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Abstract

This paper describes a study undertaken to estimate a departure-time
and mode-choice model for Stockholm. The model is segmented according
to trip purpose, and a mixed - or error component - logit model is esti-
mated. Estimation draws on stated preference data collected from drivers
travelling toward the city centre during morning peak hours. The study
uncovers drivers’ preferences for scheduled delay, unexpected delay, travel
time and cost as well the patterns of substitution between mode and time
of day alternatives. The result indicates that disutility of unexpected de-
lay depends on the scheduled deviation from preferred arrival time. The
preference for scheduled delay is roughly proportional to the time shift and
varies in the population, but is much more consistent within an individ-
ual. Another finding is that constraints at the destination mainly restrict
late arrival, whereas constraints at the origin mainly restrict early departure.

Keywords: Stated Preference, Mixed Logit, Unobserved Heterogeneity, Travel
Time Uncertainty, Scheduled Delay, Johnson’s SB distribution

1 Introduction

Congestion problems, causing increasing travel times and travel time uncertainty,
raise the need to evaluate policy measures. Since some of the latent demand
avoiding congested time periods is diverted to other time periods, disregarding
the effect of peak spreading in policy evaluation may result in over- or under-
estimation of congestion. In a study carried out by SACTRA (1994) it was found
that departure time shift is the second most common response, after changing
route, to new travel conditions.
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The congestion toll trial in Stockholm has demonstrated the need for a depar-
ture time model. A departure time choice model application needs to integrate a
dynamic assignment model with a demand model. The objective of this paper is
to develop and estimate a mode and departure time choice model for Stockholm
that covers the extended morning peak period. This demand model is currently
being implemented along with a dynamic assignment model. The fact that trav-
ellers face an uncertain travel time is also being taken into account.

Departure time models are usually estimated based on Stated Preference (SP)
data, since Revealed Preference (RP) data with the required level of detail and
quality is usually unavailable. There are only a few successful RP-based model
estimations reported in previous literature: Small (1982), Small (1987), Bhat
(1998a), Bhat (1998b) Lam and Small (2001) and Brownstone and Small (2005).
In this study, estimation draws on data from a stated preference study undertaken
in Stockholm. The target group was drivers travelling toward the city centre
during the extended morning peak from 06.00-10.00.

There are a few published studies estimating departure time choice under
uncertainty, such as Noland et al. (1998), Small et al. (2000) and Hollander
(2005). These studies all use SP data and deal only with commuters. The
departure time shifts considered in the studies were relatively small; in Small et
al. up to 15% of the mean travel time (i.e. nine minutes assuming that the mean
travel time is 60 minutes). Noland et al. used time shifts of similar magnitudes.

The vast majority of trip timing models adopt the framework developed by
Vickrey (1969) and Small (1982), assuming that the traveller’s utility depends
on travel time and deviation from the preferred arrival time; the latter is some-
times referred to as earliness or lateness. However, earliness and lateness can
be planned, i.e. scheduled, or unexpected. Planned and unexpected deviations
from preferred arrival time are conceptually different, and the disutility arising
from them is probably not equal. In the literature however this distinction is not
always made clear.

de Jong et al. (2003) developed a trip timing model similar to the one devel-
oped in the present paper, but their model is tour based. Further they focus on
scheduled delay only, whereas in the present study we consider both scheduled
and unexpected lateness and earliness.

For the planned, or scheduled, departure time we used relatively large time
shifts in the SP, of the same magnitude as de Jong et al., for several reasons. First,
as the morning peak extends over a relatively long time, the effect on congestion
levels will be very limited for small departure time shifts. Second, possible charg-
ing schedules for the tolls trial in Stockholm (see www.stockholmsforsoket.se),
which will be evaluated using this application, are relatively crude. Most drivers
thus have to make relatively large departure time shifts in order to reduce their
charge. Third, our hypothesis was that a majority of commuters travelling to-
ward the city centre have a flexible working schedule and thus more flexibility
in their choice of departure time. A flexible working schedule here refers to a
situation where there is no official starting or finishing time at work.
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Many authors have noted that the MNL approach is inapplicable for depar-
ture time modelling, since it cannot accommodate the correlation structures in
the alternatives. For this reason we apply a mixed logit model structure similar
to those applied by de Jong et al. (2003) and Hess et al. (2006a), designed to
induce correlation and heteroskedasticity between different departure time alter-
natives. One alternative to simulation-based models that would be faster in an
application, but still be able to accommodate the desired correlation structures,
is the closed form Ordered GEV (OGEV) model. Small (1987) was first in apply-
ing OGEV to departure time choice and Bhat (1998a) jointly modelled departure
time and mode choice, applying a nested OGEV-MNL model. Since we use SP
data for estimation however the OGEV model is less suitable, as this model can-
not accommodate correlation in unobserved heterogeneity, which usually arises
between repeated observations from the same respondent.

2 Model Formulation

2.1 Theory, terminology and literature

Following Vickrey (1969), Small (1982) and Bates et al. (2001) we first assume
that the traveller’s utility depends on travel time and deviation from the preferred
arrival time, PAT. The majority of previous studies have used the official work
starting time as preferred arrival time, but that cannot be used in this study since
non-commuters are also included and also because a majority of the commuters
travelling toward the city centre of Stockholm do not have an official work starting
time. We have therefore sought to elicit a preferred arrival from the respondents
in a different way. We first extracted information about the preferred departure
time (PDT) by asking the drivers at what time they would have choosen to depart
if there never were any queues on the road network. PAT was then computed by
adding up PDT and the minimum travel time encountered under optimal travel
conditions, as reported by the drivers.

In any case, the utility function is typically of the form

u(th, T ) = αT+βmax[(PAT − th)− T, 0] + γmax[T − (PAT − th), 0] (1)

where th is the departure time, T is the travel time, α is the direct utility of time
spent on the trip. β is sometimes referred to as the disutility of being early, but
it can also be viewed as the utility difference between time spent at the origin
and time spent at the destination before the preferred arrival time and hence
the (relative) opportunity cost of time. γ is the disutility of lateness, i.e. arrival
after the preferred arrival time. Usually, the lateness penalty is assumed to be
linear in the lateness, although some authors have suggested a step function (an
extra penalty as soon as the traveller arrives after the preferred arrival time),
and some authors have suggested that the marginal disutility of lateness may be
either increasing or decreasing.
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As mentioned in the introduction, there are in fact two possible interpretations
of β and γ. One interpretation is that they represent the disutility of planned, or
scheduled, deviation from the most preferred arrival time. Another interpretation
in the literature is that these parameters refer to the valuation of unexpected
lateness or earliness.

We first turn to the case when β and γ refer to the disutility of unexpected
lateness or earliness. The direct disutility arising from the risk of arriving at a
time different from planned arrival time, caused by the travel time uncertainty,
can be captured by the expectation of the unexpected delay. The theory of this
approach was first proposed by Garver (1968) and Polak (1987), with further
development by Noland and Small (1995) and Bates et al. (2001), combined with
the work of Small (1982).

Fosgerau and Karlstrom (2008) extend the results further by showing that
as long as departure time can be chosen freely and travel time distribution is
independent of departure time, the reduced-form utility function can always be
written as a linear combination of the mean travel time and the standard deviation
of travel time. They show further that this result generalizes approximately to the
case where the mean and standard deviation of travel time depend on departure
time. Another insight is that the direct utility of standard deviation will depend
on the standardised travel time distribution. Standard deviation valuations that
have been obtained in one context can thus not be directly transferred to another
context with a different standardised travel time distribution.

In the original interpretation of β and γ these represent the disutility of
planned deviation from the most preferred arrival time. The motive for a driver
to make such a time shift is to move the trip to a time period with better travel
conditions in heavy congested networks.

In the model developed in the present study we will include both the direct
disutility of the scheduled deviation from the most preferred arrival time and
the direct disutility of unexpected lateness or earliness. In accordance with the
results of Fosgerau and Karlstrom, the disutility arising from unexpected lateness
or earliness is represented as the width of the 95% confidence interval, i.e. the
width between the 2.5 and 97.5 percentiles, which is proportional to the standard
deviation for many travel time distributions. We chose this representation of
travel time uncertainty for the SP, and therefore also in the utility function (see
section 3).

The planned deviation from the most preferred arrival time is represented
by the formulation used in eq. 1. We make the underlying assumption that
some drivers have flexible schedules and are thus less constrained by a specific
preferred arrival time, but have the option to choose a departure time so as to
achieve better travel conditions. It is uncertain how large a share of the drivers
have this option in reality. As mentioned however, and as will be shown later,
a majority of commuters travelling toward the city centre have flexible working
schedules and probably thus have some flexibility in their departure time choice.

A different but related issue is whether scheduled delay should be defined
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with respect to departure (DT) or arrival time (AT). Defined with respect to
departure time we have:

SDEDT = max[PDT − th, 0] (2)
SDLDT = max[th − PDT, 0] (3)

The deviation from the most preferred arrival time is stochastic if travel time
is uncertain. However if the driver plans to shift arrival time significantly later
than PAT, relative to the travel time variability, the distribution of SDL becomes
a linear transformation of the arrival time. Hence E(SDL) can still be written
as the difference between the expectation of arrival time and PAT, and E(SDE)
becomes zero with certainty (or, equivalently, if the driver choose to arrive too
early, E(SDL) becomes the difference between the expectation of arrival time and
PAT):

E(SDEAT ) = max[(PAT − th)− T , 0] (4)

E(SDLAT ) = max[T − (PAT − th), 0] (5)

The choice of approach should be based on whether temporal constraints are
more binding at origin or destination. Constraints at the origin and destination
are most likely also working in different directions, so that earlier departure is
constrained at the origin and later arrival is constrained at the destination. If so,
SDE could be computed with respect to departure time and SDL with respect
to arrival time. This is also most consistent with the view that the disutility of
planned early time shifts corresponds to the opportunity cost of time spent at the
destination before the preferred arrival time relative to time spent at the origin.
These alternative approaches will be discussed further in the estimation section
4.3.

2.2 Model Formulation

We expect to find unobserved individual variation of scheduling constraints, and
thus assume that the scheduled delay parameters are randomly distributed in the
population. This assumption is formally equivalent to formulating an error com-
ponent logit model in which a part of the unobserved utility difference is related
to the proximity of the alternatives. In addition to the scheduling parameters,
the cost parameter was assumed to be randomly distributed in the population.
The expected utility function for the two departure time alternatives, for a given
individual n, formulated as:

Ui =βnSDEi + γnSDLi + δnCOSTi+
αTi + λ∆i + εin (6)
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Index i refers to the two departure times in the SP choice situations. SDE
and SDL represent planned deviations from PDT or PAT. COST is the monetary
cost of the trip and T is mean travel time. Travel time uncertainty, or unexpected
delay, is represented by the 95% confidence interval of the travel time duration,
denoted ∆. εn are independent and identically distributed Gumbel terms.

We will also test the hypothesis that the disutility arising from unexpected
delay depends on the scheduled delay. We will therefore replace ∆ with the
parameters ∆early and ∆late. ∆early and ∆late denote disutility of travel time
uncertainty when the scheduled earliness and lateness, respectively, is non-zero.
A dummy parameter for additional lateness penalty is not included because it is
meaningless in a framework where we assume that many travellers deliberately
choose to travel earlier or later than at the most preferred time in order to achieve
better travel conditions.

The attractiveness of alternatives to car driving will obviously influence drivers’
response to new travel conditions. To capture this dimension, a mode switch (to
public transport) alternative is included in the model. The utility of this alterna-
tive is primarily described by the respondent’s actual public transport time. The
public transport cost is highly correlated with time and therefore omitted in the
utility function. The expected utility function was formulated as:

UPT =CPT + αPTTPT + ηξn + εPTn (7)

where CPT is a constant and ξn is a [0,1] normally distributed error component,
inducing a larger variance of the error components in the choice of mode relative
to the choice between the car-based alternatives. The size of this variance is
determined by η,, which is estimated. Comparing this specification with a nested
logit model, this is equivalent to specifying separate nests for each of the two
modes. TPT is the public transport travel time. Public transport travel times are
assumed not to vary very much within the extended morning peak.

3 Survey

An SP survey, designed to explore the trade-off that drivers make between shifts in
preferred departure time, travel cost, travel time and travel time uncertainty, was
administered to a sample of drivers travelling toward the city centre of Stockholm
during the extended morning peak period (06.00-10.00). The main study took
place in spring 2005, preceded by a pilot study in March the same year. Drivers
were first registered by roadside number plate registration, after which a survey
agency called them the same evening for an initial interview to collect certain
prior information about the observed trip (i.e. purpose, departure time and travel
time) as well as socioeconomic information (including income). The respondents
were also asked at what time they would have departed, and how long the trip
would have taken, if there never were any queues on the road network. This
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A B

You depart 07:55 You depart 08:30

Travel cost 22 kr Travel cost 12 kr

Travel time 45-55  min Travel time 40-90  min

You arrive 8:30-8:40 You arrive 9:10-10:00

I choose: 

 A  B

 Use Public Transport (with the departure         

.                 and travel  time you reported)

 Bike/Walk                       Cancel the trip

Figure 1: Example of the sample questions

information was used to identify the preferred departure time. The SP survey
was mailed to them the following day.

The questionnaire first listed the information about the observed trip (i.e.
actual departure and arrival time, trip duration and preferred departure time)
to remind respondents about the circumstances of the trip. This information
had also been used to customize the game. Then a number of questions followed
that introduced the respondents to the concepts of travel time variability and
departure time choice. The second part of the questionnaire included eight SP
questions. For each question the respondents were instructed to choose one of two
departure time alternatives. The option to switch to public transport, bicycle or
walk, or cancel the trip were also offered, but the number of choices for the latter
two was small and therefore not included in the model. For public transport
time, respondents were instructed to assume their actual public transport time
in the SP game. To code the respondents’ actual public transport travel times,
output from the EMME/2 network assignment package was used.

Travel time and travel time uncertainty were presented by a travel time inter-
val, specified by a Tmax and a Tmin (see figure 1). The respondents were informed
that the travel time might fall outside this interval about once a month if making
the trip at the same time of day five days a week. We therefore interpret it as a
95% confidence interval.

The problem of representing travel time uncertainty in SP surveys, capturing
the respondents’ actual valuation of uncertainty and still making it both realistic
and interpretable for non-professionals has been discussed by several authors (see
Bates et al. (2001)). The present study adopted interval presentation because we
believe it corresponds to the type of simplified information that many travellers
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actually consider when choosing how and when to travel. The pilot and main
survey further showed that the respondents are aware of the fact that their travel
time normally varies within an interval. They were asked to report the minimum
and maximum travel time of the particular trip, and their answers indicated that
they understood and interpreted these questions correctly. Hence we may assume
that an interval expresses travel time variability in a realistic and interpretable
manner.

A further motive for adopting an interval representation of travel time is
connected to the implementation of this model and to joint RP-SP estimation
using this data, which have been carried out in subsequent studies. In the RP
data travel time variability is measured with a 95% confidence interval because
the standard deviation is too sensitive to measurement errors (see section 3).

Travel time variability in this case is represented by the difference between
minimum and maximum travel time in the application because a very large num-
ber of observations with very good quality are required to measure the standard
deviation accurately.

An interval representation of travel time uncertainty (difference between the
90th and the 50th percentile) was further found to have the best model fit in
two studies on value of time and reliability, using RP and SP data from the
HOT lane projects in California. In these studies standard deviation captured
individual’s preferences only imperfectly in RP data (Brownstone and Small 2005,
Lam and Small 2001). They suggest that the poor results obtained from using
the standard deviation may arise from incorrect measurements. However the
interval representation implies that we need to make an assumption as to what
mean travel time the respondents assume based on an earlier study of travellers’
experiences of the travel time distribution.

An orthogonal design based on the difference between the two SP alternatives
was used. Simulation over a wide range of parameter values, which also included
the parameter values obtained in the pilot and main study, was undertaken to
guarantee sufficient efficiency in parameter estimates. The observed departure
and travel times, collected in the interview, were used to partially customize the
game.

The pilot study, in combination with expert judgments, was used to arrive
at the final levels of the attribute in the SP experiment. In the first of the two
alternatives in each question, the departure time was shifted 5-15 minutes later
or earlier from the actual departure time. The departure time in the second
alternative was determined by assigning a departure time difference between the
two alternatives. The departure time in the second alternative was shifted in the
same direction, later or earlier, as in the first alternative. The difference between
the departure times in the two alternatives was assigned four levels in the range
of 5-60 minutes.

The travel time intervals were determined by two variables, mid-point and
width, and the difference of the interval mid-points took four levels, ranging
from 10-25 minutes. The interval width was derived as a percentage of the mid-
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Table 1: Number of choices for each model segment†

No. of obs Shift to PT
Segment 1: Commuters with flexible 2732 268
schedule and other trips

Trip purposes included:
Commutes to work, flexible schedule 2034 185
Shopping 21 3
Drop or pick someone off 134 13
Other 519 67
Commutes home from work 24 0

Segment 2: Commuters with fixed schedule 1133 112
Trip purposes included:
Commutes to work, fixed schedule 1071 111
To or home from school 62 1

Segment 3: Business 521 36
Total 4386 416

† The included purposes are listed for each segment. Number of choices
corresponds to the number of respondents multiplied by the number of choices
in the SP. The number of choices for which the public transport alternative was
chosen is given explicitly

Table 2: Number of respondents categorized into trip purposes

Purpose Frequency Percent
Commutes to work, flexible schedule 456 43,7
Other trips 173 16,6
Commutes to work, fixed schedule & school trips 253 24,2
Business trips 162 15,5

point, with the four levels ranging from 0-80%. Cost differences between the two
alternatives were assigned four levels in the range of SEK 10-40 (EUR 1-4).

The number of respondents interviewed, grouped with respect to purpose and
temporal flexibility, is shown in table 1. The number of SP choices used in the
model estimations, grouped into three segments, is tabulated in table 1.
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4 Model Estimation

4.1 Segmentation

Based on a careful examination of the data, the population was segmented into
three groups. The first segment included commuters with flexible working hours,
the second commuters with fixed working hours and the third people taking busi-
ness trips. School trips were included in the second segment and trips with other
purposes were added to the first segment. The assumption of the latter’s similar-
ity, in scheduling flexibility, to trips for individuals with flexible work schedules
is plausible since they, too, often lack a fixed starting time.

To summarise, separate models were estimated for 1) commuters with flexible
working hours, with other trips added in 2) commuters with fixed working hours,
with school trips added in and 3) business trips. Only the results from the
estimation of the largest model segment, commuters with flexible working hours
and other trips, will be presented in detail. Models for the other segments are
presented in the appendix.

4.2 Mixing Distribution

In the introductory phase of the estimation, several mixing distributions for the
scheduled delay and cost parameters were evaluated: triangular, normal, uniform
and lognormal. The symmetric distributions were inappropriate since the true
distributions proved to be highly skewed and it is clearly inconsistent to assume
positive valuations for scheduled delay and monetary cost attributes. The log-
normal distribution gave rise to convergence problems, most likely because of the
extensive tail. Johnson’s SB distribution, which has the advantage of being an
unsymmetrical and bounded distribution, was therefore applied. It is a nonlinear
transformation of the normal distribution:

l1 + l2 ∗
eθ

1 + eθ
(8)

where l1 is the lower bound and l2 is the width of the interval. θ is a normally
distributed variable with mean µ and variance σ that determine the shape of
the density function. Johnson’s SB approximate the normal and the lognormal
distribution but can also be bi-modal.

However, applying Johnson’s SB distribution implies that as many as four
parameters can be estimated. Train and Sonnier comment that if the bounds (l1
and l2 + l1) are treated as parameters to be estimated it is likely that the model
runs into identification problems because l2 is closely related to the variance of
the normal term. We have therefore assumed fixed bounds, with the upper bound
set at zero. For the lower bound we evaluated two different points, -1 and -2,
and investigated the sensitivity of this assumption. No significant influence of
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this assumption, in terms of model fit and shape of the density function, could
be found and thus we chose the bounds [-1,0] for all random parameters, as will
be shown below.

4.3 Estimation

For model estimation the software package Biogeme 1.4 (Bierlaire 2005) was
applied. The model for commuters with flexible working hours and other trips
was estimated using Modified Latin Hypercube Sample (MLHS) draws proposed
by Hess et al. (2006b). A sum of 1000 draws proved to be sufficient to give
stable estimates. The randomly distributed parameters are constant across all
observations for the same individual in the estimation, i.e. the direct disutility of
scheduled delay and cost are assumed to be constant across all choices for each
individual.

For the three model segments three model specifications were initially esti-
mated, differing in their definition of scheduled delay. In this initial examination
all models were estimated using MNL models, which means assuming the coef-
ficients to be constant across all individuals n in eq. (6-7). In specification 1)
SDE and SDL were both defined with respect to departure time, eq. (2-3). In
specification 2) SDE and SDL were both defined with respect to arrival time, eq.
(4-5). In specification 3) SDE was defined with respect to departure time, eq.
(2), and SDL was defined with respect to arrival time, eq. (5). The third model
specification seems to be the most plausible one from a theoretical point of view.
When defining SDE with respect to departure time, we may think of this cost
as an opportunity cost of interrupting the activity at origin. SDL defined with
respect to arrival time is opportunity cost of being late to the activity at the
destination.

The Log Likelihood (LL) values of all specifications are presented in table 3.
For two out of the three model segments, commuters with flexible and business,
best model fit was achieved using specification 3). In these model segments,
temporal constraints at the origin thus seem to primarily restrict early departure
whereases constraints at destination primarily restrict late arrival. For commuters
with fixed working hours, however, the LL values of specification 1) and 3) do
not differ significantly. Since the third specification ins further the theoretically
most sound specification this was applied in the final models. In the continuation
of this paper SDE and SDL will refer to SDEDT and SDLAT , respectively.

The final model for commuters with flexible schedule and other trips are shown
in table 4. αPTrep is the public transport travel time parameter the for those
respondents (18 in total) for whom the public transport time could not be coded
(because of incorrect origin or destination address). The variable corresponding
to this parameter is the travel time reported by the respondents themselves.

TParent is an additional direct disutility of travel time for parents with de-
pendent children. PTParent is a dummy parameter in the public transport utility
function, equalling one if parent and zero otherwise, indicating that parents have
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Table 3: LL value for all model segments using different definitions of scheduled
delay (MNL)

Flexible Fixed Business
Specification & Other trips
1) SDEDT , SDLDT -2337,22 -957,67 -435,22
2) E(SDEAT ), E(SDLAT ) -2323,14 -926,45 -426,88
3) SDEDT , E(SDLAT ) -2318,93 -926,63 -422,45

a lower propensity to switch to public transport. SeasonT icket is a dummy
variable, which is one if the respondents have a season ticket and zero other-
wise. Beside this, no systematic socio-economic differences could be found. For
instance, although cost sensitivity varies within each segment, no systematic dif-
ferences between income groups could be found within each segment.

The disutility of travel time uncertainty depends on whether the expected
arrival time of a specific alternative is shifted later or earlier. The parameter for
travel time uncertainty was therefore segmented so that ∆early and ∆late denote
the 95% confidence interval of the travel time in alternatives where expected
arrival time is shifted earlier and later, respectively, than PAT. The parameter
for travel time uncertainty was only significant in the choices where expected
arrival time was shifted later than PAT, in segments 1 and 2. When departure
time was shifted earlier, travel time uncertainty did not add a significant disutility.
This seems plausible, since the risk of arriving later than PAT then is small. The
estimates of travel time uncertainty depend on the way in which the mean travel
time T is calculated as a linear combination of Tmin and Tmax. To show this we
rewrite the last two terms in eq. (6):

αT + λ∆
=α(c(Tmax) + (1− c)Tmin) + λ∆
=(λ+ cα)∆ + αTmin (9)

Hence, for any value of c (used to calculate the mean travel time) the estimated
value of λ will adjust. c was set to 1/3, which is consistent with results from an
earlier study on commuters’ perception of the travel time distribution carried out
in Stockholm (Transek 2000).

For earliness and lateness the parameter and not the variable names are given
in table 4, since the parameters do not directly correspond to the variables.
βCOST , βSDE and βSDL are the estimated means of the underlying normal distri-
butions corresponding to the Johnson’s SB-distributed coefficients of eq. (6 - 7).
σCOST is the standard deviation of the corresponding normal distribution. Since
SDE and SDL are correlated, the standard deviations of the underlying normal
distributions are not estimated directly. For technical reasons the elements of
the Cholesky decomposition matrix are estimated instead. The Cholesky de-
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Table 4: Departure time model for commuters with flexible schedules and other
trips

Number of MLHS draws: 1000
Number of observations: 2732
Number of individuals: 359
Null log-likelihood: -3001.41
Final log-likelihood: -1996.02
Rho-square: 0.3350
Name Value Std err t-test
βCOST -2.815 0.095 -29.55
σCOST 0.862 0.098 8.80
βSDE -4.304 0.360 -11.94
σSDE 2.010 0.261 7.71
βSDL -3.401 0.169 -20.17
σSDL 1.060 0.181 5.84
σSDL SDE 0.549 0.167 3.29
SDE7.30 0.017 0.005 3.34
T -0.059 0.005 -12.69
TParent -0.078 0.006 -13.00
∆late -0.014 0.003 -4.81
CPT -7.401 0.895 -8.27
η -5.052 0.566 -8.92
TPT -0.062 0.009 -6.73
TPTrep -0.206 0.048 -4.31
SeasonT icket 5.062 0.950 5.33
PTParent -2.952 0.957 -3.08

composition was used as a method to generate a correlated multivariate normal
distribution based on uncorrelated univariate normal draws (see for instance Press
et al. (1987)) σSDE , σSDL and σSDL SDE equal the lower triangular Cholesky
factorisation matrix, where σSDL SDE is the off-diagonal.

Using the Cholesky elements, the density functions of the Johnson’s SB-
distributed parameters of eq. (6 - 7) were simulated. Table 5 shows the corre-
sponding simulated means, standard deviations and correlations of the simulated
parameters. The corresponding density functions are plotted in figure 2. The
plots reveal that the density functions of the random parameters are skewed,
in particular SDE, indicating that many respondents have a low sensitivity to
scheduled delay. Correlation of the scheduling parameters is positive, which is
also the case in the model for business trips.

The standard deviations of the random parameters can be interpreted as error
components. They allow for different levels of error between the alternatives. In
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Figure 2: Commuters with flexible schedule and other trips: density of the John-
son’s SB-distributed random parameters

turn this affects the sensitivity of departure time and mode choice, in response
to changes in the observed part of the utility. The sensitivity is larger between
alternatives that have smaller error difference. The error difference between two
departure time alternatives equals the standard deviation of the scheduling vari-
ables multiplied by the departure time shift between them (de Jong et al. 2003).

Table 5 shows that the standard deviation of SDE is larger than that of SDL.
Departure time shifts earlier are thus less sensitive to generalized cost changes
than arrival time shifts later of the same magnitude. This means that there
is more unexplained variation among drivers in constraints or preferences for
earlier departure than late arrival. The standard deviation of the mode switch
error component is 5.052 (see η in table 4). Hence, for time shifts smaller than
72 minutes later or 45 minutes earlier, time shifting is more sensitive than mode
choice to travel cost changes.

The assumption that the random parameters are constant across all observa-
tions for the same individual appears to be crucial for achieving plausible substi-
tution patterns in the present model. If, on the contrary, we treat all observations
as independent from each other, the standard deviations of the random parame-
ters SDE and SDL become insignificant. We can thus conclude that the disutility
of departing earlier than PDT and shifting expected arrival time later than PAT
is basically proportional to the time shift and varies in the population. It is
consistent however across the observations from the same individual.

If we do not take repeated measures bias into account, variation in the ran-
dom parameters thus becomes significantly underestimated and the model col-
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Table 5: Mean and standard deviation of the random parameters for commuters
with flexible schedule and other trips†

Parameter Mean Std. Dev.
COST -0.0748 0.0626
SDL -0.0563 0.0698
SDE -0.0549 0.1108

† SDE and SDL are measured in [1/min] and COST has unit [1/SEK]

lapses to a nested logit model (the model is still nested since we have included
mode choice). Note that we cannot apply the closed-form OGEV model to this
data, which would have been faster in the application, since GEV models cannot
accommodate correlation in unobserved heterogeneity.

4.4 Comparing the Segments

To facilitate a comparison between the different population segments, table 6
shows mean values of the random parameters as a proportion of the travel time
parameters, for the three model segments. Taking the example of commuters
with flexible schedule, these numbers should be interpreted as the disutility per
minute of early departure being equivalent to 0.8 minutes of travel time (or 1
minute if departure time is shifted earlier than 7.30 a.m.), which means that
on average commuters are willing to depart 10 minutes earlier to save 8 (or 10)
minutes of travel time. For late arrival the corresponding value is about 8 minutes
of travel time. For commuters with a fixed schedule both late arrival and early
departure are more costly than in other model segments, in agreement with our
a priori expectation.

Since the travel cost parameter can take values arbitrarily close to zero, the
value of time cannot be computed directly. Still, we may compute valuation of
money as a proportion of valuation of time. If the travel cost increased 10 SEK (1
Euro), 11 minutes’ shorter travel times would, on average, compensate travellers
with flexible schedules. In the segment for commuters with fixed schedules, the
required compensation is 28 minutes of travel time. This is relatively high, and
might be an effect of a policy bias against monetary cost. It is plausible however
that commuters with a fixed schedule are more sensitive to travel cost, since this
group has a lower average income.

Table 6 also shows that travel time uncertainty, relative to mean travel time,
is less costly for travellers with flexible schedules as expected. For business trips,
as opposed to the other segments, travel time uncertainty is costly also in choices
where expected arrival time was shifted earlier than PAT.

Sensitivity for travel time uncertainty, or reliability, is normally computed
as the ratio between sensitivity for standard deviation and sensitivity to mean

43



M. Börjesson, Journal of Choice Modelling, 2(1), pp. 29-50

Table 6: Means of the random parameters expressed as a proportion of the
parameter for the travel time (T)†

Parameter Flexible schedule Fixed schedule Business
& Other trips

COST/T 1.083 2.841 1.100
SDL/T 0.817 3.382 1.056
SDE/T 0.800 1.473 0.712
(SDE7.30 + SDE)/T 1.050 1.491
(SDE7.00 + SDE)/T 2.453
∆late/T 0.198 0.528 0.472
∆early/T notsig. notsig. 0.292

† In the first column (Flex, Other) the values presented are weighted means
between parents and others, who have different travel time parameters.

travel time (the reliability ratio). In the present study, the valuation of stan-
dard deviation of travel time is not estimated. If, however, assuming a lognormal
distribution with the standard deviation of the underlying normal travel time
is set to 1 for all departure times (which corresponds to the mean travel time
we have assumed: c = 1/3.), standard deviation equals ∆late/2.4. The relia-
bility ratio would thus be 2.4*0.20 = 0.48 for commuters with flexible schedule
and 2.4 ∗ 0.53 = 1.27 for commuters with fixed schedule.For business trips the
corresponding reliability ratio is 1.13 for late arrival and 0.70 for early arrival.

Note also that the valuation of the scheduled delay induce a higher disutl-
ity per minute than the the unexpected delay, measured as the 95% confidence
interval.

5 Validation

To assess the validity of the estimates of scheduling disutility we compare them
with previous literature (see table 7), although the differences in definitions and
data complicate the comparison. The time shifts used in Small (1982) and Noland
et al. (1998) are much smaller than in the present analysis. However, because
the model specifications and data differ between the studies we cannot isolate the
effect of the larger departure time shifts on the scheduling disutility. The effect of
larger time shifts could even work in different directions. On the one hand, they
could imply a higher scheduling disutility per minute, since the whole day might
have to be reorganised. On the other hand, larger shifts could imply a lower
scheduling disutility per minute, if the cost of reorganising the day is reasonable.
It is most likely however that large time shifts tend to increase the scheduling
disutility for commuters with fixed working hours, since they presumably have
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Table 7: Estimations of trade-off ratios of the parameter for SDE and SDL and
the travel time parameters in the literature (studies referring to car users)

Studies SDE/TIME SDL/TIME

Small (1982), commuters 0.61 2.40
Noland et al. (1998), commuters 0.97 1.31
Dutch, commuters, flexible h 0.89 0.63
Dutch, commuters, fixed h 0.72 1.17
Dutch, other trips 0.96 0.94
West Midlands, commuters, flexible h 0.77 0.79
West Midlands, commuters, fixed h 1.70 7.15
West Midlands, other trips 0.67 0.87
Present study, commuters, flexible h
/ other trips 0.80 0.82
Present study, commuters, fixed h
/ school trips 1.47 3.38
Present study, business trips 0.71 1.06

smaller chances to reorganise the day.
The study by Small (1982) should be compared to the segment of commuters

with fixed schedules, since few commuters had flexible working hours at that
time. The scheduling disutility found in the present study is larger relative to
travel time, which might be an effect of the larger time shifts. The scheduled
delay parameters estimated in Noland et al. (1998) lie between those estimated
for commuters with fixed and flexible hours in the present study. This makes
sense since Noland et al. included commuters with both fixed and flexible hours.

The estimates further down in table 7 (labelled Dutch and West Midlands)
are found in a tour-based study comparing the relative sensitivity of mode and
departure time choice (Hess et al. 2006a). In these studies the time shifts are of
about the same magnitude as in the present analysis. The estimated scheduling
costs found in the present study are also well in line with those found by Hess
et al. Scheduling disutility differs notably between commuters with fixed and
flexible schedules, and shifts to later departure times are more costly than earlier
ones. The error components also show a similar pattern as in Hess et al. The
mode choice is less sensitive than the departure time choice to changes in ob-
served generalized travel costs, unless the time shifts considered are large (45-90
min). Further, earlier time shifts are more sensitive to changes in the observed
generalized travel costs than later departure time shifts of the same magnitude.

In comparing the valuations of travel time uncertainty using so called reli-
ability ratios, the difference between studies seems to be even larger. Typical
reliability ratios from the literature are 1.1-2.2 according to Bates et al. (2001).
However, in the earlier study by Black and Towriss (1993), the values 0.7 and
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0.55 are found. Noland and Polak (2002) suggest that the way of presenting
travel time uncertainty to respondents might be an important source of the large
discrepancies in the estimates of its valuation. This study indicates that the re-
liability ratio is dependent not only on population segment but also on planned
deviations from most preferred time, which could be an explanation for the large
variability of the reliability ratios estimated in the literature.

6 Conclusions and further work

The purpose of this study is to estimate a departure-time and mode-choice de-
mand model for Stockholm. The main result is that the preference for scheduled
delay is roughly proportional to the time shift and varies in the population, but
is much more consistent within an individual. Another interesting finding is that
scheduled delay induce a much higher disutlity per minute than unexpected delay,
the latter measured as the 95 interval. The disutilty arising from an uncertain
travel time also depend on the scheduled delay.

Since the model included error components for mode and time of scheduled
delay shifts the patterns of substitution between was estimated. For time shifts
smaller than 72 minutes later or 45 minutes earlier, time shifting is more sensitive
to generalized cost changes than mode choice. Departure time shifts earlier are
more sensitive than arrival time shifts later, which means that there is more
unexplained variation among drivers in preferences for earlier departure than
late arrival.

The estimated demand model is currently being implemented together with
a dynamic assignment model (Kristoffersson 2007). However, to control for the
fact that the response scale normally is distorted in SP data, the implemented
model has been re-estimated, combining the SP data with RP data (see Brjesson
(2008)).
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A Models for other segments

Table 8: Departure time model for commuters with fixed schedule and school
trips

Number of MLHS draws: 2000
Number of observations: 1133
Number of individuals: 149
Null log-likelihood: -1244.73
Final log-likelihood: -759.485
Rho-square: 0.38894
Name Value Std err t-test
βCOST -2.824 0.201 -14.08
σCOST 1.271 0.202 6.28
βSDE -3.702 0.457 -8.09
σSDE 1.348 0.333 4.05
βSDL -2.377 0.159 -15.00
σSDL 0.950 0.171 5.55
SDE7.00 0.033 0.010 3.22
T -0.034 0.006 -5.44
∆late -0.018 0.006 -3.20
CPT -6.921 2.019 -3.43
η -4.994 0.836 -5.97
TPT -0.098 0.031 -3.16
TPTrep -0.045 0.029 -1.54
SeasonT icket 6.837 1.761 3.88

Table 9: Mean and standard error of the random parameters for commuters with
fixed schedule and school trips

Parameter Mean Std. Dev.
COST -0.095 0.110
SDL -0.113 0.095
SDE -0.049 0.072
Correlation of SDE and SDL is not sig.
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Table 10: Departure time model for business trips

Number of MLHS draws: 5000
Number of observations: 521
Number of individuals: 74
Null log-likelihood: -353.13
Final log-likelihood: -282.27
Rho-square: 0.21837
βCOST -4.342 0.929 -4.67
σCOST 2.277 0.820 2.78
βSDE -4.079 0.732 -5.57
σSDE 2.474 0.806 3.07
βSDL -3.059 0.314 -9.75
σSDL -0.190 0.761 -0.25
σSDL SDE 0.937 0.341 2.75
SDE7.30 -0.047 0.011 -4.19
T -0.061 0.009 -6.46
∆late -0.029 0.007 -4.07
∆early -0.018 0.008 -2.36

Table 11: Mean and standard error of the random parameters for business trips

Parameter Mean Std. Dev.
COST -0.067 0.137
SDL -0.064 0.062
SDE -0.043 0.172
Correlation of SDE and SDL is 0.936
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