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Abstract 
 

The current paper focuses on analyzing and modeling the physical activity 

participation levels (in terms of the number of daily “bouts” or “episodes” of 

physical activity during a weekend day) of all members of a family jointly. 

Essentially, we consider a family as a “cluster” of individuals whose physical 

activity propensities may be affected by common household attributes (such as 

household income and household structure) as well as unobserved family-related 

factors (such as family life-style and health consciousness, and residential 

location-related factors). The proposed copula-based clustered ordered-response 

model structure allows the testing of various dependency forms among the 

physical activity propensities of individuals of the same household (generated due 

to the unobserved family-related factors), including non-linear and asymmetric 

dependency forms. The proposed model system is applied to study physical 

activity participations of individuals, using data drawn from the 2000 San 

Francisco Bay Area Household Travel Survey (BATS). A number of individual 

factors, physical environment factors, and social environment factors are 

considered in the empirical analysis. The results indicate that reduced vehicle 

ownership and increased bicycle ownership are important positive determinants of
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weekend physical activity participation levels, though these results should be 

tempered by the possibility that individuals who are predisposed to physical 

activity may choose to own fewer motorized vehicles and more bicycles in the first 

place. Our results also suggest that policy interventions aimed at increasing 

children‟s physical activity levels could potentially benefit from targeting entire 

family units rather than targeting only children. Finally, the results indicate strong 

and asymmetric dependence among the unobserved physical activity determinants 

of family members. In particular, the results show that unobserved factors (such as 

residence location-related constraints and family lifestyle preferences) result in 

individuals in a family having uniformly low physical activity, but there is less 

clustering of this kind at the high end of the physical activity propensity spectrum.  

 
Keywords: Copulas, physical activity, family and public health, social dependency, 

data clustering, activity-based travel analysis 

 

1 Introduction 
 

The potentially serious adverse mental and physical health consequences of obesity 

have been well documented in epidemiological studies (see, for instance, Nelson and 

Gordon-Larsen 2006; Ornelas et al. 2007). While there are several factors influencing 

obesity, it has now been established that a low level of physical activity is certainly an 

important contributing factor (see, Haskell et al. 2007; Steinbeck 2008). Besides, 

earlier studies in the literature strongly emphasize the importance of physical activity 

even in non-obese and non-overweight individuals from the standpoint of increasing 

cardiovascular fitness, improved mental health, and decreasing heart disease, diabetes, 

high blood pressure, and several forms of cancer (USDHHS 2008; Center for Disease 

Control (CDC) 2006). But, despite these well acknowledged benefits of physical 

activity, a high fraction of individuals in the U.S. and other developed countries lead 

relatively sedentary (or physically inactive) lifestyles. For instance, the 2007 

Behavioral Risk Factor Surveillance System (BRFSS) survey suggests that about a 

third of U.S. adults are physically inactive, while the 2007 Youth Risk Behavior 

Surveillance survey indicates that about 65.3 percent of high school students do not 

meet the current physical activity guidelines.
1
  

The low level of physical activity participation in the U.S. population has 

prompted several research studies in the past decade to examine the determinants of 

physical activity participation, with the objective of designing appropriate intervention 

strategies to promote active lifestyles. However, as we discuss later, most of these 

studies focus on adult physical activity participation or children‟s/adolescents‟ 

physical activity participation, without explicitly considering family-level interactions 

due to observed and unobserved factors in the physical activity participation levels of 

all individuals (adults and children/adolescents) of the same family. In this regard, the 

current paper focuses on analyzing and modeling the physical activity participation 

levels (in terms of the discrete choice of the number of daily “bouts” or “episodes” of 

physical activity) of all members of a family jointly. Essentially, we consider a family 

as a “cluster” of individuals whose physical activity levels may be affected by 

                                                 
1
 The current guidelines call for at least 150 minutes a week of moderate-level physical activity 

(such as jogging, running, mountain climbing, and bicycling uphill) or 75 minutes a week of 

vigorous-level physical activity (such as brisk walking, bicycling, and water aerobics) for 

adults. In addition, children and adolescents should participate in at least 60 minutes of 

physical activity every day, and this activity should be at a vigorous level at least 3 days a 

week (USDHHS 2008). 
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common household attributes (such as household income and household structure) as 

well as unobserved family-related factors (such as residential location-related 

constraints/facilitators of physical activity and/or family life-style and health 

consciousness factors). Ignoring such family-specific interactions due to unobserved 

factors (also referred to as unobserved heterogeneity in the econometric literature) 

will, in general, result in inconsistent estimates regarding the influence of covariates 

and inconsistent probability predictions in discrete choice models (see Chamberlain 

1980; Hsiao 1986). This, in turn, can lead to misinformed intervention strategies to 

encourage physical activity.  

The joint generation of physical activity episodes at the household level is also 

important from an activity-based travel modeling perspective. As discussed by 

Copperman and Bhat (2007a), much of the focus on activity generation (and 

scheduling) and inter-individual interactions in the activity analysis field has been on 

adult patterns. In contrast, few studies have explicitly considered the activity patterns 

of children, and the interactions of children‟s patterns with those of adults‟ patterns, 

when children are present in the household. If the activity participation of children 

with adults is primarily driven by the activity participation needs/responsibilities of 

adults (such as a parent wanting to go to the gym, and tagging along her/his child for 

the trip), then the emphasis on adults‟ activity-travel patterns would be appropriate. 

However, in many instances, it is the children‟s activity participations, and the 

dependency of children on adults for facilitating the participations that lead to 

interactions between adults‟ and children‟s activity-travel patterns. Of course, in 

addition, children can also impact adults‟ activity-travel patterns in the form of joint 

activity participation in such activities as shopping, going to the park, walking 

together, and other social-recreational activities. The joint generation of physical 

activity episodes in the current paper is consistent with such an emphasis on both 

adults‟ and children‟s activity-travel patterns within a household.  

  

1.1 Overview of Earlier Studies on Physical Activity Participation 
 

The body of work in the area of understanding the determinants of physical activity 

participation has been burgeoning in the past decade or so in many different 

disciplines, including child development, preventive medicine, sports medicine, public 

health, physical activity, and transportation. The intent here is not to provide an 

exhaustive review of these past studies (some good recent reviews of these works are 

Wendel-Vos et al. 2005; Allender et al. 2006; Gustafson and Rhodes 2006; Ferreira et 

al. 2007). However, one may make two general observations from past analytic 

studies. First, almost all of these analytic studies focus on individual physical activity 

without recognition that individuals are part of families and that there are potentially 

strong family interactions in physical activity levels. In this regard, the studies focus 

on either adults only or children/adolescents only. That is, they have adopted either an 

“adult-centric” approach focusing on adult physical activity patterns, and used 

children‟s demographic variables (such as presence/number of children in the 

household) as determinant variables, or a “child-centric” approach focusing on 

children‟s physical activity patterns, and used adults‟ (parents‟) demographic, 

attitudinal, and physical activity variables (such as number of adults in the household, 

support for children‟s physical activity, and adults‟ physical activity levels) as 

determinant variables (see Sener and Bhat 2007 for more details on these approaches; 

examples of adult-centric studies include Collins et al. 2007; Srinivasan and Bhat 

2008; Dunton et al. 2008, while examples of child-centric studies include Davison et 
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al. 2003; Trost et al. 2003; Cleland et al. 2005; Sener et al. 2008; Ornelas et al. 2007).
2
 

While these earlier studies provide important information on the determinants of 

adults‟ or children‟s physical activity levels, they do not explicitly recognize the role 

of the family as a fundamental social unit for the development of overall physical 

activity orientations and lifestyles. This is particularly important considering parental 

influence on, and involvement in, children‟s physical activities, as well as children‟s 

physical activity needs/desires that may influence parents‟ (among other household 

members) physical activity patterns. Since these effects are likely to be reinforcing 

(either toward high physical activity levels or low physical activity levels), the 

appropriate way to consider these family interactions would be to model the physical 

activity levels of all family members jointly as a package, considering observed and 

unobserved covariate effects.
3
  

                                                 
2
 The works of Trost et al. (2003) and Davison et al. (2003) are particularly valuable, since they 

examine different mechanisms through which parents may influence their children‟s physical 

activity pursuits. As identified by Trost et al. (2003), these may include genetics, direct 

modeling (i.e., parents‟ own physical activity involvement effects on children‟s physical 

activity levels), provision of time and money resources to support children‟s activities, 

rewarding desirable behaviors and punishing/ignoring undesirable behaviors, parents‟ own 

attitudes and beliefs about the importance of physical activity, and adopting authoritative 

parenting procedures to encourage children‟s physical activity. While most studies in the 

literature adopt the direct modeling hypothesis, Trost et al. (2003) suggest that support-related 

and parenting beliefs/attitudes are perhaps more important predictors of children‟s physical 

activity levels than direct modeling. Davison et al. (2003) indicate that both direct modeling 

and parental support/parenting practices influence children‟s (girls‟) physical activity levels.  
3
 Note that the clustering effects in physical activity levels among individuals in a family may 

be due to parental influences and support (or lack of support) for physical activities of children, 

as discussed earlier. Since parental attitudes and beliefs are likely to impact parental influence, 

and attitudes/beliefs as well as support mechanisms may be unobserved to the analyst, this 

could generate dependence in unobserved factors affecting the physical activity levels within a 

family. However, there are other possible reasons for such family-level clustering. For 

instance, the quality of physical activity recreation facilities accessible to a family from its 

residence may be relatively poor, and if this lack of “quality” is difficult to measure/observe, it 

can be an unobserved deterrent to the physical activity participation of all individuals in a 

family. Also, it is not uncommon for families to undertake joint recreational activities, and 

some families may be more “activity-cohesive” in undertaking recreational pursuits. Such 

family cohesion effects, when complemented with an overall activity lifestyle orientation, have 

been shown in earlier qualitative psycho-social and family interaction studies to be positive 

determinants of the physical activity pre-dispositions of members in a family (see, for example, 

Ornelas et al. 2007; Springer et al. 2006; Strauss et al. 2001; Allender et al. 2006). If such 

qualitative indicators of family interaction are unavailable to an analyst, as in the current study, 

these indicators effectively serve as unobserved facilitators to the physical activity participation 

of all members of a family. Related to family cohesion, but also a potentially different 

mechanism for clustering, is family communication intensity. In families with high 

communication intensity, it is possible that the children affect adults through their acquired 

(from outside the home) interest or uninterest in physical activities (rather than a one-way 

impact of parental attitudes on the physical activity levels of all members of the household). 

This can be another source of clustering effects (see Allender et al. 2006). Overall, the 

clustering effects can be due to correlated constraints faced by family members (such as 

residential-location related factors), or correlated lifestyle preferences (such as family cohesion 

activities) or belief/attitude spillover effects (“rubbing off” of beliefs/attitudes among 

individuals in a household, moderated by family communication levels), or combinations of 

these.  
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The second general observation from earlier studies is that they have proposed 

three broad groups of determinants of individual physical activity within an ecological 

framework: individual or intrapersonal factors, physical environment factors, and 

social environment or interpersonal factors (e.g., Sallis and Owen 2002; Giles-Corti 

and Donovan 2002; Gordon-Larsen et al. 2005; U.S. Government Accountability 

Office 2006; Kelly et al. 2006; Salmon et al. 2007; Bhat and Sener 2009). The 

category of individual factors includes demographics (such as age, education levels, 

and gender), and work-related characteristics (employment status, hours of week, 

work schedule, work flexibility, etc.).  The category of physical environment factors 

includes weather, season of year, transportation system attributes (level of service 

offered by various alternative modes for participation in out-of-home activities), and 

built environment characteristics (BECs). The final category of social environment 

factors includes family-level demographics (presence and age distribution of children 

in the household, household structure, and household income), residential 

neighborhood demographics, social and cultural mores, attitudes related to, and in 

support of, physical activity pursuits, and perceived friendliness of one‟s residential 

neighborhood. Of these three groups of factors, public health researchers have focused 

more on the first and third categories of factors (i.e., the individual and social 

environment factors), particularly as they correlate to participation in such recreational 

physical activity as sports, walking/biking for leisure, working out at the gym, and 

unstructured play (see, for instance, Kelly et al. 2006; Salmon et al. 2007; Dunton et 

al. 2008). On the other hand, transportation and urban planning researchers have 

particularly focused their attention on the first and second category of factors (with 

limited consideration of the third category in the form of family-level demographics) 

as they relate to non-motorized mode use for utilitarian activity purposes (i.e. non-

motorized forms of travel to participate in an out-of-home activity episode at a specific 

destination, such as walking/biking to school or to work or to shop; see, for instance, 

Dill and Carr 2003; Cervero and Duncan 2003; Sener et al. 2009). There have been 

few studies that consider elements of all three groups of physical activity 

determinants, and that consider recreational physical activities and non-motorized 

travel for utilitarian purposes (but see Hoehner et al. 2005; Copperman and Bhat 

2007a for a couple of exceptions).  

 

1.2 The Current Paper in Context and Paper Structure 
 

In this paper, we contribute to the earlier literature by focusing on the family as a 

“cluster unit” when modeling the physical activity levels of individuals. In this regard, 

and because earlier physical activity studies have focused only on adults or only on 

children, our emphasis is on analyzing physical activity levels of families with one or 

more parents and children in the household. That is, we examine the determinants of 

physical activity in the context of family households with children. In doing so, we 

explicitly accommodate family-level observed and unobserved effects that may 

influence the physical activity levels of each (and all) individual(s) in the family. 

Further, we consider variables belonging to all the three groups of individual factors, 

physical environment factors, and social environment factors. In particular, we 

incorporate a rich set of neighborhood physical environment variables such as land use 

structure and mix, population size and density, accessibility measures, demographic 

and housing measures, safety from crime, and highway and non-motorized mode 

network measures. However, in the context of social factors, we do not explicitly 

accommodate physical activity attitudes/beliefs and support systems of individual 
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family members as they influence the physical activity levels of others in the family. 

This is because our data source does not collect such information, though it is well 

suited to examine the influence of several other potential determinants. Future studies 

would benefit from including family-level attitudinal/support variables, while also 

adopting a family-level perspective of physical activity. 

The measure of physical activity we adopt in the current study is the number of 

out-of-home bouts or episodes (regardless of whether these bouts correspond to 

recreation or to walking/biking for utilitarian purposes) on a weekend day as reported 

in an activity survey.
4
 Activity surveys typically collect information on all types of 

(out-of-home) episodes of all individuals in sampled households over the course of 1 

or 2 days. As indicated by Dunton et al. (2008), the use of a short-term (1-2 days) self-

report reduces memory-related errors compared to other long-term methods of data 

collection used in the physical activity literature (such as self-reports over a week or a 

month). Further, survey data allow the consideration of the social context (family 

characteristics and physical activity levels of family members), while methods that 

examine the level of use of physical activity environments (such as a park or a 

playground) do not provide information to consider the social context in any depth. 

Also, for our family-level modeling of physical activity, survey data provide 

information on physical activity participation for all members of a family.
5
 Finally, the 

activity survey data used here provide information on residential location, which is 

used to develop measures of the physical environment variables in the family‟s 

neighborhood. Of course, a limitation of activity survey-based data is that some 

episodes of physical activity, such as free play, in-home physical activity, and 

incidental physical activity may not be identified well. Further, activity surveys do not 

provide a measure of the physical activity intensity level. Thus, there are strengths and 

limitations of using survey data, but such data are ideally suited for family-level 

cluster analysis of the type undertaken in the current effort.  

From a methodological standpoint, the daily number of physical activity episodes 

of each individual is represented using an ordered response structure, which is 

appropriate for situations where the dependent variable is ordinal (that is, the 

dependent variable values have a natural ordering; see Section 2.1 for a description of 

the ordered-response structure). The jointness between the episodes of different 

members of the same family is generated by common household demographic and 

location variables, as well as through dependency among the stochastic error terms of 

the random latent variables assumed to be underlying the observed discrete number of 

                                                 
4
 The analysis focuses on weekend days because of the high prevalence and duration of 

participation in physical activities over the weekend days relative to weekdays (see Lockwood 

et al. 2005), as well as because there is much more joint activity participation within a family 

(and therefore interactions within a family cluster) on weekend days relative to weekdays (see 

Srinivasan and Bhat 2008; Copperman and Bhat 2007a). Children, in particular, participate in 

discretionary activities at much higher levels, and for substantially longer durations, on 

weekend days compared to weekdays (Stefan and Hunt 2006).  
5
 As we discuss later, the characterization of an activity episode as a physically active one or 

not is based on the activity type and the type of location (such as bowling alley, gymnasium, 

shopping mall, etc.). Thus, an episode involving recreation activity at a soccer stadium is 

designated as a physical activity episode. For travel episodes, the episode is designated as 

physically active if it involves walking or bicycling. 
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physical activity episodes.
6
  In the current paper, we allow non-linear and asymmetric 

error dependencies using a copula structure, which is essentially a multivariate 

functional form for the joint distribution of random variables derived purely from pre-

specified parametric marginal distributions of each random variable. To our 

knowledge, this is the first formulation and application in the econometric literature of 

the copula approach for the case of a clustered ordered response model structure.  

The rest of this paper is structured as follows. The next section discusses and 

presents the copula-based clustered ordered-response model structure.  Section 3 

describes the survey-based data source and sample formation procedures for the 

empirical analysis. Section 4 discusses the empirical results, and presents the results of 

a policy-based simulation. Finally, Section 5 summarizes important findings from the 

study, and concludes the paper. 

  

2 Model Structure 
2.1 Background 
 

This paper uses an ordered-response model for analyzing the number of physical 

activity episodes for each individual. The assumption in this model is that there is an 

underlying continuous latent variable representing the propensity to participate in 

physical activity whose partitioning into discrete intervals, based on thresholds on the 

continuous latent variable scale, maps into the observed set of count outcomes. While 

the traditional ordered-response model was initially developed for the case of ordinal 

responses, and while count outcomes are cardinal, this distinction is really irrelevant 

for the use of the ordered-response system for count outcomes. This is particularly the 

case when the count outcome takes few discrete values, as in the current empirical 

case, but is also not much of an issue when the count outcome takes a large number of 

possible values (see Herriges et al. 2008; Ferdous et al. 2010 for detailed discussions).  

An important issue, though, is that we have to recognize the potential dependence 

in the number of physical activity episodes of different members of the same family 

due to both observed exogenous variables as well as unobserved factors. If there is no 

dependence based on unobserved factors, one can accommodate the dependence due 

to observed factors by estimating independent ordered-response models for each 

individual in the family after including common exogenous variables. But the 

dependence due to unobserved family-related factors (such as family life-style and 

health consciousness, and residential location-related factors) can be accommodated 

only by jointly modeling the number of episodes of all family members together. This 

is the classic case of clusters of dependent random variables that has widely been 

studied and modeled in the transportation and other fields (see Bhat 2000; Bottai et al. 

2006; Czado and Prokopenko 2008). In our case, the clusters correspond to family 

units, although the methodology we present in the current paper can be used for any 

situation involving clusters.  

An established method to deal with unobserved interactions due to cluster effects 

is a random effects model. In the ordered-response context, this entails adding a 

common cluster-based normal error term to the latent underlying propensities for each 

                                                 
6
 The analysis in the current paper may be viewed as a reduced form analysis, based off an 

appropriate (and flexible) econometric structure to deal with the ordinal nature of the daily 

number of physical activity episodes as well as family-level clustering effects. It is not a 

structural model based on a formal behavioral process of physical activity generation nor does 

it explicitly disentangle the many processes that may lead to family-level clustering effects.  
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individual in the cluster (see Bhat and Zhao 2002 for a detailed explanation of the 

mathematical formulation as well as an empirical example of this method). The main 

limitation of the random effects model is the restrictive assumption introduced in the 

dependence structure through the random normal error term. Thus, for instance, in the 

random effects ordered-response probit model, the joint distribution of error terms is 

considered multivariate normal, which assumes that the dependence (due to 

unobserved factors) among the physical activity propensities of family members is 

radially symmetric. On the other hand, it may be the case that the dependence among 

the propensities of family members is actually asymmetric; for instance, one may 

observe family members having a simultaneously low propensity for physical activity 

participation, but not necessarily family members having a simultaneously high 

propensity for physical activity participation. That is, unobserved factors that decrease 

physical activity propensity may “rub off” more among individuals in a family than 

unobserved factors that increase physical activity propensity. Alternatively, one may 

have the reverse asymmetry too where family members have a simultaneously high 

propensity for physical activity propensity, but not a simultaneously low propensity 

for physical activity propensity.  

In the current paper, rather than using the random effects approach, we use a 

copula approach to accommodate the dependence in physical activity propensity 

among family members. A copula is a device or function that generates a stochastic 

dependence relationship (i.e., a multivariate distribution) among random variables 

with pre-specified marginal distributions (see Trivedi and Zimmer 2007; Nelsen 

2006). The use of a copula to generate a joint distribution of a cluster outcome is 

convenient and flexible for a number of reasons. First, the approach allows testing of a 

variety of parametric marginal distributions for individual members in a cluster and 

preserves these marginal distributions when developing the joint probability 

distribution of the cluster. Second, the copula approach separates the marginal 

distributions from the dependence structure, so that the dependence structure is 

entirely unaffected by the marginal distributions assumed. Thus, rank measures of the 

intra-cluster dependence of the underlying physical activity propensities for members 

of a family are independent of the marginal distributions used, facilitating a clear 

interpretation of the dependence structure regardless of the marginal distribution 

assumed. Third, the clustering context, wherein the level of dependence in the 

marginal random unobserved terms within a cluster is identical (i.e., exchangeable) 

across any (and all) pairs of individuals in the cluster, is ideal for the application of a 

group of copulas referred to as the Archimedean copulas. The Archimedean copulas 

are closed-form copulas that can be used to obtain the joint multivariate cumulative 

distribution function of any number of individuals belonging to a cluster. Further, 

these copulas retain the same form regardless of cluster size, and so it is 

straightforward to accommodate clusters of varying sizes.
7
 Fourth, the Archimedean 

                                                 
7
 Technically speaking, one may use a copula approach to allow differential dependence levels 

among marginal random unobserved terms within a cluster. For instance, it may be argued that 

the “rubbing off” effects due to unobserved factors (in the context of physical activity 

participation) are higher between two children in a family than between two adults in a family, 

or between two adults in a family than between an adult and a child. While such differential 

dependency patterns within a cluster can be accommodated with specific copula forms (see 

Bhat and Sener 2009; Bhat et al. 2010), they are, in general, quite difficult to accommodate and 

estimate using maximum likelihood methods. Alternatively, one can estimate models with 

differential dependency patterns within a cluster using pairwise copulas (i.e., a bivariate copula 

for each pair of individuals in a family), but such an approach may not have an equivalent 
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group of copulas allows testing a variety of radially symmetric and asymmetric joint 

distributions, as well as testing the assumption of within-cluster independence. Fifth, it 

is simple to allow the level of dependence within a cluster to vary based on cluster 

type. For example, the dependence among family members in their latent propensities 

of physical activity may vary by such family characteristics as family type or income. 

Finally, the closed-form nature of the model structure resulting from using the 

Archimedean group of copulas lends itself very nicely to the implementation of a 

computationally straightforward maximum likelihood procedure for parameter 

estimation.   

2.2 Copula Basics 
 

The word “copula” was coined by Sklar (1959), and is derived from the Latin word 

“copulare”, which means to tie, bond, or connect (see Schmidt 2007). A copula is a 

device or function that generates a stochastic dependence relationship (i.e., a 

multivariate distribution) among random variables with pre-specified marginal 

distributions (see Nelsen, 2006; Trivedi and Zimmer 2007; Bhat and Eluru 2009). The 

precise definition of a copula is that it is a multivariate distribution function defined 

over the unit cube linking uniformly distributed marginals. Let C be an I-dimensional 

copula of uniformly distributed random variables U1, U2, U3, …, UI  with support 

contained in [0,1]
I
. Then, 

  

Cθ (u1, u2, …, uI) = Pr(U1 < u1, U2 < u2, …, UI < uI),                                                   (1) 

 

where   is a parameter vector of the copula commonly referred to as the dependence 

parameter vector. A copula, once developed, allows the generation of joint 

multivariate distribution functions with given marginals. Consider I random variables 

,,,,, 321 I  each with univariate continuous marginal distribution function 

).Pr()( iii zzF   8
 Then, by Sklar‟s (1973) theorem, a joint I-dimensional 

distribution function of the random variables with the continuous marginal distribution 

functions )( izF  can be generated as follows: 

 

1 2 1 1 2 2 1 1 2 2

1 1 2 2

( , , , ) Pr( , , , ) Pr[ ( ), ( ), , ( )]

[ ( ), ( ), ( )].

I I I I I

I I

F z z z z z z U F z U F z U F z

C u F z u F z u F z

         

   
 (2)  

 

The above equation offers a vehicle to develop different dependency patterns for the 

random variables I ,,,, 321  based on the copula that is used as the underlying 

basis of construction. In the current paper, we use a class of copulas referred to as the 

Archimedean copulas to generate the dependency between the random variables. The 

                                                                                                                                                     
multivariate distribution interpretation. The approach we propose and use here is particularly 

appropriate for cluster-specific effects, where there is an equal level of unobserved dependence 

between all pairs of entities in a cluster. Such uniform cluster-specific effects are assumed also 

in the traditional random effects approach discussed earlier.  
8
 Note that the univariate marginal distribution functions of the random variables can be 

different, though we use the more restrictive notation here that the univariate distributions are 

the same. This is the norm when developing econometric models where the random terms 

represent individual-level idiosyncratic effects.  
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next section briefly discusses the Archimedean class of copulas and presents some 

specific copulas within this broad family.  

 

2.3 Archimedean Copulas 
 

The Archimedean class of copulas is popular in empirical applications, and includes a 

whole suite of closed-form copulas that cover a wide range of dependency 

formulations (see Nelsen, 2006; Bhat and Eluru 2009 for a detailed discussion). The 

class is very flexible, and easy to construct, as discussed next. 

Archimedean copulas are constructed based on an underlying continuous convex 

decreasing generator function   from [0, 1] to [0, ∞] with the following properties: 

,0)(,0)1(  t and 0)(  t for all )./)(;/)(( 10 22 ttttt    

Further, in the discussion here, we will assume that )0( , so that an inverse 
1  

exists. Also, let 
1 be completely monotonic on [0, ∞]. With these preliminaries, we 

can generate multivariate I-dimensional Archimedean copulas as: 

 

,)()...,,(
1

1

,321 







 





i

I

i

I uuuuuC                                                                        (3) 

 

where the dependence parameter θ is embedded within the generator function. An 

important characteristic of any multivariate Archimedean copula with the scalar 

dependence parameter   is that the marginal pairwise distributions between any two 

random variables (from U1, U2, U3, …, UI ) is bivariate Archimedean with the same 

copula structure as the multivariate copula. A whole variety of Archimedean copulas 

have been identified based on different forms of the generator function  . In this 

paper, we will consider four of the most popular Archimedean copulas that span the 

spectrum of different kinds of dependency structures. These are the Clayton, Gumbel, 

Frank, and Joe copulas (see Bhat and Eluru 2009 for graphical descriptions of the 

implied dependency structures). All these copulas, in their multivariate forms, allow 

only positive associations and equal dependencies among pairs of random variables, 

which is well-suited for cluster analysis because we expect positive and equal 

dependencies among elements within a cluster.  

The Clayton copula (Clayton 1978) has the generator function 

)1)(/1()(   tt , giving rise to the following I-dimensional copula function 

(see Huard et al.  2006): 

 
1/

1 2
1

( , ,... ) ( 1) ,   0  .
I

I i
i

C u u u u I





 






           
                                          (4) 

 

Independence corresponds to 0 . The copula is best suited for strong left tail 

dependence and weak right tail dependence. That is, it is best suited when individuals 

in a family show strong tendencies to have low physical activity levels together but 

not high activity levels together.  
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The Gumbel copula, first discussed by Gumbel (1960) and sometimes also 

referred to as the Gumbel-Hougaard copula, has a generator function given by 
 )ln()( tt  . The form of the I-dimensional copula is provided below: 

 
1/

1 2
1

( , ,... ) exp ( ln )  ,   1  .
I

I i
i

C u u u u




 


           
                                      (5) 

 

Independence corresponds to 1 . This copula is well suited for the case when there 

is strong right tail dependence (strong correlation at high values) but weak left tail 

dependence (weak correlation at low values). Thus, this copula would be applicable 

when individuals in a family show strong tendencies to have high physical activity 

levels together but not low activity levels together.  

The Frank copula, proposed by Frank (1979), is radially symmetric in its 

dependence structure like the Gaussian (normal) copula. The generator function 

is )]1/()1ln[()(    eet t
, and the corresponding copula function is given 

by: 

 

1
1 2 1

( 1)
1

( , ,... ) ln 1 ,   0  .
( 1)

I
ui

i
I I

e
C u u u

e



 








 

  
      


 
 

                                       (6) 

 

Independence is attained in Frank‟s copula as .0  This copula is suitable for equal 

levels of dependency in the left and right tails; that is, when individuals either show 

low physical activity levels together or high activity levels together.  

The Joe copula, introduced by Joe (1993, 1997), has a generator function 

])1(1ln[)(  tt  and takes the following copula form: 

 
1/

1 2
1

( , ,... ) 1 1 (1 (1 ) ) ,   1  .
I

I i
i

C u u u u




 


        
  

                                     (7) 

 

The Joe copula is similar to the Gumbel copula, but the right tail positive dependence 

is stronger. Independence corresponds to .1  

 

2.4 Model Formulation 
 

Let q be an index for clusters (family unit in the current empirical context) (q = 1, 2, 

…, Q), and let i be the index for individuals (i = 1, 2, …, Iq, where Iq denotes the total 

number of individuals in family q, including adults and children; in the current study Iq 

varies between 2 and 5). Also, let k be an index for the discrete outcomes 

corresponding to the number of weekend day physical activity episodes (k = 0, 1, 2, 3, 

…, K). In the usual ordered response framework notation, we write the latent 

propensity (
*

qiy ) of individual i in family q to participate in physical activity as a 

function of relevant covariates, and then relate this latent propensity to the count 
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outcome ( qiy ) representing the number of weekend physical activity episodes of 

individual i in family q through threshold bounds (see McKelvey and Zavoina 1975): 

 

,  y < k y  , + x  = y
kqikqiqiqiqi 

1

**  if   '


      (8) 

 

where qix  is a (L×1) vector of exogenous variables for individual i in family q (not 

including a constant),   is a corresponding (L×1) vector of coefficients to be 

estimated, and k  is the lower bound threshold for count level k 

(   101210   ,  ;... KKK  , and K ...,, 21  are to be   

estimated).
9
 The qi  terms capture the idiosyncratic effect of all omitted variables for 

individual i in family q, and are assumed to be independent of   and qix . The qi  

terms are assumed identical across individuals, each with a univariate continuous 

marginal distribution function )Pr()( qiqiqi zzF   . The error terms can take any 

parametric marginal distribution, though we confine ourselves to the normal and 

logistic distributions in the current paper. Due to identification considerations in the 

ordered-response model, we standardize the univariate distribution functions, so that 

they are standard normal or standard logistic distributed. However, we allow 

dependence in the qi  terms across individuals i in the same family unit q to allow 

unobserved cluster effects. This dependency is generated through the use of an 

Archimedean copula based on Equation (2), where the only difference now is the 

introduction of the index q to reflect that the dependence is confined to members of 

the same family: 

 

1 1 2 2 1 1 2 2

1 1 2 2

Pr( , , , ) Pr[ ( ), ( ), , ( )]

[ ( ), ( ), ( )].

q q q q

q q q

q q q q qI qI q q q q qI qI

q q q q qI qI

z z z U F z U F z U F z

C u F z u F z u F z

        

   
 (9) 

 

It is important to note above that the level of dependence among individuals of a 

family can vary across families, as reflected by the q  notation for the dependence 

parameter. As we indicate later, we parameterize this dependence parameter as a 

function of observed family characteristics in estimation, which allows us to 

accommodate different levels of dependency among individuals of different types of 

families.
10

 Technically, one can also use different copula forms (i.e., dependency 

                                                 
9
 In the empirical analysis, we allow different thresholds for children and adults. From a strict 

notation standpoint, this implies that the thresholds should be subscripted as ψki. However, for 

notational ease, we suppress the subscript i when writing the thresholds. 
10

 The use of the notation θq assumes that the dependency due to unobserved factors is confined 

to (and identical across) members within a family. In reality, it is possible that the dependency 

extends beyond members of the same family to members of families within a certain spatial 

neighborhood and/or within a certain defined social network. Accommodating such 

generalized multi-level unobserved effects is difficult with Archimedean copulas, but may be 

achieved using the Gaussian copula combined with a composite marginal likelihood inference 

approach (see Ferdous et al. 2010; and Spissu et al. 2010). Bhat (2009) has also recently 

proposed a generalized Gumbel copula within the class of Archimedean copulas that may be 
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surfaces) for different families, but, in the current paper, we will maintain the same 

copula form across all families to keep the estimation tractable (however, note that we 

test for different copula forms, even if we maintain the same copula form across all 

families). 

  

2.5 Model Estimation 
 

Let qim  be the actual observed categorical response for qiy  in the sample. Then, the 

probability of the observed vector of number of episodes across individuals in 

household q ),...,,,( 321 qqIqqq mmmm  can be written as: 
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where )1(

*

)(

**

2

*

1 :,...,,{ 
qiqiq mqimqIqqq yyyyM  for all i = 1, 2, …, Iq} and 

q
c  

is the copula density. The integration domain Mq is simply the multivariate region of 

the 
*

qiy  variables (i = 1, 2, …, Iq) determined by the observed vector of choices 

),...,,( 21 qqIqq mmm . The dimensionality of the integration, in general, is equal to the 

number of individuals Iq in the family. Thus, if one uses a Gaussian copula, one ends 

up with integrals of the order of the number of individuals in the family for the joint 

probability of the observed combination of the number of activity episodes across 

individuals in the family. This will need simulation techniques when Iq is greater than 

three. However, in the case of a family-level cluster with identical dependencies 

between pairs of individuals in the family, one can gainfully employ the Archimedean 

copulas since they provide closed-form multivariate cumulative distribution functions. 

In particular, the probability in Equation (10) can be written in terms of qI
2 closed-

form multivariate cumulative distribution functions as follows: 

 

),,(   

),...,,(

1

**

22

*

1

2211

12111 



 qqIqqqIqqq

qq

mqImmqmmqm

qIqIqqqq

yyyP

mymymyP

 
 

  
 








2

1

2

1

1

*

1

*

21

*

1

2

11 2

2211

21

),,()1(
a a

amqIamqamq

a

aaa

qIqqIqqq

qI

qI

yyyP  


 

  
 








2

1

2

1

111

2

11 2

2211

21

),,()1(
a a

amamam

a

aaa

qIqqIqqq

qI

qI

uuuC 


             (11) 

 

                                                                                                                                                     
used for such multi-level modeling. Overall, the development of flexible copula approaches for 

the analysis of multi-level modeling is an important area for further methodological research.  
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where 
q

C  is the one of the four Archimedean copulas discussed in Section 2.3 with 

an association parameter q , and ).'( 11 qiamam xFu
iqiiqi

   The number of 

cumulative distribution function computations increases rapidly with the number of 

individuals Iq in family q, but this is not much of a problem when the cluster sizes are 

six or less because of the closed-form structures of the cumulative distribution 

functions. In the current empirical context, Iq ≤ 5. However, in other empirical 

contexts when there are several individuals in a cluster, one can resort to the use of a 

composite marginal likelihood approach (see, for instance, the study by Bhat et al. 

2010 that employs a combined copula-CML approach to accommodate spatial 

dependence across observational units). 

The association parameter q  is allowed to vary across families. However, it is 

not possible to estimate a separate dependence term for each family. So, we 

parameterize q  as a function of a vector qs
 
of observed family variables, while also 

choosing a functional form that ensures that q
 

for any family q is within the 

allowable range for each copula. Thus, we use the form )exp( qq s   for the Frank 

and Clayton copulas, and the form )exp(1 qq s   for the Gumbel and Joe 

copulas.  

The parameters to be estimated in the model may be gathered in a vector 

,) , ,(    where the vector   is the vector of threshold bounds: 

). , ,( 21 K   The likelihood function for household q may be constructed 

based on the probability expression in Equation (11) as:  

 

),...,,()( 2211 qq qIqIqqqqq mymymyPL  .              (12) 

 

The likelihood function is then given by    q
q

L L   .              (13) 

 

The likelihood function above is maximized using conventional maximum 

likelihood procedures approach. All estimations and computations were carried out 

using the GAUSS programming language.  Gradients of the log-likelihood function 

with respect to the parameters were coded. 

 

3 The Data 
3.1 The Primary Data Source 
 

The primary source of data is the 2000 San Francisco Bay Area Travel Survey 

(BATS), which was designed and administered by MORPACE International, Inc. for 

the Bay Area Metropolitan Transportation Commission (see MORPACE International 

Inc. 2002). The survey collected detailed information on individual and household 

socio-demographic and employment-related characteristics from about 15,000 

households in the Bay Area. The survey also collected information on all activity and 

travel episodes undertaken by individuals of the sampled households over a two-day 

period. For a subset of the sampled households, the two-day survey period included a 

Friday and a Saturday, or a Sunday and a Monday (however, no household was 

surveyed on both a Saturday and a Sunday). The current analysis uses the surveyed 
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weekend day (either Saturday or Sunday) of these households. The information 

collected on activity episodes included the type of activity (based on a 17-category 

classification system), the name of the activity participation location (for example, 

Jewish community center, Riverpark plaza, etc.), the type of participation location 

(such as religious place, or shopping mall), start and end times of activity 

participation, and the geographic location of activity participation.  

As discussed earlier, we identified whether an activity episode is physically 

active or not based on the activity type and the type of participation location at which 

the episode is pursued, as reported in the survey.
11

  Thus, an episode designated as 

“recreation” activity by a respondent and pursued at a health club (such as working out 

at the gym) is labeled as physically active. Similarly, an episode designated as 

“recreation” activity by a respondent and pursued outdoors (such as 

walking/running/bicycling around the neighborhood “without any specific 

destination”) is labeled as being physically active.
12

 For the current analysis, we 

consider only out-of-home activity episodes. In addition, travel episodes to any out-of-

home location using non-motorized forms of travel (bicycling and/or walking) are 

characterized as physical activity episodes. In this regard, each non-motorized travel 

episode ending at an activity location was characterized as a physical activity episode. 

For instance, if an individual goes to a grocery shopping center by bike and then 

returns back home, the individual is considered to have participated in two physical 

activity episodes.   

After categorizing out-of-home episodes into physically active or otherwise, the 

number of physically active episodes during the weekend day for each individual in 

each family is obtained by appropriate aggregation. This constitutes the dependent 

variable in our analysis. Further, while the methodology developed can be used for all 

types of families, we focus only on families with children in this paper to examine 

both adults‟ and children‟s physical activity participations (while also accommodating 

family-level observed and unobserved effects). In terms of adults, we focus on 

parents‟ physical activity participations and, in terms of children, we focus on the 

physical activity participation of children between the ages of five to fifteen. Further, 

we restricted ourselves to families with three children or less as they accounted for 

approximately 97 percent of families with children. 

 

3.2 The Secondary Data Sources 
 

                                                 
11

 A physically active episode requires regular bodily movement during the episode, while a 

physically passive episode involves maintaining a sedentary and stable position for the 

duration of the episode. For example, swimming or walking around the neighborhoods would 

be a physically active episode, while going to a movie is a physically passive episode.  
12

 A data-based limitation of the current study is that the data do not allow us to distinguish 

between individuals who are personally involved in the physical activity and those who are 

only present during the activity but not “physically” involved in the physical activity. 

Therefore, for instance, an episode designated as “recreation” activity by a respondent and 

pursued at a tennis court is labeled as physically active, regardless of whether the individual 

went to the tennis court to watch some other person play tennis or played tennis 

himself/herself. Note, however, that individuals who drop off/pick up others from the tennis 

courts will report their activity type as “pick-up/drop-off” and so this episode will not be 

considered as a physically active one, Also, there is some possibility that individuals who go to 

a tennis court and not play tennis will report their activity type as “social” or 

“resting/relaxing”, in which case these episodes will also not be characterized as “physically 

active” in our taxonomy.   
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In addition to the 2000 BATS survey data set, several other secondary data sets were 

used to obtain transportation system attributes and built environment characteristics 

(within the broad group of physical environment factors discussed in Section 1.1), as 

well as residential neighborhood demographics (within the broad group of social 

environment factors in Section 1.1). All these variables were computed at the level of 

the residential traffic analysis zone (TAZ) of each household.
13

 The secondary data 

sources included land use/demographic coverage data, the 2000 Census of population 

and household summary files, a Geographic Information System (GIS) layer of 

bicycle facilities, a GIS layer of highways and local roadways, and GIS layers of 

businesses. Among the secondary data sets indicated above, the land use/demographic 

coverage data, LOS data, and the GIS layer of bicycle facilities were obtained from 

the Metropolitan Transportation Commission (MTC). The GIS layers of highways and 

local roadways were obtained from the 2000 Census Tiger Files. The GIS layers of 

businesses were obtained from the InfoUSA business directory. 

The transportation system and built environment measures constructed from the 

secondary data sources include: 

1. Zonal land use structure variables, including housing type measures (fractions of 

single family, multiple family, duplex and other dwelling units), land use 

composition measures (fractions of zonal area in residential, commercial, and 

other land uses), and a land use mix diversity index computed as a fraction based 

on the land use composition measures with values between zero and one (zones 

with a value closer to one have a richer land use mix than zones with a value 

closer to zero; see Bhat and Guo 2007 for a detailed explanation on the 

formulation of this index).  

2. Regional accessibility measures, which include Hansen-type (Fotheringham 

1983) employment, shopping, and recreational accessibility indices that are 

computed separately for the drive and transit modes. 

3. Zonal activity opportunity variables, characterizing the composition of zones in 

terms of the intensity or the density of various types of activity centers. The 

typology used for activity centers includes five categories: (a) maintenance 

centers, such as grocery stores, gas stations, food stores, car wash, automotive 

businesses, banks, medical facilities, (b) physically active recreation centers, such 

as fitness centers, sports centers, dance and yoga studios, (c) physically passive 

recreational centers, such as theatres, amusement centers, and arcades, (d) natural 

recreational centers such as parks and gardens, and (e) restaurants and eat-out 

places. 

4. Zonal transportation network measures, including highway density (miles of 

highway facilities per square mile), local roadway density (miles of roadway 

density per square mile), bikeway density (miles of bikeway facilities per square 

mile), street block density (number of blocks per square mile), non-motorized 

distance between zones (i.e., the distance in miles along walk and bicycle paths 

between zones), and transit availability. The non-motorized distance between 

zones was used to develop an accessibility measure by non-motorized modes, 

computed as the number of zones (a proxy for activity opportunities) within “x” 

non-motorized mode miles of the teenager‟s residence zone. Several variables 

with different thresholds for “x” were formulated and tested. 

The residential neighborhood demographics constructed from the secondary data 

sources include: 

                                                 
13

 Due to privacy considerations, the point coordinates of each household‟s residence is not 

available; only the TAZ of residence of each household is available. 
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1. Zonal population size and employment/population density measures, including 

total population, number of housing units, population density, household density, 

and employment density by several employment categories, as well as dummy 

variables indicating whether the area corresponds to a central business district 

(CBD), urban area, suburban area, or rural area. 

2. Zonal ethnic composition measures, constructed as fractions of Caucasian, 

African-American, Hispanic, Asian and other ethnic populations for each zone.  

3. Zonal demographics and housing cost variables, including average household 

size, median household income, and median housing cost in each zone. 

 

3.3 Sample Characteristics 
 

The final sample used for the analysis comprises 1687 individuals (894 adults and 793 

children) from 517 family households residing in nine Counties of the San Francisco 

Bay Area (Alameda, Contra Costa, San Francisco, San Mateo, Santa Clara, Solano, 

Napa, Sonoma and Marin). This final sample includes 377 two parent families (73.0 

percent of all families), 85 single mother families (16.4 percent of all families), and 55 

single father families (10.6 percent of all families). The number of children in the 

family varies between one and three children, with the distribution as follows: one 

child (53.4 percent), two children (39.8 percent), and three children (6.8 percent). The 

distribution of the number of physically active episodes per weekend day in the entire 

sample of individuals is: zero episodes (79.8 percent), one episode (17.5 percent), and 

two or more episodes (2.7 percent). The distribution within the sample of adults is 

zero episodes (80.3 percent), one episode (16.7 percent), and two or more episodes 

(3.0 percent), while the corresponding distribution within the sample of children is 

zero episodes (79.2 percent), one episode (18.4 percent), and two or more episodes 

(2.4 percent). These statistics reveal that there is no substantial difference in the 

aggregate distribution of the number of weekend day physically active episodes 

between adults and children.  

 

4.  Model Results 
4.1 Variable Specification  
 

Several different variables within the three broad variable categories of individual 

factors, physical environment correlates, and social environment determinants were 

considered in our model specifications. The individual factors included demographics 

(age, sex, race, driver‟s license holding, physical disability status, etc.) and work-

related characteristics (employment status, hours of week, work schedule, and work 

flexibility, etc.); the physical environment factors included weather, season of year, 

transportation system attributes, and built environment characteristics; and the social 

environment factors included family-level demographics (household composition and 

family structure, household income, dwelling type, whether the house is owned or 

rented, etc.) and residential neighborhood demographics (see Section 3.2 for details). 

The final model specification was based on a systematic process of eliminating 

variables found to be statistically insignificant, intuitive considerations, parsimony in 

specification, and results from earlier studies. Several different variable specifications, 

functional forms of variables as well as interaction variables were considered for the 

xqi vector (that determines exogenous variables affecting physical activity propensity) 

as well as for the sq vector (that captures variations in the level of dependency based 

on observed family characteristics). The final specification includes some variables 
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that are not highly statistically significant, because of their intuitive effects and 

potential to guide future research efforts in the field. 

 

4.2 Model Specification and Data Fit 
 

The empirical analysis involved estimating models with two different univariate 

distribution assumptions (normal and logistic) for the random error term εqi, and four 

different copula structures (Clayton, Gumbel, Frank and Joe) for specifying the 

dependency between the εqi terms across individuals in each family to represent the 

family cluster effect. Thus, a total of eight copula-based models were estimated: (1) 

Normal-Clayton, (2) Normal-Gumbel, (3) Normal-Frank, (4) Normal-Joe, (5) 

Logistic-Clayton, (6) Logistic-Gumbel, (7) Logistic-Frank, and (8) Logistic-Joe.  

In addition, we also estimated two models (one with a normal marginal error term 

and the other with a logistic marginal error term) that assume independence in 

physical activity propensity among family members, as well as two models based on 

the more common methodological approach to accommodate clusters through a 

family-specific normal mixing error term. To allow a fair comparison between such 

random-effects models and the copula models, we specified the variance of the 

random error term in the random-effects models to vary across families based on 

observed family characteristics (see Bhat and Zhao 2002, and Bhat 2000 for such 

specifications in the past). Such a formulation accommodates heterogeneity across 

families in the level of association between family members, akin to parameterizing 

the θq dependence term in the copula models as a function of the vector sq of observed 

family variables.   

To conserve on space, we will only provide the data fit results for the best copula 

model, the best independent model (from the logistic and the normal distributions for 

the εqi terms), and the best random-effects model (again from the logistic and normal 

distributions for the εqi terms). Note that the maximum likelihood estimation of the 

models with different copulas leads to a case of non-nested models. The most widely 

used approach to select among competing non-nested copula models is the Bayesian 

Information Criterion (or BIC; see Quinn 2007; Genius and Strazzera 2008; Trivedi 

and Zimmer 2007, page 65). The BIC for a given copula model is equal to 

2ln( ) ln( )L B N  , where )ln(L  is the log-likelihood value at convergence, B is the 

number of parameters, and N is the number of observations. The copula that results in 

the lowest BIC value is the preferred copula. But, if all the competing models have the 

same exogenous variables and the same number of thresholds, as in our empirical 

case, the BIC information selection procedure measure is equivalent to selection based 

on the largest value of the log-likelihood function at convergence. 

Among the copula models, our results indicated that the Logistic-Clayton (LC) 

model provides the best data fit with a likelihood value of –732.844.
14

 Thus, based on 

the BIC measure, the LC model provides the best fit. However, the BIC measure does 

not indicate whether the LC model is statistically significantly better than its 

competitors. But, since all the copula models have the same value of the log-

likelihood at sample shares (that is, when only the thresholds are included in the 

model), the alternative copula models can be statistically tested using a non-nested 

                                                 
14

 The likelihood values at convergence for the other copula models were as follows: Logistic-

Gumbel (–747.75), Logistic-Frank (–734.66), Logistic-Joe (–752.79), Normal-Clayton 

(740.01), Normal-Gumbel (–749.34), Normal-Frank (–735.49), and Normal-Joe (–754.93).  
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likelihood ratio test. In this regard, the difference in the adjusted rho-bar squared (
2

c ) 

values between the LC model and its closest competitor (which is the Logistic-Frank 

or LF model) is 0.0006.
15

 The probability that this difference could have occurred by 

chance is less than }.)]2828()(0006.02[{ 5.0 CL  This value, with L(C) 

= –3022.698, is almost zero, indicating that the difference in adjusted rho-bar squared 

values between the LC and the LF models is statistically significant and that the LC 

model is significantly superior to the LF model. However, note also that, in all the 

copula models, the dependency parameters were highly statistically significant, with 

the family-level dependency in unobserved factors varying based on family structure. 

Specifically, the family-level dependency was different among the three family types 

of (1) family with both parents, (2) single father family, and (3) single mother family. 

Between the two independent models, the logistic error term distribution for the 

margins (i.e., the ordered-response logit or ORL) provided a marginally better fit than 

the normal error term distribution for the margins (i.e., the ordered-response probit). 

The log-likelihood value at convergence for the ordered-response logit is –916.748. 

Also, between the random effects ordered-response logit (RORL) and the random-

effects ordered-response probit (RORP) models, the former (i.e., the RORL model) 

provided a superior data fit with a convergent log-likelihood value of –738.602. In 

both these random-effects models, we also considered variations in the family-level 

correlation levels across families, and found once again that there was variation based 

on the same family structure grouping as in the LC model.  

The likelihood ratio test for testing the LC model in this paper with the ORL 

model is 367.81, which is substantially larger than the critical χ
2
 value with three 

degrees of freedom (corresponding to the three dependency parameters) at any 

reasonable level of significance, confirming the importance of accommodating 

dependence in physical activity propensity among family members. The likelihood 

ratio test for testing the RORL model with the ORL model is 356.29, which again is 

larger than the critical χ
2
 value with three degrees of freedom. The LC and RORL 

models are non-nested, and may be compared using a non-nested likelihood ratio test 

(both the LC and RORL models have the same exogenous variables and the same 

number of thresholds, while differing in the surface shape of the dependency among 

the error terms of different individuals in a family). Specifically, the difference in the 

adjusted rho-bar squared (
2

c ) values between the two models is 0.00191. The 

probability that this difference could have occurred by chance is less than 

}.)]2828()(00191.02[{ 5.0 CL  This value, with L(C) = –3022.698, is 

almost zero, indicating that the difference in adjusted rho-bar squared values between 

the copula-based LC and the RORL models is highly statistically significant and that 

the copula model is to be preferred over the more traditional random effects model in 

terms of model fit. Specifically, as we discuss later, the results indicate a clear 

asymmetry in the dependence relationship among the physical activity propensities of 

individuals of the same family, an issue that cannot be handled by the random effects 

approach.  

                                                 
15

 The adjusted rho-bar squared value 
2

c
  for an ordered-response model is computed as 

2 ˆ1 [( ( ) ) / ( )]
c

L H L C    , where ˆ( )L  is the log-likelihood at convergence, H  is the 

number of model parameters excluding the thresholds, and L(C) is the log-likelihood with only 

thresholds in the model. 
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In addition to the model fit on the overall estimation sample, we also evaluated 

the performance of the ORL, RORL, and LC models on various market segments of 

the estimation sample (Ben-Akiva and Lerman 1985 refer to such predictive fit tests as 

market segment prediction tests). The intent of using such predictive tests is to 

examine the performance of different models on sub-samples that do not correspond to 

the overall sample used in estimation. Effectively, the sub-samples serve a similar role 

as an out-of-sample for validation. The advantage of using the sub-sample approach 

rather than an out-of-sample approach to validation is that there is no reduction in the 

size of the sample for estimation. This is particularly an issue in our case because we 

have only 517 households for estimation. If a model shows superior performance in 

the subsamples in addition to the overall estimation sample, it is indication that the 

model indeed provides a better data fit. To evaluate performance of different models 

within each sub-sample, we use both aggregate and disaggregate measures of fit. At 

the aggregate level, we compare the mean predicted and actual (observed) number of 

household-level number of physical activity episodes per weekend day, using the 

absolute percentage error (APE) for each of the subsamples. At the disaggregate level, 

we compute an “out-of-sample” log-likelihood function (OSLLF) approach. The 

OSLLF is computed by plugging in the sub-sample observations into the log-

likelihood function, while retaining the estimated parameters from the overall 

estimation sample. As indicated by Norwood et al. (2001), the model with the highest 

value of OSLLF is the preferred one, since it is most likely to generate the set of sub-

sample observations. The results are provided in Table 1 for segments formed based 

on three variables: (1) Family income (three market segments), (2) Household bicycle 

ownership level (six market segments), and (3) Family type (three market segment). 

The third column provides the mean observed number of household-level physical 

activity episodes, while the next main column entitled “Aggregate-level fit statistics” 

provides the mean predicted number of household-level physical activity episodes 

(and the absolute percentage error or APE in parenthesis) from each of the ORL, 

RORL, and LC models. The mean predicted number of episodes from the LC model is 

closer to the true mean for nine of the twelve segments, as evidenced by the APE 

statistics. Finally, at the disaggregate level, the OSLLF value of the LC model is better 

than those of the other two models for nine of the twelve segments. All in all, the LC 

model outperforms the other two models in terms of data fit on the estimation sample 

as well as on sub-samples of the estimation sample.  

Besides the data fit superiority of the LC model, our results also show that the LC 

model provides more efficient estimates. In particular, the average of the trace of the 

covariance matrix of parameter estimates is 0.00136 for the LC model, 0.00664 for the 

RORL model estimated coefficients, and 0.00377 for the ORL model, indicating the 

higher standard errors (by 175-390 percent) from the RORL and the ORL models 

relative to the preferred LC model.
16

 That is, the recognition of family dependence 

leads to substantially improved econometric efficiency. 

                                                 
16

 The covariance matrix of the RORL model will provide higher values just because the 

coefficients estimated from the RORL model are larger in magnitude compared to the ORL and 

LC models (because the random effects in the RORL model increases the total error variance 

to a value beyond one, while the ORL and LC models normalize the error term variance to 

one). However, we normalized the coefficients in the RORL model by taking the weighted 

mean (across family types based on the shares of each family type) of the error variance, and 

computed the trace value of the implied covariance matrix of the normalized RORL 

coefficients. This allows an apples-to-apples comparison of the trace values across the ORL, 

RORL, and LC models.  
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In the following presentation of the empirical results, we focus our attention on 

the results of the LC model that provides the best data fit. 

  

4.3 Estimation Results 
 

Table 2 presents the estimation results for the LC model. The coefficients provide the 

effects of variables on the latent propensity of an individual to participate in weekend 

out-of-home physically active episodes. For ease in presentation, we indicate the 

effects of independent variables separately on adults (i.e., parents) and children, 

though the estimation is undertaken for all individuals together, while also 

accommodating unobserved dependencies in the physical activity propensities of 

individuals within a family.
17

 The first main row of Table 2 provides estimates of the 

threshold values (for parents and children). These do not have any substantive 

interpretation; rather, they simply serve to translate the latent propensity into the 

observed ordered categories of the number of physical activity participations. 

 

 

4.3.1 Individual Factors 
 

The effects of individual characteristics indicate the influence of the parents‟ age on 

both parents‟ and children‟s physical activity propensities. In particular, we find 

important interaction effects of sex and age in the physical activity propensity of 

adults. This is interesting, since many earlier studies examine the impact of sex and 

age as two separate variables or focus only on women (see, for example, Weuve et al. 

2004; King et al. 2005). However, our results suggest that there are important 

interaction effects between age and sex in adults‟ physical activity propensity.
18

 In 

particular, our results indicate no statistically significant differences in weekend day 

physical activity propensity between male and female adults until the age of 35 years. 

On the other hand, most earlier studies indicate that male adults tend to be more 

physically active compared to female adults at almost any age (see, for example, 

Schulz and Schoeller 1994; Azevedo et al. 2007; Troiano et al. 2008). Further, 

according to our results, the propensity for weekend physical activity is lower for 

males who are 35 years of age or more relative to their younger counterparts (less than 

35 years of age), while, for females in family households, the propensity is higher for 

individuals who are 35 years or more relative to their younger counterparts (less than 

35 years of age). Hawkins et al. (2009) find a similar result of increased physical 

activity among women in middle ages (40-59 years) relative to their younger peers, 

but this holds only for Hispanic women in their sample. As importantly, the 

implication of our results is that women who are 35 years of age or over have a higher 

                                                 
17

 In the rest of this paper, we will use the terms adults and parents interchangeably, based on 

the context of the discussion.  
18

 Note that we tried various threshold age values to capture the age-related effects in our 

specification, but the thresholds of 35 years and 45 years provided the best fit. This dummy 

variable specification was better than a continuous age specification and a specification that 

considered non-linear spline effects. For male adults, there was literally no difference in the 

coefficients for the “35-45” years and “over 45 years” age categories. So, we have a single 

coefficient for these two categories for males. For females, there were larger differences in the 

two age categories. Thus, even though not statistically different at the 0.05 level of 

significance, we retained different coefficients on the two age categories for females.  
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Table 1 Measures of Fit 1 
2 

   Aggregate-level fit statistics Disaggregate-level fit statistics 

 

 

 

Mean predicted number of 

household-level physical 

activity episodes (APE) 

“Out-of-sample” log-likelihood 

function (OSLLF)  

Sample details 
Number of 

households 

Mean observed number of 

household-level physical 

activity episodes 

ORL RORL LC 

 

ORL 

 

 

RORL 

 

LC 

Full sample 517 0.7485  
0.7498 

(0.17%) 

0.7529 

(0.59%) 

0.7473 

(0.16%) 
-916.748 -738.602 -732.844 

Family Income         

Less than 60K 121 0.6529 
0.6395 

(2.05%) 

0.6172 

(5.47%) 

0.6594 

(1.00%) 
-191.837 -140.805 -139.079 

Between 60K and 90K 209 0.6794 
0.6685 

(1.60%) 

0.6597 

(2.90%) 

0.6686 

(1.59%) 
-343.958 -279.977 -282.021 

Greater than 90K 187 0.8877 
0.9120 

(2.74%) 

0.9449 

(6.44%) 

0.8922 

(0.51%) 
-380.953 -317.820 -311.744 

Household bicycle ownership         

0 49 0.4694 
0.6503 

(38.54%) 

0.6671 

(42.12%) 

0.6003 

(27.89%) 
-61.812 -43.566 -45.863 

1 55 0.6182 
0.5805 

(6.10%) 

0.5850 

(5.37%) 

0.5852 

(5.34%) 
-86.636 -70.599 -69.022 

2 89 0.5730 
0.6437 

(12.34%) 

0.6589 

(14.99%) 

0.6343 

(10.70%) 
-132.726 -110.842 -108.799 

3 108 0.7315 
0.7040 

(3.76%) 

0.7089 

(3.09%) 

0.6898 

(5.70%) 
-186.284 -147.809 -147.435 

4 136 0.8382 
0.8497 

(1.37%) 

0.8447 

(0.78%) 

0.8348 

(0.41%) 
-272.895 -210.816 -206.721 

5 or more 80 1.0750 
0.9370 

(12.84%) 

0.9288 

(13.60%) 

1.0033 

(6.67%) 
-176.395 -154.970 -155.004 

Family type         

Two parent 377 0.7613 
0.7849 

(3.10%) 

0.7648 

(0.46%) 

0.7605 

(0.11%) 
-700.618 -557.709 -555.895 

Single mother 85 0.5765 
0.4999 

(13.29%) 

0.5714 

(0.88%) 

(4.28%)8

8%) 

0.5518 

(4.28%) 
-115.405 -96.506 -94.161 

Single father 55 0.9273 
0.8953 

(3.45%) 

0.9516 

(2.62%) 

0.9593 

(3.45%) 
-100.725 -84.387 -82.787 
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Table 2 Estimation Results for the Number of Out-of-Home Weekend Physically Active Activity Episodes 3 

 Adults (Parents) Children (aged 5-15) 

Variable Parameter t-stat Parameter t-stat 

Threshold parameters     

Threshold 1  3.084  4.68  2.702  4.02 

Threshold 2  5.138  6.86  5.187  7.13 

Individual factors     

Male adult (Father) between 35 -45 years -1.297 -3.20 -1.586 -3.69 

Male adult (Father) over 45 years -1.297 -3.20 -1.586 -3.69 

Female adult (Mother) between 35 -45 years  2.137  4.06  1.822  3.57 

Female adult (Mother) over 45 years  1.848  3.95  1.704  3.87 

Child‟s age  - - -0.044 -1.56 

Adult‟s internet use -0.295 -1.26 - - 

Physical environment factors     

Season and activity day      

Winter -0.428 -1.31 - - 

Sunday -0.580 -2.73 -0.635 -2.84 

Transportation system and built environment 

characteristics 
    

Bicycling facility density (miles of bike lanes      

per square mile)  
 0.073  2.03  0.106  2.75 

Fraction of multi family dwelling units - -  0.479  1.03 

Presence of physically inactive recreation centers 

(such as theaters, amusement parks, inactive clubs 

(e.g. video games or cards))  

- - -0.387 -1.39 

Social environment factors     

Family-level demographics     

Two-parent families  0.422  1.60 - - 

Presence of children aged less than 5 years  1.565  2.57 - - 

Family income greater than 90k  0.283  1.27  0.484  2.13 

Own household -0.655 -2.31 -0.425 -1.55 

Number of motorized vehicles  -0.227 -1.62 - - 

Number of bicycles - -  0.121  2.10 

Residential neighborhood demographics     

Fraction of Caucasian American population  0.632  1.24 - - 

Fraction of African-American population - - -2.783 -1.34 
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propensity to participate in physically active episodes relative to their male counterparts. Of 

course, one should keep in mind that the measure of physical activity in our study (as in 

Dunton et al. 2008; Sener et al. 2009) is the number of physical activity bouts on a weekend 

day as reported in a general activity survey, while several earlier studies have considered 

time expended in physical activity over longer stretches of time (such as a week or a longer 

period of time) using focused physical activity surveys or objective measurements of 

physical activity. Overall, there is a clear need for a joint analysis of different dimensions of 

physical activity, including types of physical activity bouts, time investments and number of 

bouts, where bouts occurred and time-of-day of bouts, weekend day versus weekday 

patterns, as well as with-whom bouts occurred. Understanding the role of demographics and 

other variables on each and all of these physical activity dimensions can provide important 

information for effective intervention strategies. While the field is moving toward such 

comprehensive analyses of physical activity (see, for example, Dunton et al. 2008; Sener et 

al. 2008), the challenge is to obtain reliable data and develop methods to support the 

analysis of all these dimensions jointly. This is an important direction for future research in 

the physical activity area.  

Parental age also has an important effect on children‟s physical activity propensity, 

though, once again, the effect is different for mothers and fathers. Children in families with 

young fathers (less than 35 years of age) have a higher physical activity propensity relative 

to children in families with older fathers, while children in families with young mothers 

have a lower physical activity propensity relative to children in families with older mothers. 

Taken together with the impact of parental age on parental physical activity, these results 

perhaps suggest that children explicitly model their parents‟ physical activity participation 

so that children in households with one or both physically active parents are more likely to 

be physically active. Overall, the results indicate that the highest levels of physical activity 

across all individuals in a family (parents and children) tend to be in two-parent families 

with young fathers (less then 35 years of age) and older mothers (35 years of age or more), 

while the lowest levels of physical activity are in two-parent families with the father over 35 

years of age and the mother less than 35 years of age. Previous studies (see, for example, 

Davison et al. 2003) have suggested that mothers and fathers support and shape the physical 

activity participation of children in quite different ways, with fathers taking more of an 

explicit modeling role (a more hands-on physical activity-embracing role) and mothers 

taking more of a logistics support role (driving children to coaching camps and related 

physical activity opportunity locations). It would be interesting in future studies to examine 

if such differential support roles of parents in influencing children‟s physical activity 

participation are somehow being manifested in the parental age-based effects found in this 

study. In any case, the results suggest that policy interventions aimed at increasing 

children‟s physical activity levels could potentially benefit from targeting entire family units 

rather than targeting only children. 

The effect of the child‟s age variable in Table 2 indicates that older children have a 

lower propensity to partake in physical activities. This is a result that is consistent with the 

findings of earlier studies (see, for example, Sallis et al. 2000; Sener et al. 2008). While 

there may be several reasons for this result, one reason may be that, as children get older, 

they gravitate more toward unstructured social activities rather than structured sports 

activities and unstructured free play (Copperman and Bhat 2007b). It is interesting to note 

here that we did not find any statistically significant effect of the child‟s age on parents‟ 

physical activity propensity.   

Finally, within the category of individual characteristics, adults who use the internet 

during the weekend day are less likely to partake in physical activity compared to adults 
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who do not use the internet.
19

 This result may be a reflection of overall sedentary 

inclinations or lesser time availability for physically active pursuits in the day (due to 

getting “sucked up” in social conversations or internet browsing or e-mail checking). While 

only marginally significant, this result emphasizes the need to balance the positive aspects 

of internet connectivity with the potentially detrimental effect on physical activity lifestyles 

(see also Kennedy et al. 2008). 

In addition to the variables discussed above, we also examined the effects of work-

related factors on physical activity propensity of family members. But we did not find any 

statistically significant impacts even at the 15 percent level. 

 

4.3.2 Physical Environment Factors 
 

In the group of physical environment factors, the first set of variables corresponds to season 

and activity day variables. The season variables suggest a lower propensity among adults to 

participate in weekend physical activities during the cold winter months relative to other 

times of the year (though this effect is not significant at the 0.05 significance level). Such 

seasonal variations have been found in other studies of adult physical activity participation 

(see Tucker and Gilliland 2007; Sener and Bhat 2007; Pivarnik et al. 2003). This may be 

attributed to the discomfort in participating in outdoor physically active pursuits during the 

winter season in the San Francisco Bay area, though this result is perhaps not transferable to 

areas with a rich set of winter sports activities such as skiing or skating. Interestingly, we 

did not find such similar season effects for children‟s physical activity participation. The 

activity day variable indicates lower physical activity propensity among both parents and 

children on Sundays compared to Saturdays, presumably because of the time investment in 

religious and social activities on Sundays. Further, as indicated in some other studies, 

Sundays serve the purpose of “rest” days at home before the transition to school or work the 

next day (see, for instance, Bhat and Gossen 2004).  

We tested several transportation system and built environment variables, though most 

of these did not turn out to be statistically significant even at the 15 percent level of 

significance.
20

  However, as shown under “Transportation system and built environment 

characteristics” in Table 2, both adults and children in households residing in areas with 

high bicycle facility density (as measured by miles of bicycle lanes per square mile in the 

residential traffic analysis zone) are more likely to participate in physically active pursuits 

relative to individuals in other households. Of course, this result (and the rest of the effects 

in the transportation system/built environment variable category) should be viewed with 

some caution since we have not considered potential residential self selection effects. That 

is, it is possible that highly physically active families self-select themselves into zones with 

built environment measures that support their active lifestyles (see Bhat and Guo 2007; Bhat 

and Eluru 2009 for methodologies to accommodate such self selection effects; combining 

such methodologies with the copula methodology proposed here for accounting for family 

clustering effects is left for future research). The “fraction of multifamily dwelling units” 

                                                 
19

 The “internet use” variable corresponds to the individuals‟ internet use over the sampled weekday 

for personal reasons such as for browsing (information seeking and shopping), entertainment/games, 

social e-mail, chat rooms, and banking/financial purposes. 

20
 This may be a reflection of the use of a traffic analysis zone (TAZ) as a spatial unit of resolution 

for computing transportation system and built environment attributes, which is admittedly rather 

coarse. Future studies should consider more micro-scale measures to represent transportation system 

and built environment variable effects, but we are constrained to use the TAZ in this study because 

residence locations were tagged only to TAZs due to privacy considerations.  
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variable effect reveals a higher level of physical activity among children residing in zones 

with a high percent of multifamily dwelling units. This may be a reflection of more 

opportunities for joint physical activity participation with peers and other individuals in 

neighborhoods with a high share of multifamily units, Finally, the presence of physically 

inactive recreation centers in a zone reduces the physical activity propensity of children 

residing in that zone (though this effect is only marginally significant).  

 

4.3.3 Social Environment Factors 
 

The family demographics effects in Table 2 (within the category of social environment 

factors) show that adults in two-parent families have a higher propensity to participate in 

physically active episodes over the weekend day relative to families with only one parent, 

perhaps because of increased opportunities for joint participation in out-of-home adult 

physical activity participation or because one of the parents can look after children at home 

while the other participates in physical activity. The results also indicate the higher physical 

activity propensity of parents with young children (less than five years of age) relative to 

parents of older children (five years or more). This may be related to the increased demands 

and reliance of older children on their parents for logistics and related support to participate 

in activities based on their own independent needs (see Stefan and Hunt 2006; CDC 2005; 

Eccles 1999), leaving less time for parents to pursue physical activities. Both parents and 

children in high income families (with an annual income of more than $90,000) have a 

higher propensity (than low income families) for physical activities, presumably due to 

fewer financial restrictions to travel to, and participate in, physical activities (see Parks et al. 

2003; Day 2006). On the other hand, the results in Table 2 indicate a lower weekend 

physical activity participation propensity among individuals (adults and children) residing in 

their own houses relative to individuals residing in non-owned houses. Finally, as the 

number of motorized vehicles in the family increases, adults (but not children) are less likely 

to engage in physical activity episodes, while, as the number of bicycles in the household 

increases, children (but not adults) are more likely to engage in physical activity episodes. 

Of course, a caution here is that this may be an associative effect rather than a causal effect. 

That is, rather than fewer cars/more bicycles engendering more physical activity, it may be 

that households with physically active individuals choose to own fewer cars/more bicycles.  

The neighborhood race composition effects under neighborhood residential 

demographics do show a general trend of higher (lower) physical activity propensity among 

adults (children) residing in neighborhoods with a high share of Caucasian-American 

households (African-American households) relative to adults (children) residing in other 

neighborhoods.  As indicated by Rai and Finch (1997), physical activity in the population 

has generally been a “white” domain. Gordon-Larsen et al. (2005, 2006) also suggest that 

the lower physical activity propensity among children in predominantly African-American 

neighborhoods may be because of poor neighborhood quality and lack of good recreational 

centers.  

 

4.3.4 Dependence Effects 
 

The estimated copula-based clustered ordered response model incorporates the jointness 

between physical activity episodes of family members not only through observed factors but 

also based on unobserved factors. As indicated earlier, the Clayton copula turned out to 

provide the best fit. The association parameter is parameterized in the Clayton copula as 

)exp( qq s  , where the δ vector is estimated. As indicated earlier, in our estimations, the 

sq vector included three dummy variables: (1) family with both parents, (2) single mother 
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family, and (3) single father family. The implied Clayton association parameter θq for these 

three family types and their corresponding standard errors (computed using the familiar 

delta method; see Greene 2003, page 70) are as follows: Family with both parents: 1.866 

(0.155), single mother family: 2.158 (0.467), and single father family: 1.413 (0.478). All of 

these parameters are very highly statistically significant (relative to the value of „zero‟, 

which corresponds to independence), indicating the strong dependence among the 

unobserved physical activity determinants of family members.  

Another common way to quantify the dependence in the copula literature is to compute 

the Kendall‟s measure of dependence.
21

 For the estimated association parameters, the values 

of the Kendall‟s   are (standard errors are in parenthesis): Family with both parents: 0.483 

(0.021), single mother family: 0.519 (0.054), and single father family: 0.414 (0.082). 

The dependence form of the Clayton copula implies that the dependency in unobserved 

components across family members in the propensity to participate in physically active 

episodes is strong at the left tail, but not at the right tail. Figure 1 plots the dependency 

scatterplot of the relationship between the unobserved components εqi of physical activity 

propensity for any two individuals in the same family q, based on family type.
22

 As can be 

observed, the results indicate that individuals in a family tend to have uniformly low 

physical activity (tighter clustering of data points at the low end of the physical activity 

spectrum), but there is lesser clustering of individuals in a family toward the high physical 

activity propensity spectrum. In other words, the dependence among the physical activity 

propensities of family members is asymmetric, with a stronger tendency of family members 

to simultaneously have low physical activity levels than to simultaneously have high 

physical activity levels. Equivalently, it is easier for a family to lapse into a sedentary 

lifestyle because of the sedentary lifestyle of one of its members, while families do not come 

out of a sedentary lifestyle as easily just because of the active lifestyle of one of its 

members. From an education-based intervention standpoint to promote physical activity, the 

result that there is strong clustering within individuals in a family at the low physical 

activity spectrum end is encouraging. It suggests that a cost effective strategy would be to 

identify individuals who have a low physical activity level, then trace the individual back to 

her/his household, and target the entire family unit, all of whose members are likely to have 

low physical activity levels. Such a strategy constitutes a good “capture” mechanism to 

bring educational campaigns to those who may benefit most from such campaigns.
23

 More 

                                                 
21

 See Bhat and Eluru (2009) for a description of this dependency measure. The traditional 

dependence concept of correlation coefficient ρ is not informative for asymmetric distributions, and 

has led statisticians to use concordance measures. Basically, two random variables are labeled as 

being concordant (discordant) if large values of one variable are associated with large (small) values 

of the other, and small values of one variable are associated with small (large) values of the other. 

This concordance concept has led to the use of the Kendall‟s τ, which is in the range between zero 

and one, assumes the value of zero under independence, and is not dependent on the margins. For the 

Clayton copula, τ = θ / (θ + 2). 
22

 For instance, Figure 1(a) represents the dependency scatterplot of the relationship between the 

unobserved components (εqi) of physical activity propensity of two individuals (represented by each 

axis) residing in the same two-parent family. Note that the physical activity propensities 
*

qi
y  are 

latent; thus, the scatterplots of εqi are based on the implied copula dependence shape that leads to the 

best model fit to the observed data. In our case, this is the Clayton copula, with the shapes being a 

function of the estimated Kendall‟s τ value. The dependency relationships presented in Figure 1 will 

be the same for any two individuals within the same family, since the association parameter θq varies 

across families, not between members of the same family.  
23

 The statement here is not intended to be patronizing in any way to those who have low physically 

active levels. In fact, many individuals with low physically active levels may already know a 
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generally, the asymmetric “spillover” or “rubbing off” effect suggests that family-level 

information dissemination and targeting strategies to move away from sedentary lifestyles 

may be more effective than individual-level strategies to promote active lifestyles. The 

figures also show the higher (lower) dependency (especially at the lower end of the physical 

activity spectrum) for single mother (single father) families relative to two-parent families. 

This suggests a need to focus particularly on single mother households, and provide such 

families information regarding the potentially adverse effects of sedentary lifestyles. 

 

To summarize, the discussion above illustrates that the dependency effects within a family 

(in the propensity to participate in physical activity) are asymmetric and statistically 

significant. A model that does not consider dependence between individuals in a family (i.e., 

the simple ordered response model) and a model that accommodates only a restrictive 

normal dependency form are unable to consider flexible and asymmetric dependence 

patterns, while the copula-based approach is able to do so. These models also provide 

inconsistent estimates, as we discuss in the next section.  

 

4.3.5 Aggregate Impacts of Variables 
 

The parameters on the exogenous variables in Table 2 do not directly provide the magnitude 

of the effects of the variables on the number of out-of-home weekend physical activity 

participations. To do so, we compute the aggregate-level “elasticity effects” of each 

variable. In particular, to compute the aggregate-level elasticity of a dummy exogenous 

variable (such as the “male adult (father) between 35-45 years” variable), we compute the 

expected aggregate share of individuals participating in each number of activity episodes in 

the “base case” and the corresponding share in the “scenario case” after increasing the 

number of male individuals between 35-45 years by 10 percent (with an appropriate 

decrease in the base category of male individuals younger than 35 years). We then compute 

an effective percentage change in the expected aggregate share of individuals participating 

in each number of activity episodes due to a change from the base case to the scenario case. 

On the other hand, to compute the aggregate level elasticity effect of an ordinal variable 

(such as number of motorized vehicles), we increase (or decrease) the value of the variable 

by 1 and compute a percentage change in the expected aggregate share of individuals 

participating in each number of activity episodes. Finally, the aggregate-level “arc” 

elasticity effect of a continuous exogenous variable (such as fraction of African-American 

population) is obtained by increasing the value of the corresponding variable by 10 percent 

for each individual in the sample, and computing a percentage change in the expected 

aggregate share of individuals participating in each number of activity episodes. While the 

aggregate level elasticity effects are not strictly comparable across the three different types 

of independent variables (dummy, ordinal, and continuous), they do provide order of 

magnitude effects.  

 

 

 

 

                                                                                                                                                             
substantial amount of statistics about the potential benefits of regular physical activity (to themselves 

and to society as a whole), and may be making informed choices. But, as in all promotional 

campaigns of services/products, one of the important tasks is to efficiently identify the population 

groups who are current “non-consumers” (i.e., those who do not partake much in physical activity 

levels in the empirical context of the current paper) and attempt to “convert” them. The statement 

should be viewed in this light.  
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(1a) 

 
(1b) 

 
(1c) 

 
Figure 1 Logistic-Clayton Copula Plots across Family Types 

 

(1a) Two-parents families (τ = 0.483); (1b) Single mother families (τ = 0.519);  

(1c) Single father families (τ = 0.414)
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The results are presented in Table 3 for the standard ordered-response logit (ORL) model, 

the random effects ordered-response model (RORL) and the LC models. To reduce clutter, 

we simplify the effects from the ordered models to a simple binary effect of variables on the 

share of adults (parents) and children participating in physical activity episodes. Also, to 

obtain standard deviations of the estimated magnitude effects, we undertake a bootstrap 

procedure using 26 draws of the coefficients (on the exogenous variables) based on their 

estimated sampling distributions. The mean magnitude effect across these 26 draws is in the 

column labeled “Mean” and the standard deviation of the magnitude effect is in the column 

labeled “Std. Dev.”. The numbers in the “mean” and “std. dev.” columns may be interpreted 

as the mean and standard deviation estimates, respectively, of the percentage change in the 

share of adults and children participating in one or more physically active recreational 

episodes during the weekend day. For instance, the first number “-11.94” with a standard 

deviation of “1.83” corresponding to the “male adult (father) between 35-45 years” variable 

in the ORL model indicates that the share of adults participating in active recreation 

decreases by about 12 percent (with a standard deviation of this effect being 1.83 percent) if 

the percentage of male adults between 35-45 years increases by 10 percent (with a 

corresponding decrease in the percentage of male adults below 35 years of age). On the 

other hand, the number “-13.51” with a standard deviation of “1.5” (under the “children” 

column for the ORL model) implies that the share of children participating in active 

recreation decreases by about 13.5 percent (with a standard deviation of 1.5 percent) if the 

percentage of male adults between 35-45 years increases by 10 percent. Similarly, the 

number “-2.21” with a standard deviation of “0.59” corresponding to the “child‟s age” 

variable in the ORL model reflects that an increase by one year for all children leads to 

about a 2.2 percent decrease (with a standard deviation of 0.59 percent) in the share of 

children participating in physically active recreation, while the number “2.43” (standard 

deviation of 0.29) for the effect of the “Bicycling facility density” implies that the share of 

adults participating in active recreation increases by 2.43 percent due to a 10 percent 

increase in the miles of bicycle lanes per square mile in each residence zone. 

Several important observations may be made from Table 3. First, the physical 

environment variables (middle rows of the table) have a smaller (and inelastic) effect on 

physical activity participation relative to sociodemographic variables (the top and bottom 

rows of the table). This is consistent with other studies in the literature that indicate that, 

while the built environment may be engineered to increase physical activity, the ability to do 

so is rather limited (see, for instance, Copperman and Bhat 2007a; Goodell and Williams 

2007; TRB 2005). Among the individual factors, the age of the father and mother have a 

substantial impact on the physical activity levels of all members of a family. In the group of 

family-level demographics, the presence of very young children and the number of 

motorized vehicles are important determinants of the physical activity levels of adults in a 

family, while the number of bicycles is an important determinant of the physical activity 

levels of children in a family. The important effects of vehicle ownership (for adults) and 

bicycle ownership (for children) catapults policies aimed at reducing motorized vehicle 

ownership and increasing bicycle ownership as potentially important ones to consider not 

only from the standpoint of reducing traffic congestion and greenhouse gas emissions, but 

also from the perspective of improving public health. However, the caveat mentioned earlier 

needs to be emphasized again; that is, this relationship of motorized vehicle ownership and 

bicycle ownership with physical activity may be an associative one rather than a causal one. 

Second, there is an impact of the fraction of Caucasian-American population in a zone on 

the physical activity levels of adults in that zone, though the reasons for this finding are not



Sener et al., Journal of Choice Modelling, 3(3), pp. 1-38   

31 

Table 3 Impact of Change in Individual, Physical, and Social Environment Factors 

  % Change in Expected Aggregate Share of Individuals participating in physically Active Episodes 

  ORL RORL LC 

 Formulation of 

the Change on 

the Variable 

Adults Children Adults Children Adults Children 

Variable 
Mean 

Std. 

Dev. Mean 

Std. 

Dev. Mean 

Std. 

Dev. Mean 

Std. 

Dev. Mean 

Std. 

Dev. Mean 

Std. 

Dev. 

Individual factors              

   Male adult (Father) between 35 -45 years Increased by 10% -11.94 1.83 -13.51 1.50  -8.42 1.67  -9.14 1.32 -13.36* 2.05 -14.98* 2.04 

   Male adult (Father) over 45 years Increased by 10% -11.94 1.83 -13.51 1.50  -8.42 1.67  -9.14 1.32 -13.36* 2.05 -14.98* 2.04 

   Female adult (Mother) between 35 -45 years Increased by 10%  19.80 2.14  14.74 1.62 14.62 2.03 11.18 1.33   21.55* 2.48  16.74* 2.01 

   Female adult (Mother) over 45 years Increased by 10%  18.11 2.69  15.57 1.93 14.13 2.45 11.97 1.86 18.61 2.92   15.77+* 2.23 

   Child‟s age  Increased by 1 - -   -2.21 0.59 - -  -1.04 0.37 - -    -1.99 0.53 

   Adult‟s internet use Increased by 10%  -0.28 0.38 - -  -1.17 0.28 - -   -1.25+ 0.46 - - 

Physical environment factors              

Season and activity day               

   Winter Increased by 10%  -2.82 0.70 - -  -1.66 0.52 - -  -1.77 0.62 - - 

   Sunday Increased by 10%  -2.65 0.50   -2.32 0.45  -1.64 0.42  -1.70 0.36    -3.40* 0.60   -3.12* 0.54 

Transportation system and built environment 

characteristics 
             

   Bicycling facility density (miles of bike 

lanes per square mile)  
Increased by 10%   2.43 0.29    2.50 0.31   1.60 0.26  2.13 0.28    1.72+ 0.24   2.37 0.34 

   Fraction of multi family dwelling units Increased by 10% - -    1.63 0.27 - -  1.11 0.17 - -   1.23 0.26 

   Presence of physically inactive recreation 

centers (such as theaters, amusement parks, 

inactive clubs (e.g. video games) 

Increased by 10% - -   -4.40 0.69 - - -1.40 0.40 - -   -1.64+ 0.60 

Social environment factors              

Family-level demographics              

   Two-parent families Increased by 10%   4.39 0.43 - -   3.50 0.41 - -       3.46 0.48 - - 

   Presence of children aged less than 5 years Increased by 10%  13.92 3.01 - -    14.63 3.47 - -     16.71 3.15 - - 

   Family income greater than 90k Increased by 10%   2.24 0.44    4.08 0.47  2.14 0.48   3.05 1.40  2.72 0.55   3.75 0.54 

   Own household Increased by 10%  -2.01 0.48   -2.99 0.55 -1.24 0.45  -0.34 0.38     -3.65+* 0.70   -1.85* 0.60 

   Number of motorized vehicles  Decreased by 1   8.87 3.16 - -   6.71 2.36 - -     10.77 3.88 - - 

   Number of bicycles Increased by 1 - -  14.85 1.19 - -   9.42 1.23 - -    9.84+ 1.12 

Residential neighborhood demographics              

   Fraction of Caucasian-American population Increased by 10%  5.29 0.55 - -   3.56 0.55 - -   3.59+ 0.58 - - 

   Fraction of African-American population Increased by 10% - -   -1.02 0.18 - -  -0.78 0.14 - -   -0.53+ 0.19 

+
Coefficient is statistically different from the corresponding ORL coefficient at the 90 percent confidence level 

*
Coefficient is statistically significantly different from the corresponding RORL coefficient at the 90 percent confidence level 
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obvious. Is it that recreational opportunities and facilities (some of which are not captured in 

the built environment variables considered in this study) are better in zones with a high 

Caucasian-American population, as suggested by Gordon-Larsen et al. (2005, 2006), or are 

there other reasons for the differences? Additional qualitative investigation into this finding 

should provide valuable insights. Third, adding bicycle lanes and increasing bicycle facility 

density does increase physical activity levels in both adults and children, even though the 

usual caveat has to be added that the directionality of this influence needs to be examined 

carefully. In particular, whether this influence is a causal effect of bicycle facility density on 

physical activity levels or simply a self-selection effect of highly physically active-oriented 

individuals locating themselves in areas with good bicycle facilities is an open question (see 

Bhat and Guo 2007; Pinjari et al. 2008 for additional discussions of this issue). Finally, there 

are differences in the effects of variables between the ORL, RORL, and LC models. In the 

column corresponding to the LC model results, we identify those magnitude estimates from 

the LC model that are statistically different from the corresponding magnitude estimates 

from the ORL model (identified by a “+” next to the LC coefficient) and from the RORL 

model (identified by a “*” next to the LC coefficient). A 90 percent level of confidence is 

used to determine statistically significant differences. The bootstrap-based standard 

deviation estimates of coefficient estimates are used in the computation. As one can notice, 

there are eight variable effects that are statistically different between the LC and ORL 

models, and nine variable effects that are statistically different between the LC and the 

RORL models. This, combined with the better data fit of the LC model, points to the 

inconsistent effects from the ORL and RORL models. Overall, the results underscore the 

importance of testing different copula structures for accommodating family dependencies to 

avoid the risks of inappropriate covariate influences and inconsistent predictions of the 

number of out-of-home weekend physically active activity episodes. Interestingly, our 

results suggest that it is possible that not accommodating clustering effects at all (that is, 

ignoring dependency) could be better from the standpoint of estimating consistent variable 

elasticity effects relative to accommodating clustering effects using an inappropriate 

dependency surface. This observation is based on the fewer mean estimates in Table 3 that 

are significantly different between the LC and ORL models compared to between the LC 

and RORL models.  

 

5.  Conclusion 
 

This paper presents a copula-based model to examine the physical activity participation 

levels of individuals, while also explicitly accommodating dependencies due to observed 

and unobserved factors within individuals belonging to the same family unit. In the copula-

based approach, the model structure allows the testing of various dependency forms, 

including non-linear and asymmetric dependencies among family members. For instance, 

family members may be likely to have simultaneously low propensities for physical activity 

but not simultaneously high propensities, or high propensities together but not low 

propensities together.  In the current paper, we focus on the Archimedean class of copulas, a 

class that is ideally suited to the clustering context where the level of dependence in the 

marginal random unobserved terms within a cluster is identical (i.e., exchangeable) across 

any (and all) pairs of individuals in the cluster.  

The measure of physical activity we adopt in the current study is the number of out-of-

home physical activity bouts or episodes (regardless of whether these bouts correspond to 

recreation or to walking/biking for utilitarian purposes) on a weekend day as reported by 

respondents in the 2000 San Francisco Bay Area Survey. Accordingly, we use an ordered-

response structure to analyze physical activity levels, while testing various multivariate 



Sener et al., Journal of Choice Modelling, 3(3), pp. 1-38   

33 

copulas. The empirical results indicate that the Logistic-Clayton (LC) model specification 

provides the best data fit. That is, individuals in a family tend to have uniformly low 

physical activity, but there is lesser clustering of individuals in a family toward the high 

physical activity propensity spectrum. This result suggests that a cost effective “capture” 

mechanism to bring educational campaigns to those who may benefit most from such 

campaigns would be to identify individuals who have a low physical activity level, then 

trace the individual back to her/his household, and target the entire family unit, all of whose 

members are likely to have low physical activity levels. 

A number of individual factors, physical environment factors, and social environment 

factors are considered in the empirical analysis. The results indicate that physical 

environment factors are not as important in determining physical activity levels as 

individual and social environment factors. Also, decreased vehicle ownership (for adults) 

and increased bicycle ownership (for children) are important positive determinants of 

weekend physical activity participation. These results should be carefully examined as they 

might be useful in developing policies aimed at not only reducing traffic congestion (and its 

consequent benefits), but also increasing physical activity levels. In addition, individual 

factors (demographics, work characteristics, internet use at home), physical environment 

variables (season and activity-day variables, as well as built environment measures), and 

social environment factors (family-level demographics and residential neighborhood 

demographics) are other important determinants of physical activity participation levels.  

In closing, we have proposed a copula structure to accommodate clustering effects in 

ordinal response models, and applied the methodology to a study of physical activity 

participation levels of individuals as part of their families. A rich set of potential 

determinants of the number of out-of-home weekend day physical activity episodes is 

considered. However, we do not accommodate physical activity attitudes/beliefs and support 

systems of individual family members as they influence the physical activity levels of others 

in the family. This is because our data source does not collect such information. Future 

studies would benefit from including such family-level attitudinal/support variables, while 

also adopting a family-level perspective of physical activity as in the current study.  
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