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Abstract 
 

This paper addresses the issue of ordering effects in choice experiments, and in 

particular how learning processes potentially affect respondents’ stated preferences 

in a sequence of choice sets. In a case study concerning food quality attributes of 

chicken breast filets, we find evidence of ordering effects in a sequence of 16 

choice sets, where the last eight choice sets are identical to the first eight. We find 

evidence of changes in preferences. More precisely there are differences in 

preferences for the price attribute for the two identical sequences. Moreover, we 

find a reduction in the error variance for the last eight choice sets relative to the 

first eight choice sets. This is mainly caused by very high error variances in the 

first two choice sets. These results imply that learning effects in terms of 

institutional learning as well as – though in our case only to a limited extent – 

preference learning can indeed be of significant structural importance when 

conducting CE surveys.  
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1 Introduction  

 
Ample experimental evidence in stated preference (SP) surveys suggests that 

respondents do not always make the coherent choices they are expected to. For 

instance it has been shown that they are often affected by survey context and various 

information cues as well as the order of choice tasks that respondents are required to 

make in Choice Experiments (CE) and in multiple bounded dichotomous choice 

Contingent Valuation (e.g., Ajzen et al. 1996, Carlsson and Martinsson 2008, Day et 

al. 2012, Ladenburg and Olsen 2008, Louviere 2006). This is clearly at odds with 

standard assumptions in economics, e.g., concerning transitivity, rationality, and 

continuity. In this paper, we are particularly interested in investigating how learning 

effects potentially affect respondents’ choices through a sequence of choice sets in CE. 

This issue is related to what is known as ordering effects. Day et al. (2012) provide a 

discussion of different explanations and manifestations of ordering effects. They 

discuss six different effects that are not necessarily mutually exclusive. The first one is 

preference learning or the discovered preference hypothesis (DPH), which relates to 

preference uncertainty (Plott 1996, Plott and Zeiler 2005). The hypothesis states that 

when respondents are faced with new decisions in unfamiliar environments, initial 

decisions will exhibit significant randomness. However, as choices are repeated and 

respondents gain familiarity with their own preferences as well as the decision 

environment, the decisions progressively become more coherent and less random. The 

second effect is referred to as institutional learning, which relates to the fact that most 

respondents participating in SP surveys have never experienced this type of survey 

before. In experimental economics this has been described as confusion or failure of 

game form recognition (Andreoni 1995, Chou et al. 2009). Both preference learning 

and institutional learning suggest that one way to reduce uncertainty in SP surveys is 

to have respondents make repeated choices (Braga and Starmer 2005). Yet, the third 

effect discussed by Day et al. (2012) is fatigue. Respondents could get tired of the 

choice task if it is repeated many times, and thus, their choices may exhibit increasing 

levels of randomness over the sequence of choice tasks (Swait and Adamowicz 2001). 

The fourth effect potentially causing ordering effects is the starting point effect, where 

respondents who are uncertain about their preferences for the good regard a presented 

price as a cue to the “correct” value for that good, and consequently they anchor their 

WTP to this value (Kahneman et al. 1982). A preference learning process such as the 

DPH would lead to elicited preferences moving away from the initial starting point 

towards the ’true’ preferences of the respondent, and, hence the result would be a 

detectable change in preference structure. However, if respondents are not subject to 

preference learning but rather try to choose coherently according to an arbitrary 

starting point as suggested by the coherent arbitrariness view (Ariely et al. 2003), the 

starting point effect would essentially be undetectable as no change in preference 

structure would appear. Finally, the fifth and the sixth effects are both related to the 

fact that respondents may act strategically (Carson and Groves 2007, Day et al. 2012, 

Day and Pinto 2010)
1
. In the case of provision of private goods, the effect of strategic 

behavior is not clear-cut since it depends on what assumptions one makes about the 

respondent’s cognitive capacity. However, one typical behavior could be that 

                                           
1
 Day et al. (2012) distinguish between strategic behavior that is based upon a full recall of the 

presented prices (strategic behavior) and a recall that is weighted toward the recent prices seen 

(reference price behavior).  
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respondents reject alternatives if they have already had an opportunity to obtain a 

similar alternative at a lower cost in a previous choice set.  

In the present paper we investigate to what extent preferences are stable in a 

choice experiment (CE) concerning food safety attributes of chicken breast filets. 

However, instead of varying the position of a given choice set, we apply an 

experimental setup using 16 choice sets per respondent where the last sequence of 

eight choice sets is an exact copy of the first sequence of 8 choice sets. We estimate 

separate models based on the two sequences. The null hypothesis is that the 

preferences and the error variance do not differ between the two sequences. 

Preference stability in stated preference surveys with repeated questions has 

received considerable attention in the literature. However, perhaps as could be 

expected, no consistent pattern has emerged. The majority of the studies have focused 

on and examined learning and fatigue effects by comparing the choices made in 

identical choice sets presented at different positions in a sequence of choice sets. A 

number of studies find no or small differences in preferences based on choices made 

in the beginning and choices made at the end of a sequence (e.g., Carlsson and 

Martinsson 2001, Johnson and Bingham 2001, Hanley et al. 2002, Brouwer et al. 

2010). Other studies find that stated preferences do depend on the sequence of 

preference-eliciting choice questions. For example, Day et al. (2012) test this by 

repeating the first choice set at the end of the sequence of choice sets. They find that 

respondents do not necessarily choose the same alternative when the choice set is 

placed at the end of a choice set sequence instead of in the beginning of the sequence. 

It has also been found that respondents may suffer from starting point bias, or coherent 

arbitrariness, but that learning seems to reduce this bias (Ladenburg and Olsen 2008). 

A number of studies also show that a respondent’s consistency in choices depends on 

the complexity of the task, on the positions of the choice sets in the sequence, and on 

his/her cognitive capability (e.g. Dellaert et al. 1999, DeShazo and Fermo 2002, 

DeSarbo et al. 2004, Lagerkvist et al. 2006, Brown et al. 2008, Savage and Waldman 

2008, Day et al. 2012, Day and Pinto 2010).  

Our design offers some additional insights compared to previous studies. First of 

all, by repeating exactly the same choice sets, the influence of exact sequencing of the 

choice sets is limited. Secondly, by repeating only the first choice set in the end of the 

sequence as previous studies have mainly done, it is only possible to check for 

discrepancies between the first and the last choice set. By repeating the entire 

sequence of choice sets we can make this check for all choice sets in the experimental 

design. Furthermore, we can compare the full preference structure as well as 

individual preference parameters and WTP estimates in order to test for ordering 

effects. Though our experimental design does not allow us to fully discriminate 

between all the different potential effects of ordering mentioned above, we argue that 

our results provide evidence mainly for learning effects taking place. We find 

evidence of changes in preferences. More precisely there are differences in 

preferences for the price attribute for the two identical sequences. This will translate 

into a difference in WTP estimates between the two sequences. At the same time, 

there are no significant differences in preferences for the non-monetary attribute 

between the two sequences. We find significant reductions in unexplained error 

variance for the last sequence of eight choice sets relative to the first sequence of 8 

choice sets. Elaborating on this, we find that it is especially in the first two choice sets 

that the error variance is high (compared to the remaining choice sets across the two 

sequences) and it is also for these two choice sets, in particular the first, that we find 

the largest share of respondents changing their choices in the identical choice sets 
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given later in the sequence. We suggest that this observed ordering effect is primarily 

caused by institutional learning. Our results imply that learning effects in terms of 

institutional learning as well as – though in our case only to a limited extent – 

preference learning can indeed be of significant structural importance when 

conducting CE surveys.  

The paper is organized as follows. Section 2 describes the econometric approach 

and Section 3 the design of the survey and the data. Section 4 presents the results and 

a discussion and Section 5 concludes the paper. 

 

2 Econometric approach 
 

The experimental design consists of 16 choice sets, where the same eight sets are 

given in two sequences. The last sequence of eight sets is an exact copy of the first 

sequence of eight sets. In the analysis, we apply a standard random utility model 

(McFadden 1974), where the utility of alternative j for individual i in choice set k in 

sequence S is specified as 

 

, (1) 

where a is a vector of attributes, β is the corresponding parameter, and  is an error 

term. If the error terms are iid extreme value distributed with variance , the 

standard logit model choice probability that individual i chooses alternative j is 

 

, 
(2) 

where µ is a scale parameter that is inversely proportional to the error variance. The 

coefficients (β) in the econometric models are usually expressed in their scaled form 

(β = µβ
*
), where the scale parameter µ and the ‘true’ coefficients β

*
 are confounded. 

Hence, the estimated parameter β indicates the effect of each observed variable 

relative to the variance of the unobserved factors (Train 2003).  

Comparing the estimated models from the first and the last sequence, there are 

thus two elements involved: the parameter vector and the scale parameters. The 

problem, though, is that the scaling factor cannot be identified in any particular set of 

empirical data. Instead, the ratio of the scale factor of one data set relative to another 

can be identified by normalizing one of them to unity and then defining a range of 

values of the other scale factor, within which the log likelihood function is expected to 

be maximized (Swait and Louviere 1993). The scale ratio is then identified either 

through a grid search procedure or by full maximization of the likelihood. In the 

present paper we have used the latter approach. We draw on the notion used by, e.g., 

Holmes and Boyle (2005) and Savage and Waldman (2008) that learning processes 

can lead to increased consistency in choice, which implies reduced error variance and 

a higher degree of estimation precision (Heiner 1983, de Palma 1994, Hole 2007), 

whereas fatigue effects will have the opposite implication (Day et al. 2012). These 

effects are of course in addition to any potential effects of learning or fatigue on the 

vector of attribute parameter estimates.  
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In the analysis, we estimate random parameter models where we assume that all 

non-price attributes are normally distributed, thereby allowing consumers to place 

positive as well as negative values on the non-price attributes and the alternative 

specific constant. Focus group interviews indicated that such heterogeneity could be 

expected. The price coefficient is assumed to follow a constrained symmetric 

triangular distribution where the mean equals the spread. From an economic theory 

point of view this ensures a behaviorally plausible sign for the estimated price 

coefficient (Greene and Hensher 2007), and moreover we avoid the problem of the 

non-existence of mean WTP, when using a distribution where the cost coefficient 

straddles zero (e.g., an unconstrained triangular distribution) (Daly et al. 2011). We 

have used the software package Biogeme (Bierlaire 2003) to estimate the econometric 

models. In all models we control for individual level heterogeneity through the use of 

a panel specification capturing the repeated choice nature of the data
2
. The models are 

estimated with simulated maximum likelihood using Halton draws with 300 

replications; see Train (2003) for details on simulated maximum likelihood and Halton 

draws. Specifically, we compare a model based on the first sequence of eight sets with 

a model based on the second sequence of 8 sets. Furthermore, in a model covering all 

16 choice sets we introduce a dummy variable for the last sequence which is interacted 

with all parameter estimates in order to allow for changes in the preference parameters 

across the two sequences. In addition to comparing the estimated parameters and 

relative scale parameters between models, we also compute and compare 

unconditional marginal WTPs for each attribute by applying a parametric 

bootstrapping procedure using 10,000 replications. Finally, using a panel probit 

model, we identify variables that explain the probability of making identical choices in 

identical choice sets across the two sequences. 

 

3 The choice experiment 
 

The choice experiment concerned food safety attributes of chicken breast filets. Prior 

to the design of the CE, we performed three focus group interviews. In the focus 

groups, the following attributes were identified as being important in relation to the 

choice of chicken breast filets: type of production, country of origin, and, to some 

extent, food safety (mainly related to Salmonella). Although food safety did not 

appear to be of great concern to consumers, the original purpose of the present study 

was to elicit the relative weighting of food safety. Consequently, we included two food 

safety attributes associated with the chicken products: “Salmonella-free” and 

“Campylobacter-free”. These attributes were chosen because of their relevance to 

product and also because they were judged as representing an increasingly important 

issue from a scientific as well as a political perspective. Table 1 presents the attributes 

and their associated levels. 

The two food safety attributes in the survey, Salmonella-free and Campylobacter-

free, are quite similar. They both exhibit private good characteristics to a large extent, 

and both give rise to more or less the same course of illness. The main difference is 

that the current risk of getting infected by Campylobacter is much higher than the risk 

of contracting a Salmonella infection. Consequently, our a priori expectation of the  

                                           
2
 Individual level heterogeneity was controlled for in each of the two sequences, implying that 

tastes were fixed within respondents, but not across choice set sequences. Though, in model (v) 

table 3 we control for individual level heterogeneity across all 16 choice sets. 
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Table 1: The attributes and their levels in the choice experiment for the 

chicken breast filet. 

 
Attributes Levels 

Type of production Conventional (indoor), organic (outdoor) 

Country of origin Domestic (Danish), non-domestic  

Campylobacter-free
 
 Not labeled Campylobacter-free, Campylobacter-free 

Salmonella-free  Not labeled Salmonella-free, Salmonella-free 

Price (DKK) 25, 28, 33, 40, 50, 65, 85, 115 

Note: DKK 10 ~ EUR 1.34.  

 

value of a Salmonella-free chicken is that respondents will not value it as highly as the 

Campylobacter-free characteristic. 

A fractional factorial design resulting in a sequence of eight sets with three 

alternatives was used for the experimental design (two generic alternatives plus a 

status quo). The design was evaluated employing a d-error measure. At the end of the 

sequence, the entire sequence of 8 sets was repeated, resulting in a total of 16 choice 

sets per respondent. Hence, the fractional factorial design of 8 sets was essentially 

presented twice to each respondent. Respondents were not made explicitly aware of 

this feature of the design and we had no indication from open ended follow-up 

questions that any respondents realized it
3
. In each choice set, the respondents were 

faced with two alternative chicken breast filet products plus a third status quo 

alternative, all specified as packages of 500 grams. The latter characterized the 

respondents’ usual purchase, which was identified earlier in the questionnaire. This 

approach of using the respondents’ ”own” status quo values has been recommended 

and used in other studies to mimic the actual purchasing situation as closely as 

possible (Ruby et al. 1998, Kontoleon and Yabe 2003). The use of individual specific 

status quo alternatives in the design procedure of CE has been further developed by 

Rose et al. (2008), in what they refer to as segment-specific efficient designs, two-

stage process designs, and individual efficient designs. 
 

4 Results and discussion 
 

The CE survey was conducted using an internet panel, and the sample was obtained 

from Nielsen’s online database. In Denmark, there are approximately 2.4 million 

private households, of which 87 percent have access to the internet. All panel 

members are 15 years old or older and reside in a household with internet access, yet 

in the present survey only respondents above age 18 were allowed to participate. The 

final sample consisted of 389 respondents, each answering 16 choice sets, resulting in 

a total of 6,224 choice observations. The respondents were not able to go back and 

look at or change their responses to prior questions. The response rate was 26 percent. 

To begin with, we split the data and estimate the models based on the two identical 

sequences, i.e. model (i) for the first 8 choice sets and model (ii) for the last 8 choice 

sets. Next, we pool the responses from the two sequences and estimate two additional 

                                           
3
 There was no systematic test of whether respondents were aware of the duplication. If 

respondents became aware of this during the experiment, if potentially could lead to protest 

answers or response anomalies. One such indication would be that respondents would choose 

the status quo more often in the last sequence. However, a Pearson chi-square-test showed that 

respondents did not consistently choose the status quo more often in the last sequence relative 

to the first.  
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models, namely model (iii) using all 16 choice sets, but not accounting for potential 

difference in scale between the first and last 8 sets, and model (iv) using all 16 sets 

again and now accounting for potential difference in scale between the first and last 

eight sets.
4 
Table 2 displays the results obtained in the four different models.

5
  

 
Table 2: RPL models for the first 8 and last 8 sets, and for pooled models; 

standard errors in parentheses 

 

 
Model(i) Model(ii) Model(iii) Model(iv) 

 

First 8 CS Last 8 CS All 16 CS - not 

corrected for scale 

All 16 CS – 

corrected for scale 

Parameter estimates 
Coefficients 

(std. err.) 
t-value 

Coefficients 

(std. err.) 
t-value 

Coefficients 

(std. err.) 
t-value 

Coefficients 

(std. err.) 
t-value 

Mean estimates 

Campylobacter-free 
0.427 11.22 0.488 10.10 0.451 15.29 0.149 13.48 

(0.038) 
 

(0.048) 
 

(0.030) 
 

(0.011) 

 
Salmonella-free  

0.354 8.54 0.660 10.46 0.450 13.29 0.152 12.74 

(0.041) 
 

(0.063) 
 

(0.034) 
 

(0.012) 

 
Domestic produce 

0.668 13.03 0.811 11.76 0.704 17.31 0.114 8.58 

(0.051) 
 

(0.069) 
 

(0.041) 
 

(0.013) 

 
Outdoor production 

0.275 5.47 0.494 7.38 0.343 8.89 0.234 15.20 

(0.050) 
 

(0.067) 
 

(0.039) 
 

(0.015) 

 
ASC (Status quo) 

0.059 0.47 0.294 2.07 0.158 1.71 0.047 1.55 

(0.126) 
 

(0.142) 
 

(0.092) 
 

(0.031) 

 
Price 

-0.025 -16.40 -0.036 -14.95 -0.028 -23.43 -0.009 -19.16 

(0.002) 
 

(0.003) 
 

(0.001) 
 

(0.0005) 

 Standard Deviations 

Campylobacter-free 
0.093 0.81 0.283 3.43 0.160 2.04 0.061 2.51 

(0.115) 
 

(0.082) 
 

(0.078) 
 

(0.024) 
 

Salmonella-free  
0.262 315 0.489 5.82 0.368 6.74 0.126 6.99 

(0.083) 
 

(0.084) 
 

(0.055) 
 

(0.018) 
 

Domestic produce 
0.409 5.75 0.666 7.99 0.524 9.63 0.179 9.78 

(0.071) 
 

(0.083) 
 

(0.054) 
 

(0.018) 
 

Outdoor production 
0.625 9.22 0.755 8.77 0.700 12.91 0.235 12.35 

(0.068) 
 

(0.086) 
 

(0.054) 
 

(0.019) 
 

ASC (Status quo) 
2.050 15.43 2.470 14.50 2.240 20.70 0.742 17.54 

(0.133) 
 

(0.171) 
 

(0.108) 
 

(0.042) 
 

Price 
0.025 16.40 0.036 14.95 0.028 23.43 0.009 19.16 

(0.002) 
 

(0.002) 
 

(0.001) 
 

(0.0005) 
 

Scale ratio, µ 
a
       

1.23 17.86 

      
(0.069) 

 
LL -2483 

 
-2339 

 
-4827 

 
-4821 

 
Adj. ρ

2
 0.270 

 
0.312 

 
0.292 

 
0.295 

 a
 The scale ratio is the estimated scale factor for the last eight choice sets relative to the scale factor for the 

first eight choice sets which is normalized to one. Hence, the t-value for the scale factor is testing the null 

hypothesis H0: µ =1.  

                                           
4
 Note that the pooled model still assumes independence between the first eight and last eight 

choice sets. 
5
 Note that all non-monetary attributes are effects coded. 
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Nearly all attribute coefficients are statistically significant at the standard five percent 

level, with the exception of the ASC in models (i), (iii) and (iv), and the standard 

deviation of the Campylobacter-free label in model (i).  

The difference in responses between the two sequences is initially examined 

through a likelihood ratio (LR) test for equality of all model parameters (Swait and 

Louviere 1993). This test involves Models (i) - (iii). Comparing the pooled model in 

(iii) with the two separate models (i) and (ii), the log likelihood ratio is 5 – the value of 

the chi-squared test statistic is thus 10 – which means that we cannot reject the 

hypothesis of equal parameters at the standard five percent level of statistical 

significance (critical value at five percent and 12 d.f. is 21.03). We therefore proceed 

with a pooled model where we account for a difference in scale parameters across the 

two sequences, but where the preference parameters are restricted to be the same 

across the two sequences. This is model (iv) in Table 2. Recall that the scale parameter 

is inversely proportional to the standard deviation of the error term in our specification 

(Swait and Louviere 1993). The estimated relative scale factor of 1.23 in Table 2 

implies that the variance of the error term or “noise” in the model based on the last 

sequence is only 66 percent of the variance of the model based on the first sequence6. 

This is also in accordance with the comparison of model fit between Models (i) and 

(ii), where the model based on the last sequence clearly provides a better fit to the 

data. The finding of a reduced error variance in the last sequence is equivalent to the 

findings by Holmes and Boyle (2005). Overall, the LR test results reject an overall 

change in the preferences for the attributes when moving from the first to the second 

sequence, but that error variance is reduced by almost 35 percent in sequence B. This 

would suggest that there is learning in the choice experiment, but not in terms of 

changes in preferences, but in terms of less noise, i.e., institutional learning. Do note 

that any attempt of respondents to be coherent goes in the opposite direction as 

learning. This could either be the case when there is no preference uncertainty, i.e., the 

respondent knows his preferences and chooses coherently according to these, or if 

there is preference uncertainty but the respondent chooses coherently in 
accordance with an arbitrary starting point. While these two types of behavior clearly 

have very different implications for interpretation of preference parameter estimates, it 

is difficult for the analyst to disentangle the two as data in both cases will suggest that 

no preference learning is taking place. 

 The above tests are joint tests that demonstrate that overall there appears to be no 

difference in preferences but in error variance. In the next step we estimate a pooled 

model accounting for differences in both random taste parameters and scale across the 

two sequences and allowing for dependence between the two sequences. This is done 

by pooling the data and estimate a panel structure of all 16 choice sets, and interacting 

the attribute variables with a dummy variable, dlast8, equal to one if the choice set is in 

the last sequence. The results are presented in Table 3.  
 

 

 

 

                                           
6
 (1/1.23

2
) = 0.661. Hence, there is a 34 percent difference in the overall unexplained variance 

between the two models. 
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Table 3: RPL pooled model accounting for differences in preferences and 

scale between the two sequences 
 

Parameter estimates Coefficients Std. err. t-value 

Mean estimates 
   

Campylobacter-free label 0.208 0.017 12.02 

Campylobacter-free label × dlast8 -0.004 0.016 0.25 

Salmonella-free label 0.176 0.018 9.70 

Salmonella-free label × dlast8 0.016 0.016 0.99 

Domestic produce 0.307 0.022 14.27 

Domestic produce × dlast8 -0.003 0.021 0.02 

Outdoor production 

Outdoor production × dlast8 
0.189 0.026 7.35 

0.018 0.017 1.10 

ASC (Status quo) 

ASC (Status quo) × dlast8 

-0.164 0.047 3.47 

0.115 0.030 3.82 

Price 

Price × dlast8 

-0.013 0.006 22.64 

0.002 0.0004 4.88 

Standard Deviations    

Campylobacter-free label 

Campylobacter-free label × dlast8 

0.188 0.019 9.74 

0.037 0.019 1.95 

Salmonella-free label 

Salmonella-free label × dlast8 

0.222 0.018 12.43 

0.002 0.020 0.11 

Domestic produce 

Domestic produce × dlast8 

0.295 0.021 13.96 

0.0003 0.021 0.02 

Outdoor production 

Outdoor production × dlast8 

0.384 0.029 13.36 

0.024 0.017 1.38 

ASC (Status quo) 

ASC (Status quo) × dlast8 

0.946 0.052 18.04 

0.017 0.030 0.57 

Price 0.013 0.006 22.64 

Price × dlast8 0.002 0.0004 4.88 

Scale ratio, µ 
a
 1.180 0.061 21.49 

LL -4136   

Adj. ρ
2
 0.391   

a
 The scale ratio is the estimated scale factor for the last eight choice sets relative 

to the scale factor for the first eight choice sets which is normalized to one. Hence, 

the t-value for the scale factor is testing the null hypothesis H0: µ =1. 
 

The pooled model in table 3 basically confirms the results of the LR test, with one 

important exception
7
. There are no significant differences in preferences for the non-

monetary attributes between the first and last sequence. However, respondents are less 

price-sensitive in the last sequence as revealed by the significant dlast8 interaction 

term, although the size of the interaction term is relatively small in comparison with 

the price attribute coefficient. The change in preferences for the price attribute 

                                           
7
 Comparing the model fit of this interaction model to models (i) and (ii) shows a significant 

improvement in model fit of almost 100 likelihood units. As mentioned in footnote 2, we 

control for individual level heterogeneity within each choice sequence of eight choice sets in 

models (i) and (ii), whereas in the model presented in table 3, individual level heterogeneity is 

controlled for across all 16 choice sets. This is the main reason for this rather large 

improvement in fit. 
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suggests that preference learning is taking place as well.
8 

There is also a change in the 

mean parameter estimate for the ASC which would imply that respondents in the last 

sequence have opted for the status quo alternative more often – despite the indications 

of the opposite in the test mentioned in footnote 3. While learning might explain this, 

it could also be caused by respondents increasingly using a heuristic decision strategy 

as a consequence of becoming bored or fatigued. The level of heterogeneity in 

preferences is also similar across the two sequences as none of the interactions with 

the standard deviation parameters are significant, apart from the price attribute. 

Finally, it is apparent that the last sequence still exhibits a significantly lower error 

variance.  

The fact that there is a shift in preferences for the price attribute implies that the 

estimate of WTP will depend on the sequence as well. Since respondents become less 

price sensitive in the second sequence, mean WTP will be higher using the estimates 

based on the second sequence. While these results are in line with some previous 

studies looking at the stability of preferences (e.g., Holmes and Boyle 2005, Day et al. 

2012), they are in contrast to others (e.g., Carlsson and Martinsson 2001, Hanley et al. 

2002). However, the majority of these previous studies testing for differences in WTP 

are between-sample tests. To our knowledge, we are the first to provide this particular 

type of within-sample test for differences in WTP in identical choice sets. In addition, 

the difference in WTP will in our case only depend on differences in price sensitivity, 

the trade-off among the non-monetary attributes are actually stable across the two 

sequences. In order to illustrate the effect of the difference in price sensitivity we 

report the unconditional marginal mean WTP for each attribute and the ASC obtained 

on the basis of the indirect utility parameter estimates in table 3. Standard errors are 

estimated with the Krinsky-Robb method, using 10,000 replications. To compare the 

different WTP estimates across the two sequences, we have applied the Complete 

Combinatorial test (CC test) suggested by Poe et al. (2005). For the CC-test we use 

1,000 unconditional WTP estimates for each sequence, which implies 1,000,000 

differences. Table 4 presents the results.  
 

Table 4: Mean WTP estimates in DKK per 500g package of chicken breast 

filet.  

 
 First 8 CS  Last 8 CS   

 Mean WTP St. dev. Mean WTP St. dev. CC-test p-value
a
  

Campylobacter-free label 32.7 2.7 37.4 3.2 0.13 

Salmonella-free label 27.7 2.9 35.2 3.2 0.04 

Domestic produce 48.3 3.4 49.5 3.8 0.42 

Outdoor production 29.7 4.0 38.0 4.6 0.09 

ASC (Status quo) -12.94 3.8 -4.5 4.2 0.07 

Note: DKK 10 ~ EUR 1.34. WTPs and standard deviations are obtained using a Krinsky-Robb 

bootstrapping procedure with 10,000 draws. The ‘first 8 CS’ WTPs are based only on the main 

parameter estimates from the pooled model in table 3 whereas the ‘last 8 CS’ WTPs are also taking the 

interaction parameter estimates into account. 
a P-values report the proportion of estimates in the complete combinatorial where WTP from the model 

obtaining the highest mean WTP is higher than WTP from the other model. 

                                           
8
 It should be noted that the type of preference learning that we find partly depends on model 

specification. For example, if we instead estimate a model with an unconstrained triangular 

distribution, the interaction term for the price attribute becomes insignificant, while three other 

interaction terms become significant but again these are very small relative to the attribute 

coefficients. 
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As expected, the mean WTPs are higher for the second sequence. However, the results 

from the complete combinatorial testing for equality of WTP estimates imply that 

there is only a significant difference for one of the attribute at the five percent-level: 

the ‘Salmonella-free label’. At the same time the differences in mean WTP is 

sometimes substantial. 

Another interesting question is whether the change in preferences can be traced to 

certain choice sets or a certain part of the order of the choice sets. Given our within-

subject design, we can make a number of comparisons. Following Rigby and Burton 

(2011) we use a panel probit model in order to explain ‘hit success’, where the 

dependent dummy variable takes a value of one if the respondent makes the same 

choice in the identical choice sets in the first and the last sequence, and zero otherwise. 

As explanatory variables in the panel probit model we use: 1) Socio-demographic 

characteristics (gender, age, household income, and education), 2) Respondents self-

reported certainty statements
9
, 3) Utility difference at choice set level as a proxy for 

the complexity of a choice set
10

, and finally 4) An ordering effect which is captured by 

a series of choice set dummies with the initial choice set as the baseline. The results 

are presented in Table 5. 

There are no significant differences with respect to the socio-demographic 

variables. The results further show that respondents who state that they are certain 

with respect to their preferences (value certainty) have higher probability of making 

the same choice in the last sequence. This is in accordance with our expectations, that 

respondents with well known preferences do not exhibit value learning. In addition, 

the significant impact of utility difference reveals that the larger the utility difference 

in a choice task, the larger the probability that the respondent will choose the same 

alternative in the last sequence of choice sets. This is also as expected as making a 

choice in a choice set with large utility difference will, ceteris paribus, be easier than 

choosing from a choice set where utility is more balanced. Finally, we find evidence 

of choice set order effects. In particular, all seven choice set dummies show a 

significantly
11 

positive effect relative to the baseline dummy for choice sets 1 and 9. In 

other words, the probability of observing identical choices in choice sets 1 and 9 is 

lower than in all the following choice sets.  

Since we have two observations of choices for the same choice set, we can 

conduct symmetry tests to further examine this issue (see e.g., Stata 2007). When 

looking at the choices made in each choice set, we can reject the hypothesis of no 

difference in responses between the two sequences for four out of eight choice sets at 

the five percent level. The pairs of choice sets where there is a significant difference 

are 1 and 9; 2 and 10; 5 and 13; and 8 and 16. However, it is for the first choice set  

                                           
9
 Respondents were asked to state how certain they are after each choice set with respect to 

institutional and value uncertainty respectively The two certainty questions were as follows 

(translated from Danish): Institutional uncertainty statement: ‘On a scale from 1-5 (where 1 is 

‘totally incomprehensible’ and 5 is ‘easily comprehensible’), how comprehensible was the 

construction of the choice task shown above?’ Value uncertainty statement: ‘On a scale from 1-

5 (where 1 is ‘very uncertain’ and 5 is ‘very certain’), how certain are you that your chosen 

alternative is the alternative which contributes with the largest value to you?’  
10

 Estimation of the utility differences is done in line with Olsen et al. (2011): Hence, we use 

the estimates from the model presented in table 3 to calculate the expected aggregate utility of 

each alternative in each choice set for each individual and then calculate the expected utility 

difference between the chosen alternative, and the best alternative to that. 
11

 Though for choice sets 3 and 11 and 5 and 13 the cutoff level for statistical significance 

needs to be relaxed to six percent and nine percent, respectively. 
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Table 5: Panel probit model explaining identical choices in identical choice 

sets across the two sequences. 

 

 

Description (mean value) Marginal effect Std. Err. t-value 

Female = 1 if respondent is a female (0.55) -0.008 0.017 0.47 

Age Age in years (51.32) -0.001 0.006 0.60 

Household income = 1 if below DKK 100,000; and 

= 10 if above DKK 900,000 (5.38) 

-0.004 0.003 1.24 

Low Education = 1 if respondent only has basic 

education (0.14) 

-0.005 0.024 0.23 

High Education = 1 if respondent has university 

education (0.46) 

-0.018 0.017 1.00 

Institutional uncertainty = 1 if totally incomprehensible; and 

= 5 if easily comprehensible (4.09) 

-0.009 0.010 0.97 

Value uncertainty = 1 if very uncertain; and 

= 5 if very certain (3.82) 

0.043 0,009 4.69 

Utility Diff. Estimated average utility difference 

(0.005) 

0.088 0.010 9.17 

Status Quo = 1 if respondent chose the status 

quo in the first sequence (0.47) 

0.121 0.012 9.56 

CS 2 and 10 = 1 if choice set 2 or 10 (0.125) 0.067 0.026 2.57 

CS 3 and 11 = 1 if choice set 3 or 11 (0.125) 0.046 0.024 1.94 

CS 4 and 12 = 1 if choice set 4 or 12 (0.125) 0.094 0.025 3.76 

CS 5 and 13 = 1 if choice set 5 or 13 (0.125) 0.041 0.024 1.71 

CS 6 and 14  = 1 if choice set 6 or 14 (0.125) 0.096 0.027 3.58 

CS 7 and 15 = 1 if choice set 7 or 15 (0.125) 0.085 0.026 3.26 

CS 8 and 16 = 1 if choice set 8 or 16 (0.125) 0.069 0.024 2.85 

Constant  0.266 0.311 0.85 

Rho  0.123 0.029 4.31 

 

that the largest difference in choices is observed – as is also evident from Table 5. 

Comparing Set 1 with Set 9, almost 27 percent of the respondents change their answer, 

while for the other comparisons the share varies between 11 and 20 percent. This 

suggests that there is something particular with the first choice set. In order to further 

explore this, we re-estimate the pooled random parameter logit model, yet this time we 

estimate separate scale factors for choice sets 2 to 16 relative to the normalized scale 

factor in choice set 1, which is fixed to unity. Table 6 presents the results. 
Since we have two observations of choices for the same choice set, we can 

conduct symmetry tests to further examine this issue (see e.g., Stata 2007). When 

looking at the choices made in each choice set, we can reject the hypothesis of no 

difference in responses between the two sequences for four out of eight choice sets at 

the five percent level. The pairs of choice sets where there is a significant difference 

are 1 and 9; 2 and 10; 5 and 13; and 8 and 16. However, it is for the first choice set 

that the largest difference in choices is observed – as is also evident from table 5. 

Comparing Set 1 with Set 9, almost 27 percent of the respondents change their answer, 

while for the other comparisons the share varies between 11 and 20 percent. This 

suggests that there is something particular with the first choice set. In order to further 

explore this, we re-estimate the pooled random parameter logit model, yet this time we 

estimate separate scale factors for choice sets 2 to 16 relative to the normalized scale 

factor in choice set 1, which is fixed to unity. Table 6 presents the results. 
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Table 6: Estimation and comparison of choice set-specific scale factors in the pooled RPL 

model, t-values for test of Ho:  
 
CSt (First 8 CS) 1 2 3 4 5 6 7 8 

Scale factor µ 1 1.28 1.92 1.54 1.86 1.54 1.10 2.26 

Std. Err. 0 0.132 0.154 0.144 0.174 0.144 0.155 0.175 

t-values,  
 

2.16 6.08 3.75 5.09 3.89 0.66 7.41 

         
CSt (Last 8 CS) 9(1) 10(2) 11(3) 12(4) 13(5) 14(6) 15(7) 16(8) 

Scale factor µ 1.54 1.69 2.23 1.65 1.70 1.75 1.02 2.00 

Std. Err. 0.131 0.144 0.175 0.144 0.158 0.258 0.150 0.156 

t-values 4.23 4.84 6.98 4.60 4.60 4.85 0.14 6.60 

t-values  

(CS(t) vs CS(t+8)) 
4.28 3.03 1.83 0.79 1.06 1.46 0.54 1.43 

Note: The vertical alignment of choice sets in the table corresponds to the choice sets that are identical across 

the two sequences. 

 
As Table 6 shows, almost all of the estimated scale factors for sets 2 to 16 differ 

significantly from the normalized scale factor in the first set. The exceptions are sets 7 

and 15, which, interestingly, are the same choice tasks. Furthermore, they all are larger 

than one, and hence the error variance is smaller in these sets relative to the first set. 

This is further evidence that the behavior in the first choice set is different from the 

behavior in the other sets 2 to 16 and that the noise in most cases is significantly larger 

in the first set. Moreover, there are no significant differences in scale factors across the 

identical pairs of choice sets except between sets 1 and 9 and sets 2 and 10. Our results 

are largely in accordance with Bateman et al. (2008), who found evidence of 

institutional learning in a repeated double bounded contingent valuation survey. 

Similarly, both DeSarbo et al. (2004) and Brown et al. (2008) find evidence of 

learning effects in terms of increasing choice consistency as respondents progress 

through a sequence of choices.  

While we interpret our results as being clearly in support of learning effects, there 

might be precedent-dependent effects that could explain why respondent choices differ 

in otherwise identical choice sets (Day and Pinto 2010, Day et al. 2012). Particularly, 

starting point effects and strategic behavior could affect respondent behavior. If 

respondent uncertainty, be it institutional or preference, introduces a true random 

component as a psychological view on the random utility model would prescribe 

(Thurstone 1927), we would expect some deviations between choices made in 

identical choice sets that only differ by order (Day et al. 2012). This, being a purely 

random component, would not affect or bias the preference parameter estimates in any 

way, only the noise-to-signal ratio, i.e. the scale factor and standard errors associated 

with the parameter estimates. However, if the respondent anchors his choice on some 
arbitrary starting point due to such initial uncertainty, a structural component will be 

introduced, likely to bias the preference parameters in the direction of the starting 

point. Such starting point effects could potentially explain the indications we have of 

at least some preference learning going on in our data (Carlsson and Martinsson 2008; 

Ladenburg and Olsen 2008). However, the fact that the good being valued here is a 

very common market good, namely chicken breast filet with which the majority of the 

respondents have extensive consumer experience, we would expect respondents to be 

relatively more certain about their preferences than for instance for a pure non-market 

good with which they have no previous consumer experience (Plott 1996, List 2003, 
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Day et al. 2012). As a consequence, we argue that the relatively high error variance in 

the first choice sets is mainly indicative of institutional uncertainty. This is further 

supported by the fact that we see a fast learning process where the differences in 

unexplained error variance across the two sequences reduces drastically after the first 

couple of choice sets. Bateman et al. (2008) and Swait and Adamowicz (2001) suggest 

that such a fast learning process is indicative of institutional learning. Preference 

learning would arguably be a slower process as for instance in Ladenburg and Olsen 

(2008), where a starting point bias is found to persist for a larger number of choice sets 

in an environmental non-market good case. In the same vein, Czajkowski and 

Giergiczny (2011) in a case considering a non-market good find increasing scale 

parameters over a larger number of choice sets. However, Plott (1996) and Hanley et 

al. (2009) suggest that the speed of preference learning would be positively correlated 

with the level of experience with the good, and Nunes and Boatwright (2004) find 

some evidence that respondents also experience preference uncertainty over well-

known, common market goods. In our case, the preference learning is centered on a 

change in the preferences for the price attribute, while the trade-offs among the non-

monetary attributes are constant. Coherent arbitrariness could explain why we find no 

differences in the trade-offs between the non-monetary attributes. Nevertheless, we 

find this explanation less likely since, first of all, we would expect a low degree of 

preference uncertainty for this well-known marketed good, and, secondly, we do find 

some evidence of preference learning effects which may be just enough to offset a low 

degree of preference uncertainty. This, however, remains speculative as we have no 

built-in test for coherent arbitrariness in the current dataset. Furthermore, the shift in 

preferences is most likely not a result of strategically behavior either. As we have 

discussed in the introduction, a typical strategic behavior would be that respondents 

reject alternatives that they have already had an opportunity to obtain at a lower cost in 

a previous choice set (Day et al. 2012). Finally, even though we rule out fatigue 

effects in terms of increasing variance, our results concerning changes in status quo 

choice propensity as a consequence of fatigue are ambiguous. Additionally, we cannot 

rule out the possibility that the apparent change in preferences for the price attribute is 

actually caused by respondents increasingly using some other type of simplifying 

decision heuristic – e.g., attribute non-attendance – as a consequence of becoming 

fatigued. While we have no way of testing for this in the current dataset, the string of 

research looking into decision heuristics at the choice task level (e.g., Scarpa et al. 

2010, Meyerhoff and Liebe 2009 and Puckett and Hensher 2009) would seem a 

promising avenue ahead to investigate this in future research.  

 

7 Conclusions  
 

This paper addresses the issues of how ordering effects related to the repeated choices 

in a choice experiment setting potentially affect respondents’ stated preferences. The 

main focus is on respondent uncertainty and its potential impacts on preference 

structure, error variance, and willingness-to-pay estimates, and on how such impacts 

reflect institutional and/or preference learning effects. We use an experimental design 

where a sequence of choice sets is given twice to the same respondent, allowing for 

within-sample tests. Comparing the two sequences of identical choice sets we find 

significant differences in error variances as well as in the preferences for the price 

attribute. More specifically, the error variance is lower in the last than in the first 

sequence, suggesting that respondent uncertainty is lower in the second sequence. In 

the model where we estimate separate scale factors for choice sets 2 to 16 relative to 
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the normalized scale factor in choice set 1, we find that it is only in the first choice set 

that the error variance is higher in the first sequence. This is also where we find that 

the largest share of respondents change their choices when comparing identical choice 

sets across the first and last sequence. We argue that institutional uncertainty is mainly 

related to increased error variances whereas preference uncertainty can be associated 

with increases in error variances as well as biases in the estimated preference structure 

and WTP estimates, depending on the decision strategy employed by the respondent to 

overcome such preference uncertainty. In a study considering a well-known market 

good, namely chicken breast filet, we find evidence that institutional learning as well 

as preference learning, is indeed present. A very rapid decrease in error variance wears 

off after the first couple of choice sets suggesting that institutional learning takes 

place. This is in line with results in Hess et al. (2012) who also find increasing scale 

after the first choice set. The difference in preferences for the price attribute for the 

two identical sequences could be evidence of preference learning which translates into 

a difference in WTP measures. At the same time, there are no significant differences 

in preference estimates for the non-monetary attribute between the two sequences. We 

argue that part of our results indicate that fatigue is not present – we do not find a 

larger error variance in the last sequences nor do we find any evidence on respondents 

choosing inconsistently in the last sequence compared to the first sequence. Though 

we cannot rule out the difference in the price attribute being due to fatigue caused by 

respondents using different decision heuristics like attribute non-attendance. This issue 

is scope for further research. 

Our findings have clear implications for the design of choice experiments. If the 

goal is to minimize the error variance and, hence, maximize the statistical power of the 

structural model one should be careful when including responses to the first two 

choice sets in the dataset. In fact, as suggested by Ladenburg and Olsen (2008), one 

should consider including one or two examples of choice sets or additional choice sets 

that are not generated by the statistical design and that are not intended for use in the 

analysis of preferences. This approach is likely to diminish any institutional 

uncertainty caused by the CE format and thus reduce potential ordering effects. This is 

similar to findings in experimental economics, where it is evident that the 

experimental instructions and the context could play an important role. For example, 

in the case of public good games, some types of subjects act out of confusion and not 

kindness (Andreoni 1995) because the fail to understand the incentives, what Chou et 

al. 2009 denotes ‘failure of game form recognition’. Ferraro and Vossler (2010) find 

evidence that this confusion can partly be reduced by learning, but more importantly, 

that the instructions can reduce confusion substantially. 

Furthermore, if the data is used for estimating preference parameters and 

informing decision-makers, our results show that ordering effects potentially cannot be 

neglected. It should however be noted that there is a risk of starting point bias if 

preference uncertainty is present, as may be the case especially in non-market good 

surveys. This suggests that the first choice set should be varied between survey 

versions in order to test and control for potential starting point bias, and, if present, 

this first choice set (or potentially more) should be excluded from estimation.  

This, as well as the major body of available studies on learning and fatigue 

effects, has assumed that all respondents follow the same pattern of learning and 

fatigue. However, recent developments in the literature (e.g., Campbell et al. 2011, 

Czajkowski and Giergiczny 2011) suggest that the impacts of this assumption are not 

trivial. Further research in this direction will be relevant in order to explore in more 
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detail the potential impacts of learning effects, and in particular the extent to which 

institutional and preference uncertainty as well as learning styles differ across people. 
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