distribution among the expressions, which is predicted by the model, and on the
third row, the distribution of the collected labels for the video.

On the first frame of the considered video (see Figure 8), the face tends to be
neutral, and then evolves toward a different expression. Seven respondents have
labeled this video: three gave the label happiness, three gave the label surprise,
and one the label anger. Anger does not seem to be appropriate for this video,
but it has been retained because there was no proof of mistakes made by the
respondent. In addition, the subject on the two first frames of the video could be
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considered angry. The observed distribution of the collected labels is displayed at
the bottom right of the figures. The reduced model predicts 65% for happiness,
35% for surprise, and 0% for anger. The prediction seems logical regarding only
the facial characteristics in the last frame.

The latent model predicts 24% for happiness, 58% for surprise, 18% for
disgust and 0% for anger. This is further away from the distribution of the
collected labels, compared to the reduced model. The model has selected
frame 3 as being the most impressive frame, with a probability almost equal to
one, so the predictions of the model results only from the perception of this frame.
This is logical because the utilities of the frames contain both {yk,t,o} and {zk,t,o}
(see Section 3.2), and they appear to be very high for frame 3 (see Figure 8 for
the height of the mouth). For this frame, the predicted probability of surprise is
high. This is logical, because the utility of surprise contains {zk,t,o} (see Equation
(9)), which account for the perception of suddenness. For this frame, the high
probability for happiness is also intuitive due to the facial characteristics. The
prediction of disgust does not seem to be appriopriate.

The smoothed model predicts 58% for happiness, 38% for surprise, 4%
for disgust and 0% for anger. The prediction is well adapted to the observed
distribution of labels. The model detects frame 3 as being the first frame of the
relevant group of frames. As for the latent model, this is due to the presence
of {yk,t,o} in the utilities of the frames (see Section 3.3), and {yk,t,o} are high for
this frame (see Figure 8). The model handling the perception of the expressions
predicts more surprise than happiness for frame 3, and the contrary for frame
4. This is logical due to the perception of suddenness in frame 3 (see the utility
of surprise in Equation (18)). The facial characteristics are stabilized in frame 4
and lead to the expression happiness, which is consistent. The final prediction
of the model is the average of the perception of expressions among the frames of
the relevant group (frames 3 and 4), which explains the balanced share between
happiness and surprise.

The results are rather the same for the reduced model with panel effect
and the reduced model. Regarding the latent model with panel effect, it
predicts 35% of happiness, 52% of surprise, 13% of disgust and 0% of anger. The
model has selected the frame 3 as being the most influential. Even if the results
are quite similar compared to those obtained with the latent model, they are
better because the difference between the predicted probabilities of happiness and
surprise are smaller.

The predictions of the five models are explainable. The smoothed model
seems to be the most interpretable. The smoothed model and latent model
with panel effect predict the closest distributions of probability across the ex-
pressions to the collected labels. The smoothed model over-predicts happiness
and under-predicts surprise, contrary to the latent model with panel effect.
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7 Conclusions and Perspectives

In this paper, we propose a new approach of the dynamic facial expression recog-
nition. The estimation of the models is based on labels collected through respon-
dents of an internet survey. The developed models capture causal effects between
facial characteristics and expressions. Statistical tests and model predictions have
proved the model performance, and the added value of the dynamic formulation
(the latent models and the smoothed model compared to the reduced mod-
els). In terms of fit, the latent model with panel effect is the best. The five
models have been cross-validated on the estimation data. The latent model
and the smoothed model appear to be more robust than the reduced model.
The models with panel effect over fit the data. Consequently, they cannot be
used for forecasting. Finally, some qualitative analysis of the model predictions
allow us to confirm the modeler’s intuition about the facial video. Regarding all
the analysis, the smoothed model seems to be the most robust.

The proposed work overcomes the limitations of the standard approaches in
the dynamic facial expression recognition. Standard approaches consist of associ-
ating any two examples with the same facial descriptors to the same expression.
One of the main assumption is that facial expression labels, which are in the data,
stand for the true expressions (Cohen et al., 2003; Bartlett et al., 2003). But this
assumption does not hold in reality, as people can perceive the same expression
differently. Facial expressions are characterized by the ambiguity. In our work,
this ambiguity is directly taken into account as we have adopted a probabilistic
approach. Another limitation of the previous approaches is the inability for in-
terpreting the knowledge acquired by the systems. They are often black-boxes,
where the interpretation of the links between the inputs (facial descriptors) and
the output (expression) are not possible. Due to this black-box nature, it is also
impossible to put knowledge in the model to improve it further. In our proposed
work, psychological concepts are translated into mathematical equations, and the
maximum likelihood estimation allows to confirm (or negate) the quality of the
model. In addition, this allows us to learn the behavioral patterns contained in
the data. In particular, we have quantified the concepts introduced by Ekman
and Friesen (1978).

We generalize the work of Sorci et al. (2010a), as we worked with facial videos
and not with images. More generally, this work is the first attempt for analyzing
videos using discrete choice models.

Regarding discrete choice modeling, we have developed models inspired from
recent works (Ben-Akiva, 2010). Original formulations have been introduced to
capture the dynamics, which can be reused for other analysis. The proposed mod-
els are based on different assumptions about video perceptions. The estimation,
validation and comparison of the models underline the relevance of these as-
sumptions. We learned that respondents have tendency to make their expression
choices when watching specific frames and we can select these frames in different
ways. Our approach explains and quantifies these psychological concepts.
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As such, these models can be used directly for applications. The major dif-
ficulty concerns the computation of the variables. The quality of the considered
videos should be quite high, in terms of definition and size of the face. The videos
of the FEED database are not dedicated to transportation (the stimuli used to
generate the facial expressions of the subjects were not necessarily related to the
field) but remain quite general. Some case studies have to be conducted in order
to completely prove the model applicability to transportation (Denis, 2009).

In the context of “Aware” vehicles, we think of a system that would be able
to manage automatically the interior features of the car, based on the driver’s
characteristics, including the facial expression. In case of dedicating the proposed
model for this application, a data collection in two stages should be performed.
In the first stage, we can conduct a survey in a car simulator by placing the
respondents in controlled real driving situations and recording their faces. Then,
the respondents would be asked to perform actions using the interior car features.
In the second stage, the collected facial videos would be labeled using a similar
survey to the proposed internet survey. A model handling the choice of action
using the driver’s characteristics and expression as inputs, can be developed.
Then, in a real context, the face of a driver can be monitored with a camera and
the proposed model applied.

The proposed models may be also used to analyze travelers satisfaction with
public transportation (Friman and Garling, 2001). The facial expression could be
used as a measure of satisfaction when conducting transportation surveys. For
on-site measures, it is not worth as the facial expressions are most of the time
generated by stimuli not related to transportation. The experimental design of
the survey should be carefully set in order to use adapted stimuli.

More generally, for the estimation of hybrid choice models, some indicators of
the latent variables are needed. Bolduc and Alvarez-Daziano (2010) propose an
hybrid choice model handling the vehicle choice. In that case, the facial expression
of the survey respondent could be used as an indicator of the two latent variables:
“Environmental concern” and “Appreciation of new car features”. In addition
to the rational behavior, the latent variables capture the emotional states. The
facial expression results from a short emotion and it could be used as a proxy
of this emotion, or combined with other emotion indicators (questionnaires, for
example) to reveal it. Practically, in addition to the questionnaires, some well-
chosen stimuli should be shown to the survey respondents, such as short and
impacting environmental documentaries, or advertisements of cars having new
features, while their faces are recorded. Then, a DFER model is needed to
determine the facial expressions. For this application, the facial expression is not
an input of the prediction process, but it helps to reinforce the quality of the
estimated model.

Finally in the marketing context, MacInnis et al. (1991) studied the ability
of individuals to process the brand information from advertisements. The facial
expression could be used as inputs for the model, in addition to eye-tracking data.

Even if this new modeling framework is meaningful, there is some scope for
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improvements. The model has been estimated on a small dataset. More ob-
servations would help. The number and type of videos is also a critical aspect.
Feature variabilities are quite low and should be increased. This would allow us
to have a more complete specification of the utilities. We could use the specifi-
cation proposed by Hensher (2010) for the processing of explanatory variables,
which is highly relevant due to large amount of information provided on a face. In
addition, more complex structures could be tested for the choice models. In the
latent and smoothed models, the model handling the detection of the most
attractive frame and the first frame of the relevant group of frames can be mod-
ified for considering the correlation between frames. A cross-nested logit seems
to be well adapted to the frame choice, using two nests: “attractive” and “not
attractive”. Each frame could belong to the two nests. The membership degrees
of the frame to each nest should be defined as a function of their attractiveness.
They cannot be generic, as the videos are varying from one observation to the
other and the associated frame set. This stands as a research topic on its own.
Finally, a comparison with the state of the art machine learning method, such as
neural networks (NN) or hidden markov models (HMM), would be interesting.

Acknowledgments

We are very grateful to Dr. Matteo Sorci who provided the necessary codes to
extract facial features using AAM. We thank Dr. Prem Kumar Viswanathan who
helped in improving the paper editing.

127



Robin et al., Journal of Choice Modelling, 4(2), pp. 95-148

F
ig

u
re

10
:

E
x
am

p
le

of
a

d
et

ai
le

d
p

re
d

ic
ti

on
of

th
e

re
d

u
c
e
d

m
o
d

e
l

128



Robin et al., Journal of Choice Modelling, 4(2), pp. 95-148

F
ig

u
re

11
:

E
x
am

p
le

of
d

et
ai

le
d

p
re

d
ic

ti
on

of
th

e
la

te
n
t

m
o
d

e
l

129



Robin et al., Journal of Choice Modelling, 4(2), pp. 95-148

F
ig

u
re

12
:

E
x
am

p
le

of
d

et
ai

le
d

p
re

d
ic

ti
on

of
th

e
sm

o
o
th

e
d

m
o
d

e
l

130



Robin et al., Journal of Choice Modelling, 4(2), pp. 95-148

F
ig

u
re

13
:

E
x
am

p
le

of
d

et
ai

le
d

p
re

d
ic

ti
on

of
th

e
re

d
u

c
e
d

m
o
d

e
l

w
it

h
p

a
n

e
l

e
ff

e
c
t

131



Robin et al., Journal of Choice Modelling, 4(2), pp. 95-148

F
ig

u
re

14
:

E
x
am

p
le

of
d

et
ai

le
d

p
re

d
ic

ti
on

of
th

e
L

a
te

n
t

m
o
d

e
l

w
it

h
p

a
n

e
l

e
ff

e
c
t

132



Robin et al., Journal of Choice Modelling, 4(2), pp. 95-148

References

Abou-Zeid, M., 2009. Measuring and modeling travel and activity well-being.
Ph.D. thesis, Massachusetts Institute of Technology.

Antonini, G., Sorci, M., Bierlaire, M., Thiran, J., 2006. Discrete choice models for
static facial expression recognition. In: Blanc-Talon, J., Philips, W., Popescu,
D., Scheunders, P. (Eds.), 8th International Conference on Advanced Concepts
for Intelligent Vision Systems. Vol. 4179 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, Berlin, pp. 710–721.

Bartlett, M. S., Littlewort, G., Fasel, I., Movellan, J. R., 2003. Real time face
detection and facial expression recognition: Development and applications to
human computer interaction. Computer Vision and Pattern Recognition Work-
shop 5, 53.

Ben-Akiva, M., 2010. Planning and action in a model of choice. In: Hess, S., Daly,
A. (Eds.), Choice modelling: the state-of-the-art and the state-of-practice.
Emerald, pp. 19–34.

Ben-Akiva, M., Mcfadden, D., Train, K., Walker, J., Bhat, C., Bierlaire, M.,
Bolduc, D., Boersch-Supan, A., Brownstone, D., Bunch, D. S., Daly, A.,
De Palma, A., Gopinath, D., Karlstrom, A., Munizaga, M. A., 2002. Hybrid
choice models: Progress and challenges. Marketing Letters 13, 163–175.

Bierlaire, M., 2003. BIOGEME: a free package for the estimation of discrete choice
models. In: Proceedings of the 3rd Swiss Transportation Research Conference.
Ascona, Switzerland, www.strc.ch.

Bierlaire, M., Chen, J., Newman, J. P., 2010. Using location observations to
observe routing for choice models. In: Proceedings of the 89th Transportation
Research Board Annual Meeting. Washington D.C., US.

Bierlaire, M., Fetiarison, M., 2009. Estimation of discrete choice models: extend-
ing biogeme. In: Proceedings of the 9th Swiss Transport Research Conference.
Ascona, Switzerland.

Bierlaire, M., Frejinger, E., 2008. Route choice modeling with network-free data.
Transportation Research Part C 16 (2), 187–198.

Bolduc, D., Alvarez-Daziano, R., 2010. On estimation of hybrid choice models.
In: Hess, S., Daly, A. (Eds.), Choice modelling: the state-of-the-art and the
state-of-practice. Emerald, pp. 259–288.

Choudhury, C. F., 2007. Model driving decisions with latent plans. Ph.D. thesis,
Massachusetts Institute of Technology.

Cohen, I., Sebe, N., Garg, A., Chen, L. S., Huang, T. S., 2003. Facial expression
recognition from video sequences: temporal and static modeling. Computer
Vision and Image Understanding 91 (1-2), 160 – 187, special Issue on Face
Recognition.

Cootes, T. F., Wheeler, G. V., Walker, K. N., Taylor, C. J., 2002. View-based
active appearance models. Image and Vision Computing 20 (9-10), 657 – 664.

Denis, C., 2009. Facial expression recognition project: Collect a database. Tech.
rep., Transport and Mobility Laboratory (TRANSP-OR), EPFL, EPFL ENAC

133



Robin et al., Journal of Choice Modelling, 4(2), pp. 95-148

INTER TRANSP-OR, Station 18, CH-1015 Lausanne, Switzerland.

Ekman, P., Friesen, W., 1978. Facial action coding system: A technique for the
measurement of facial movement. Consulting Psychologists Press, Palo Alto,
California.

Fasel, B., Luettin, J., 2003. Automatic facial expression analysis: a survey. Pat-
tern Recognition 36 (1), 259 – 275.

Friman, M., Garling, T., 2001. Frequency of negative critical incidents and sat-
isfaction with public transport services. Journal of Retailing and Consumer
Services 8 (2), 105 – 114.

Hensher, D. A., 2010. Attributes processing, heuristics and preference construc-
tion in choice analysis. In: Hess, S., Daly, A. (Eds.), Choice modelling: the
state-of-the-art and the state-of-practice. Emerald, pp. 35–70.

Kanade, T., Cohn, J., Tian, Y.-L., 2000. Comprehensive database for facial ex-
pression analysis. In: Proceedings of the 4th IEEE International Conference
on Automatic Face and Gesture Recognition (FG’00). pp. 46–53.

Keltner, D. Ekman, P., 2000. Facial expression of emotion. In: Handbooks of
emotions. M.Lewis & J.M.Havilland, pp. 236–249.

Lerner, J. S., Keltner, D., 2000. Beyond valence: Toward a model of emotion-
specific influences on judgement and choice. Cognition and Emotion 14, 473 –
493.

MacInnis, D. J., Moorman, C., Jaworski, B. J., 1991. Enhancing and measuring
consumers’ motivation, opportunity, and ability to process brand information
from ads. The Journal of Marketing 55 (4), 32–53.

Mellers, B. A., McGraw, A. P., 2001. Anticipated emotions as guides to choice.
Current Directions in Psychological Science 10 (6), 210–214.

Miwa, H., Itoh, K., Matsumoto, M., Zecca, M., Takanobu, S., Rocella, S., Car-
rozza, P., Dario, A., A., T., 2004. Effective emotional expressions with emotion
expression humanoid robot we-4rii - integration of humanoid robot hand rch-1.
In: International Conference on Intelligent Robots and Systems. Vol. 3. pp.
2203–2208.

Pantic, M., Patras, I., 2006. Dynamics of facial expression: recognition of fa-
cial actions and their temporal segments from face profile image sequences.
Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on
36 (2), 433–449.

Robin, T., Antonini, G., Bierlaire, M., Cruz, J., 2009. Specification, estimation
and validation of a pedestrian walking behavior model. Transportation Re-
search Part B 43 (1), 36–56.

Small, D., Verrochi, N., 2009. The face of need: facial emotion expression on
charity advertisements. journal of marketing research XLVI, 777 – 787.

Sorci, M., Antonini, G., Cruz, J., Robin, T., Bierlaire, M., Thiran, J.-P., 2010a.
Modelling human perception of static facial expressions. Image and Vision
Computing 28 (5), 790–806.

Sorci, M., Robin, T., Cruz, J., Bierlaire, M., Thiran, J.-P., Antonini, G., 2010b.

134



Robin et al., Journal of Choice Modelling, 4(2), pp. 95-148

Capturing human perception of facial expressions by discrete choice modelling.
In: Hess, S., Daly, A. (Eds.), Choice Modelling: The State-of-the-Art and the
State-of-Practice. Emerald Group Publishing Limited, pp. 101–136.

Tojo, T., Matsusaka, Y., Ishii, T., Kobayashi, T., 2000. A conversational robot
utilizing facial and body expressions. In: Systems, Man, and Cybernetics, 2000
IEEE International Conference on. Vol. 2. pp. 858–863.

Wallhoff, F., 2004. Fgnet-facial expression and emotion database. Tech. rep.,
Technische Universität München.

Weinberg, P., Gottwald, W., 1982. Impulsive consumer buying as a result of
emotions. Journal of Business Research 10 (1), 43 – 57.

135



Robin et al., Journal of Choice Modelling, 4(2), pp. 95-148

A Notations

Table 4: Summary of the mentioned acronyms

Acronym Definition

A Anger

AAM Active appearance model

ASC Alternative specific constant

AU Action unit

D Disgust

DCM Discrete choice model

DFER Dynamic facial expression recognition

DK I don’t know

EDU Expression descriptive unit

EDU 6 EDU defined as the ratio between the average of
the eye width and the mouth width

EDU 8 EDU defined as the ratio between the average of
the eyes height and the average of the brow-eyes height

F Fear

FER Facial expression recognition

FACS Facial action coding system

FEED Facial expression and emotion database

HMM Hidden markov model

H Happiness

MEV Multivariate extreme value

N Neutral

NN Neural networks

O Other

PCA Principal component analysis

RAP brow EDU defined as the ratio between the average of
the brow-eyes height and the brow-eyes width

RAP mouth EDU defined as the ratio between the height
and the width of the mouth

SA Sadness

SFER Static facial expression recognition

SU Surprise

SVM Support vector machine
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B Detailed description of the explanatory variables

The details of the mask extracted using an AAM, are shown in Figure 15(a), as
well as the geometrical relationship of the facial measure points (Figure 15(b))
and some facial descriptors (Figure 15(c)). The correspondences between the
measures on the mask displayed in Figure 15(b) and the mask presented in Fig-
ure 15(c), are shown in Table 5.

(a) (b) (c)

Figure 15: a) Facial landmarks (55 points); b) the geometrical relationship of
facial feature points; c) some facial descriptors;

Different explanatory variables based on the outputs of the AAM, are used to
reflect the perception of facial expressions. They are coming from the facial action
coding system (FACS); they are expression descriptive units (EDU), and also C
parameters.

Figure 16: Sample of AU

The FACS associates tensenesses and relaxations of muscles to each expression.
They call them action units (AU). A sample of AU is presented in Figure 16. For
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Table 5: Correspondences between measures on masks 15(b) and 15(a)

FACS Measures Measures on mask 15(a)

JJ ′ Dist(P5, P6)

JF Dist(P6, P19)

J ′F ′ Dist(P5, P15)

KG ≡ l8 Dist(P8, P25)

K ′G′ Dist(P3, P17)

GI ≡ l6 Dist(P25, P21)

G′I ′ Dist(P13, P17)

PF Dist(P19, P42)

P ′F ′ Dist(P15, P37)

FC Dist(P19, P31)

F ′C ′ Dist(P15, P27)

FD ≡ l4 Dist(P25, P29)

F ′D Dist(P17, P29)

OD Dist(
(
P39+P40

2

)
, P29)

OB Dist(
(
39+40

2

)
, 33)

DB Dist(P29, P33)

C ′C Dist(P27, P31)

]FHJ ]P19P23P6

]F ′H ′J ′ ]P15P11P5

]HFI ]P23P19P21

]H ′F ′I ′ ]P11P15P13

]HGF ]P23P25P19

]H ′G′F ′ ]P15P17P11

example AU 6 is associated to happiness. The details of these associations are
presented in Ekman and Friesen (1978). We translate the facial distances and
angles extracted from the mask, into AU.

EDU are reported in Table 6 and introduced by in Antonini et al. (2006).
Additionally to the FACS, they account for the interactions between facial de-
scriptors. The first 5 EDU represent, respectively, the eccentricity of eyes, left
and right eyebrows, mouth and nose. The EDU from 7 to 9 represent the eyes in-
teractions with mouth and nose, while the 10th EDU is the nose-mouth relational
unit. The last 4 EDU relate the eyebrows to mouth and nose. The EDU can be
intuitively interpreted. For example, in a face displaying a surprise expression,
the eyes and the mouth are usually opened and this can be captured by EDU7
(eyeheight/mouthheight).

Another vector C of values capturing both the facial texture and shape is also
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Figure 17: Examples of synthesized faces obtained varying the first C parameter
from the mean face (±3std).

Table 6: Expressions Descriptive Units

EDU Measures Measures definition

EDU1 lew+rew
leh+reh

EDU2 lbw
lbh

EDU3 rbw
rbh

EDU4 mw
mh

EDU5 nh
nw

EDU6 lew
mw

EDU7 leh
mh

EDU8 leh+reh
lbh+rbh

EDU9 lew
nw

EDU10 nw
mw

EDU11 EDU2
EDU4

EDU12 EDU3
EDU4

EDU13 EDU2
EDU10

EDU14 EDU3
EDU14

generated by the AAM. FACS and EDU provide measures of local facial features
but they do not provide a description of a face as a global entity. This informa-
tion can be obtained considering the appearance vector C matching the face in
the processed image. Figure 17 shows the effect of varying the first appearance
model parameter, showing changes in identity and expression.
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C Estimation results

Table 7: Estimation results of the constants for reduced model

parameter H SU F D SA A N O DK xk,To,o value t-test 0

ASCM1,A × 1 0.95 0.28

ASCM1,D × 1 25.38 7.88

ASCM1,DK × 1 -0.69 -1.79

ASCM1,F × 1 0.49 0.19

ASCM1,H × 1 -3.14 -0.79

ASCM1,O × 1 6.95 3.20

ASCM1,SA × 1 10.80 2.54

ASCM1,SU × 1 -11.27 -5.63

Table 8: Estimation results and description of the specification of reduced
model

parameter H SU F D SA A N O DK xk,To,o value t-test 0

θM1,1 × EDU 6 -6.52 -3.63

θM1,2 × EDU 8 -4.75 -6.18

θM1,3 × × RAP brow 6.70 4.53

θM1,4 × × RAP mouth 2.94 2.85

θM1,5 × RAP mouth 9.36 5.35

θM1,6 × C 1 -16.30 -3.51

θM1,7 × C 2 23.98 3.49

θM1,8 × C 2 26.22 5.16

θM1,9 × C 3 15.34 3.13

θM1,10 × C 3 15.73 3.27

θM1,11 × broweye l2 153.91 3.17

θM1,12 × broweye l3 85.58 5.75

θM1,13 × × × × × broweye r2 -49.81 -4.30

θM1,14 × × eye angle l 58.55 3.43

θM1,15 × eye brow angle l -140.87 -5.10

θM1,16 × eye mouth dist l2 -69.83 -3.42

θM1,17 × × × eye mouth dist l -36.03 -2.89

θM1,18 × eye nose dist l 245.03 5.05

θM1,19 × × × × eye nose dist l 147.67 4.89

θM1,20 × × × × × eye nose dist r -213.93 -6.04

θM1,21 × × leye h 20.97 2.09

θM1,22 × × mouth nose dist2 -90.97 -2.15

θM1,23 × mouth nose dist -236.37 -5.65

θM1,24 × mouth w 188.42 4.90
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Table 9: Estimation results of the constants for the latent model, associated
the expression perception model

parameter H SU F D SA A N O DK xk,t,o value t-test 0

ASCM2,A × 1 -5.86 -1.31

ASCM2,D × 1 22.73 4.48

ASCM2,DK × 1 -0.71 -1.83

ASCM2,F × 1 -4.55 -1.13

ASCM2,H × 1 3.02 0.22

ASCM2,O × 1 14.44 4.22

ASCM2,SA × 1 8.54 1.57

ASCM2,SU × 1 -25.69 -7.08

Table 10: Estimation results and description of the specification of the latent
model, associated to the expression perception model

parameter H SU F D SA A N O DK xk,t,o value t-test 0

θM2,1,1 × EDU 6 -6.92 -3.37

θM2,1,2 × EDU 8 -3.92 -5.42

θM2,1,3 × × RAP brow 7.84 4.45

θM2,1,4 × × RAP mouth 4.93 3.42

θM2,1,5 × RAP mouth 12.74 2.54

θM2,1,6 × C 1 -38.18 -5.27

θM2,1,7 × C 2 40.99 4.81

θM2,1,8 × C 2 45.77 7.12

θM2,1,9 × C 3 23.96 3.71

θM2,1,10 × C 3 24.46 4.11

θM2,1,11 × broweye l2 240.75 4.11

θM2,1,12 × broweye l3 104.09 4.61

θM2,1,13 × × × × × broweye r2 -41.76 -2.93

θM2,1,14 × × eye angle l 44.95 2.58

θM2,1,15 × eye brow angle l -199.01 -6.04

θM2,1,16 × eye mouth dist l2 -73.15 -2.72

θM2,1,17 × × × eye mouth dist l -84.03 -3.83

θM2,1,18 × eye nose dist l 217.99 3.69

θM2,1,19 × × × × eye nose dist l 80.02 2.09

θM2,1,20 × × × × × eye nose dist r -211.73 -4.45

θM2,1,21 × × leye h 51.35 4.12

θM2,1,22 × × × × × × mouth h 98.27 3.27

θM2,1,23 × × mouth nose dist2 -92.34 -2.04

θM2,1,24 × mouth nose dist -412.5 -5

θM2,1,25 × mouth w 158.29 2.13

θzM2,1,1
mouth h, z1,t,o 50.21 3.04
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Table 11: Estimation results of the latent model, associated to the memory
effects parameters

parameter value t-test 0

αM2,H -0.62 -8.18

αM2,F -0.33 -2.73

αM2,SA -0.46 -2.04

αM2,O -0.70 -2.68

Table 12: Estimation results and description of the specification of the latent
model, associated to the model which detects the most meaningful frame

parameter yk,t,o value t-test 0

θyM2,2,1
C 2 -426.75 -1.83

θyM2,2,2
eye brow angle 350.53 1.7

θyM2,2,3
mouth w 407.34 1.76

θyM2,2,4
C 4 463.35 1.75

θyM2,2,5
eye h -566.62 -1.79

θyM2,2,6
mouth h 104.51 1.84

θzM2,2,1
brow dist, z4,t,o 261.65 1.84
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Table 13: Estimation results of the constants for the smoothed model, associ-
ated to the expression perception model

parameter H SU F D SA A N O DK xk,t,o value t-test 0

ASCM3,A × 1 -7.53 -1.63

ASCM3,D × 1 20.28 4.03

ASCM3,DK × 1 -0.69 -1.79

ASCM3,F × 1 -0.35 -0.09

ASCM3,H × 1 -7.66 -1.43

ASCM3,O × 1 12.95 4.38

ASCM3,SA × 1 4.17 1.04

ASCM3,SU × 1 -29.15 -7.07
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Table 14: Estimation results and description of the specification of the smoothed
model, associated to the expression perception model

parameter H SU F D SA A N O DK xk,t,o value t-test 0

θM3,1,1 × EDU 6 -9.19 -3.82

θM3,1,2 × EDU 8 -4.18 -4.09

θM3,1,3 × × RAP brow 12.6 5.69

θM3,1,4 × RAP brow 5.44 2

θM3,1,5 × × RAP mouth 2.89 2

θM3,1,6 × RAP mouth 11.77 4.44

θM3,1,7 × C 1 -23.36 -3.36

θM3,1,8 × C 2 42.46 5.3

θM3,1,9 × C 2 33.98 5.51

θM3,1,10 × C 3 25.82 3.88

θM3,1,11 × C 3 17.61 2.74

θM3,1,12 × C 5 -16.4 -2.5

θM3,1,13 × broweye l2 149.31 3.15

θM3,1,14 × broweye l3 128.49 5.76

θM3,1,15 × × × × × broweye r2 -61.58 -4.31

θM3,1,16 × × eye angle l 40.99 2.06

θM3,1,17 × eye brow angle l -126.55 -4.59

θM3,1,18 × eye mouth dist l2 -50.07 -2.13

θM3,1,19 × × × eye mouth dist l -32.09 -2.2

θM3,1,20 × eye nose dist l 163.49 3.75

θM3,1,21 × × × × eye nose dist l 114.66 3.15

θM3,1,22 × × × × × eye nose dist r -256.49 -5.39

θM3,1,23 × × leye h 52.58 3.73

θM3,1,24 × × × × × × mouth h 90.92 2.96

θM3,1,25 × mouth nose dist -342.14 -6.17

θM3,1,26 × mouth w 228.81 4.47

θzM3,1,1
× mouth h, z1,t,o 0.13 4.46

θzM3,1,2
× × leye h, z3,t,o 0.04 2.39
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Table 15: Estimation results and description of the specification of the smoothed
model, associated to the model related to the detection of the first frame of the
relevant group of frames

parameter yk,t,o value t-test 0

θyM3,2,1
C 1 -234.75 -1.75

θyM3,2,2
eye brow angle 548.34 1.76

θyM3,2,3
mouth w 23.29 1.81

θyM3,2,4
C 2 101.9 1.85

θyM3,2,5
C 3 -221.23 -1.57

θyM3,2,6
C 5 529.64 1.91

θyM3,2,7
eye h -122.15 -1.79

θyM3,2,8
mouth h 119.21 1.88

Table 16: Estimation results of the constants for reduced model with panel
effect

parameter H SU F D SA A N O DK xk,To,o value t-test 0

ASCM4,A × 1 1.61 0.42

ASCM4,D × 1 25.40 5.80

ASCM4,DK × 1 -0.067 -0.10

ASCM4,F × 1 1.14 0.37

ASCM4,H × 1 -3.69 -0.94

ASCM4,O × 1 7.44 2.95

ASCM4,SA × 1 11.60 3.37

ASCM4,SU × 1 -9.91 -4.83
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Table 17: Estimation results and description of the specification of reduced
model with panel effect

parameter H SU F D SA A N O DK xk,To,o value t-test 0

θM4,1 × EDU 6 -6.68 -3.27

θM4,2 × EDU 8 -4.57 -3.68

θM4,3 × × RAP brow 6.38 4.41

θM4,4 × × RAP mouth 2.70 3.33

θM4,5 × RAP mouth 9.66 5.50

θM4,6 × C 1 -16.70 -2.33

θM4,7 × C 2 22.76 2.80

θM4,8 × C 2 25.20 4.01

θM4,9 × C 3 15.84 2.47

θM4,10 × C 3 15.92 6.03

θM4,11 × broweye l2 158.76 3.00

θM4,12 × broweye l3 82.23 5.75

θM4,13 × × × × × broweye r2 -52.02 -3.20

θM4,14 × × eye angle l 55.23 3.12

θM4,15 × eye brow angle l -143.11 -7.56

θM4,16 × eye mouth dist l2 -66.87 -2.49

θM4,17 × × × eye mouth dist l -42.45 -3.40

θM4,18 × eye nose dist l 252.55 5.46

θM4,19 × × × × eye nose dist l 153.93 3.38

θM4,20 × × × × × eye nose dist r -214.88 -3.93

θM4,21 × × leye h 22.90 1.80

θM4,22 × × mouth nose dist2 -93.02 -2.01

θM4,23 × mouth nose dist -235.84 -3.82

θM4,24 × mouth w 202.92 4.48

σ 1.47 4.33

Table 18: Estimation results of the constants for the latent model with panel
effect, associated the expression perception model

parameter H SU F D SA A N O DK xk,t,o value t-test 0

ASCM5,A × 1 -5.29 -1.44

ASCM5,D × 1 20.90 4.44

ASCM5,DK × 1 -0.180 -0.25

ASCM5,F × 1 -3.30 -0.63

ASCM5,H × 1 -11.08 -0.96

ASCM5,O × 1 14.70 3.00

ASCM5,SA × 1 10.09 1.95

ASCM5,SU × 1 -22.50 -6.45
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Table 19: Estimation results and description of the specification of the latent
model with panel effect, associated to the expression perception model

parameter H SU F D SA A N O DK xk,t,o value t-test 0

θM5,1,1 × EDU 6 -6.10 -4.01

θM5,1,2 × EDU 8 -3.85 -3.65

θM5,1,3 × × RAP brow 7.62 3.37

θM5,1,4 × × RAP mouth 3.96 2.98

θM5,1,5 × RAP mouth 17.70 3.27

θM5,1,6 × C 1 -30.40 -4.20

θM5,1,7 × C 2 43.40 5.52

θM5,1,8 × C 2 46.10 5.68

θM5,1,9 × C 3 21.60 3.21

θM5,1,10 × C 3 25.30 3.99

θM5,1,11 × broweye l2 238.00 4.76

θM5,1,12 × broweye l3 87.70 4.30

θM5,1,13 × × × × × broweye r2 -51.60 -3.14

θM5,1,14 × × eye angle l 39.3 1.80

θM5,1,15 × eye brow angle l -190.00 -7.84

θM5,1,16 × eye mouth dist l2 -67.8 -1.82

θM5,1,17 × × × eye mouth dist l -84.30 -3.71

θM5,1,18 × eye nose dist l 258.00 3.15

θM5,1,19 × × × × eye nose dist l 106.00 1.59

θM5,1,20 × × × × × eye nose dist r -223.00 -3.01

θM5,1,21 × × leye h 46.50 3.02

θM5,1,22 × × × × × × mouth h 103.00 2.42

θM5,1,23 × × mouth nose dist2 -121.00 -1.91

θM5,1,24 × mouth nose dist -327.00 -3.00

θM5,1,25 × mouth w 215.00 4.74

θzM5,1,1
mouth h, z1,t,o 55.20 3.06

σM5 1.20 2.44

Table 20: Estimation results of the latent model with panel effect, associated
to the memory effects parameters

parameter value t-test 0

αM5,H -0.557 -4.29

αM5,F -0.314 -2.14

αM5,SA -0.381 -1.31

αM5,O -0.585 -2.64
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Table 21: Estimation results and description of the specification of the latent
model with panel effect, associated to the model which detects the most
meaningful frame

parameter yk,t,o value t-test 0

θyM5,2,1
C 2 -506.23 -3.58

θyM5,2,2
eye brow angle 311.53 3.93

θyM5,2,3
mouth w 438.40 3.69

θyM5,2,4
C 4 441.12 3.85

θyM5,2,5
eye h -634.03 -3.63

θyM5,2,6
mouth h 123.99 3.66

θzM5,2,1
brow dist, z4,t,o 295.89 3.76
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