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Abstract 
 

This paper presents the regional travel forecasting model system (SACSIM) 
being used by the Sacramento (California) Area Council of Governments 
(SACOG). Within SACSIM an integrated activity-based disaggregate econometric 
model (DaySim) simulates each resident’s full-day activity and travel schedule. 
Sensitivity to neighborhood scale is enhanced through disaggregation of the 
modeled outcomes in three key dimensions: purpose, time, and space. Each 
activity episode is associated with one of seven specific purposes, and with a 
particular parcel location at which it occurs. The beginning and ending times of all 
activity and travel episodes are identified within a specific 30-minute time period. 
Within SACSIM, DaySim equilibrates iteratively with traditional traffic 
assignment models. SACSIM was calibrated and tested for a base year of 2000 and 
for forecasts to the years 2005 and 2035, and was subjected to a formal peer-
review. It was used to provide forecasts for the Regional Transportation Plan 
(RTP) and continues to be used for various policy analyses. 

The paper explains the model system structure and components, the integration 
with the traffic assignment model, calibration and validation, sensitivity tests, 
model application and Federal peer review results. We conclude that it is possible 
to create and apply a regional demand model system using parcel-level geography 
and half-hour time of day periods. Experiences thus far have pointed to major 
benefits of using detailed land use variables and urban design variables, but also to 
new challenges in providing parcel-level land use inputs for future years. 
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1 Introduction  
 

Over the last decade, activity-based travel demand microsimulation models have 
gradually gained acceptance in the U.S. as the eventual successor to conventional 
“four step” travel demand models for large metropolitan areas. Activity-based model 
systems have been applied in Portland (Bradley et al. 1998; Bradley et al. 1999), San 
Francisco (Bradley et al. 2001; Jonnalagadda et al. 2001), New York (Vovsha et al. 
2002), Columbus (Vovsha et al. 2003), Dallas (Bhat et al. 2004), and Sacramento. 
Bradley and Bowman (2006) provide a detailed comparison of the properties of those 
model systems, as well as references to papers written about those models.  

In 2009, additional activity-based model systems have reached various stages of 
development for Denver, Seattle, Bay Area, San Diego, Atlanta, Los Angeles and 
Phoenix. We have now reached the point where the majority of new travel demand 
model development projects for major metropolitan areas in the US are for activity-
based model systems.  

The innovative features of the new activity-based models systems that tend to 
receive the most attention are the use of tours in addition to trips as a basic unit of 
behavior, attention to how activities are generated and scheduled across an entire day, 
and, in some cases, how different household members interact to influence each 
others’ travel decisions. Another important aspect that tends to receive less attention is 
that using disaggregate micro-simulation of individual households and persons instead 
of the conventional aggregate zone-based framework provides the potential for much 
finer levels of spatial and temporal detail in the forecasts. To date, most of the applied 
activity-based models continued to rely on zones as the spatial level of detail, and to 
rely on four or five broad time periods of the day as the temporal level of detail. There 
has been some skepticism that the new activity-based model framework would be able 
to improve upon those typical levels of resolution.  

The purpose of this article is to provide a detailed description of an operational 
activity-based model that takes advantage of the disaggregate microsimulation 
framework to provide much finer levels of resolution in forecasting. The Sacramento 
model system described below uses 48 half-hour time periods across the day as the 
basic units of temporal resolution, and uses individual parcels of land as the basic 
units of spatial resolution. This latter feature in particular is quite significant, given 
that a metropolitan area typically has over one million parcels, as compared to less 
than a few thousand traffic analysis zones. Using parcel-level resolution allows 
regional travel demand models to include land use variables and urban design 
variables at a level of detail that has not been possible in the past, allowing planners to 
look at wider range of land use and infrastructure policies, particularly those that 
affect non-motorized travel and accessibility to transit services. 
 

2 SACSIM Model System Overview  
 
This paper presents a regional travel forecasting model system called SACSIM, 
implemented by the Sacramento (California) Area Council of Governments (SACOG). 
The system includes an integrated econometric microsimulation of personal activities 
and travel with a highly disaggregate treatment of the purpose, time of day and 
location dimensions of the modeled outcomes. SACSIM will be used for 
transportation and land development planning, and air quality analysis. 

Figure 1 shows the major SACSIM components. The Representative Population 
Generator creates a synthetic population, comprised of households drawn from the 
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region’s U.S. Census Public Use Microdata Sample (PUMS) and allocated to parcels. 
Long-term choices (work location, school location and auto ownership) are simulated 
for all members of the population. The Person Day Activity and Travel Simulator 
(DaySim) then creates a one-day activity and travel schedule for each person in the 
population, including a list of their tours and the trips on each tour. The DaySim 
components, implemented in a single custom software program, consist of a hierarchy 
of multinomial logit and nested logit models. The models within DaySim are 
connected by adherence to an assumed conditional hierarchy, and by the use of 
accessibility logsums.  

  
Figure 1. SACOG Regional Travel Forecasting Model System (SACSIM) 
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The trips predicted by DaySim are aggregated and combined with predicted airport 
passenger trips, external trips and commercial vehicle trips into time- and mode-
specific trip matrices. The network traffic assignment models load the trips onto the 
network. Traffic assignment is iteratively equilibrated with DaySim and the other 
demand models.  

As shown here, the regional forecasts are treated as exogenous. In subsequent 
implementations, it is anticipated that SACSIM will be fully integrated with PECAS, 
Sacramento’s new land use model (Abraham et al. 2004), so that the long range 
PECAS forecasts will depend on the activity-based travel forecast of DaySim. 

 
2.1 DaySim Overview  

 
DaySim follows the day activity schedule approach developed by Bowman and Ben-
Akiva (2001). Its features include the following: 
 

• The model uses a microsimulation structure, predicting outcomes for each 
household and person in order to produce activity/trip records comparable to 
those from a household survey (Bradley et al. 1999). 

• The model works at four integrated levels—longer term person and household 
choices, single day-long activity pattern choices, tour-level choices, and trip-
level choices  

• The upper level models of longer term decisions and activity/tour generation 
are sensitive to network accessibility and a variety of land use variables. 

• The model allows the specific work tour destination for the day to differ from 
the person’s usual work location. 

• The model uses seven different activity purposes for both tours and 
intermediate stops (work, school, escort, shop, personal business, meal, 
social/recreation). 

• The model predicts locations down to the individual parcel level. 
• The model predicts the time that each trip and activity starts and ends to the 

nearest 30 minutes, using an internally consistent scheduling structure that is 
also sensitive to differences in travel times across the day (Vovsha and 
Bradley 2004). 

• The model is highly integrated, including the use of mode choice logsums and 
approximate logsums in the upper level models, encapsulating differences 
across different modes, destinations, times of day, and types of person. 

 
The latter four features are enhancements relative to its closest precursor, the CHAMP 
model currently in active use by the San Francisco County Transportation Authority 
(SFCTA). See Bradley et al. (2001) and Jonnalagadda et al. (2001) for details of the 
SFCTA model.  

Figure 2 is a flow diagram showing the relationships among DaySim’s 
component models, which are also listed in Table 1. The models themselves are 
numbered hierarchically in the table; subsequently in this paper, parenthetical 
numerical references to models refer to these numbers. The hierarchy embodies 
assumptions about the relationships among simultaneous real world outcomes. In 
particular, outcomes from models higher in the hierarchy are treated as known in 
lower level models. It places at a higher level those outcomes that are thought to be 
higher priority to the decision maker. The model structure also embodies priority 
assumptions that are hidden in the hierarchy, namely the relative priority of outcomes  
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Figure 2. DaySim Flow Diagram 
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Table 1. Component Models of DaySim 

Model # Model Name Level What is predicted 

1.1 Synthetic Sample Generator Household 
Household size and composition, 

household income, person age, gender, 
employment status, student status 

1.2 Regular Workplace Location Worker Workplace location zone and parcel 

1.3 Regular School Location Student School location zone and parcel 

1.4 Auto Ownership Household Auto ownership 

2.1 Daily Activity Pattern Person-day 0 or 1+ tours for 7 activity purposes. 0 or 
1+ stops for 7 activity purposes 

2.2 Exact Number of Tours Person-day For purposes with 1+ tours, 1, 2 or 3 
tours. 

3.1 Tour Primary Destination Choice (Sub)Tour Primary destination zone and parcel 
(models are purpose-specific) 

3.2 Work-Based Subtour Generation Work Tour Number and purpose of any subtours 
made during a work tour 

3.3 Tour Main Mode Choice (Sub)Tour 
Main tour mode 

(models are purpose-specific) 

3.4 Tour Time of Day Choice (Sub)Tour 

The time period arriving and the time 
period leaving primary destination 

(models are purpose-specific) 

4.1 Intermediate Stop Generation Half Tour 
Number and activity purpose of any 

intermediate stops made on the half tour, 
conditional on day pattern 

4.2 Intermediate Stop Location Trip 

Destination zone and parcel of each 
intermediate stop, conditional on tour 
origin, destination, and location of any 

previous stops 

4.3 Trip Mode Choice Trip Trip mode, conditional on main tour 
mode 

4.4 Trip Departure Time Trip 
Departure time within 30 min. periods, 
conditional on time windows remaining 

from previous choices 

 



Bradley, Bowman and Griesenbeck, Journal of Choice Modelling, 3(1), pp. 5-31 

 

11 
 

on a given level of the hierarchy. The most notable of these are the relative priority of 
tours in a pattern, and the relative priority of stops on a tour. The formal hierarchical 
structure provides what has been referred to by Vovsha et al. (2004) as downward 
vertical integrity. 

Just as important as downward integrity is the upward vertical integrity that is 
achieved by the use of composite accessibility variables to explain upper level 
outcomes. Done properly, this makes the upper level models sensitive to important 
attributes that are known only at the lower levels of the model, most notably travel 
times and costs. It also captures non-uniform cross-elasticities caused by shared 
unobserved attributes among groups of lower level alternatives sharing the same upper 
level outcome. 

Upward vertical integration is a very important aspect of model integration. 
Without it, the model system will not effectively capture sensitivity to travel 
conditions. However, when there are very many alternatives (millions in the case of 
the entire day activity schedule model), the most preferred measure of accessibility, 
the expected utility logsum, requires an infeasibly large amount of computation. So, 
for SACSIM approaches have been developed to capture the most important 
accessibility effects with a feasible amount of computation. One approach involves 
using logsums that approximate the expected utility logsum. They are calculated in the 
same basic way, by summing the exponentiated utilities of multiple alternatives. 
However, the amount of computation is reduced, either by ignoring some differences 
among decision makers, or by calculating utility for a carefully chosen subset or 
aggregation of the available alternatives. The approximate logsum is pre-calculated 
and used by several of the model components, and can be re-used for many persons. 
Two kinds of approximate logsums are used, an approximate tour mode/destination 
choice logsum and an approximate intermediate stop location choice logsum. The 
approximate tour mode-destination choice logsum is used in situations where 
information is needed about accessibility to activity opportunities in all surrounding 
locations by all available transport modes at all times of day. The approximate 
intermediate stop location choice logsum is used in the activity pattern models, where 
accessibility for making intermediate stops affects whether the pattern will include 
intermediate stops on tours, and how many.  

The other simplifying approach involves simulating a conditional outcome. For 
example, in the tour destination choice model, where time-of-day is not yet known, a 
mode choice logsum is calculated based on an assumed time of day, where the 
assumed time of day is determined by a probability-weighted Monte Carlo draw. In 
this way, the distribution of potential times of day is captured across the population 
rather than for each person, and the destination choice is sensitive to time-of-day 
changes in travel level of service. 

In many other cases within the model system, true expected utility logsums are 
used. For example, tour mode choice logsums are used in the tour time of day models.  

 
3 Component Models of DaySim  
 
The models in the DaySim component of SACSIM were estimated using data from the 
1999 Sacramento Area Household Travel Survey, fielded by NuStats. The survey was 
a fairly standard place-based one-day travel diary survey, very similar to most other 
regional household travel surveys carried out in the US during the last decade.  

We do not have the space in this paper to provide details on the exact 
specification or estimation  results for  each component model. Table 2 provides a 
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Table 2 Part 1: Variables included 
in  Sacramento DaySim models        
(P = predicted, X = explanatory) 
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Household characteristics               

Household size X   X X X     X   X   X   
Household number of workers X   X X   X       
Household income X X X X X   X X X X X X   
Household includes children     X X X X   X X X   
Household includes people age 65+ X     X X   X X X X       
Household is non-family household     X X         
Household number of driving age people       X X X X X       X   
Household has no cars     P   X X X     X   
Household has fewer cars than workers       P       X           
Household has fewer cars than adults     P X X X X     X   
Housing unit type X                         
Person characteristics               
Full time worker   X   X X   X X X X       
Part time worker   X   X X X X X X     
Non-working adult         X   X X X X   X   
University student   X X X X X X   X 
Driving age child   X X X X   X X X X X X X 
Child age 5-15   X X X X X X   X X 
Child age under 5     X X X   X X X X     X 
Age is 65 or older     X X X X X X     
Age is 51-65         X     X           
Age is 26-35     X       X   
Age is 18-25         X             X   
Gender   X   X   X   X X X   
Usual workplace is home   P     X                 
Parcel-level land use variables               
Service employment (density)   X X X   X X       X     
Educational employment (density)   X X   X   X   
Government employment (density)   X X       X       X     
Office employment (density)   X X   X   X   
Retail employment (density)   X   X   X X       X     
Restaurant employment (density)   X   X   X X   X   
Medical employment (density)   X   X   X X       X     
Industrial employment (density)   X     X   X   
Total employment density   X         X       X     
Household density   X X   X   X   
University student enrollment (density)   X X       X       X     
K-12 student enrollment (density)   X X   X X   X   
Mixed use balance   X     X   X X     X X   
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Table 2  Part 2: Variables included 
in Sacramento DaySim models          
(P = predicted, X = explanatory) 

R
es

id
en

tia
l l

oc
at

io
n 

U
su

al
 w

or
k 

lo
ca

tio
n 

U
su

al
 s

ch
oo

l l
oc

at
io

n 

A
ut

o 
ow

ne
rs

hi
p 

D
ay

 a
ct

iv
ity

 p
at

te
rn

 

W
or

k-
ba

se
d 

to
ur

 g
en

er
at

io
n 

To
ur

 d
es

tin
at

io
n 

ch
oi

ce
 

To
ur

 m
od

e 
ch

oi
ce

 

To
ur

 ti
m

e 
of

 d
ay

 c
ho

ic
e 

St
op

 fr
eq

ue
nc

y 
an

d 
pu

rp
os

e 

In
te

rm
ed

ia
te

 s
to

p 
lo

ca
tio

n 

Tr
ip

 m
od

e 
ch

oi
ce

 

Tr
ip

 ti
m

e 
of

 d
ay

 c
ho

ic
e 

Parcel-level accessibility variables               
Parking density   X         X       X     
Average parking price     X     X   X X   
Street intersection density   X     X   X X   X X X   
Distance to nearest transit stop     X X   X   X X   
Zone-level accessibiliy variables                           
Auto and transit costs         X X X X X
Auto, transit and non-motorized times               X X   X X X
Transit connectivity/availability         X X X X X
Auto time on very congested links                 X       X
Driving distance   X X   X X   X   
Mode choice accessibility logsum   X X X X   X             
Mode/destination accessibility logsums   X   X X       
Intermediate stop accessibility logsums         X         X       
Endogenous activity pattern variables               
Number of home-based tours in pattern         P X   X X X     X
Pattern has multiple tours for the purpose     P X X X     
Pattern has stop(s) for the purpose         P   X   X         
Pattern includes work or school tour     P X   X     
Purpose of tour         P   X X X X X X X
Tour is work-based subtour       P X X X X X X
Intermediate stop purpose                X   P X X X
Number of intermediate stops on half tour           P X X X
Outbound or return tour direction                   X X X X
Endogenous location, mode, TOD variables               
Work tour is not to usual workplace           X P             
Tour mode is auto, transit, etc.         P   X X X   
Mode used to get to work               P       X   
Tour time periods of the day           P X X X X
Unscheduled time remaining in the day             X   P X X   X
Trip mode is auto, transit, etc.             P X
Trip time period of the day                         P
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summary of most of the explanatory variables used in the models. The reader is 
referred to the SACSIM Technical Memos (Bowman and Bradley 2005, 2006), 
available on the website http://JBowman.net, as well as the SACSIM07 Model 
Reference Report (SACOG 2008a). The following sections list some key aspects of 
the various DaySim component models. Similar models are grouped together, for ease 
of presentation. 
 
3.1 Day Activity Pattern Model 
 
This model is a variation on the Bowman and Ben-Akiva approach, jointly predicting 
the number of home-based tours a person undertakes during a day for seven purposes, 
and the occurrence of additional stops during the day for the same seven purposes. 
The seven purposes are work, school, escort, personal business, shopping, meal and 
social/recreational. The pattern choice is a function of many types of household and 
person characteristics, as well as land use and accessibility at the residence and, if 
relevant, the usual work location. The main pattern model (2.1) predicts the 
occurrence of tours (0 or 1+) and extra stops (0 or 1+) for each purpose, and a simpler 
conditional model (2.2) predicts the exact number of tours for each purpose. The “base 
alternative” in the model is the “stay at home” alternative where all 14 dependent 
variables are 0 (no tours or stops are made). 

Many household and person variables were found to have significant effects on 
the likelihood of participating in different types of activities in the day, and on 
whether those activities tend to be made on separate tours or as stops on complex 
tours. The significant variables include employment status, student status, age group, 
income group, car availability, work at home dummy, gender, presence of children in 
different age groups, presence of other adults in the household, and family/non-family 
status. For workers and students, the accessibility (mode choice logsum) of the usual 
work and school locations is positively related to the likelihood of traveling to that 
activity on a given day. For workers, the accessibility to retail and service locations on 
the way to and from work is positively related to the likelihood of making 
intermediate stops for various purposes. 

Simpler models were estimated to predict the exact number of tours for any given 
purpose, conditional on making 1+ tours for that purpose. An interesting result is that, 
compared to the main day pattern model, the person and household variables have less 
influence but the accessibility variables have more influence. This result indicates that 
the small percentage of people who make multiple tours for any given purpose during 
a day tend to be those people who live in areas that best accommodate those tours. 
Other people will be more likely to participate in fewer activities and/or chain their 
activities into fewer home-based tours. 

The DaySim models implemented in Sacramento do not include explicit models 
of intra-household interactions. Although explanatory variables are used throughout 
the model system to take account of the characteristics of other household members, 
we do not explicitly link the activity patterns across individuals so that they travel 
together. During the period that the Sacramento model system was being developed, 
the first such applied intra-household interaction models of that type were being 
developed and applied for the Columbus and Atlanta regions. For Sacramento, on the 
other hand, the focus was placed on using finer level spatial detail (parcels) and 
temporal detail (30 minute periods), as well as on achieving upward integrity through 
consistent use of accessibility logsums at all levels of the model system. Adding 

http://jbowman.net/
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models of explicit intra-household interactions may be a worthwhile additional during 
future model update projects (along with other potential improvements described in 
the final section of this paper). 

 
3.2 Generation Model for Work-based Subtours 
 
For this model, the work tour destination is known, so variables measuring the number 
and accessibility of activity opportunities near the work site influence the number and 
purpose of work-based tours. This model is very similar in structure to the stop 
participation and purpose models described next. 

 
3.3 Generation Model for Intermediate Stops on Half-Tours 
 
For each tour, once its destination, timing and mode have been determined, the exact 
number of stops and their purposes is modeled for the half-tours leading to and from 
the tour destination. For each potential stop, the model predicts whether it occurs or 
not and, if so, its activity purpose. This repeats as long as another stop is predicted. 
The outcomes of this model are strongly conditioned by (a) the outcome of the day 
activity pattern model, and (b) the outcomes of this model for higher priority tours. 
For the last modeled tour, this model is constrained to accomplish all intermediate stop 
activity purposes prescribed by the activity pattern model that have not yet been 
accomplished on other tours. 

The estimation results for this model indicate that accessibility measures are 
important in determining which stops are made on which tours, as well as the exact 
number of stops. An important feature of this model system is that we do not predict 
the number and allocation of stops completely at the upper pattern level, as is done in 
the Portland and SFCTA models, or completely at the tour level, as is done in other 
models such as those in Columbus and New York. Rather, the upper level pattern 
model predicts the likelihood that ANY stops will be made during the day for a given 
purpose, at a level where the substitution between extra stops versus extra tours can be 
modeled directly. Then, once the exact destinations, modes and times of day of tours 
are known, the exact allocation and number of stops is predicted using this additional 
tour-level information. We think that this approach provides a good balance between 
person-day-level and tour-level sensitivities. 

 
3.4 Location Choice Models 
 
3.4.1 Usual Work and School Locations and Tour Primary Destinations 
 
The dependent variable in the usual location and tour destination models is the parcel 
address where the activity takes place. Since over 700,000 parcels comprise the 
universal set of location choice alternatives in the SACOG six-county region, it is 
necessary to both estimate and apply the location choice models using a sample of 
alternatives. The sampling of alternatives is done using two-stage importance 
sampling with replacement; first a TAZ is drawn according to a probability 
determined by its size and impedance, and then a parcel is drawn within the TAZ, with 
a size-based probability. 
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Some differences among the models come from the assumed model hierarchy in 
Table 2.For the usual work and school location models, auto ownership is assumed to 
be unknown, based on the assumption that auto ownership is mainly conditioned by 
work and school locations of household members, rather than the other way around. 
For the tour destinations, auto ownership levels are treated as given, and affect 
location choice. For university and grade school students who also work, the usual 
school location is known when usual work location is modeled; for other workers who 
also go to school, the work location is known when usual school location is modeled. 
For the tour destination models, all usual locations are known. 

There are additional structural differences among these models. For the two usual 
location models (work and school), the home location is treated as a special location, 
because it occurs with greater frequency than any given non-home location, and size 
and impedance are not meaningful attributes. As a result, both of these models take the 
nested logit form, with all non-home locations nested together under the conditioning 
choice between home and non-home. In the estimation data, all workers have a usual 
work location and all students have a usual school location, so the model does not 
have an alternative called “no usual location”. 

Because a large majority of work tours go to the usual work location, the work 
tour destination model has this as a special alternative. Therefore, the model is nested, 
with all locations other than the usual location nested together under the conditioning 
binary choice between usual and non-usual. (Nearly all observed school tours go to the 
usual school location. Therefore, there is no school tour destination choice model.)  

Since there are no modeled usual locations for activities other than work and 
school, the destination choice model of all remaining purposes is simply a multinomial 
logit model. 

Two important variables in all of these models are the disaggregate mode choice 
logsum and network distance. The logsum represents the expected maximum utility 
from the tour mode choice, and captures the effect of transportation system level of 
service on the location choice. Distance effects, independent of the level of service, 
are also present to varying degrees depending on the type of tour being modeled. In 
nearly all cases, sensitivity to distance declines as distance increases; in some cases 
this is captured through a logarithmic form of distance. In other cases, where there is 
plenty of data to support a larger number of estimated parameters, a piecewise linear 
form is used to more accurately capture this nonlinear effect. 

In most cases the models include an aggregate mode-destination logsum variable 
at the destination. A positive effect is interpreted as the location’s attractiveness for 
making subtours and intermediate stops on tours to this location. A mix of parking and 
employment, at both the zone and parcel level, as well as street connectivity in the 
neighborhood, attract workers and tours for non-work purposes. Also, parcel-based 
size variables and TAZ-level density variables affect location choice. 

 
3.4.2 Locations of Intermediate Stops  
 
For intermediate stop locations, the main mode used for the tour is already known, and 
so are the stop location immediately toward the tour destination (stop origin), and the 
tour origin. So the choice of location involves comparing, among competing locations, 
(a) the impedance of making a detour to get there, given the tour mode, and (b) the 
location’s attractiveness for the given activity purpose. The model is a multinomial 
logit (MNL).  
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Trip characteristics used in the model include stop purpose, tour purpose, tour 
mode, tour structure, stop placement in tour, person type, and household 
characteristics. The most important characteristics are the tour mode and the stop 
purpose. The tour mode restricts the modes available for the stop, and this affects the 
availability and impedance of stop locations. The availability and attractiveness of 
stop locations depend heavily on the stop purpose. Tour characteristics also affect 
willingness to travel for the stop, and the tendency to stop near the stop or tour origin. 
These trip and tour characteristics tend to overshadow the effect of personal and 
household characteristics in this model.  

The main impedance variable is generalized time, as well as its quadratic and 
cubic forms, to allow for nonlinear effects. It combines all travel cost and time 
components according to assumptions about their relative values. Generalized time is 
used, instead of various separately estimated time and cost coefficients, because the 
intermediate stop data is not robust enough to support good estimates of the relative 
values. Generalized time is measured as the (generalized) time required to travel from 
stop origin to stop location and on to tour origin, minus the time required to travel 
directly from stop origin to tour origin. It is further modified by discounting it 
according to the distance between the stop origin and the tour origin. The discounting 
is based on the hypothesis that people are more willing to make longer detours for 
intermediate stops on long tours than they are on short tours.  

Additional impedance variables used in the model include travel time as a 
fraction of the available time window, which captures the tendency to choose nearby 
activity locations if there are tight time constraints on the stop, and proximity variables 
(inverse distance), which capture the tendency to stop near either the stop origin or the 
tour origin. 

 
3.5 Mode Choice Models 
 
3.5.1 Tour Main Mode 

 
The tour mode choice model determines the main mode for each tour (a small 
percentage of tours are multi-modal), There are eight modes, although some of them 
are only available for specific purposes. They are listed below along with the 
availability rules, in the same priority order as used to determine the main mode of a 
multi-mode tour: 
 

1. Drive to Transit: Available only in the Home-based Work model, for tours 
with a valid drive to transit path in both the outbound and return observed tour  

2. Walk to Transit: Available in all models except for Home-based Escort, for 
tours with a valid walk to transit path in both the outbound and return 
observed tour periods. 

3. School Bus: Available only in the Home-based School model, for all tours. 
4. Shared Ride 3+: Available in all models, for all tours. 
5. Shared Ride 2: Available in all models, for all tours. 
6. Drive Alone: Available in all models except for Home-based Escort, for tours 

made by persons age 16+ in car-owning households. 
7. Bike: Available in all models except for Home-based Escort, for all tours with 

round trip road distance of 30 miles or less. 
8. Walk: Available in all models, for all tours with round trip road distance of 10 

miles or less. 
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Transit has less than 1 percent mode share and Bicycle has less than 2 percent mode 
share for all purposes except Work and School. In order to get enough transit and 
bicycle tours to provide reasonable estimates, the home-based non-mandatory 
purposes of shopping, personal business, meal and social/recreation were grouped in a 
single model, but using purpose-specific dummy variables to allow for different mode 
shares for different purposes.  

In general, it was possible to obtain significant coefficients for out-of-vehicle 
times, but not for travel costs or in-vehicle times. This is a typical result for RP data 
sets, particularly when there are few transit observations. As a result, many of the 
coefficients for cost and in-vehicle time were constrained at values that met the 
following criteria: (1) the in-vehicle time coefficients meet the United States Federal 
Transit Administration (FTA) guidelines, (2) the imputed values of time are 
reasonable and meet FTA guidelines, and (3) the values were kept as close as possible 
to what the initial estimation indicated. The resulting values of time and out-of-
vehicle/in-vehicle time ratios are shown in Table 3. The number of transfers was not 
found to be significant in any of the models, however transfer wait time is included in 
the out-of-vehicle time coefficients. Also, the higher the percentage of time in a Drive 
to Transit path that is spent in the car rather than on transit, the lower the probability 
of choosing it. This is a result often found in other cities as well, which serves to 
discourage park-and-ride choices that include long drives followed by short transit 
rides. 

Two land use variables came out as significant in many of the models, increasing 
the probability of walk, bike and transit: 

 
Mixed use density: This is defined as the geometric average of retail and service 
employment (RS) and households (HH) within a half mile of the origin or destination 
parcel (= RS × HH / (RS + HH)). This value is highest when jobs and households are 
both high and balanced. High values near the tour origin tend to encourage walking 
and biking, while high values near the tour destination more often encourage transit 
use.  
 
Intersection density: This is defined as the number of 4-way intersections plus one half 
the number of 3-way intersections minus the number of 1-way “intersections” (dead 
ends and cul de sacs) within a half mile of the origin or destination parcel. Higher 
values tend to encourage walking for School and Escort tours, where safety for 
children is an issue, and also to encourage walking, biking and transit for Home-Based 
Other tours. 
 
A number of different nesting structures were tested. In the nesting structure that was 
selected there are three combined nests: 

 
(1) Drive to Transit with Walk to Transit 
(2) Shared Ride 2 with Shared Ride 3+ 
(3) Bike with Walk 
 

These all gave logsum coefficients less than 1.0 but not significantly different from 
each other, so a single estimated nesting parameter applies to all 3 nests (as well as to 
the 2 additional “nests” that only have one alternative each: Drive Alone, and School 
Bus). The estimated logsum parameters are 0.51 for Work, 0.86 for School, and 0.73 
for Other. For Work-Based tours, it was not possible to obtain a stable estimate, so a 
constrained value of 0.75 (similar to HBOther) was used. No nesting was used for the  
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Table 3: Tour Mode Choice Level of Service Coefficient Summary 

Model Value of time 
($/hr) 

Ratio  
Walk to In-Vehicle 

Ratio  
Wait to In-Vehicle 

Home-Based Work $11.20 2.95 2.50 
Home-Based School $6.00 2.20 2.20 
Home-Based Escort $7.50 3.00 N/A 
Home-Based Other $7.50 2.72 2.72 
Work-Based $7.50 2.84 2.84 
 
Escort model, as it contains only 3 alternatives and is a very simple model. 
 
3.5.2 Trip Mode 
 
The trip-level mode is conditional on the predicted tour mode, but now uses a specific 
OD pair and a time anchor, and also the trip mode for the adjacent, previously 
modeled trip in the chain. The majority of tours use a single mode for all trips, so this 
model only explains the small percentage of trips that are made by modes other than 
the main mode. The most common occurrence of this is a Drive Alone trip that is 
made as part of a Shared Ride tour after the passenger has been picked up or dropped 
off. These cases are most common on Escort tours, where predicting the trip(s) that is 
Drive Alone is mainly a function of the half tour (away from home or towards home) 
and the time of day. 

 
3.6 Auto Availability Model 
 
This model is applied at the household level, and determines the number of vehicles 
available to the household drivers. It is structured as a multinomial logit (MNL) with 
five available alternatives: 0, 1, 2, 3, and 4+. Key variables are the numbers of 
working adults, non-working adults, students of driving age, children below driving 
age and income. Statistically significant policy variables affecting car ownership 
include mode choice logsums measuring accessibility to the workers’ and students’ 
usual work and school locations, a mode-destination choice logsum measuring 
accessibility from home to non-work activities, distance from home to the nearest 
transit stop, parking prices in the home neighborhood, and commercial employment in 
the home neighborhood. Although the policy variables are significant, the model’s 
auto ownership elasticity with respect to changes in these variables is less than 0.1 in 
nearly all cases and often much lower, the lone exception being very low income 
households. 
 
3.7 Time of Day/Activity Scheduling Models 

 
DaySim employs a method of modeling time of day developed by Vovsha and 
Bradley (2004). The time of day models explicitly model the 30 minute time periods 
of arrival and departure at all activity locations, and hence for all trips between those 
locations. It thereby also provides an approximate duration of the activity at each 
activity location. The model uses 48 half-hour periods in the day—3:00-3:29 AM, 
3:30-3:59 AM,…, 2:30 AM-2:59 AM. Given the way that the activity diary data was 
collected, no tour begins before 3:00 AM or ends after 2:59 AM. DaySim includes two 
types of time-of-day models: 
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3.7.1 Tour Primary Destination Arrival and Departure Time 
 
For each home-based or work-based tour, the model predicts the time that the person 
arrives at the tour primary destination, and the time that the person leaves that 
destination to begin the return half-tour. The tour model includes as alternatives every 
possible combination of the 48 alternatives, or 48×49 / 2 = 1,716 possible alternatives. 
The model is applied after the tour primary destination and main mode have already 
been predicted. Since entire tours, including stop outcomes, are modeled one at a time, 
first for work and school tours and then for other tours, the periods away from home 
for each tour become unavailable for subsequently modeled tours. 

 
3.7.2 Intermediate Stop Arrival or Departure Time 
 
For each intermediate stop made on any tour, this model predicts either the time that 
the person arrives at the stop location (on the first half tour), or else the time that the 
person departs from the stop location (on the second half tour). On the second (return) 
half tour, we know the time that the person departs from the tour primary destination, 
and, because the model is applied after the stop location and trip mode have been 
predicted, we also know the travel time from the primary destination to the first 
intermediate stop. As a result, we know the arrival time at the first intermediate stop, 
so the model only needs to predict the departure time from among a maximum of 48 
alternatives (the same 30 minute periods that are used in the tour models). This 
procedure is repeated for each intermediate stop on the half tour. On the first 
(outbound) half tour, the stops are simulated in reverse order from the primary 
destination back to the tour origin, so we know the departure time from each stop and 
only need to predict the arrival time. As stops within a tour are modeled, the periods 
occupied by each modeled stop become unavailable for subsequently modeled stops 
and tours. 

A key concept in the time of day models is the “time window”. A time window is 
a set of contiguous time periods that are available for scheduling tours and stops. 
When a tour or stop is scheduled, the portion of the window that it does not fill is left 
as two separate and smaller time windows. The time periods at either end of a 
scheduled sequence of activities on a tour are only partially filled, but the time periods 
in between are completely filled. It is possible to arrive at a tour or stop destination in 
a given time period if another tour ended in that period, and possible to leave a tour or 
stop destination if another tour began in that period, but it is not possible to arrive or 
depart in a time period that is already completely filled. 

Another key aspect is the use of shift variables. These are dummy variables 
interacted with the arrival time and the duration of the alternative. If the arrival shift 
coefficient is negative, it means that activities tend to be made earlier (because the 
shift coefficient causes later arrival time alternatives to have lower utility), and if it is 
positive, it means that activities tend to be made later. If the duration shift coefficient 
is negative, it means that activities tend to be shorter (because the shift coefficient 
causes longer duration time alternatives to have lower utility), and if it is positive, 
activities tend to be longer. No departure shift coefficient is estimated because the 
departure shift is simply the sum of the arrival shift and the duration shift (e.g. if the 
arrival shift is an hour earlier and the duration shift is an hour longer, the departure 
shift is 0). In the models, shift variables interact extensively with other characteristics 
of the person, day activity pattern and tour, as well as time-dependent attributes of the 
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network, such as travel times and measures of congestion, to effectively represent their 
influence on time-of-day choice. 

The time of day models also use a variety of variables to represent scheduling 
pressure, conditional on what other activities have already been scheduled or remain 
to be scheduled for the day. The overall scheduling pressure is given by the number of 
tours remaining to be scheduled divided by the total empty window that would remain 
if an alternative is chosen. The negative effect indicates that people are less likely to 
choose schedule alternatives that would leave them with much to schedule and little 
time to schedule it in. A similar variable is the number of tours remaining divided by 
the maximum consecutive time window. This is also negative, meaning that people 
with more tours to schedule will tend to try to leave a large consecutive block of time 
rather than two or more smaller blocks.  

Relative travel times across the day also influence time of day choice. The travel 
time for each period is based on the network travel times for the 4 periods of the day – 
AM peak, midday, PM peak, and off-peak. The variable is applied for both the 
outbound half tour (tour origin to tour destination) and the return half (tour destination 
to tour origin). For auto tours, the time is just the in-vehicle time, while transit time is 
in-vehicle time plus first wait time, transfer time, and drive access time. Walk 
access/egress time is not included, as that does not vary by time period. These 
variables are not applied for walk, bike or school bus tours. Significant travel time 
effects were found for Work and Other tours and for Intermediate Stops, but not for 
School or Work-based Tours.  

Auto congestion may also cause time shifts within the AM peak and PM periods. 
For this purpose, the variable used was the extra time spent on links where the 
congested time is over 20 percent higher than the free flow time. This extra congested 
time was converted to shift variables by multiplying by the time difference between 
the period and the “peak of the peak”: 

 
1. AM shift earlier: If the period is 6 AM to 8 AM, multiply by (8 AM – time) 
2. AM shift later: If the period is 8 AM to 10 AM, multiply by (time – 8 AM) 
3. PM shift earlier: If the period is 3 PM to 5 PM, multiply by (5 PM – time) 
4. PM shift later: If the period is 5 PM to 7 PM, multiply by (time – 5 PM) 
 

With this formulation, the more positive the coefficient and the larger the congested 
time, the more that the peak demand is spread away from the peak of the peak. 

For Work tours, in both the AM and PM, the estimation results show a tendency 
to move the work activity earlier as the time in very congested conditions increases. 
For School tours and Work-based subtours, no significant congestion effects were 
estimated. For Other tours, times in the PM peak were found to shift both earlier and 
later with high congestion.  

 
4 SACSIM System Equilibration  

 
In the overall system design of SACSIM, Figure 1 shows a cyclical relationship 
between network performance and trips: DaySim and the auxiliary trip models use 
network performance measures to model person-trips, which are then loaded to the 
network, determining congestion and network performance for the next iteration. The 
model system is in equilibrium when the network performance used as input to 
DaySim and the other trip models matches the network performance resulting from 
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assignment of the resulting trips. Network performance for this purpose is times, 
distances, and costs measured zone-to-zone along the paths of least generalized cost.  

Trip-based model systems with this same requirement have existed for at least 
thirty years (Evans 1976), and the theory of system equilibrium for them is well 
developed now. Almost all convergent trip-based models, at some stage in an iteration 
process, use the method of convex combinations. This is to update the current best 
solution of flows (zone-to-zone matrices and/or link volumes) with a weighted 
average of the previous best solution of those flows and an alternative set of flows 
calculated by the new iteration. 

With the unit of analysis in DaySim being households instead of origin-
destination pairs, we have options that are not normally available to trip-based models. 
DaySim need not simulate the entire synthetic population in an iteration; it is able to 
run a selected sample of the population. Since its runtimes are long but proportional to 
the number of households modeled, early system-iterations can be sped up by 
simulating small samples.  

The SACSIM equilibration procedure employs equilibrium assignment iteration 
loops (a-iterations) nested within iterations between the demand and assignment 
models (da-iterations). This is similar to the nested iteration in many trip-based model 
systems. Assignment is run for four time periods, and each one employs multi-class 
equilibrium assignment, with classes composed of SOV, HOVs not using median 
HOV lanes, and HOVs using them. In the i-th da-iteration, DaySim is run on a subset 
of the synthetic population, consisting of the fraction 1/si (i.e. 100/si percent) of the 
households, starting with the mi-th household and proceeding uniformly every si 
households. The user determines si and mi. DaySim scales up the synthesized trips by 
the factor si before they are combined with the estimated external, airport and 
commercial trips in mode-specific OD matrices for the four assignment time periods. 
During the n-th a-iteration within the i-th da-iteration, link volumes are estimated for 
the iteration i OD matrices, and combined in a convex combination with link volumes 
from the prior da-iteration, using a user-specified combination factor (or step-size) . 
This is the pre-loading method intended to prevent link volume oscillation between 
da-iterations. The resulting estimated volumes are then combined with link volumes 
from the prior a-iteration using the TP+-determined step size . This is intended to 
prevent link volume oscillation between a-iterations. 

iλ

α

As implemented, the equilibration procedure runs for a user-determined number 
(I) of da-iterations. Within each iteration, the user controls the synthetic population 
subset used by DaySim (via si and mi), the weight ( ) given during assignment to the 
link volumes associated with this iteration’s simulated trips, and the assignment 
closure criteria (Ni and gi). Bowman et al. (2006) report the results of testing various 
combinations of these parameters.  

iλ

Eventually, certain applications of the activity model may need the equilibrium 
process to achieve higher precision in zone-to-zone times than the prototypical 
applications provide. Since the degree of precision is problem-specific (depends on the 
population and on congestion levels), empirical study should be pursued as needed on 
where to best find improvement, in either: (a) more system iterations with smaller step 
sizes and/or smaller first sample, (b) more simulation passes per household, (c) a 
smaller tolerance of the assignment’s relative gap closure criterion, especially in later 
system iterations, or (d) some combination of these. A separate requirement 
anticipated for some applications of SACSIM is to reduce the randomness of trip 
forecasts beyond what is inevitable from the Monte Carlo process at full sampling. 
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These applications require supersampling, which is running two or more simulations 
of the whole population after equilibrium is adequately achieved, and averaging their 
results.  

 
5 SACSIM Calibration and Validation  

 
SACSIM calibration and validation work has proceeded in three steps: preliminary 
validation, base year calibration, and prediction validation. Preliminary validation 
involved comparing model estimation and software application results to the 
household survey sample. It occurred primarily during DaySim model estimation and 
software development. After each model was estimated, it was applied to the survey 
data. Aggregate results for various subpopulations were checked, as were model 
sensitivities, to detect deficiencies in the model specifications, so they could be 
corrected. After each model was implemented in the application software, it was again 
compared to the survey sample to find software bugs. 

A base year validation run consisted of running a base year 2000 scenario of the 
entire model system to an equilibrated state, and comparing aggregate results to the 
best available external information about the actual base year characteristics on a 
typical weekday. This information comes from census data, transit on-board surveys, 
and screenline and other counts. Calibration then involved iteratively adjusting 
parameters and repeating validation runs until the base year prediction adequately 
matches the external information. Although all model calibration adjustments have a 
simultaneous impact on the model predictions, it is natural to calibrate sequentially 
from the top to the bottom of the DaySim model hierarchy, because adjustments to 
upper level models will tend to impact lower level model predictions more than vice 
versa. Bowman and Bradley (2006) provide some further details on the initial 
calibration tests.  

Overall model validation was performed by comparing key model outputs to 
observed travel patterns for Years 2000 and 2005. Long term models (usual place of 
work and auto ownership) were validated against the 2000 Census. Short term models 
(day pattern, tour and trip frequency, tour and trip distribution and timing) were 
validated against the 2000 household travel survey.  Aggregate assignment outputs for 
both transit and highway were validated against traffic counts (daily volumes, and 
direction volumes by four time periods) and transit volumes (daily passenger volumes 
by line, and daily station boardings for rail stations). The SACSIM07 Model Reference 
Report (SACOG 2008a) provides details of the model calibration and validation 
results. 

 
6 Sensitivity Testing and Evaluation  

 
Two sorts of sensitivity evaluations were performed on SACSIM: cross sectional 
evaluations of travel sensitivity to land use variables, and “experimental” travel 
sensitivity to key exogenous variables. Cross-sectional evaluations of land use 
sensitivity focused on correlation of travel to so-called “4D’s” variables such as 
density, mix of use, street pattern, and transit proximity. Comparisons of SACSIM 
sensitivity to these land use variables to observed sensitivity in the 2000 household 
travel survey were made for each variable. Because SACSIM input and output files 
are parcel-point geography, characteristics of land use at place of residence or place of 
work can be described in much greater detail, and matched to similar characteristics 
observed in the travel survey in a way that is not possible if the model aggregates land 
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uses to traffic analysis zones. Figures 3 and 4 show how land use density (jobs plus 
dwelling units) within a quarter mile buffer around the residence parcel is related to 
daily VMT per household and non-auto mode share. The difference in behavior found 
in the survey households related to this density variable is quite dramatic, and the 
SACSIM predictions match the observed trends quite well. This ability to capture 
detailed neighborhood density effects is a result of the fact that the models use parcel-
level detail, and that they use a variety of urban design variables.  

Travel sensitivities to transit fares, auto fuel cost, highway capacity, and 
household income were tested experimentally, by synthetically increasing or 
decreasing the test variable, and correlating changes in model outputs to the test 
variables. A summary of sensitivity test results is given in Table 4. For these tests, 
reasonability of the travel model sensitivity was judged by comparison to sensitivities 
observed in other research. For example, the transit fare elasticity is roughly -0.23, 
which is in the typical range. The cross-elasticities for the other modes and for total 
trips are quite low, due to the fact that the transit mode share is very low to begin with, 
so mode shifts from transit have little relative effect on the other modes.  

The auto fuel cost elasticity on VMT is roughly -0.13. This is somewhat lower 
than the typical long term fuel price elasticity estimated from time series data (-0.2 to  
-0.3), and there is clearly a question as to how accurately cross-sectional data from a 
period of stable fuel prices can capture behavioral responses to fuel price. Also, the 
tests below were done for the 2005 situation, when there are few non-auto alternatives 
in several parts of the region. In additional scenarios run for 2035, with more compact 
land uses and increased transit service, the fuel price elasticity for the forecasts 
appears somewhat higher, around -0.018. 

The estimated elasticity of VMT with regard to highway capacity (+0.144) also 
appears somewhat low, as time series analysis has revealed values in the range of +0.3 
to +0.6. Note, however, that this sensitivity test was done not by adding new highway 
links, but simply by increasing the capacity on all existing road network links, 
regardless of the level of congestion. In real situations, roads tend to added and 
widened only where congestion levels are highest, so it is reasonable that the effect on 
demand would be higher. Further sensitivity tests could be done to more closely 
mimic real-world highway capacity improvements.  

 
7 SACSIM Model Application  

 
SACSIM was used to prepare forecasts and analysis of the most recent long range 
regional transportation plan, adopted in March 2007, for which SACSIM was used to 
forecast to Year 2035 (SACOG, 2008b). A unique aspect of the analysis prepared for 
the plan was a division of key travel metrics into “household-generated” travel, 
commercial vehicle travel and external travel. Because SACSIM accounts for all 
travel generated from households, including trips that in four-step models are lumped 
into “non-home-based” trips, a complete accounting of household-generated travel can 
be made. This analysis capability is extremely useful for transportation planning, 
because travel decisions away from the home are affected by characteristics of land 
uses at place of residence, as well as by travel choices made in earlier trips during the 
day. 
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Figure 3  SACSIM applications results validated against survey data 
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Figure 4  SACSIM applications results validated against survey data (2) 
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Table 4. Summary Results from Model Sensitivity Tests 
 

Test variable Transit  
fare 

Auto fuel  
cost 

Highway 
capacity 

Household 
income 

Response variable: Elasticity Elasticity Elasticity Elasticity 
Total person trips -0.001 -0.010 +0.012 +0.119 
Vehicle trips +0.004 -0.036 +0.021 +0.151 
Vehicle miles traveled +0.006 -0.126 +0.144 +0.090 
Transit trips -0.226 0.151 -0.035 -0.415 
Walk and bike trips +0.005 0.067 -0.055 -0.091 

 
SACSIM has also been used to prepare land use and transportation analysis for several 
transportation or development projects. In one notable example, SACSIM was used to 
compare the transportation consequences of a land use decision for a major 
development project in the SACOG region (SACOG 2007). A local agency was 
considering adopting a specific plan alternative that included 14,000 dwellings, over 
an alternative that included 21,000 dwellings. The higher development level provided 
more transit and non-motorized travel opportunities, and also allowed for improving 
the overall land use mix in the sub-regional area. Using SACSIM, SACOG was able to 
evaluate the effects of this decision by fully accounting for the travel of residents of 
the 7,000 dwellings in the most likely areas that would receive the development 
instead, if the lower density alternative were adopted. Importantly, this analysis kept 
the demographics of the “displaced” households constant. The analysis showed that 
the lower density land use decision would increase overall vehicle miles traveled in 
the region by 150,000 per day. Additionally, SACSIM allowed the overall effects to 
be split into the effects within the specific plan area, versus the effects elsewhere in 
the region due to relocating 7,000 dwellings that would otherwise be included in the 
plan.  

 
7.1 Application Issues 

 
The most time-consuming application issue has been the development of forecast year 
parcel/point datasets required by SACSIM.  As this has been the first model system of 
its kind to work at the parcel level, SACOG and the model developers needed to 
devise procedures for developing forecast year spatial data, with no examples from 
models developed elsewhere. We trust that our experiences from this project will 
prove useful to others who will be developing parcel-based travel demand models in 
the future. 

Development of the model was based on parcel/point data from Year 2000 
surveys and inventories of population, employment and land use. Application of the 
model was based on synthesized datasets for the model base year (2005) and for all 
forecast years for the MTP. The SACSIM07 Model Reference Report (SACOG 2008a) 
provides a detailed discussion on the preparation of the model input data.  

The primary parcel/point data source was SACOG’s parcel-based land use 
database, called Place3s. Place3s is a GIS-based land use scenario generator (Allen et 
al. 1996). Scenarios are built at parcel level, with land uses characterized by “place 
type”, which includes assumptions about the type, density, and mix of uses. SACOG 
uses a palette of about 50 place types. Total development levels are controlled by 
aggregate county-level econometric forecasts adopted by the SACOG Board for use in 
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the development of the MTP. Place3s was used to estimate dwelling units and 
employment (9 sectors) at parcel level. 

Even with the basic demographic variables forecasted at parcel level, other 
datasets that are very important for predicting travel behavior do not come naturally 
from Place3s, and were prepared separately. These variables include: small-area 
demographics needed to control the development of synthetic populations; K12 
schools, colleges and universities; some sectors of employment (e.g. medical 
employment not associated with hospitals and large medical centers); paid off-street 
parking facilities; transit stops; and street-pattern variables. 

Demographics to control the development of synthetic populations were built up 
from the Place3s parcel-level estimates for dwelling units. The control variables for 
the population synthesis are household size (1,2,3,and 4+ persons); workers per 
household (0,1,2, and 3+ workers); income level (5); and age of head-of-household 
(over/under 55 years). Demographic profiles based on control variables for three 
dwelling unit structure types (single family, multi-family 2-4 units, and multi-family 
5+ units) were drawn from Year 2000 Census tabulations for regional analysis 
districts within the region. The profiles are applied to the Place3s estimates of 
dwellings by type at traffic analysis zone level. The resulting files are used directly by 
SACOG’s 4-step travel model (SACMET), and are used as control files for the 
SACSIM population synthesis. 

School locations and types are built up at point-level from a Year 2005 inventory 
of schools to future years by adding future schools. For K12 schools, future school 
needs are calculated at TAZ-level by tallying growth in school-age children in the 
synthetic populations. For example, the Year 2035 land use forecasts require about 
300 new K12 schools. Where possible, future school sites are identified in local 
agency general plans and school district plans. In practice, only a minority of future 
K12 sites are explicitly identified in planning documents, and the majority of future 
K12 sites are manually identified based on the location of residential growth and 
judgment. Future colleges and universities are based on known plans for these 
facilities. 

Place3s estimates medical employment associated with hospitals and large 
medical centers. All other medical employment associated with smaller clinics, private 
offices, and other medical-related uses are included within estimates of office and 
service employment sectors. Other medical employment is split out from these more 
aggregate categories based on proximity of parcel to the hospitals and large medical 
centers. For parcels very near hospitals/medical centers, a higher percentage of the 
total office/service employment is medical; as distance increases, the percentage 
decreases. Rates for this post-processing were based on Year 2005 employment 
inventories. 

Paid off-street parking facilities are built up at point-level from a Year 2005 
inventory in a manner similar to the build-up of K12 schools. The growth in paid off-
street parking spaces is calculated at TAZ level, based on the growth in employment 
by density range. In general, paid off-street parking is directly related to density of 
development: as the density of development on a parcel increases, the likelihood of 
paid off street parking, and prices charged, increases. The “yields” of paid off-street 
parking are calculated at TAZ-level based on the amount of growth in several density 
ranges, with facility locations identified based on judgment within each TAZ. The 
yield rates were computed from a Year 2005 inventory of parking facilities, and Year 
2005 Place3s development density estimates. Paid parking is also related to special 
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uses, like colleges/universities and hospitals, and facilities are added at future 
locations of these uses. 

Proximity to transit is measured as orthogonal distance from parcel to the nearest 
transit station or stop in SACSIM. Transit stops are also built up at point level from a 
Year 2005 inventory of transit stops.  New future transit stop points are based on a 
comparison of forecast year and Year 2005 transit networks from the travel demand 
model. Where new transit lines are added, new stops are added to the inventory. In 
areas with little or no change in transit service, the Year 2005 stop inventory is used. 
For rail and express bus facilities, stations and stops as coded in the travel demand 
model are used directly. For fixed route bus services, the travel demand model stops 
under-predict actual stops. This is because zone-based travel models do not include 
sufficient detail to capture the stop-spacing for local bus routes, especially in urban 
areas. In these areas, stops points are synthesized along the bus routes and added to the 
Year 2005 inventory points. 

Street pattern variables are used in several location and mode choice models in 
SACSIM, and are strongly related to non-motorized mode choice. The key street 
pattern variables are the buffered densities or numbers of intersections of three types: 
1-leg intersections (e.g. cul-de-sacs); 3-leg intersections (e.g. a “T”); and 4+-leg 
intersections (e.g. a four-way intersection). Higher levels of 1-leg intersections are 
associated with lower likelihood of trip linking and non-motorized modes of travel; 
higher levels of 3- and 4+- leg intersections are associated with higher likelihood of 
trip linking and non-motorized travel modes. While future densities and mixes of use 
in growth areas are captured in the Place3s land use scenarios, future street pattern is 
not. Street patterns profiles for growth areas are “borrowed” from Year 2005 observed 
street patterns by place type and density level.  

Each one of these data issues required significant time and effort to address. 
However, with the exception of transit stops, the data are prepared only once for each 
land use data run, and the process is becoming more routinized and efficient. Virtually 
all of these issues need to be addressed for zone-based models, but the aggregate 
nature of the zones allows for the data to be developed with less rigor and hand-
wringing. The discipline of developing the datasets at parcel/point level simply 
requires that all the assumptions be laid out explicitly. 

 
8 Peer Review Assessment and Recommendations 

 
The SACSIM model system was the subject of a two-day peer review session, 
sponsored by the FHWA Travel Model Improvement Program (TMIP) in November 
2008 (SACOG 2008c). All members of the peer review panel had experience with 
implementing activity-based models—four from the MPO perspective, and one from 
the model developer perspective. 

In general, the review panelists were very positive about the SACSIM model 
system. The aspects of the activity-based model component (DaySim) that the review 
panel commended most highly were:  

 
• The parcel-based approach 
• The tour-based approach (day-tour- trip hierarchy, time of day scheduling) 
• Treatment of university students throughout the model (UC-Davis and 

Sacramento State Univ.), including a separate population synthesis for on-
campus housing. 

• The rigorous sensitivity testing performed 
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A variety of possible enhancements to the model system were also discussed. The 
specific improvements that the panel deemed highest priority were: 
 

• Related to road pricing: 
o Update the value-of-time coefficients, and improve the treatment of 

price (for example, a toll versus non-toll nest as part of mode choice) 
o Move to distributed values-of-time (a separate VOT for each 

person/tour, drawn from distribution) 
• Related to destination choice: 

o Change the specification of destination choice models to rely less on 
distance, and more on mode choice logsums and other mode level of 
service measures 

• Related to mode choice: 
o Move toward adding additional pedestrian and bicycle supply 

variables to the model (examples are sidewalk and bicycle lane 
coverage as a percentage of street distance within walking/biking 
distance around each parcel) 

 
The last improvement mentioned above illustrates the type of additional detail that a 
parcel-level model can accommodate in order to allow analysis of urban design and 
non-motorized travel. It is likely that such urban infrastructure data will be readily 
available in digital form for most MPO’s in the near future. 

 
9 Conclusions 
 
This article provides a detailed overview of the first parcel-based, activity-based travel 
demand model system to be used in urban forecasting, to the authors’ knowledge. The 
model system was used to provide the forecasts for the latest Regional Transportation 
Plan (RTP) for the Sacramento region, and a Federal peer review of the model system 
was carried out. We can conclude that it is possible to create and apply a regional 
demand model system using parcel-level geography and half-hour time of day periods. 
Experiences thus far have pointed to major benefits of using detailed land use 
variables and urban design variables, but also to new challenges in providing parcel-
level land use inputs for future years. Further research is under way to integrate 
parcel-level travel demand microsimulation models with land use models such as 
PECAS (in the Sacramento region) and UrbanSim (in the Seattle region). In addition, 
Federal research projects are now underway to integrate the SACSIM model with 
dynamic traffic simulation models such as TRANSIMS and DYNUS-T, which can 
fully take advantage of the finer spatial and temporal detail in the travel demand 
forecasts, and can in turn provide DaySim with more accurate predictions of highway 
travel times and congestion. 
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