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Abstract

Louviere et al. (2008, J. of Choice Modelling, 1, 126-163) present two
main empirical examples in which a respondent rank orders the options in
various choice sets by repeated best, then worst, choice. They expand the
ranking data to various “implied” choices in subsets and fit the expanded
data in various ways; they do not present models of the original rank data,
except in one case (that of the rank ordered logit). We build on that work
by constructing models of the original rank data that are consistent with
the “weights” implied by the data expansions. This results in two classes
of models: the first includes the reversible ranking model and has useful
“score” properties; the second includes the rank ordered logit model and has
natural “process” interpretations. We summarize known and new results on
relations between the two classes of models and present fits of the models
to the data of a case study concerning micro-generation of electricity using
solar panels - that is, where individual households generate electricity using
a renewable energy technology.
Keywords: best-worst choice; choice models; micro-generation; probabilistic
choice; rank expansions; ranking; renewable energy

1 Introduction

Louviere and Woodworth (1990) and Finn and Louviere (1992) developed a dis-
crete choice task in which a person is asked to select both the best and the worst
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option in an available (sub)set of choice alternatives (options); they also presented
and evaluated a probabilistic model of their data. Recent research related to this
topic by Louviere and his collaborators has begun to make a clear distinction
between best-worst choice as a method, called Best Worst Scaling (BWS), and
models that are applied to data obtained using BWS. For instance, Scarpa et al.
(2011) obtained rank orders of options by asking respondents to make a sequence
of best, then worst, choices - each choice set had 5 alternatives, and a rank order
was obtained by a respondent making the following sequence of choices: the most
preferred alternative out of 5; the least preferred of the remaining 4; the most
preferred of the remaining 3; the least preferred of the final 2. Scarpa et al. fit
the data by a model based on repeated best choices (namely, an extension of the
rank-ordered logit) that includes three variance terms, each of which depends on
one aspect of the design: the placement in the survey of the current choice set;
the size of the current choice set; and the order in which the subsets of the cur-
rent choice set are considered in producing the rank order. The important thing
to note is that the choices were obtained by BWS, i.e., a sequence of best, then
worst, choices, yet the model was formulated and tested as a sequence of 4 best
choices. The model did have variance terms to account for the difference between
the order in which the options were selected and the order in which they appear
in the model. It remains for future research to determine whether this approach
is reasonable, or whether it is preferable to apply models that include represen-
tations of best and worst choices and the order in which they are applied - as in
Lancsar and Louviere (2009) and Collins and Rose (2011). Section 7 presents a
case study that indirectly addresses the above question.

A related issue, if one treats BWS as a data collection method, rather than
a model, is: what model should be fit to the resulting (ranking) data? This
question is explored in Louviere et al. (2008), with emphasis on fitting models
to the best (first) choices, only, of individuals, even when partial or full rank
order data were collected by, say, repeated best, then worst. Specifically, the
two main empirical examples in that paper had respondents rank order sets (of
size 3, 4, or 5) by repeated best, then worst, choice. These rank data were then
expanded to “implied” best choices on various subsets, and the expanded data
used, in various ways, to fit the original best choice data with a multinomial logit
(MNL) model; except in one case (that of the rank ordered logit), rank order
models were neither presented, or fit, by Louviere et al. We build on their work
by constructing models of the unexpanded rank data that are consistent with
the “weights” proposed by the Louviere et al. expansions; these rank models
belong to a general class, which we call weighted utility ranking (WUR) models,
the general properties of which can be stated independently of the Louviere et
al. expansions.

Full details on the use of expansions in fitting best choice data are given
in Louviere et al. (2008); Islam, Louviere and Pihlens (2009); and Ebling,
Frischknecht and Louviere (2010). In this paper, we only provide sufficient detail
of those methods to illustrate particular weighted utility ranking models.
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The remainder of the paper is as follows: Section 2 illustrates the data ex-
pansion methods in Louviere et al. (2008); Section 3 introduces the notation;
Section 4 introduces the class of weighted utility ranking models, some of which,
as shown in Section 5, can be partially motivated by the Louviere et al. expan-
sions. Section 6 introduces ranking models based on repeated best and/or worst
choice; the rank ordered logit is the best known model in this class; this section
also presents known and new results relating weighted utility and repeated best
and/or worst ranking models. Section 7 present fits of the models to the data of a
case study concerning micro-generation of electricity using solar panels. Finally,
Section 8 presents a discussion and conclusion. Appendices A and B include some
technical material and Appendix C is a list of acronyms that appear in the paper.

2 Previous Work: Data Expansion Methods

The following example, taken from Louviere et al.(2008), illustrates their methods
and results; all such methods and results generalize to larger examples. After
introducing this material, we develop related probabilistic ranking models.

Consider drink combinations described by type of drink (coffee, tea, coke,
water), price ($1.00, $1.50, $2.00, $2.50) and container (bottle, can). Construct
16 choice options using an orthogonal main effects plan (OMEP), where the 1st

(respectively, 2nd) attribute is type of drink (respectively, price), each with 4
levels 0, 1, 2, 3, and the 3rd is container with 2 levels 0, 1 (Table 1).

Table 1. Descriptions of the options.

Attribute

1st 2nd 3rd

Option: Levels:

1 0 0 0

2 1 1 0

3 0 2 1

4 0 3 1

5 1 0 0

6 1 1 0

7 1 2 1

8 1 3 1

9 2 0 1

10 2 1 1

11 2 2 1

12 2 3 0

13 3 0 1

14 3 1 1

15 3 2 0

16 3 3 0
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We assume that a balanced incomplete block design (BIBD) is used to put
the 16 drink combinations of Table 1 into the 20 choice sets of Table 2, with each
choice set of size 4; each drink combination occurs in 5 choice sets; and each pair
of drink combinations occurs in one choice set.

Table 2. BIBD of 20 choice sets of size 4.

Choice Set: Options in choice set:

1 2 5 8 14

2 1 5 6 7

3 5 9 12 16

4 4 5 11 15

5 3 5 10 13

6 1 2 3 4

7 2 6 9 11

8 2 7 13 16

9 2 10 12 15

10 1 8 9 10

11 6 8 13 15

12 4 7 8 12

13 3 8 11 16

14 1 14 15 16

15 3 6 12 14

16 7 10 11 14

17 4 9 13 14

18 1 11 12 13

19 4 6 10 16

20 3 7 9 15

Suppose a participant has, separately, rank ordered the four options in each
of the 20 choice sets of Table 2 from best to worst, and “...consider what happens
if we “pretend” that we have more data than only the ranks, but do this in a very
systematic and structured way.” (Louviere et al., 2008, p. 138). We now rephrase
the details of this “pretence” (given on p. 138-9 of Louviere et al., 2008) and
then, in Section 5, use the results as a motivation for probabilistic models of the
unexpanded rank data. There, we also describe the similarities and differences
between our approach (ranking models applied to rank data) and Louviere et
al.’s approach (MNL models for best choices in rank data, with that rank data
expanded to “implied” best choices on subsets).

Let X = {w, x, y, z} denote a typical one of the 20 choice sets in Table 2, and
assume that the participant has given the rank order w � x � y � z, where �
means “is preferred to” - i.e., the ranking is from best (first) to worst (last)1. Now

1For the remainder of the paper, best (respectively, worst) refers to the first (respectively,
last) option in such a (partial or full) rank order.
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consider all two- and three-element subsets of X - Table 3 shows them, where,
for each column, 1 (respectively, 0) means that the option at the head of that
column is (is not) in the choice set in the current row. Following Louviere et al.,
we now “pretend” that because we know the preference order w � x � y � z, we
can apply that order to predict the best choice for each 2- and 3-element subset
of X = {w, x, y, z}. For example, choice set 10 in Table 3 is the 3-element subset
{x, y, z} and the “implied” best choice is x as it precedes both y and z in the
rank order w � x � y � z. The final row of Table 3, Total, gives the “implied”
number of best choices of each element of X for the given (data) rank order.

Comment Louviere et al. include subsets with one element (singletons) in
their expansion of Table 3, as they do in all their expansions; this gives Totals of
8,4,2,1 in Table 3. The ranking probabilities of each of the ranking models that
we motivate by such expansions are the same, with or without the inclusion of
such singleton sets; so we do not mention this point again.

Table 3. “Implied” best choices for each 2- and 3-element subset of {w, x, y, z}
given the rank order w � x � y � z.

Rank Position

1st 2nd 3rd 4th

Preference Order: w x y z

Choice Set: Implied Choice:

1 1 1 0 0 w

2 1 0 1 0 w

3 1 0 0 1 w

4 0 1 1 0 x

5 0 1 0 1 x

6 0 0 1 1 y

7 1 1 1 0 w

8 1 1 0 1 w

9 1 0 1 1 w

10 0 1 1 1 x

11 1 1 1 1 w

Total 7 3 1 0

A parallel expansion is applied to the participant’s data rank order for each
of the 20 choice sets in Table 2. Louviere et al. then use the (natural log of
the) Total (score, weight) for each option in each of the 20 choice sets as the
dependent variable in fitting an MNL model to the best (first) choices in the
rank order data for those sets. They use various estimation methods, such as
weighted least squares (WLS), weighted conditional logit (WCL), and maximum
likelihood (ML), and obtain similar estimates (up to a scale factor) with each
method. The most recent related work (Ebling et al., 2010) obtains excellent
in- and out-of-sample fits of an MNL model to the best choices in partial rank
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data using a WLS method based on an expansion of that partial rank data - see
Section 5.2 for related expansions.

As noted above, our main purpose is to further explore the use of such “ex-
panded” best choices, and the resultant “implied” choice totals, in the motivation
of probabilistic models of the unexpanded rank data. The details of the argu-
ments appear in Section 5, with a brief summary here. Specifically, using Table 3
as illustration, we agree with Louviere et al. that, when choices are deterministic,
the rank order w � x � y � z is equivalent to (contains the same information
as) the (implied) best choice for each of the choice sets in Table 3. However,
we reason further that, when choices are probabilistic, the assumption of this
equivalence (or other related ones discussed below) can be interpreted as speci-
fying a particular (deterministic) functional relation between the probability of a
ranking of a set and the best choice probabilities on subsets of that set; the de-
tails of such functional relations are given in Section 5. Said another way, in the
probabilistic case, the (sample) rank order of a set and the (sample) best choices
in the non-empty subsets of that set are only “equivalent” for a model satisfying
a particular functional relation between the probabilities of ranking and of best
choice. Importantly, that functional relation is not, in general, compatible with
the multinomial logit (MNL) model holding exactly for the best choices in the
rank orders.

Thus, our perspective is rather different than that of Louviere et al. (2008)
and Ebling et al. (2010). Generally, their work involves using the expanded
data in fitting the best choices, only, in the rank data, with those best choices
assumed to satisfy an MNL model; the exception is their fitting the rank data by
the rank ordered logit - see Section 6 for that model. Hence, it seems that they
are implicitly assuming that the expanded data (choice totals) provide estimates
of best choices that are improved relative to those obtained using the unexpanded
rank data. We, on the other hand, focus on modeling the original rank data, but
with ranking models motivated, to some extent, by the Louviere et al. expansions
(choice totals). In fact, the likelihoods given by the two approaches are such that
they yield the same sufficient statistic (Section 5.1.1).

3 General Notation

Let T with |T | ≥ 2 denote the finite set of potentially available choice options,
and let D(T ) denote the design, i.e., the set of (sub)sets of choice alternatives
that occur in the study. For any subset X ⊆ T , with |X| ≥ 2, BX(x) denotes the
probability that the alternative x is chosen as best2 in X, WX(y) the probability
that the alternative y is chosen as worst in X, and BWX(x, y) the probability
that the alternative x is chosen as best in X and the alternative y 6= x is chosen

2Most previous work using similar mathematical notation has used PX(x) or P (x|X) where
we use BX(x). We use the latter for best, and WX(x) for worst, to distinguish clearly between
such Best and Worst choice probabilities.
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as worst in X. At this point, we do not consider whether x is chosen as best in
X, then y is chosen as worst in X − {x}; or y is chosen as worst in X, then x
is chosen as best in X − {y}; or x is chosen as best in X and y 6= x is chosen as
worst in X “simultaneously”; we do consider such issues when we present specific
models of repeated best and/or worst choice. Thus

0 ≤ BX(x),WX(y), BWX(x, y) ≤ 1

and ∑
x∈X

BX(x) =
∑
y∈X

WX(y) =
∑
x,y∈X
x 6=y

BWX(x, y) = 1.

Much of the following material uses the multinomial logit (MNL) model for
best choices: there is a difference scale3 u such that for all y ∈ Y ⊆ T,

BY (y) =
eu(y)∑
z∈Y e

u(z)
. (1)

The representation restricted to Y ⊆ T , |Y | = 2, is the binary MNL model. The
natural parallel for worst choices is the multinomial logit (MNL) model for worst
choices: there is a difference scale v such that for all y ∈ Y ⊆ T,

WY (y) =
ev(y)∑
z∈Y e

v(z)
.

Marley and Louviere (2005) present a theoretical argument for the case where
v = −u, i.e., we have

WY (y) =
e−u(y)∑
z∈Y e

−u(z) . (2)

Thus, the worst scale value is the negative of the best scale value; this is not a
necessary restriction. One interpretation of this constraint is that, for the MNL
model, it yields the result that the probability that y ∈ Y is selected as best in
a set Y with scale values u(z), z ∈ Y , is equal to the probability that y ∈ Y is
selected as worst in a set Y with scale values −u(z), z ∈ Y . In particular, when
(1) and (2) both hold, we have that for all x, y ∈ X,x 6= y, B{x,y}(x) = W{x,y}(y),
and write the common value as p(x, y); empirically, this relation may not always
hold (Shafir, 1993). Collins and Rose (2011) present good fits of generalizations
of (1) and (2) to ranking data obtained by repeated best, then worst, choices.

Next we need the idea of a ranking of a set X from its best (most preferred) to
its worst (least preferred) element, and similarly of a ranking of X from its worst

3Psychologists might call this a utility scale or a utility function. We use the simpler term
and, to avoid confusion, use the term scale factor when we are referring to changes in the
variability of the random component of a random utility models.
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(least preferred) to its best (most preferred) element. We refer to these as best to
worst, and worst to best, rankings, respectively. Such rankings may be empirical,
i.e., resulting from a person’s judgments, but of at least equal importance in this
paper is the theoretical role such rankings play in the development of probabilistic
choice models, including those for best (worst) choices. For a set X, X ⊆ T , with
|X| = n, ρ = ρ1ρ2...ρn−1ρn denotes a typical best to worst rank order of X,
and R(X) denotes the set of rank orders of X; as already noted, sometimes we
write such a rank order in the form ρ1 � ρ2 � ... � ρn. BR(X)(ρ) denotes the
probability that ρ occurs as a best to worst rank order, and WR(X)(ρ) denotes the
probability that ρ occurs as a worst to best rank order - thus, in the former case
ρ1 is the best element in the rank order, in the latter case it is the worst element.
The assumption that BR(X)(ρ) and WR(X)(ρ) are probabilities and that a ranking
occurs at each choice opportunity is summarized by: for each ρ ∈ R(X),

0 ≤ BR(X)(ρ), WR(X)(ρ) ≤ 1

and ∑
ρ∈R(X)

BR(X)(ρ) = 1 =
∑

ρ∈R(X)

WR(X)(ρ).

The reverse of a rank order ρ = ρ1ρ2...ρn−1ρn is the rank order ρ∗ = ρnρn−1...ρ2ρ1.
There is no necessary theoretical or empirical relation between BR(X)(ρ) and
WR(X)(ρ

∗), though it is often of interest to consider the constraint BR(X)(ρ) =
WR(X)(ρ

∗).
The above notation does not explicitly indicate whether a ranking is obtained

by, say, a sequence of best and/or worst choices; repeated best choices; or re-
peated worst choices. We introduce such notation in Section 6; otherwise we
write BR(X)(ρ) for the probability of the rank order ρ, where ρ1 is best, ρ2 sec-
ond best, etc., without reference to how it was obtained.

The above general notation has to be extended in various ways to handle the
three main cases of BWS, defined in Louviere, Flynn, and Marley (2012): Case
1: (repeated) best and worst choice among ‘things’ - these things are usually
generic objects (such as brands of detergent) or social issues (such as concern for
the environment); Case 2: (repeated) best and worst choice of attributes in a
profile of attributes - such as the best and worst attribute-level in a health state;
Case 3: (repeated) best and worst choice among profiles - such as computers with
different levels on various attributes. In Case 3, it is desired to measure the utility
of individual attribute-levels, and of their combination in giving the overall utility
of a profile (Marley & Pihlens, 2012). Louviere et al.’s data expansions have been
applied mainly to Case 3, possibly because this case is the most closely related
to revealed preference market data where a person purchases a multiattribute
good or sevice. However, the basic expansion methods and ranking models can
be described independent of whether Case 1, 2 or 3 is being studied, and that is
what we do here.
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4 New Approach: Weighted Utility Ranking Models

We now develop a class of ranking models that involve weights similar to those
that arise in the Louviere et al. expansions. Certain of the models in this class
can be indirectly motivated by those expansions - as is done Section 5. However,
the results of the current section are in no way dependent on those expansions.

Definition 1 Assume that, for every choice set X ∈ D(T ), there is a “local”
importance weight rX(i) for position i, i = 1, ..., |X|, of a rank order of the
options in X, and that the weights satisfy the ordinal constraints

rX(1) ≥ rX(2) ≥ ... ≥ rX(|X| − 1) ≥ rX(|X|), (3)

with rX(1) > rX(|X|). Also assume that there is a (utility) scale u defined on the
options of a set T . Then the ranking probabilities on the sets X ∈ D(T ), |X| ≥ 2,
satisfy a weighted utility ranking (WUR) model provided

BR(X)(ρ) =
e
∑|X|

i=1rX(i)u(ρi)∑
η∈R(X) e

∑|X|
i=1rX(i)u(ηi)

. (4)

Comment 1 When we have data on full rank orders, it is reasonable to assume
that the inequalities in (3) are strict, in particular that rX(|X| − 1) > rX(|X|).
Now consider the case where all the choice sets X in the design D(T ), are of
the same size k, and rX is independent of X, i.e., rX(i) = r(i), and define, for
i = 1, ..., k,

r′(i) =
r(i)− r(k)

r(k − 1)− r(k)

and

u′(ρi) = u(ρi)[r(k − 1)− r(k)].

Then it is easily checked that the ranking probabilities given by (4) are identical
to those given by a model with the above weights and scale values. In particular,
we have

r′X(|X| − 1) = 1, r′X(|X|) = 0. (5)

We assume these two fixed weights in our fits in Section 7 of WUR models to full
rank data.

Comment 2 It is easily checked that the ranking probabilities given by (4)
for any set of weights are identical to those of a model with the weights: for each
choice set X, and i = 1, ..., |X|,

r′X(i) = rX(i)− 1

|X|

(∑|X|
i=1rX(i)

)
.
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The latter weights satisfy the condition: for each choice set X ∈ D(T ),

|X|∑
i=1

r′X(i) = 0. (6)

We generally do not impose the latter constraint as the representation of most of
the (ranking) models are simpler without it. However, we do use it in proving a
property of certain “scores” for the class of WUR models (see Comment 1 later
in this section).

Corollary 2 For x ∈ X and ρ ∈ R(X), define ρ(x) = i if x is in rank position i
in ρ; and for convenience, put rX [ρ(x)] = 0 whenever x /∈ X. Then rX [ρ(x)] is
well-defined and (4) becomes

BR(X)(ρ) =
e
∑

x∈XrX [ρ(x)]u(x)∑
η∈R(X) e

∑
x∈XrX [η(x)]u(x)

. (7)

Theorem 3 For each set X ⊆ T in the design4 D(T ), and rank order ρ ∈ R(X),
let

sX(ρ) =

{
1 if ρ is selected from R(X)
0 otherwise

. (8)

Then, given the representation (7), equivalently (4), the set of scores, for x ∈ T,

s(x) =

(∑
X∈D(T )

∑
ρ∈R(X)

sX(ρ)rX [ρ(x)]

)
, (9)

is a sufficient statistic.

4We assume each set X ∈ D(T ) is presented once. The results generalize easily to the case
where each set X is presented NX times.
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Proof. The likelihood of the data is∏
X∈D(T )

∏
ρ∈R(X)

BR(X)(ρ)sX(ρ) (10)

=
∏

X∈D(T )

∏
ρ∈R(X)

 e
∑

x∈T rX [ρ(x)]u(x)∑
η∈R(X) e

∑
x∈T rX [η(x)]u(x)

sX(ρ)

=
∏

X∈D(T )

 1∑
η∈R(X) e

∑
x∈T rX [η(x)]u(x)


×

∏
X∈D(T )

e

∑
ρ∈R(X)

∑
x∈T sX(ρ)rX [ρ(x)]u(x)

=

 1∏
X∈D(T )

∑
η∈R(X) e

∑
x∈T rX [η(x)]u(x)


× e
∑

x∈T
(∑

X∈D(T )

∑
ρ∈R(X)sX(ρ)rX [ρ(x)]

)
u(x)

. (11)

So the set of scores defined by (9) is a sufficient statisctic.
Comments
1. Using general language (with undefined terms in quotation marks), the

following states a result due to Huber (1963) in such a way that it applies to
WUR models; Appendix A states the terms and results exactly. Assume that
one is interested in the rank order, only, of the (utility) scale values in the WUR
model (7). An acceptable loss function is a “penalty” function with a value that
remains constant under a common permutation of the scores and the scale values,
and that increases if the ranking is made worse by misordering a pair of scale
values. Let T be a master set with n ≥ 2 elements and assume that, for some k
with n ≥ k ≥ 2, every subset of T with exactly k elements appears in the design5

D(T ). Then, given the model in (7), ranking the scale values in descending
order of the scores, breaking ties at random, has “minimal average loss” amongst
all (“permutation invariant”) ranking procedures that depend on the data only
through the set of scores.

2. Given the properties of the scores stated in Comment 1., they are likely
useful starting values in estimating the maximum likelihood values of the utilities
u(x), x ∈ T . In fact, various empirical work on the maximum difference (maxdiff)
model for best-worst choice (a special case of the representation in (7) - see below)
- gives a linear relation between the (best minus worst) scores and the (maximum
likelihood) estimates of the utilities6 (Louviere et al., 2008, 2012).

5Further work is needed to extend the theoretical result to, say, balanced incomplete block
(BIBD) designs. See Marley & Pihlens (2012) for related discussions of connected designs.

6Assume that the the maxdiff model holds, and a balanced incomplete design (BIBD) is used
for the survey. If the utility (scale) values are in a small range - say, [-1,1] - then the above linear
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Thus, WUR models have relatively simple representations for ranking prob-
abilities, with very nice score properties. However, as with the special case of
the reversible ranking model (Section 6.1, Def. 4), the best and worst choice
probabilities are complex. In particular, let BX(x) for x ∈ X be the sum of the
rank order probabilities, given by (7), in which x is ranked first, and let WX(x)
for x ∈ X be the sum of the rank order probabilities, given by (7), in which x
is ranked last. Then the representations of the best and worst choice probabil-
ities are relatively complex, and have no “simple” process interpretation (other
than as a sum of rank orders, with each rank order generated as above); in this
sense, the rank orders can be considered basic, and the best and worst choice
probabilities derived.

Next we show that the representation (7) includes various standard models
of best, worst, and best-worst choice as special cases:

i. The MNL model for best choices is the special case of (7) where: for z ∈ T

rX [ρ(z)] =

{
1 if ρ(z) = 1
0 otherwise

.

Thus, we only have discriminating information (from the participant) on
the first option in the ranking (“best”). So replacing the rank notation
BR(X)(ρ) by the best choice notation BX(x) gives

BX(x) =
eu(x)∑
r∈X

eu(r)
.

ii. The MNL model for worst choices is the special case of (7) where: for z ∈ T

rX [ρ(z)] =

{
−1 if ρ(z) = |X|
0 otherwise

.

Thus, we only have discriminating information (from the participant) on
the last option in the ranking (“worst”). So replacing the rank notation
BR(X)(ρ) by the worst choice notation WX(x), gives

WX(x) =
e−u(x)∑
r∈X

e−u(r)
.

iii. The maxdiff model for best-worst choice is the special case of (7) where: for
z ∈ T

rX [ρ(z)] =


1 if ρ(z) = 1
−1 if ρ(z) = |X|
0 otherwise

.

relation holds under a first-order Taylor expansion of the maxdiff choice probabilities (Marley
& Schlereth, unpublished).
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Thus, we only have discriminating information (from the participant) on
the first option in the ranking (“best”) and the last option in the rank-
ing (“worst”). So replacing the rank notation BR(X)(ρ) by the best-worst
notation BWX(x, y), x 6= y, gives

BX(x, y) =
e[u(x)−u(y)]∑

r,s∈X
r 6=s

e[u(r)−u(s)]
,

i.e., the maxdiff model of best-worst choice (Marley & Louviere, 2005). For
each set X ⊆ T in the design D(T ), and z ∈ X, let4

bwX(z) =


1 if z is selected as best in X
−1 if z is selected as worst in X
0 otherwise

.

For convenience, also set bwX(z) = 0 if z /∈ X, and define: for z ∈ T,

bw(z) =
∑

X∈D(T )
bwX(z),

i.e., bw(z) is the number of times across the design that z is chosen as best
minus the number of times z is chosen as worst. Then, as a special case of
the development of (9) and the results that follow from it, the set of scores
bw(z), z ∈ T , is a sufficient statistic, and ranking in descending of these
scores is optimal in the sense of minimizing the expected loss.

iv. The reversible ranking model (Section 6.1, Def 4) is the special case where:
for z ∈ T,

rX [ρ(z)] = |X| − i if ρ(z) = i .

In this case, (9) is the Borda score, which has important desirable properties in
voting (e. g., see Saari, 2008).

5 Relations Between Previous Data Expansion Meth-
ods and Weighted Utility Ranking Models

We now describe how the weights are derived in various of Louviere et al.’s ex-
pansions in the deterministic case for full and partial rank data; extend those mo-
tivations to the nondeterministic (probabilistic) case; and present specific WUR
models motivated by that framework. Except where noted, all results on WUR
models in this section and Section 6 are new, though we do use the Louviere et
al. expansions to motivate specific models.
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5.1 Full rank data

5.1.1 Expansion to all binary subsets

We continue using the example of Section 2. Louviere et al. (2008) do
not present the following binary expansion, but it is presented in Louviere et
al. (2012). As do Louviere et al., we begin by supposing that all choices are
deterministic. Let ρ1 � ρ2 � ρ3 � ρ4 be a typical (data) rank order for each of
the 4-element sets in Table 2. Louviere’s expansion of each such rank order to
binary choices is as follows:

i) replace the rank order by the “implied” binary choices ρ1 � ρ2, ρ1 � ρ3,
ρ1 � ρ4, ρ2 � ρ3, ρ2 � ρ4, ρ3 � ρ4;

ii) “pretend” (Louviere et al, 2008, p. 138) that those binary choices are inde-
pendent;

iii) “predict” the total number of implied best (first) choices for each option in
the set {ρ1, ρ2, ρ3, ρ4} from all possible binary comparisons of options in
that set, given the rank order ρ1 � ρ2 � ρ3 � ρ4; this gives the Total in the
final row of Table 4;

iv) apply the same procedure to each data rank order obtained for each of the
20 sets in Table 2; this gives the “expanded ” data that is then used in
fitting an MNL model to the best choices in the original rank data. For
instance, as already mentioned, Louviere et al. use the following estimation
methods: weighted least squares (WLS); weighted conditional logit (WCL);
and maximum likelihood (ML).

Table 4. “Implied” best choices for each 2-element subset of {ρ1, ρ2, ρ3, ρ4}
given the rank order ρ1 � ρ2 � ρ3 � ρ4.

Rank Position

1st 2nd 3rd 4th

Preference

Order → ρ1 ρ2 ρ3 ρ4
Choice Set: Implied Choice:

1 1 1 0 0 ρ1
2 1 0 1 0 ρ1
3 1 0 0 1 ρ1
4 0 1 1 0 ρ2
5 0 1 0 1 ρ2
6 0 0 1 1 ρ3

Total 3 2 1 0

Now we extend the above approach to the relation between probabilistic
binary choices and probabilistic rankings (Table 5). We assume that the “ex-
panded” binary choices are controlled by the binary choice probabilities in the
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final column of Table 5 and that those probabilities satisfy the MNL; for instance,
in row 4, ρ2 is “chosen” over ρ3 with probability p(ρ2, ρ3). The MNL assumption
is crucial in extending Louviere’s weight results (though not the method) from
the deterministic to the probabilistic case7. We also assume that there is a set of
best choice probabilities PX(x), x ∈ X, X ∈ D(T ), |X| ≥ 3, that are generated
by the same scale values as the binary choice probabilities. For now we leave it
unspecified whether or not these are the theoretical best choice probabilities for
sets with 3 or more options. Ultimately, Louviere et al. (2008) and Ebling et al.
(2010) do assume that those best choice probabilities on larger sets (3 or more
options) satisfy an MNL model with those scale values. Specifically, they use the
data expansion methods in fitting an MNL model to the best choices in the rank
data, not as a model of that (full) rank data. In contrast, we use the expansions
as a way to motivate models of the rank orders. In particular, our models force
the (marginal) best choice probabilities on larger sets (3 or more options) to not
satisfy an MNL model.

Comment The general statements in the previous paragraph apply to all
our uses in this paper of the Louviere et al. expansions and weights. We do not
repeat those statements in later sections.

Table 5. Choice probabilities of the “implied” best choices for each 2-element
subset of {ρ1, ρ2, ρ3, ρ4} given the rank order ρ1 � ρ2 � ρ3 � ρ4.

Rank Position

1st 2nd 3rd 4th

Preference

Order → ρ1 ρ2 ρ3 ρ4
Choice Set: Implied Choice: Choice Probability:

1 1 1 0 0 ρ1 p(ρ1, ρ2)

2 1 0 1 0 ρ1 p(ρ1, ρ3)

3 1 0 0 1 ρ1 p(ρ1, ρ4)

4 0 1 1 0 ρ2 p(ρ2, ρ3)

5 0 1 0 1 ρ2 p(ρ2, ρ4)

6 0 0 1 1 ρ3 p(ρ3, ρ4)

Total 3 2 1 0

The probability of the pattern of “implied” choices in Table 5 (which includes
the deterministic case as a special case) is

p(ρ1, ρ2)p(ρ1, ρ3)p(ρ1, ρ4)p(ρ2, ρ3)p(ρ2, ρ4)p(ρ3, ρ4),

which is∏
1≤i<j≤4

p(ρi, ρj). (12)

7The method “works” for models other than the MNL, but the results are complex, and do
not, in general, produce “weights” (total scores).
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Note that this probability equals 1 (i.e., the deterministic case) only if each of
the stated binary choice probabilities in the final column of Table 5 equals 1 -
i.e., p(ρi, ρj) = 1 for 1 ≤ i < j ≤ 4; these probabilities can approach 1 for the
MNL model, (1), if each of u(ρi) − u(ρi+1), i = 1, 2, 3, is large and positive.
However, except in the deterministic case (which is not exactly achievable by
an MNL model), the sum of the probabilities (12) over all the choice patterns
obtained by expanding all possible rank orders of a choice set X can be less than
1 (see next), and hence (12) does not produce a ranking model.

To show that the sum of (12) over all possible rank orders of a current choice
set X = {w, x, y, z} can be less than 1, assume every binary choice probability is
in the open interval (0, 1) and consider a participant making independent choices
of the best element in each binary subset of X, of which there are 6. Then the
probability over all possible patterns of such independent 6 choices is 1; includes
the terms in (12) for all possible rank orders of X; but also includes, for example,
the term p(w, x)p(y, w)p(z, w)p(x, y)p(x, z)p(y, z), which has its value in the open
interval (0, 1). However, that pattern includes the “cycle” of choices w � x, x � y,
y � z, z � w, which is not compatible with the Table 5 expansion of any rank
order of X. Hence this pattern of binary choices has positive probability, but is
never produced by Table 5. Therefore, the sum of the terms in (12) over all rank
orders is less than 1, and hence those terms do not correspond to a model of the
data rank orders. So we next turn to such a ranking model, suggested by the
representation in (12).

Comment If we use the notation IR(X)(ρ) for the expression in ((12)),
then, with the assumption of a common MNL model across the binary choice
probabilities, (12) becomes

IR(X)(ρ) =
e[3u(ρ1)+2u(ρ2)+u(ρ3)]

C[(u(ρi), i ∈ {1, 2, 3, 4}]
(13)

where

C[(u(ρi), i ∈ {1, 2, 3, 4}] = [eu(ρ1) + eu(ρ2)][eu(ρ1) + eu(ρ3)][eu(ρ1) + eu(ρ4)]

× [eu(ρ2) + eu(ρ3)][eu(ρ2) + eu(ρ4)][eu(ρ3) + eu(ρ4)]

has the same value for every rank order on the given set.
Starting with (12), one “natural” way to generate a probability distribution

over the rank orders is given by the following process (hinted at above): Given a
presented set X, the respondent makes all binary comparisons of (distinct) pairs
in that set; in our example, there are 6 such comparisons. If the resulting com-
parisons are compatible with a rank order, that rank order is selected; otherwise,
the process starts over. This gives the probability of rank order ρ ∈ R(X) as

BR(X)(ρ) =

∏
1≤i<j≤4

p(ρi, ρj)∑
η∈R(X)

∏
1≤i<j≤4

p(ηi, ηj)
. (14)
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In particular, when the binary choice probabilities satisfy a common MNL model,
(14) can be rewritten in the form

BR(X)(ρ) =
e[3u(ρ1)+2u(ρ2)+u(ρ3)]∑

η∈R(X)e
[3u(η1)+2u(η2)+u(η3)

. (15)

Equation (14) is the reversible ranking model (Marley, 1968, and Section 6.1, Def.
4) for choice sets of size 4.

Results and questions parallel to those in the remainder of this subsection
apply to all the expansions and related WUR models in this paper. We include
them only for the present case.

Comments
1. Let X be a typical set with |X| = 4, then the ranking model (15) is a

WUR model, (7), with weights rX(i) = |X| − i and sufficient statistic given by
the scores in (9).

2. Note that (13) only differs from (15) in the form of the denominator which,
in both forms, is independent of the data rank order. Now change the likelihood
function (10) in the following way: replace each BR(X)(ρ) by IR(X)(ρ) as given
by (13). Then a routine check shows that the argument in the proof of Theorem
3 showing that the scores in (9) is a sufficient statistic still holds. Remember,
though, that the representations in (13) are a result of a Louviere et al. expansion,
and are not a model of the original rank order data.

3. Define a set of best choice probabilities PX for choice set X in the design
by: for x ∈ X,

PX(x) =
eu(x)∑
z∈Xe

u(z)
, (16)

Then the representation (15) is equivalent to the form

BR(X)(ρ) =
PX(ρ1)

3PX(ρ2)
2PX(ρ3)∑

η∈R(X)PX(η1)3PX(η2)2PX(η3)
,

which can be thought of as a normalized weighted conditional logit (WCL) model.
Related (non-normalized) WCL models are used by Louviere et al. (2008) in
fitting the best choices in the rank order data. However, Louviere et al. assume
that those best choices satisfy an MNL model, which is not the case for the above
normalized WCL model (see the next comment).

4. The following results are from Marley (1968). The representation in (15)
across subsets X ⊆ T is not compatible with a random utility model. The
probability B̃X(w) of choosing a particular option w from X = {w, x, y, z} as best
in the rank orders of X is given by the sum of the relevant ranking probabilities
given by (15) - that is,

B̃X(w)=
∑

η∈R(X−{w})BWX(wη).
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Importantly, the marginal best choice probabilities B̃X do not satisfy an MNL
model for best choices. This leads to the question of what is the correct inter-
pretation of the probabilities B̃X - for instance: are they the probabilities of best
choices only when a rank order is asked of a participant; or are they also the
probabilities of best choices when a single best choice is asked of a participant.
Finally, note that the model in (15) can be stated, and motivated, without the in-
volvement of the (“dummy”) binary MNL model actually used in its development
above - though its development from binary choice probabilities underscores its
interpretation as a process model.

5. Assume that the design and Louviere expansion of this section are used
to fit an MNL model to the best choices in the rank order data, using maximum
likelihood applied to the likelihood expressions (13) - that is, for a typical set
X = {w, x, y, z}, if the participant responds with the rank order ρ = wxyz, then
the term in the likelihood function for that choice is be given by (13) with ρ1 = w,
ρ2 = x, ρ3 = y, ρ4 = z. Based on the results in various papers on the use of
expansion methods (e.g., Louviere et al., 2008; Islam et al., 2009; Ebling et al.,
2010), we expect a good fit of the estimated MNL model to the best choices in
the data rank orders. However, we have pointed out in 4., above, that the best
choices given by the related reversible ranking model in (15) do not satisfy an
MNL model. Thus, it is of interest for future research to study: i. the extent
to which the probability of best choices given by the reversible ranking model
can deviate from, or be approximated by, an MNL model, and ii. whether the
parameter estimates of the best-fitting MNL model for the best choices using the
expansion methods yield a good a fit of the related reversible ranking model to
the rank order data.

5.1.2 Expansion to all non-empty, non-singleton subsets

The second expansion of full rank order data that we, and Louviere et al. (2008),
consider is based on the assumption that a single sample rank order ρ = ρ1ρ2ρ3ρ4
for a set X can be expanded, in a consistent way, to all non-empty and non-
singleton subsets of X (Table 6). We assume that the “expanded” choices are
controlled by the best choice probabilities in the final column of Table 6 and
that those probabilities satisfy the MNL model; for instance, in row 7, ρ1 is
“chosen” over ρ2 and ρ3 with probability P{ρ1,ρ2,ρ3}(ρ1). Remember, we are using
the expansion as a motivation for a ranking model; as pointed out in previous
sections, this is not its use in Louviere et al.

As before, the probability of the pattern of choices in Table 6 can approach 1
(i.e., be near deterministic) if each of the stated choice probabilities in the final
column of Table 6 approaches 1, which they can for the MNL model, (1), if each of
u(ρi)− u(ρi+1), i = 1, 2, 3,4, is large and positive. However, as for the expansion
of Table 5, except in the deterministic case (which is not exactly achievable with
the assumed MNL representations), the sum of the probabilities of the product
of the expressions in Table 6 over all (partial or full) rank orders can be less than
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1.
Thus, assuming the choice probabilities in Table 6 satisfy an MNL model,

and proceeding in a manner paralleling that in the previous section, we obtain
the probability of rank order ρ ∈ R(X) as

BR(X)(ρ) =
e[7u(ρ1)+3u(ρ2)+u(ρ3)]∑

η∈R(X) e
[7u(η1)+3u(η2)+3u(η3)]

. (17)

Table 6. Choice probabilities of the “implied” best choices for each 2- and
3-element subset of {ρ1, ρ2, ρ3, ρ4} given the rank order ρ1 � ρ2 � ρ3 � ρ4.

Rank Position

1st 2nd 3rd 4th

Preference

Order → ρ1 ρ2 ρ3 ρ4
Choice Implied Choice

Set: Choice: Probability:

1 1 1 0 0 ρ1 p(ρ1, ρ2)

2 1 0 1 0 ρ1 p(ρ1, ρ3)

3 1 0 0 1 ρ1 p(ρ1, ρ4)

4 0 1 1 0 ρ2 p(ρ2, ρ3)

5 0 1 0 1 ρ2 p(ρ2, ρ4)

6 0 0 1 1 ρ3 p(ρ3, ρ4)

7 1 1 1 0 ρ1 P{ρ1,ρ2,ρ3}(ρ1)

8 1 1 0 1 ρ1 P{ρ1,ρ2,ρ4}(ρ1)

9 1 0 1 1 ρ1 P{ρ1,ρ3,ρ4}(ρ1)

10 0 1 1 1 ρ2 P{ρ2,ρ3,ρ4}(ρ2)

11 1 1 1 1 ρ1 P{ρ1,ρ2,ρ3,ρ4}(ρ1)

Total 7 3 1 0

Results parallel to the Comments of Section 5.1.1 also hold for the above
WUR model. In particular, the “dummy” MNL best probabilities in the final
column of Table 6, used in motivating the ranking model, are not the (marginal)
best choice probabilities of that model.

5.2 Partial rank data

Let {w, x, y, z} be the set of available options and suppose that w is selected as
best and z as worst. If we now check each (sub)set of size 2, 3, 4 of {w, x, y, z}
in turn, then we see that the subsets {x, y} and {x, y, z} are the only ones where
the best element is not determined either by the information that w is best or by
the information that z is worst. We next present the (Louviere) expansions for
this case in a way that parallels the approach in Ebling et al (2010), though the
weights we use differ slightly from theirs; at the end of the section, we present,
and discuss, a WUR model with their weights.
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5.2.1 Expansion to implied binary choice sets

As before, we assume that the binary choice probabilities satisfy the MNL model;
the related data expansion to all binary choice sets (vis, Table 7) is mentioned in
Louviere et al. (2008), but is not tested there. Denote a typical (data) partial
rank order of X = {w, x, y, z} by ρ1 � {ρ2, ρ3} � ρ4, with the expansion to
all binary choice sets in Table 7; the dashes (−) in row 4 indicate that we have
no relevant data for those rows. Remember, we are using that expansion as a
motivation for a ranking model; as pointed out in previous sections, this is not
its use in Louviere et al.

Table 7. Choice probabilities of the “implied” best choices for each 2-element
subset of {ρ1, ρ2, ρ3, ρ4} given the partial rank order ρ1 � {ρ2, ρ3} � ρ4.

Rank Position

1st − − 4th

Choice Set → ρ1 ρ2 ρ3 ρ4
Choice Implied Choice

Subset: Choice: Probability:

1 1 1 0 0 ρ1 p(ρ1, ρ2)

2 1 0 1 0 ρ2 p(ρ1, ρ3)

3 1 0 0 1 ρ2 p(ρ1, ρ4)

4 0 1 1 0 − −
5 0 1 0 1 y p(ρ2, ρ4)

6 0 0 1 1 z p(ρ3, ρ4)

Total 3 1 1 0

Proceeding as in previous sections, the probability of the pattern of “implied”
choices in Table 7 is

p(ρ1, ρ2)p(ρ1, ρ3)p(ρ1, ρ4)p(ρ2, ρ4)p(ρ3, ρ4)

= p(ρ1, ρ2)p(ρ1, ρ3)p(ρ1, ρ4)[p(ρ2, ρ3) + p(ρ3, ρ2)]p(ρ2, ρ4)p(ρ3, ρ4).

Adding the assumption of a common MNL model across the probabilities, this
becomes

e[3u(ρ1)+2u(ρ2)+u(ρ3)] + e[3u(ρ1)+2u(ρ3)+u(ρ2)]

C[(u(ρi), i ∈ {1, 2, 3, 4}]

where

C[(u(ρi), i ∈ {1, 2, 3, 4}] = [eu(ρ1) + eu(ρ2)][eu(ρ1) + eu(ρ3)][eu(ρ1) + eu(ρ4)]

× [eu(ρ2) + eu(ρ3)][eu(ρ2) + eu(ρ3)][eu(ρ3) + eu(ρ4)]

has the same value for each of the rank orders on the given set.
As before, the probability of this pattern of choices can approach 1 (i.e., be

near deterministic) if each of the stated binary choice probabilities in the final
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column of Table 7 approaches 1, which they can for the MNL model, (1), if each
of u(ρ1) − u(ρi), i = 2, 3,4, and u(ρi) − u(ρ4), i = 2, 3, is large and positive.
However, as for the expansion in Table 5, except in the deterministic case (which
is not exactly achievable), the sum of the probabilities over all (partial or full)
rank orders given by the above expression is less than 1.

The following process does generate a probability distribution over the ob-
served best-worst choices (partial rank orders). Assume that the participant
makes all 6 binary comparisons of distinct options in the 4-element set; if those
choices give a rank order, the participant reports the first (respectively, last)
option in that rank order as best (respectively, worst); otherwise, the partici-
pant resamples until a rank order is obtained. As we know only the best and
worst choice, we replace the notation BR(X)(ρ) with BWX(ρ1, ρ4), and the above
process gives the best-worst choice probability

BWX(ρ1, ρ4) =
e[3u(ρ1)+2u(ρ2)+u(ρ3)] + e[3u(ρ1)+2u(ρ3)+u(ρ2)]∑

η∈R(X)e
[3u(η1)+2u(η2)+u(η3)

= BR(X)(ρ1ρ2ρ3ρ4) +BR(X)(ρ1ρ3ρ2ρ4),

where the terms in the second expression are those of the reversible ranking
model, (15).

5.2.2 Expansion to implied non-empty, non-singleton subsets

As usual, we assume that all the choice probabilities in Table 8 satisfy the MNL
model. Now we consider the expansion of the (data) partial rank order ρ1 �
{ρ2, ρ3}�ρ4 to best choices on all non-empty, non-singleton subsets; this parallels,
but is not identical to, the case presented in Ebling et al. (2010); we present their
representation later in this section. Remember, we are using the expansion as a
motivation for a ranking model; as pointed out in previous sections, this is not
its use in Louviere et al.

The observed best-worst pair (ρ1 best, ρ4 worst) gives no information of the
relative rank of ρ2 and ρ3 in the set {ρ2, ρ3} (row 4) or in the set {ρ2, ρ3, ρ4}
(row 10) - though, in the latter set, we do know that one of them has to be best
as ρ4 is worst in the choice set {ρ1, ρ2, ρ3, ρ4}. Also, if we assume that there is
an underlying rank order8, then either ρ2 � ρ3, which means we place p(ρ2, ρ3)
for choice set 4 and P{ρ2,ρ3,ρ4}(ρ2) for choice set 10, or ρ3 � ρ2, which means we
place p(ρ3, ρ2) for choice set 4 and P{ρ2,ρ3,ρ4}(ρ3) for choice set 10.

As before, the probability of the pattern of choices in Table 8 can approach 1
(i.e., be near deterministic) if each of the stated choice probabilities in the final
column of Table 8 approaches 1, which they can for the MNL model, (1), if each

8We could develop a model that uses only the partial order information of Table 3. However,
the resulting representation does not simplify in the way that the model based on full rank
orders does. In particular, it does not produce a model with the weights (8,3,3,1) that appear
in Ebling et al. (2010) WLS expansion.
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of u(ρ1) − u(ρi), i = 2, 3, 4, and u(ρi) − u(ρ4), i = 2, 3, is large and positive.
However, as for previous expansions, except in the deterministic case (which is
not exactly achievable with the assumed MNL representations), the sum of the
probabilities over all (partial or full) rank orders given of the product of the
expressions in Table 8 is less than 1.

Table 8. Choice probabilities of the “implied” best choices for each 2- and
3-element subset of {ρ1, ρ2, ρ3, ρ4} given the partial rank order

ρ1 � {ρ2, ρ3} � ρ4.
Rank Position

1st 2nd 3rd 4th

Preference

Order → ρ1 ρ2 ρ3 ρ4
Choice Implied Choice

Set: Choice: Probability:

1 1 1 0 0 ρ1 p(ρ1, ρ2)

2 1 0 1 0 ρ1 p(ρ1, ρ3)

3 1 0 0 1 ρ1 p(ρ1, ρ4)

4 0 1 1 0 − -

5 0 1 0 1 ρ2 p(ρ2, ρ4)

6 0 0 1 1 ρ3 p(ρ3, ρ4)

7 1 1 1 0 ρ1 P{ρ1,ρ2,ρ3}(ρ1)

8 1 1 0 1 ρ1 P{ρ1,ρ2,ρ4}(ρ1)

9 1 0 1 1 ρ1 P{ρ1,ρ3,ρ4}(ρ1)

10 0 1 1 1 − −
11 1 1 1 1 ρ1 P{ρ1,ρ2,ρ3,ρ4}(ρ1)

Total 7 1 1 0

Turning to the related WUR representation, we know only that ρ1 is best and
ρ4 is worst, so we replace BR(X)(ρ) with BWX(ρ1, ρ4), and reasoning as in the
previous section, we obtain the representation

BWX(ρ1, ρ4) =
e[7u(ρ1)+3u(ρ2)+u(ρ3)] + e[7u(ρ1)+3u(ρ3)+u(ρ2)]∑

η∈R(X) e
[7u(η1)+3u(η2)+3u(η3)]

= BR(X)(ρ1ρ2ρ3ρ4) +BR(X)(ρ1ρ3ρ2ρ4),

where the terms in the second expression are those of the reversible ranking
model, (17).

The above representation can be rewritten as

BWX(ρ1, ρ4) =
e[8u(ρ1)+4u(ρ2)+2u(ρ3)+u(ρ4)] + e[8u(ρ1)+4u(ρ3)+2u(ρ2)+u(ρ4)]∑

η∈R(X) e
[8u(η1)+4u(η2)+2u(η3)+u(ρ4)]

.

(18)
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A weighted utility representation similar to those above, but based on Ebling
et al.’s (2010) weights (8, 3, 3, 1), is

BWX(ρ1, ρ4) =
e[8u(ρ1)+3u(ρ2)+3u(ρ3)+u(ρ4)]∑

η∈R(X) e
[8u(η1)+3u(η2)+3u(η3)+u(ρ4)]

.

Appendix B shows that this representation can have BWX(ρ1, ρ4) approach
1, i.e., deterministic choice, by making each of the differences u(ρ1)−u(ρi), i = 2,
3,4, and u(ρi)− u(ρ4), i = 2, 3, large and positive.

Note that the pattern of weights (8, 3, 3, 1) is the average of the (8, 4, 2, 1)
weights for the rankings ρ1ρ2ρ3ρ4 and ρ1ρ3ρ2ρ4 in the representation (18). How-
ever, I do not think arguments paralleling those we have given yield this “average”
model, even if one introduces singleton choice sets to Table 8.

6 Models of Ranking by Repeated Best and/or Worst
Choices, and Their Relations to WUR Models

The classic expression for a ranking probability in terms of best choice proba-
bilities, usually developed with the best choice probabilities satisfying the MNL
model, (1), has the form: for ρ = ρ1ρ2...ρ|X|−1ρ|X|,

BR(X)(ρ) = BX(ρ1)BX−{ρ1}(ρ2)...B{ρ|X|−1,ρ|X|}(ρ|X|−1). (19)

However, the above expansion does not require the choice probabilities to satisfy
the MNL model. We now summarize the classic argument for using the MNL
in this context, then develop various ranking models in terms of repeated best
and/or worst choices.

Assume that the (best) choice probabilities and the ranking probabilities on
all subsets of a set T satisfy a random utility model in the sense that there
are random variables U z, z ∈ T , such that for all x ∈ X ⊆ T with |X| ≥ 2,
ρ = ρ1ρ2...ρ|X|,

BR(X)(ρ) = Pr(Uρ1 > Uρ2 > ... > Uρ|X|−1
),

and

BX(x) = Pr(Ux > Uy, ∀y ∈ X − {x}).

Then a classic result is that a random utility model satisfies (19) if and only if the
preference probabilities satisfy the MNL model, (1), (see Luce & Suppes, 1965,
Th. 50).

As we have already noted, the relation in (19) between ranking and choice
probabilities does not imply that the choice probabilities satisfy the MNL model.
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This is obvious in the sense that one can have a set of choice probabilities on
the subsets X ⊆ T that do not satisfy the MNL model and then define the
ranking probabilities on those subsets by (19). We now take such an approach
to developing ranking models based on repeated best and/or worst choice.

For 4 options, there are 8 distinct patterns of best and/or worst questions, any
one of which an experimenter can ask a participant to use for the generation of a
rank order on those options; and, also, at least 8 possible (MNL-based) models of
best and/or worst choice for the final rank order. Thus, if one truly believes that
BWS is a method, not a model, then there are 64 possible combinations of method
and model for the ranking of 4 options. Given such combinatorial possibilities,
it is likely highly desirable to constrain the order in which a participant can
produce a rank order - for instance, by instructing the participant in the order of
best and/or worst choices to be used; removing each selected option from view
once it has been selected; and modeling the data with the same sequence of best
and/or worst choices - this is the approach in Scarpa and Marley (2011). Here,
we introduce notation for 4 such models, illustrated with 4-element sets. First,
we emphasize that we are using the notation ρ = ρ1ρ2ρ3ρ4 for the rank order
in which ρi, i = 1, 2, 3, 4, is the option in rank position i, and the ranking is:
best, i = 1; 2nd best, i = 2; 3nd best, i = 3; 4th best, i = 4 - thus, this notation
does not carry information on the choices leading to this rank order; the latter
information is introduced next.

Let r and s be two indicators that can, independently, take on the values b
(for best) and w (for worst). Let P r,sR(X)(ρ1ρ2ρ3ρ4) denote the probability of the

rank order ρ = ρ1ρ2ρ3ρ4 (from best to worst), when the rank order is obtained
by: the first choices is of type r; the second of type s; the third, again, of type r.
Then we can have:

i. repeated best:

P b,bR(X)(ρ) = BX(ρ1)BX−{ρ1}(ρ1)B{ρ3,ρ4}(ρ3). (20)

ii. repeated worst:

Pw,wR(X)(ρ) = WX(ρ4)WX−{ρ4}(ρ3)W{ρ1,ρ2}(ρ2). (21)

iii. repeated best-worst:

P b,wR(X)(ρ) = BX(ρ1)WX−{ρ1}(ρ4)B{ρ2,ρ3}(ρ2). (22)

iv. repeated worst-best:

Pw,bR(X)(ρ) = WX(ρ4)BX−{ρ4}(ρ1)W{ρ2,ρ3}(ρ3). (23)
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For each of (20) and (22), it is easily checked that the sum of the rank orders
in which ρ1 is first equals BX(ρ1); and for each of (21) and (23), the sum of
the rank orders in which ρ4 is last equals WX(ρ4). With slightly more work -
assuming, say MNLs of the form given in (1) and (2) - one can show that, in
general, for each of (20) and (22), the sum of the rank orders in which ρ4 is last
does not equal WX(ρ4); and for each of (21) and (23), the sum of the rank orders
in which ρ1 is first does not equal BX(ρ1).

The natural first assumption in testing these models is to assume that the best
(respectively, worst) choice probabilities satisfy the MNL model (1) (respectively,
(2)), and, as needed by data, generalizations of those models that include a scale
factor that depends on the location of the current choice set in the rank order;
this scale factor relates to the possibly changing variability (“consistency”) of the
choices across sets. An example of such a generalization of the MNL model for
best choices, (1) is: there is a nonnegative scale factor s defined for each integer
2, 3, ..., |T |, and a difference scale u such that for all y ∈ Y ⊆ T,

BY (y) =
es(|X|)u(y)∑
z∈Y e

s(|X|}u(z) . (24)

We then define a generalized rank ordered logit model (GROL) as a set of rank
orders that satisfy (19) with the best choice probabilities satisfying (24). The
form (24) is a special case of what Vermut and Magidson (2005, Section 2.4)
call an MNL with replication-specific scale factor and of Fiebig et al.’s (2010)
generalized multinomial logit model (GMNL); the latter model also includes scale
(variance) heterogeneity across individuals.

Scarpa et al. (2011) collected ranking data by repeated best, then worst,
choices and fit that data quite successfully with a model based on repeated best
choices, with those choices satisfying a generalization of the model in (24) that
included dependencies of the scale factor s on aspects of the design that took
account of the difference between the data collection method (repeated best,
then worst) and the model (repeated best); it would be interesting to see if their
data could be better fit by a model that matched their data collection method -
i.e., the model of case iii., above. Collins and Rose (2011) fit related models to
stated preference data on dating choices. Also, as required by data, the MNL in
the above can be replaced by other models, such as the GMNL for best choices,
also adapted to worst choices (Fiebig et al., 2010). And one can consider latent
class extensions of these models.

In Section 7, in addition to fitting various WUR models, we fit the above rank
ordered logit (ROL) and the generalized rank ordered logit (GROL).

6.1 Known relations between models of repeated best and/or
worst choice and WUR models

As throughout the paper: T denotes a finite set of options; we use the convention
that, for each x ∈ T, B{x}(x) = W{x}(x) =1; and we write p(x, y) for B{x,y}(x)
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and, if needed, p∗(x, y) for W{x,y}(x). We also assume that the binary choice
probabilities are transitive in the sense that, for any r, s, t ∈ T , p(r, s) = p(s, t) =
1 implies that p(r, t) = 1, and p∗(r, s) = p∗(s, t) = 1 implies that p∗(r, t) = 1;
transitivity ensures that the various choice probabilities defined below are, in
fact, probabilities.

1. The rank order logit
The rank order logit (ROL) is the ranking model (20) with the best choice

probabilities satisfying the MNL model. Lam, Konig & Franses (2011) have
developed a fascinating WUR model approximation to the ranking probabilities
given by the ROL model, using a Taylor expansion around the scale value u(xo)
of a referent option xo. The authors present applications of the resulting WUR
model to several data sets, and show that their interpretations of the data from
the WUR model approximation to the ROL are similar to those obtained by
fitting the ROL. An interesting theoretical question is whether, given a ROL
model, there is a WUR model that gives exactly the same choice probabilities as
that ROL model on one set or multiple sets. Answering this question will likely
involve the fact that the ROL is a random utility model, and thus satisfies the
constraints of such a model, whereas, in general, a WUR model is not a random
utility model.

2. The reversible ranking model
The following results from Marley (1968) are needed for a result that we

develop for WUR models that are also models based on repeated best and/or
worst choices.

Definition 4 (Marley, 1968, Def. 6) A reversible ranking model is a set of
choice and ranking probabilities on all the non-empty subsets of a finite set T that
satisfies (20), (21), and, for each ρ ∈ R(X), X ⊆ T , P b,bR(X)(ρ) = Pw,wR(X)(ρ).

Definition 5 (Marley, 1968, Def. 2) A concordant choice model is a set of
choice probabilities on all the non-empty subsets of a finite set T such that for
each x, y ∈ X ⊆ T, x 6= y,

BX(x)WX−{x}(y) = WX(y)BX−{y}(x). (25)

Theorem 6 (Marley, 1968, Th. 8). Assume a set of choice and ranking proba-
bilities on all the non-empty subsets of a finite set T for which the binary choice
probabilities are transitive. Then the following two conditions are equivalent:
(i) the probabilities form a reversible ranking model;
(ii) the probabilities form a concordant choice model and for each ρ = ρ1ρ2...ρ|X| ∈
R(X), X ⊆ T,

P b,bR(X)(ρ) = Pw,wR(X)(ρ) =

∏
1≤i<j≤|X|

p(ρi, ρj)∑
η∈R(X)

∏
1≤i<j≤|X|

p(ηi, ηj)
. (26)
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Marley (1968) did not note the fact that the probability of a rank order (from
best to worst) in the reversible ranking model is the same whatever pattern of
repeated best and/or worst choices is used in its generation; we now give a short
proof of that fact.

Corollary 7 The probability of each rank order (from best to worst) given by
the reversible ranking model is independent of the pattern of repeated best and/or
worst choices that is used in its generation.

Proof. This result is easily shown by a repeated use of (25) to convert any
such pattern to a rank order generated by, say, all best choices. As above, let
ρ = ρ1ρ2...ρ|X| be a rank order of X with the elements listed from first best to
second best...to last best. If the final choice in obtaining the rank order is a worst
choice, then it must be of the form W{ρi,ρi+1}(ρi+1) for some 1 ≤ i < N . But
W{ρi,ρi+1}(ρi+1) = B{ρi,ρi+1}(ρi) and so that worse choice can be replaced by a
best choice. By induction, if some other stage in obtaining the rank order involves
a worst choice, then it is of the form W{ρi,ρi+1,...,ρi+j}(ρi+j) for some j > 1, and all
choices in the rank order on subsets of {ρi, ρi+1, ..., ρi+j} are best choices. Using
the property (25) (repeatedly), we can move the worst choice to the binary choice
W{ρi+j−1,ρi+j}(ρi+j) and replace it by B{ρi+j−1,ρi+j}(ρi+j−1).

Finally, suppose that the binary choices for a set X ⊆ T , |X| ≥ 2, satisfy the
MNL model - that is, for x, y ∈ T, x 6= y,

p(x, y) =
eu(x)

eu(x) + eu(y)
. (27)

Then it is easily checked that a set of ranking probabilities on X satisfy the
reversible ranking model, (26), with those binary choice probabilities, iff those
ranking probabilities satisfy a WUR model, (4), with rX(i) = |X| − i - that is,
with the Borda score (Saari, 2008).

7 An Application

We present, and fit, the results of a case study concerning micro-generation of
electricity using solar panels - that is, where individual households generate elec-
tricity using a renewable energy technology. This is a potentially very significant
energy source as individual households account for one third of all energy con-
sumption in North America. Growing energy demand, finite fossil fuel supplies,
worries about energy security, and environmental concerns, are all factors en-
couraging the increasing use of renewable resources for electricity generation.
A Discrete Choice Experiment (DCE) was conducted to examine trade-offs of
features of solar (photo-voltaic, PV) panels for household level electricity gener-
ation among Canadian households. Data for the final survey were collected from
June 1 to June 15, 2011. A total of 372 respondents were approached from a
random sample of households in Ontario, Canada, 74 of whom either declined
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or did not complete the survey; so the final sample for estimation included 298
completed questionnaires, a response rate of 80%. This sample size was consid-
ered adequate for the purpose of the study. The average completion time for
those who completed the survey tasks was 25 minutes. Data were collected by
Pureprofile (a large online panel provider in Australia, North-America, and other
countries), and study participants were screened based on owning a house in
Ontario, Canada. We carried out a pilot study on a convenience sample of 145
households in Guelph, Ontario, to determine the attributes, survey design, and
feedback, to use in the final survey.

7.1 Experimental design

We used a relatively new approach to constructing DCEs proposed and applied
by Louviere et al. (2008) - see the example in Section 2. Specifically, they
proposed first constructing a set of profiles using an experimental design suitable
for identifying particular forms of indirect utility functions, and then using a
balanced incomplete block design (BIBD) to assign the profiles to choice sets of a
fixed size. We constructed 16 profiles (choice options) using an orthogonal main
effects plan (OMEP) sampled from the 64 x 64 factorial (3 attributes with 4 levels,
i.e., 43 = 64; 6 attributes with 2 levels, i.e., 26 = 64). We then used a BIBD to
assign the 16 profiles to 20 choice sets, each set having 4 options. Table 9 lists the
attributes and attribute-levels in the profiles; these attributes and attribute-levels
were chosen based on extensive research, reviews of product/retailer ads/claims,
websites, pilot study, etc. Each respondent was shown the list of attributes and
their ranges before the choice task, and informed that the stated savings in energy
cost and carbon emission were on an annual basis.

Table 9. Attributes and their levels for solar technology for household electricity
production

Table 9. Attributes and their levels for solar technology for household electricity production. 

 

Attributes Attributes levels  varied in subsequent survey questions 

Total initial investment including 

installation and connection to national 

grid
*
.  

$20,000 $ 25,000  $30,000  $35,000 

Energy cost saving 10% 20% 30% 40% 

Saving in carbon emission 0 1.0 tonnes  of CO2 2 tonnes  of CO2 3 tonnes of 

CO2 

Payback period 5 year 10 years   

Tax Incentives &  subsidy/rebates Grant $2500 Refund of HST
**

    

Export reward as per micro-FIT 

program (pass all or excess capacity to 

national grid) 

64 

cents/KWh
*** 

80 cents/KWh    

Yearly inflation on fossil fuel cost 3% 6%   

Possibility of government policy 

changes about green energy 

technologies  

No Yes   

% of local households already adopted 

one of these technologies 

5% 10%   

 

*
The cost varied in this research is based on 3KWh capacity. This 3KWh generation can meet average 

household demand.  
**

Harmonized Sales Tax.  
***

64 cents/KWh for Ground Mounted Panels and 80 cents/KWh for Roof Mounted Panels. 
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The response task was framed as a sequential choice process, with respondents
instructed to choose the most preferred alternative out of four (Q1), then the least
preferred out of the remaining three (Q2), and, finally, the most preferred out of
the remaining two (Q3); Figure 1 shows the actual questions. Respondents were
also asked to indicate (Q4, Fig. 1) if they would choose none of the 4 options;
we do not analyze the answers to Q4 in this paper. This method of preference
elicitation provides more information than, say, a best choice on each choice set;
in particular, assuming a rank ordered logit for the ranking choices, it requires
less than 30% of the sample size required to obtain the same precision using best
choices, only (Scarpa et al., 2011).

Figure 1 shows a sample screen shot of the survey (choice set 1 out of 20
choice sets). Each time a respondent selected a profile, that profile disappeared
from the screen so as to restrict the respondent’s next choice to the remaining
profiles.

Figure 1. A sample screen shot from the survey (choice set 1 of 20)

 

Figure 1. A sample screen shot from the survey (choice set 1 of 20). 

 

  

7.2 Models

The ranking data was collected by repeated best, then worst, choices. However,
as this is a case study and we are using the data as a preliminary test of WUR
models, we focus on two WUR models motivated by the Louviere expansions -
with preassigned weights (for choice sets of size 4) of (3, 2, 1, 0) and (7, 3, 1, 0).
We also fit WUR models where we estimate the weights, rather than preassigning
them; in this case, we use the property of (5) to set the 3rd and 4th weight to 1
and 0, respectively, and estimate the 1st and 2nd weight (”scale factor”) following
standard procedures (e.g., Bateman et. al., 2011, and Scarpa et. al., 2011).
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Interestingly, for this data set, the estimated weights are then (4.804, 2.647, 1, 0),
which are reasonably close to (3, 2, 1, 0). Therefore, in the following, we present
the detailed fits of WUR models with preassigned weights (3, 2, 1, 0) and with
estimated weights (4.804, 2.647, 1, 0). For comparison, we also fit the ROL model,
i.e., (20) with the best choices satisfying the MNL model, (1), and the GROL
model, i.e., (20) with the best choices satisfying (24); as for the WUR models,
we fit with preasigned weights (“scale factors”)9 (3, 2, 1, 0) and with estimated
weights. Note that the best choices in each of the ROL and the GROL satisfy
an MNL model, which is what Louviere et al. (2008) and Ebling et al. (2010)
assume in their data fits based on the Louviere expansions.

7.3 Model estimation results

All fits are by maximum likelihood (ML) using Gauss code. In all the model fits,
the (utility) scale value of each profile (with a typical value u(x)) is the sum of
the effects coded estimates10 of its attribute-level (β) values. The estimates of
the WUR model with preassigned weights (3, 2, 1, 0) and for estimated weights
are summarized in Table 10. We also estimated the WUR model with various
“strange” weights (i.e., not monotonic decreasing from first to last) and in these
cases model fit was very poor; for example, the log likelihood of the WUR model
with weights (1, 8, 2, 4) is -18791.6, an increase in log likelihood of 1333.1 points
compared to that for preassigned weights (3, 2, 1, 0).

Table 10 shows that, for each level of each attribute, the estimates have
intuitively reasonable properties. For instance, the estimated utility decreases as
the cost of a solar installation increases; increases as energy cost saving increases;
increases as emission savings increase. The estimated benefits of solar panels as
an investment also behave reasonably: a shorter payback time is preferred; a
grant is preferred to a HST refund; a higher export reward is preferred. Three
attributes do not have significant effects on the estimated utility: inflation of
fossil fuel; government policy change; and percent of household adopted. Even
though the t-ratios of these attributes are low, the orthogonal design ensures
that their presence (or absence) in the model will not affect the significance of
the other parametters. Figure 2 shows the fit of the 480 (20 choice sets x 24 rank
orders) predicted rank order probabilities to the observed rank order probabilities
and Figure 3 plots the mean centered maximum likelihood (ML) estimates for
options (y-axis) against the mean centered weighted scores for options (x-axis)
for the WUR model with preassigned weights (3, 2, 1, 0).

The highly linear (proportional) relation in Figure 3 is in agreement with
related results in the literature (see Section 4), showing the extremely useful

9The 4th weight, 0, is not relevant as there is no set in the GROL to which it is applied. The
3rd weight applies to all binary choice sets. Assuming that the scale factor s(3) in the formula
(24) is non zero allows us to replace it by s′(3) = 1 and the scale u by u′ = s(3).u

10That is, for each attribute, the omitted (β) attribute-level estimate in the tables of fits is
the negative of the sum of the presented attribute level (β) estimates.
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properties of the (mean centred) weighted scores for preliminary interpretation
of the data. The non-parametric correlation, i.e. Spearman’s ρ, is 1.0 between
ML estimates and scores, in (exact) agreement with the theoretical result in
Section 4, again demonstrating the value of these simple data statistics.

Table 10. Parameter estimates, and log likelihood, for the WURM with
pre-assigned weights (3,2,1,0) and with estimated weights

Table 10 Parameter estimates, and log likelihood, for the WURM with pre-assigned  

weights (3,2,1,0) and with estimated weights. 

 
  Weights (3,2,1,0) 

(Log L = -17458.5) 

Weights Estimated  

(Log L = -17420.8)  

 Effect β SE(β) t-ratios β SE(β) t-ratios 
Cost $25,000 0.100 0.011 9.45 0.062 0.009 7.08 

$30,000 -0.095 0.010 -9.13 -0.057 0.009 -6.65 

$35,000 -0.301 0.011 -27.83 -0.190 0.020 -9.52 

Energy Cost Saving 20% 20% -0.091 0.011 -8.68 -0.059 0.008 -7.07 

30% 0.061 0.011 5.75 0.038 0.007 5.09 

40% 0.288 0.011 26.28 0.181 0.019 9.74 

Saving CO2 Emission 1 Tonne -0.035 0.011 -3.35 -0.025 0.007 -3.57 

2 Tonnes 0.061 0.011 5.77 0.037 0.007 5.01 

3 Tonnes 0.138 0.011 12.60 0.078 0.010 7.56 

Payback Period 10 Years -0.055 0.006 -9.03 -0.035 0.005 -6.98 

Tax Incentives & Subsidy HST Refund -0.026 0.006 -4.18 -0.019 0.004 -4.68 

Export Reward 0.80$/ KWH  0.098 0.006 15.90 0.059 0.007 8.24 

Inflation of Fossil Fuel 6% 0.001 0.006 0.19 -0.005 0.005 -1.04 

 GOVT Policy Change Yes -0.006 0.006 -0.98 -0.008 0.004 -1.97 

% of Household adopted 10% 0.007 0.006 1.09 0.007 0.004 1.74 

    Weight 1 4.804 0.444 10.88 

    Weight 2 2.647 0.223 11.80 

    Weight 3 1.001 . . 

    Weight 4 0.0001 . . 
1 fixed 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Predicted versus observed rank order probabilities for the WURM
model with weights (3,2,1,0)

  

 
 

Figure 2. Predicted versus observed rank order probabilities for the WURM model with weights  

(3,2,1,0). 
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Figure 3. Mean centered weighted scores for options versus mean centered ML
estimates for options for the WURM model with weights (3,2,1,0)

 

 

 
 

Figure 3. Mean centered weighted scores for options versus mean centered ML estimates for options for 

the WURM model with weights (3,2,1,0). 
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Figure 4 plots the corresponding highly linear relation between mean cen-
tered ML estimates for attribute-levels (y-axis) and the mean centered weighted
scores for attribute-levels (x-axis) for the WUR model with preassigned weights
(3, 2, 1, 0); the non-parametric correlation, i.e. Spearman’s ρ, is 0.999, between
ML estimates and scores. We do not at this time have theoretical results predict-
ing these relations.

We also fit the rank ordered logit (ROL) model and the generalized rank
order logit (GROL) model, and obtained utility estimates similar to those for the
corresponding WUR model. We omit the full details of the estimates and fits
for the ROL and GROL models in the interests of space, plus the fact that the
major purpose of the paper is to motivate and illustrate the properties of the
WUR model; however, the following summarizes the main points. The (R2) fits
of the GROL model with preassigned weights (3, 2, 1, 0) are: (a) fit of observed
and predicted rank order probabilities is 0.701 (0.772 when not constrained to
fit through the origin); (b) fit of mean centered ML estimates for options versus
mean centered weighted scores for options is 0.998, and (c) fit of mean centered
ML estimates for attribute-levels versus mean centered scores for attribute-levels
versus is 0.999. Thus, with these preassigned weights, the WUR model is slightly
better than the GROL model in predicting observed rank order probabilities
for this data set. As with the WUR model, the fits of the GROL model with
“strange” weights are very poor. When we estimate weights for the GROL model,
we obtain (3.42, 2.14, 1, 0) (1 and 0 fixed), which are close to (3, 2, 1, 0). In terms
of LL (log likelihood), the fits of the GROL model and of the WUR model are
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substantially better than those of the rank order logit (ROL). For example, the
LL of the ROL model is -17587.8 compared to a LL of -17458.5 for the WUR
model with preassigned weights (3, 2, 1, 0) and -17420.7 for the WUR model with
estimated weights - thus, the improvements are 129 and 169 likelihood points
for WUR model with preassigned and estimated weights. However, each of the
WUR and GROL model with estimated weights has three additional parameters
compared to the ROL model, and thus detailed comparisons of the three models
will require use of fit measures that have penalties for (additional) parameters.
Section 7.5 briefly discusses possible future comparisons of various extensions of
the WUR model and its comparison with other models.

Figure 4. Mean centered weighted scores for attribute-levels versus mean
centered ML estimates for attribute-levels for the WURM model with weights

(3,2,1,0)
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7.4 Within- and cross-sample model performance

To test the within and cross-sample model performance of the WUR model with
preassigned weights (3, 2, 1, 0), we randomly split the 298 households into two
groups (each sub-sample with 149 households). We evaluated the (R2) fit of
the model in- and out-of-sample on (a) rank order prediction, (b) option (i.e.
BIBD profile) estimated values and (c) attribute-level estimated values. The fits,
as summarized in Table 11, show only a slight drop from in- to out-of-sample
fit, supporting the external validity for this data set of the WUR model with
preassigned weights (3, 2, 1, 0).
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Table 11. In and out of sample fit to the rank orders, option values, and
attribute values, of the WURM with weights (3,2,1,0)

Table 11. In and out of sample fit to the rank orders, option values, and attribute values, of the WURM 

with weights (3,2,1,0). 

 
  Within Sample 

(R2) 

 Cross Sample 

(R2) 

Rank Orders 

 

Sample 1 0.774 Sample 2 → 11 0.722 

Sample 2 0.781 Sample 1 → 2 0.714 

Options Sample 1 0.998 Sample 2 → 1 0.966 

Sample 2 0.999 Sample 1 → 2 0.960 

Attributes Sample 1 0.948 Sample 2 → 1 0.961 

Sample 2 0.999 Sample 1 → 2 0.963 
1
 For i,j=1,2, i not equal j, Sample i → j means sample i estimates used to predict sample j data. 

7.5 Discussion of model estimation

We have successfully fit examples of the class of weighted utility ranking mod-
els, with these fits illustrating the usefulness of the fascinating score properties
of these models, such as the observed linear (proportional) relation between the
maximum likelihood estimates of the parameters and the scores. To the ex-
tent that these models differentially weight scale values at different stages of the
ranking process, they include some scale effects of the kind considered in recent
fits of the generalized rank ordered logit and related models (e.g., Scarpa et al,
2011). Further work, mainly empirical, is needed to extend WUR models to take
into account both scale effects and preference heterogeneity (as in the models in
Magidson & Vermunt, 2007; Fiebig et al., 2010).

8 Discussion and Conclusion

We have used the Louviere et al. (2008) expansion methods to motivate models
of full and partial rank order data, several of which have been studied previously,
others being new. This class (of weighted utility ranking models) includes stan-
dard choice models as special cases, including the multinomial logit for best (and
worst) choice, the maxdiff model for best-worst choice, and the reversible ranking
model (for rankings). Every model in this class has fascinating score properties,
various of which can be shown theoretically (such as the scores providing a suf-
ficient statistic and the “optimal” estimate of the rank order of the unknown
scale values), others of which hold empirically (such as a linear relation between
maximum likelihood estimates and the scores).

The weights suggested by the Louviere et al. (2008) expansion methods played
an important role in motivating specific weighted utility ranking (WUR) models -
in particular, each expansion (when the MNL model holds), and the correspond-
ing ranking model, have a common sufficient statistic that depends on the weights
in each approach. If one is interested in the rank order, only, of the scale values
in the model, then, as noted above, assuming those scale values are ranked in the
same order as the scores in the sufficient statistic is “optimal” (with optimal as
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defined in Appendix A). To the extent that WUR models with different weights,
but the same scale values, give the same rank order of the scores, they will give
the same estimated rank order for the scale values. This fact, and the close rela-
tion between Louviere et al expansions and specific WUR models, might partially
explain why various expansions give scale estimates related up to a scale factor
(as in Louviere et al., 2008).

In general, there is a clear difference between the properties of WUR models
and of ranking models based on repeated best and/or worst choices. The main
advantage of the WUR models is that they have useful score properties for es-
timating the rank order of the scale values, and, empirically, of estimating the
scale values up to a proportionality factor; the main advantage of the repeated
best and/or worst models of ranking is that they provide natural process inter-
pretations of the rankings and can be based on relatively standard (e.g., MNL)
representations of the best and/or worst choice probabilities.

The reversible ranking model, with binary MNLs, belongs to both classes of
representation. The advantage of this model lies in the fact that it has a simple
sufficient statistic, based on scores, and that ranking in descending order of these
scores is optimal in the sense of minimizing the expected loss; the disadvantage
is its relatively complex forms for best, and worst, choice probabilities.

An open empirical and theoretical issue is the extent to which a WUR model
can ‘mimic’ a repeated best and/or worst choice model, and vice-versa.

Given the diversity of ranking models presented in this paper, which are only
a small subset of current approaches (e.g., Agarwal et al., 2009; Doignon et al.,
2004), it is up to further empirical research to decide which ranking models are
the most useful, in terms of, say, ease of use and in- and out-of-sample predic-
tions. Models based on repeated best and/or worst choices can often be given
(psychological) process interpretations, and those based on weights may be ap-
propriate for policy making contexts, given their close links to scoring rules in
voting theory (Garcia-Lapresta, Marley, & Matinez-Panero, 2010; Saari, 2008).

Appendices

Appendix A Score Properties (Based on Huber, 1963)

Preliminary comments
In order to apply Huber’s (1963) results under exactly the conditions he as-

sumed, we need the scores in (9) to satisfy the constraints11: for each choice set
X,

|X|∑
i=1

rX(i) = 0. (28)

In this case, it is easily checked that the scores in (9) satisfy the property:∑
x∈T

s(x) = 0. (29)

11Note that for every X and every rank order ρ ∈ R(X),
∑

x∈XrX [ρ(x)] =
∑|X|

i=1rX(i).
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When (28), and hence (29), hold, the conditions of our application agree with the
assumptions in Huber (1963), especially the example in his Section 7. Therefore,
we now show that these constraints can be derived from our general assumptions,
with no impact on our other assumptions and conclusions.

So assume we have the scores as in (9) with the weights satisfying the ordinal
constraint (3), i.e., for each x ∈ T and choice set X,

s(x) =

(∑
X∈D(T )

∑
ρ∈R(X)

sX(ρ)rX [ρ(x)]

)
,

and

rX(1) ≥ rX(2) ≥ ... ≥ rX(|X| − 1) ≥ rX(|X|),

with rX(1) > rX(|X|).
Now, for i = 1, ..., |X|, define

r′X(i) = rX(i)− 1

|X|

(
|X|∑
i=1
rX(i)

)
,

and for x ∈ T , define

s′(x) = s(x)−
∑

X∈D(T )

1

|X|

(
|X|∑
i=1
rX(i)

)
. (30)

Then it is routine to show that for each choice set X,

|X|∑
i=1

r′X(i) = 0,

and for each x ∈ T,

s′(x) =

(∑
X∈D(T )

∑
ρ∈R(X)

sX(ρ)r′X [ρ(x)]

)
,

which in turn yield∑
x∈T

s′(x) = 0.

Therefore, as required, the weights r′X satisfy (28) and, consequently, the scores
s′ satisfy (29). Also, as already noted in the body of the paper, the ranking
probabilities for the WUR with weights r′X(i), i = 1, .., |X|, are identical to those
of the WUR with the weights rX(i); and, by (30), the rank order of the scores
s′(x), x ∈ T , for this common model is the same as that of the scores s(x),
x ∈ T . These are the conditions on the weights and scores that are required for
our application of Huber’s results.
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In conclusion, we apply Huber’s results assuming a set of weights rX satisfying
(28), and hence scores s satisfying (29), even though in the main text we have
not assumed that (28) holds.

The application of Huber’s (1963) results
Let T be a set with |T | = n ≥ 2 elements and assume that, for some k

with n ≥ k ≥ 2, every subset of T with exactly k elements appears in the
design. Consider the group of permutations of the numbers 1 to n. For a
vector of (utility) values u =(u(t1), u(t2), ..., u(tn)) and a permutation σ, let
uσ = (u(tσ(1)), u(tσ(2)), ..., u(tσ(n))). The decision space D is the set of all possible
rank orders; thus, a typical d ∈ D has the form

d(1, 2, ..., n) = (d(1), d(2), ..., d(n)) ,

where d(i), i = 1, ..., n, is a permutation of the numbers 1 to n, and, thus, d(i) is
the rank of i in the ranking d. For d ∈ D and permutation σ, let

dσ(1, 2, ..., n) = (d[σ(1)], d[σ(2)], ..., d[σ(n))].

We assume that the “true” ranking of the (utility) scale values (in the relevant
models in the main text) is in descending order of their values u(z), z ∈ T , and
departures from the true ranking are punished by some real-valued loss; denote by
L(u,d) the loss incurred when u is the true value of the parameters and decision
(rank order) d ∈ D is taken.

Definition 8 (Adapted from Huber, 1963, Th. 1, p. 513) A loss function L is
called acceptable if it satisfies the following two condition:

(i) L is permutation invariant: for all u, d and σ,

L(uσ,dσ) = L(u,d).

(ii) L does not decrease if the ranking, d, is made worse by interchanging two
items. More precisely, assume that u(ti) ≥ u(tj) and let d(i,j) be the ranking
in which i and j are interchanged relative to their position in d. If d ranks
item i before item j, d(i) < d(j), then

L(u,d) ≤ L(u,d(i,j)).

Property (ii) implies that ranking in descending order of the u(ti) minimizes
the loss, as desired.

We now define the risk of a decision procedure. Let S be the (discrete) space
of a statistic s; define sσ(ti) = s(tσ(i)), and let p(s|u) be the probability (for the
assumed model) of the statistic s given the parameter vector u. Let ϕs be a
randomized decision procedure that depends on the data only through s, that is,
a probability density ϕs(d) on D such that

∑
d∈Dϕs(d) = 1. The risk is then:
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R(u, ϕ) =
∑

d∈D
∑

s∈Sp(s|u)L(u,d)ϕs(d).

We have written the statement of the following theorem in terms of a discrete
probability mass. The analogous theorem in Huber (1963) is proved for general
(discrete or continuous) probability distributions.

In the theorem statement, T = {t1, t2, ..., tn} is a set, s =(s(t1), s(t2), ..., s(tn))
with

∑n
i=1 s(ti) = 0 and u =(u(t1), u(t2), ..., u(tn)) are vectors of length n, and

for any vector r of length n, r(i,j), i 6= j, is the vector in which items ri and rj
are interchanged.

Theorem 9 (Adapted from Huber, 1963, p. 513) Assume that the joint distri-
bution p(s|u) of s conditional on u can be written as

p(s|u) =c(u)f(u, s),

where f satisfies

i. f(u, s) = f(u(i,j), s(i,j)),

ii. f(u, s) ≥ f(u(i,j), s) whenever u(ti) ≥ u(tj) and s(ti) ≥ s(tj).

If L is an acceptable loss function, Def. 8, then ranking in descending order
of the s(ti), breaking ties at random, has minimal risk among all permutation
invariant ranking procedures that depend on the data through s.

Property i. says that f is invariant under permutations and property ii. says
that the size of f decreases if the order of the elements ti and tj is different in u
than s.

We now rewrite the likelihood, (11), for a WUR, in a form that allows us to
use the result of the above theorem.

Let |T | = n, T = {t1, t2, ..., tn} (in no particular order), u =(u(t1), u(t2), ..., u(tn)),
and s =(s(t1), s(t2), ..., s(tn)). Then the likelihood, (11), of the score vector s of
(9) - that is, the probability of s conditional on u - can be written as

p(s|u) =c(u)f(u, s),

where

c(u) =

 1∏
X∈D(T )

∑
η∈R(X) e

∑
x∈T rX [ρ(x)]u(x)


and

f(u, s) = exp
∑n

i=1
s(ti)u(ti). (31)
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It is routine to check that f in (31) satisfies i. and ii. of Theorem 9, hence the
result of that theorem holds and ranking in descending order of the s(ti), break-
ing ties at random, has minimal risk among all permutation invariant ranking
procedures that depend on the data through s.

Appendix B Calculation of (Near) Deterministic Limit for the
(8,3,3,1) WUR Model

Assume the utility values for the four options w, x, y, z have the values a, b, c, d,
respectively, with a > b ≥ c > d - that is, u(w) = a, u(x) = b, u(y) = c, u(z) = d.
Then, (4) becomes

BWX(w, z) =
e[8a+3(b+c)+d]∑

η∈R(X) e
[8u(η1)+3u(η2)+3u(η3)+u(ρ4)]

=
1

1 +
∑

η∈R(X) e
[8u(η1)+3u(η2)+3u(η3)+u(ρ4)]−[8a+3(b+c)+d]

.

Then, for BWX(w, z) to approach 1, we need to show that, for any permutation
(rank order) (g, h, i, k) of the options in the set {w, x, y, z}, other than (w, x, y, z)
or (w, y, x, z), the quantity

[8u(g) + 3(u(h) + u(i)) + u(k)]− [8a+ 3(b+ c) + d]

can be made as negative as desired by making the differences a− b, b− c, c− d,
and, therefore, a−c, b−d, and a−d, large and positive. That is, we need to show
that, for any permutation (rank order) (g, h, i, k) of the options, the quantity

[8a+ 3(b+ c) + d]− [8u(g) + 3(u(h) + u(i)) + u(k)]

= 8(a− u(g)) + 3[(b+ c)− (u(h) + u(i)] + (d− u(k))

can be made as positive as desired by making the differences a − b, b − c, c − d
large and positive.

Table B1 demonstrates this by full enumeration, where it can be checked that
each term in the right hand column can be made as positive as desired under the
constraints on a, b, c, and d given above.

76



Marley and Islam, Journal of Choice Modelling, 5(1), 2012, 38-80

Table B1. Conditions for positivity.

u(g), u(h), u(i), u(k) 8(a− u(g)) + 3[(b+ c)− (u(h) + u(i))] + (d− u(k))

a, b, c, d 0

a, c, b, d 0

a, b, d, c 2(c− d)

a, d, b, c 2(c− d)

a, c, d, b 2(b− d)

a, d, c, b 2(b− d)

b, a, c, d 5(a− b)
b, c, a, d 5(a− b)
b, a, d, c 5(a− b) + 2(c− d)

b, d, a, c 5(a− b) + 2(c− d)

b, d, c, a 7(a− b) + 2(b− d)

b, c, d, a 7(a− b) + 2(b− d)

c, a, b, d 5(a− c)
c, b, a, d 5(a− c)
c, a, d, b 5(a− c) + 2(b− d)

c, d, a, b 5(a− c) + 2(b− d)

c, b, d, a 7(a− c) + 2(c− d)

c, d, b, a 7(a− c) + 2(c− d)

d, a, b, c 5(a− d) + 2(c− d)

d, b, a, c 5(a− d) + 2(c− d)

d, a, c, b 5(a− d) + 2(b− d)

d, c, a, b 5(a− d) + 2(b− d)

d, c, b, a 7(a− d)

d, b, c, a 7(a− d)
Appendix C Acronyms

BIBD Balanced incomplete block design
BWS Best-worst scaling
GMNL Generalized mulinomial logit
GROL Generalized rank ordered logit
ML Maximum likelihood
MNL Multinomial logit
OMEP Orthogonal main effects design
ROL Rank ordered logit
WCL Weighted conditional logit
WLS Weighted least squares
WUR Weighted utility ranking
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