
MacKerron, George

Article

Implementation, implementation, implementation: Old
and new options for putting surveys and experiments
online

Journal of Choice Modelling

Provided in Cooperation with:
Journal of Choice Modelling

Suggested Citation: MacKerron, George (2011) : Implementation, implementation, implementation:
Old and new options for putting surveys and experiments online, Journal of Choice Modelling, ISSN
1755-5345, University of Leeds, Institute for Transport Studies, Leeds, Vol. 4, Iss. 2, pp. 20-48

This Version is available at:
https://hdl.handle.net/10419/66819

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

 http://creativecommons.org/licenses/by-nc/2.0/uk/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/66819
http://creativecommons.org/licenses/by-nc/2.0/uk/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Journal of Choice Modelling, 2(1), pp. 20-48
www.jocm.org.uk

Implementation, implementation,
implementation:

old and new options for putting surveys and
experiments online

George MacKerron∗

Department of Geography & Environment, London School of Economics & Political
Science, WC2A 2AE, London, United Kingdom

Received 11 December 2009, revised version received 19 January 2011, accepted 1 June 2011

Abstract

The Internet offers enormous possibilities for surveys and experimental
data collection, including randomised treatments, customisation, and inter-
activity. These capabilities are well suited to the implementation of choice
modelling experiments. However, the implementation of web surveys is not
a simple task, and the existing options open to researchers are commonly
unsatisfactory in a number of ways. The result is that few Internet sur-
veys and experiments are able to exploit the unique capabilities of the web.
This paper suggests a new approach, illustrated with a working prototype:
an open-source, domain-specific language (DSL) designed for specifying web
surveys and experiments, which is called websperiment. The paper first looks
at the existing approaches, highlighting their strengths and weaknesses. It
then outlines the concepts underlying websperiment, and this DSL’s nature
and scope, with simple code examples. Finally, it shows how the DSL can
be used to concisely specify a highly dynamic choice modelling survey.

Keywords: survey; questionnaire; choice experiment; internet; implementa-
tion; DSL; Ruby

1 Introduction

The Internet offers enormous possibilities for survey and experimental data col-
lection: randomisation, customisation, interactivity, paradata1, and more. Web

∗T: +44 (0)20 7193 7369, g.j.mackerron@lse.ac.uk
1Paradata are data that “do not describe the respondent’s answers but the process of an-

swering the web questionnaire” (Heerwegh, 2003), for example, the time a respondent spends
answering a specific question, or the sequence in which response options are chosen.

Licensed under a Creative Commons Attribution-Non-Commercial 2.0 UK: England & Wales License
http://creativecommons.org/licenses/by-nc/2.0/uk/

ISSN 1755-5345

http://www.jocm.org.uk
mailto:g.j.mackerron@lse.ac.uk
http://creativecommons.org/licenses/by-nc/2.0/uk/

MacKerron, Journal of Choice Modelling, 4(2), pp. 20-48

surveying is cheaper and faster than traditional approaches, and as universal In-
ternet access edges ever closer, its biggest single drawback—an incomplete and
biased sampling frame—is set to keep on diminishing.

There has, rightly, been much interest in mode effects and in the sampling,
validity, and design issues associated with web surveys (e.g. Marta-Pedroso et al.,
2007; Dillman et al., 1998; Schonlau et al., 2002; Couper, 2008). There has,
however, been rather little discussion regarding the practical implementation of
such surveys.

Survey implementation matters, and it matters arguably even more on the
web than in some other modes: an online instrument must compensate for the
lack of trained interviewers to administer it. Web survey implementation affects
accessibility, compatibility and consistency across respondents; it affects respon-
dent motivation and experience; it creates context effects, and has implications
for data security.

Implementation is a genuinely difficult problem. It is subject to the combined
challenges both of good generic survey implementation and of good generic web
application implementation2. It is a problem which increases in scale in tandem
with the potential rewards: “the more complexity one builds into the instrument,
the greater the cost and effort required to program and test the survey, and the
greater the likelihood that something might not work as intended” Couper (2008,
30).

Implementation is arguably a problem which has yet to be satisfactorily ad-
dressed. Few Internet surveys currently exploit the unique capabilities of the
web: most function simply as on-screen representations of a paper-and-pencil
design. Furthermore, even such unambitious representations are rarely executed
well. Couper (2008, xvi) appears justified in his continuing amazement “at the
poor design of many web surveys”.

In the hope of helping to improve web survey implementation, this paper
suggests a new approach, embodied in and illustrated by a working prototype.
The approach has three distinctive aspects. First, it involves the development
of a ’domain-specific’ programming language (DSL). Second, it makes liberal use
of a mechanism known as ’inheritance’, an important element in object-oriented
programming. Finally, it is open source. These are somewhat technical concepts,
and prior knowledge is not assumed. They are considered in more detail in Section
3.

The rest of the paper is structured as follows: Section 2 looks at the main

2The latter include not only the general challenges associated with IT service development,
in which effective communication of requirements is a key factor, but a further host of technical
characteristics related to the web. For example: respondents must be tracked across separate
page requests, overcoming the statelessness of the underlying protocol, HTTP; limited, inconsis-
tent and incompatible browser, operating system and hardware capabilities and settings must all
be accommodated; logic must be split or duplicated between the server and untrusted clients;
and in spite of all this, an attractive, consistent and easily navigated user interface must be
maintained.

21

MacKerron, Journal of Choice Modelling, 4(2), pp. 20-48

options currently available to researchers implementing web surveys, and their
advantages and limitations; Section 3 describes the DSL approach; 4 illustrates
the potential for its application to a web-based choice experiment; and Section 5
concludes.

2 Existing survey implementation options

Researchers trying to implement a survey or experiment online generally choose
one of four major options: a managed web-based service; a locally-installed soft-
ware application; a specialist consultancy; or some form of Do-It-Yourself (that
is: pick a programming language, and start writing code).

(a) Managed web-based service

These services enable a survey to be designed via a web-based Graphical User
Interface (GUI), and then hosted on the provider’s server. Popular web-based
services include: SurveyMonkey, QuestionPro, Zoomerang and Wufoo, which are
principally business-focused; Bristol Online Surveys, which has a more academic
flavour; and various offerings from Confirmit, which aims more specifically at
market research professionals. Typically a web-based service is a relatively low-
cost option offering rather basic features. Often it also produces an unattractive
and poorly accessible survey (Kuipers, 2005).3

It is possible to implement a choice experiment with these services via the
traditional pen-and-paper strategy of creating multiple versions of the survey in-
strument, differing only in the attribute levels displayed within the choice cards
section (this can be coupled with a simple server-side script which redirects visi-
tors to one of the multiple survey versions at random). Depending on the capa-
bilities of the service used, formatted items such as tables may have to be inserted
as images, and in this case the information will not be accessible to screen-reader
software.

Figures 1 and 2 illustrate the use of SurveyMonkey to design a choice card,
and the resulting survey display.

3For example, the popular service Survey Monkey uses non-standard custom form controls
(check-boxes, radio buttons and so on). These controls are unfamiliar to web users, and raise
accessibility issues both in terms of disabled users (screen reading software will not recognise
them) and web browser configuration (respondents without JavaScript enabled, including many
who are subject to institutional IT security policies, see only the message “JavaScript is required
for this site to function, please enable”). Bristol Online Surveys, to which many UK academic
institutions subscribe, provides no routing capabilities and does not use the HTML <label> tag
for form controls (this is disability-unfriendly, and also makes the controls an inconveniently
small click target). Some other services provide no ’previous page’ control (and break when the
browser’s ’back’ button is used), require Java or Adobe Flash, or exclude non-Windows users.

22

MacKerron, Journal of Choice Modelling, 4(2), pp. 20-48

Figure 1: Creating a basic choice card, using an image for the choice presentation,
using SurveyMonkey.

(b) Locally-installed software application

The boundaries between web-based services and locally-installed software are
increasingly becoming blurred, but locally-installed software generally provides
a more advanced feature set then the web-based services discussed above. Like
web-based services, locally-installed software generally offers a comprehensive
GUI for survey design. GUIs should facilitiate discovery of the software’s features
and eliminate some kinds of input error. Survey design GUIs may be somewhat
clumsy, however, with option-heavy dialogue-boxes nested many levels deep (see
The Survey System software illustrated in Figure 3, for example).

Locally-installed survey software may be expensive, particularly if the cost
cannot be spread across multiple projects, and is generally subject to restrictive
licencing terms regarding who may install and use it, on what scale, and for
how long. Once a survey is designed, arrangements must then be made for

23

MacKerron, Journal of Choice Modelling, 4(2), pp. 20-48

Figure 2: Choice card page designed and hosted using SurveyMonkey.

hosting online. Most software providers offer paid hosting options, and/or enable
the export of scripting files and supporting resources for hosting on your own
server. The latter option will generally require particular server features, such
as the availability of a scripting language (e.g. Perl) or the use of a particular
platform (e.g. Microsoft Windows with Internet Information Services (IIS) server
software).

Some software is designed specifically for the implementation of online choice
experiments, and can automatically generate a range of experimental designs
based on the attributes and levels specified—an extremely useful capability. Fig-
ures 4 and 5 and show the design and display of a choice experiment using one
such software package, SSI Web.

(c) Specialist consultancy

The results of engaging consultants ultimately depend, obviously, on the skills
and experience of the consultants. However, a consultancy itself may well be
using one of the options discussed above, in which case the service offered will be
subject to the same strengths and limitations. Achieving precise communication
of requirements is likely to be a significant challenge, and some level of control

24

MacKerron, Journal of Choice Modelling, 4(2), pp. 20-48

Figure 3: Widget overload: The Survey System software

will be lost. This option is also liable to be expensive.

(d) Do-It-Yourself development

Creating a web survey using nothing more than a general purpose programming
language allows complete control and flexibility, and is an option that has been
advocated elsewhere (e.g. Fraley, 2004). To do a good job, however, one needs (or
needs access to) user interface expertise, visual design and programming skills,
and web design experience. Even assuming all these things are available, having
researchers everywhere re-implement basic web survey features—and even generic
web application features—represents an extraordinary duplication of effort. It is
also liable to result in little-tested and therefore buggy software, and to prove
costly in time and salaries.

2.1 General limitations

None of the available options make it easy for researchers to share survey items
or item types, or build on such work shared by others (in the way, say, that
researchers can share their own work and make use of others’ in the form of
new routines or libraries for statistical software packages). Nor do these options
typically make it easy to describe the underlying mechanics of a survey, either

25

MacKerron, Journal of Choice Modelling, 4(2), pp. 20-48

Figure 4: SSI Web attribute/level specification dialogue

for communicating with co-authors or for reporting research methods externally
(for example: What is the page-to-page skip logic? How are dynamic response
options calculated? Which options are shown in randomised order?).4

4Options (a) – (c) above generally keep the workings of a survey either entirely opaque or
spread throughout a series of GUI locations, while option (d) will likely produce code that is
verbose and complex, where the house-keeping noise of saving data, specifying layout and so on
overwhelms the details relevant to survey specification.

26

MacKerron, Journal of Choice Modelling, 4(2), pp. 20-48

Figure 5: Choice card page produced by SSI Web

3 A new approach

The new approach suggested here is the use of a domain-specific language (DSL).5

This DSL approach is related to the Do-It-Yourself development option in the
discussion above, and retains its total flexibility. However, it addresses both
major drawbacks of that option: first, the need for extensive expertise in web
design; and second, the need to re-implement basic web application and web
survey features from scratch.

3.1 A domain-specific language...

DSLs are programming languages designed to address a particular, limited prob-
lem space (as opposed to the general-purpose languages, such as C, Java, Perl and
Python, in which most computer software is written). Many researchers will be
familiar with one or more DSLs already. For example, in statistical packages that
provide a syntax for describing and combining operations—including R, Stata,

5A DSL for surveys is not truly novel: there is one existing example, Topsl, described by
MacHenry and Matthews (2004). Topsl’s aims, capabilities and implementation are very differ-
ent, however. First, Topsl requires surveys to be amenable to static analysis, so that the same
source can either be displayed as web pages or formatted for printing. While this is undoubtedly
useful if a hard copy is required, it removes at one stroke most of the power gained by moving
surveys online. Second, Topsl is implemented in the programming language Scheme, a dialect
of Lisp. Scheme is elegant, minimalist, and well suited to DSLs. However, it is also littered
with parentheses and highly unlike natural language, making it rather difficult to understand
(or indeed write) the survey code. Finally, Topsl includes a bare minimum of features and is
not a realistic option for presenting real surveys.

27

MacKerron, Journal of Choice Modelling, 4(2), pp. 20-48

Limdep/NLOGIT, and SPSS—this syntax is well described as a DSL.
Other popular examples are LATEX (for document typesetting/formatting),

PostScript (page layout), SQL (querying and managing databases), CSS (web
page formatting), Regular Expressions (text processing), XSLT (transforming
XML documents) and the configuration files of the Apache web server and many
other Unix tools.

3.1.1 What do DSLs do?

DSLs are designed to reflect the structure and content of the problem domain,
making it straightforward to create and connect common items, actions and rules
to form larger systems. As Sprinkle et al. (2009, 16) explain:

Ideally, a DSL follows the domain abstractions and semantics as
closely as possible, letting developers perceive themselves as work-
ing directly with domain concepts. The created specifications might
then represent simultaneously the design, implementation, and docu-
mentation of the system...

A distinction is sometimes drawn between internal (or embedded) and external
(or standalone) DSLs (Fowler, 2009). An external DSL has its own syntax, parser,
and unique set of capabilities. An internal DSL, meanwhile, is a framework that
extends an existing general purpose language. Some general purpose languages
are more suited to hosting internal DSLs than others: key factors include the
suitability of the syntax and the presence of ’meta-programming’ features that
make the language easy to extend.

Internal DSLs have several benefits. They are easy to implement. They get
the capacities of their host language, including its existing function libraries,
completely free. For those who know the host language, they use a familiar
syntax; and for those that do not, they offer an easy way in to learning it.

3.1.2 Who are DSLs for?

DSLs are still essentially programming languages. They are picky about punc-
tuation, capital letters and matching brackets, and getting things wrong may
sometimes produce unhelpful error messages. In short, they are probably lan-
guages which those who have some basic programming experience—at the level,
say, of writing an R script, Stata DO file, or SPSS syntax file—will feel more
comfortable writing in.

For these developers, using a DSL may allow a substantial increase in produc-
tivity. In general, DSLs can cut development time by between 60% and 90% com-
pared to standard, general-purpose programming approaches (Kelly and Tolva-
nen, 2008, 22–25). The value of using a DSL is by no means limited to those who
write in it, though. As (Fowler, 2009, 14) notes:

28

MacKerron, Journal of Choice Modelling, 4(2), pp. 20-48

the key value is providing a business-readable DSL, where domain
experts can read the code, understand what it means, and talk to
programmers directly about necessary modifications. It’s much easier
to make DSLs business readable rather than business writable, but
you gain most of the benefits by enhancing communication.

3.1.3 Introducing websperiment

websperiment is a prototype of an internal DSL for specifying web surveys and
experiments. Its host language is Ruby, a dynamic, interpreted language (Flana-
gan and Matsumoto, 2008, 2). Ruby’s syntax is relatively close to that of natural
language, and it has strong facilities for ’meta-programming’, a means of extend-
ing the language by using code that itself writes code. These attributes make it
well suited to creating internal DSLs (in fact, many current Ruby users were in-
troduced to the language by a popular DSL for writing generic web applications,
Rails6).

As with other DSLs, the intention of websperiment is that domain experts
should be able to understand a survey that is implemented in it just by reading
the code, even if they do not initially feel confident writing this code themselves.
With that hope in mind, a very simple first example is presented: a survey with
two pages and two questions. The DSL code is shown in 1, and the resulting
survey in Figure 6 on page 31.

In 1, line 1 creates a new survey. By default the survey’s title, which is shown
at the top of the browser window and at the top of the web page, is taken from the
name given on this line (here, for example S::ExampleSurvey becomes “Example
survey”). The content of the survey is defined by the block, surrounded by do ...

end markers, that starts on this line and comprises the rest of the listing. Within
that block, line 2 introduces the pages of the survey, whose definitions then start
on lines 3 and 16. As is the case for the survey as a whole, the content of each
page is defined in the do ... end block immediately following its declaration.
The first page contains some text, followed by two questions (again defined by
the do ... end blocks that follow them). The second page contains only some
text, and a declaration that this page completes the survey.

Admittedly, this is not a very interesting survey. In fact, it stays well within
what is possible using a free web-based service. However, the key advantage of the
DSL approach is that it allows for this near-effortless implementation of standard
survey features, without constraining the researcher’s freedom to do essentially
anything at all.

The example survey page in 2 and Figure 7 on page 33 gives a simple illustra-
tion of both of these aspects. It specifies how to deal with blank responses using
a simple declaration (lines 12 – 13). It also uses the web service API of the They
Work For You (TWFY) web site7 to look up a UK respondent’s local MP based

6http://rubyonrails.org/.
7See http://theyworkforyou.com and http://github.com/bruce/twfy.

29

http://rubyonrails.org/
http://theyworkforyou.com
http://github.com/bruce/twfy

MacKerron, Journal of Choice Modelling, 4(2), pp. 20-48

1 S:: ExampleSurvey = S::Base.declare_new do

2 pages(

3 P:: BasicInformation = P::Base.declare_new do

4 text "Please tell us a little about yourself."

5 questions(

6 Q::Male = Q::Radio.declare_new do

7 text "Are you male or female?"

8 options [1, "Male"],

9 [0, "Female"]

10 end ,

11 Q:: HomePostcode = Q:: Postcode.declare_new do

12 text "What is your home postcode?"

13 end

14)

15 end ,

16 P:: ThankYou = P::Base.declare_new do

17 text "Many thanks for completing this survey."

18 completes_survey true

19 end

20)

21 end

Listing 1: websperiment code specifying a simple web survey.

on a postcode entered on the previous page (lines 4 – 5) and display this as part
of the question text (lines 6 – 7).8

3.2 ...with inheritance...

websperiment gains some of its most useful capabilities from an approach known
as object-oriented programming (OOP). OOP has its roots in the 1960s, and has
been mainstream in software development for several decades.

The objects of OOP are conceptually cohesive entities that generally model
and reflect things in the outside world. Objects consist both of data and of be-
haviours (or ’methods’) that work with that data. Objects interact by passing
messages, which ask that specific methods be invoked. OOP uses these objects,
and their interactions, in the design and implementation of larger systems (Sny-
der, 1986; Armstrong, 2006). For example, OOP is increasingly used in agent-
based modelling (Benenson and Torrens, 2004): objects in these studies can model
agents such as the vehicles within traffic flows, or households making decisions
regarding where to locate within a region (Torrens and Nara, 2007).

OOP systems commonly make a distinction between a class, which is the
definition or ’blueprint’ for an object, and an instance, which is a specific re-

8In Ruby, and therefore websperiment, #{} does string interpolation: code placed between
the curly braces within a string of text is executed and substituted into that text.

30

MacKerron, Journal of Choice Modelling, 4(2), pp. 20-48

Figure 6: First page of the survey specified in Listing 1.

alisation of its class. However, since almost every object in websperiment is a
singleton object — one which is intended only ever to have a single instance —
this distinction not important in the use of the DSL.

websperiment is built using three main families of objects. At the core are
question objects (these have names that start with Q::). For display, questions
are composited into page objects (starting with P::), and for navigation from
page to page, pages are composited into Survey objects (S::).

Objects in an OOP system can ’inherit’ data and behaviours from other ob-
jects in a hierarchy or tree. This makes it easy to create objects that build on or
modify the abilities of other objects. In OOP terminology, one creates subclasses
of (or one simply ’subclasses’) the original object class.

This process was seen in action in 1. When the first survey page was cre-
ated, it was declared as a new subclass of the basic page class, P::Base (by the
line P::BasicInformation = P::Base.declare_new). The new page therefore

31

MacKerron, Journal of Choice Modelling, 4(2), pp. 20-48

1 P:: EnvironmentalConcern = P::Base.declare_new do

2 questions(

3 Q:: ContactedMP = Q:: Radio.declare_new do

4 require "twfy"

5 mp = Twfy:: Client.new("MY_API_KEY").mp(postcode: Q::

HomePostcode.answer) rescue nil

6 text "*#{mp.full_name }* -- #{mp.party} MP for #{mp.

constituency.name} -- is your MP.",

7 style: :info unless mp.nil?

8 text "Have you ever contacted your MP about an environmental

issue?"

9 options [1, "Yes"],

10 [0, "No"],

11 [99, "Not sure"]

12 completion :prompted ,

13 message: "*Did you miss this question ?* You don’t

have to answer , but knowing whether you have contacted your MP

would be very useful to our research."

14 end

15)

16 end

Listing 2: Page with a dynamic question, using a previous answer and an external
web service.

inherited all the standard data and behaviours required of a survey page: gener-
ating an HTML form, displaying progress through the survey as a progress bar,
and so on. A block of code was then added, between the do ... end markers,
to augment this with custom data and behaviours (in this case, some text and
some questions).

Similarly, the gender question, Q::Male, was created as a new subclass of a
radio-button question class, Q::Radio. It thus inherited all the data and be-
haviours required of a radio-button question: specifying response options, dis-
playing these as radio buttons, and subsequently processing the respondent’s
selection. Again, additional data and behaviours were then specified in the sub-
sequent block of code (in this case, some question text and two response options).

There is in fact no conceptual distinction between question classes that are
built in to websperiment and those that are created by a researcher: all built-in
classes are created in exactly the same way that new custom classes are. For
example, the Q::Postcode class used in 1 inherits from the Q::Text class, which
itself inherits from a basic question class, Q::Base. At each level of the inheritance
hierarchy, new data and behaviours build on those already defined. This hierarchy
for Q::Postcode, and some examples of the behaviours defined at each level, are
illustrated in Figure 8 on page 34.

32

MacKerron, Journal of Choice Modelling, 4(2), pp. 20-48

Figure 7: Survey page specified in Listing 2.

3.2.1 Templating with abstract classes

Subclassing is not limited only to the built-in question, page and survey classes.
Say, for example, that a researcher wants to ask respondents a sequence of sev-
eral yes/no questions, and include an indication of their certainty about each
response. The researcher could create new intermediate question subclasses for
this purpose (they might be named Q::YesNo and Q::Certainty). These inter-
mediate subclasses are never themselves displayed, and do not appear when the
response data is downloaded from the survey, because they are never directly
added to any page. In OOP terminology they are known as abstract classes,
and in websperiment they act as templates. Within the pages of a survey, these
abstract classes can be subclassed as necessary.

3 and Figure 9 on page 36 illustrate this. The insert_future_layout decla-
ration (line 2) specifies where the content contributed by any descendant question
classes should be inserted. The horizontal scale question class subclassed by the

33

MacKerron, Journal of Choice Modelling, 4(2), pp. 20-48

Q::HomePostcode

Q::Postcode

Q::Text

Q::Base
Storing & retrieving answers

Prompting for response if none given
Allowing for conditional hiding/showing

Enabling display of text boxes
Enabling greyed-out example text in text box

Q::WorkPostcode

Displaying text box (1 line, 8 characters)
Showing a postcode as example text

Displaying entered characters in uppercase
Validating format of entered postcode

Asking for the relevant postcode

Question classesBehaviours contributed

Figure 8: Inheritance hierarchy for postcode questions.

certainty class (line 7) provides a new kind of declaration, scale, which is used
to define the placement of the response scale and its numeric range and labels
(lines 9 – 11).

If the researcher later decides to switch from a 1 – 5 scale to a 0 – 100%
scale, all he or she has to do is modify the Q::Certainty class, and the change is
automatically reflected in all the questions which subclass and thus inherit from
it. This helps to eliminate repetition, reduce inconsistencies, and improve the
maintainability of the survey code. The Q::Certainty subclass could be reused
elsewhere in the same survey, and in any of the researcher’s future surveys. It
could also be shared with other researchers, for use in their surveys.

The example given above is short and simple enough that the advantages
of these possibilities are not very great. However, question, page and survey
classes need not be limited to a few simple lines of layout. As seen in the next
subsection, they may include complex customised styling, content and logic, on
both the server and the client (the web browser).

3.2.2 Advanced question types

Question types may be designed to collect survey paradata. Some of these are
datum (Datum::) classes. These are similar to question (Q::) classes, in that
they record an item of information for each respondent; however, they do not
cause anything to be shown to the respondent (or even to be sent to their web
browser). For example, the following are all available within websperiment :

34

MacKerron, Journal of Choice Modelling, 4(2), pp. 20-48

1 Q:: YesNo = Q:: Radio.declare_new do

2 insert_future_layout

3 options [1, "Yes"],

4 [0, "No"]

5 end

6

7 Q:: Certainty = Q:: ScaleHorizontal.declare_new do

8 text "How certain are you of this?"

9 scale range: 1..5,

10 start: "Uncertain",

11 end: "Certain"

12 end

13

14 P:: PurchasingDecisions = P::Base.declare_new do

15 questions(

16 Q:: FivePounds = Q:: YesNo.declare_new do

17 text "Would you buy item X for 5 ?"

18 end ,

19 Q:: FivePoundsCertainty = Q:: Certainty.declare_new ,

20 Q:: TenPounds = Q:: YesNo.declare_new do

21 text "Would you buy item X for 1 0 ?"

22 end ,

23 Q:: TenPoundsCertainty = Q:: Certainty.declare_new

24)

25 end

Listing 3: Simple inheritance example.

35

MacKerron, Journal of Choice Modelling, 4(2), pp. 20-48

Figure 9: Survey page specified in Listing 3.

• a Datum::TimeViewed class which, rather than asking the respondent any
question, records the time he/she arrives on a page (which can be used to
calculate the time spent on each page);

• a Q::AnswerHistory class, which automatically monitors another question
and records the sequence of answers selected;

• a Q::LinkVisited class, which interrogates the respondent’s web browser
history to determine whether he/she has recently visited a specific web
address9; and

• a Datum::CityFromIPAddress class, which uses public geo-location data
to determine where a respondent is located.

9Obviously a respondent’s informed consent must be sought before deploying a survey item
of this type.

36

MacKerron, Journal of Choice Modelling, 4(2), pp. 20-48

1 P:: MapLocation = P::Base.declare_new do

2 questions(

3 Q:: HomeMapLocation = Q:: MapLocation.declare_new do

4 depends_on Q:: HomePostcode

5 text "*Please click and drag* to move the map so that your

home is inside the yellow box."

6 map start_location: Q:: HomePostcode.answer ,

7 size: "390 x300"

8 end

9)

10 end

Listing 4: Using the map location question class.

Wholly new interactive question types can also be developed, such as visual
analog scales (Couper et al., 2006) or interactive maps. For a recent survey in
which precise geographical location was an important variable a Q::MapLocation

class was created. This asks the respondent to pinpoint a precise location by
dragging a satellite mapping image, and records the latitude and longitude of
that location, as shown in use in 4 and Figure 10 on page 38.

In 4, the map location question provides a new type of declaration, map (lines 6
– 7), which specifies where the map is to be displayed within the question content,
its size in pixels, and its starting location, the latter based in this case on the
answer to a previous question. The map question is also declared as dependent on
the postcode question whose answer it uses to centre the map initially displayed
(line 4). The effect of this is to clear the location recorded if the respondent goes
back and changes the postcode entered, with the effect that the map is re-centred
on the newly entered postcode.

3.3 ...that is open source

Of course, not every researcher will have the expertise in Ruby (for the server) or
HTML, JavaScript, and CSS (for the client) to create advanced subclasses of this
kind. However, it is easy to use subclasses created and shared by others. Anyone
can use Q::MapLocation in the way shown in 4 simply by downloading the code
for the class and adding it to their websperiment library. This is very similar
to the way in which capabilities can be added to R or Stata by downloading
modules or packages created by others. For the survey realm, it seems somewhat
overdue.10

To facilitate such sharing, websperiment is built wholly from open-source

10Of course, there is no obligation to share code, and a class that reveals too much about
confidential research might be unsuitable for sharing. Additionally, to guard against the prolif-
eration of poorly-written or excessively similar classes, some form of curated repository might
turn out to be of benefit in the longer term.

37

MacKerron, Journal of Choice Modelling, 4(2), pp. 20-48

Figure 10: Survey page specified in Listing 4.

parts, and its own code is also released under an open-source licence. This means
that researchers are free to download, modify, run and distribute the code. This
makes websperiment particularly compatible with an academic ethos and the
scientific method.11 Collaborative working, transparency, peer review, and re-
producibility are all made easier to achieve, since surveys (as well as the whole
DSL framework) can be easily shared, evaluated, modified, improved, and re-run.

11For further discussion of the relationship between academia and open source software, see
Lerner and Tirole (2005).

38

MacKerron, Journal of Choice Modelling, 4(2), pp. 20-48

3.4 Technical notes

Although defaults have been chosen with care, the presentation of surveys is en-
tirely customisable. Ease of customisation depends, obviously, on the extent of
the customisations desired. Images are easily included within question and page
declarations. Colours, fonts, and dimensions can be altered with simple modifi-
cation to CSS stylesheets. Larger structural changes might require modification
of HTML templates, or tweaks to the Ruby code.

On the respondent side, surveys are marked up in standards-compliant HTML,
CSS and JavaScript, and are compatible with all major browser platforms, includ-
ing Internet Explorer 6+, Mozilla (including Firefox), Webkit (including Safari,
Chrome, the iPhone’s Mobile Safari, and the Android Browser) and Opera. All
built-in JavaScript is unobtrusive, in the sense that users without it are still
able to complete the survey, although questions that rely on JavaScript may be
unavailable, and there may be intra-page routing instructions to follow.

On the server side, websperiment requires Ruby 1.9 and various Ruby gems
(libraries), including Rails 2.3. Like any Rails application, it can be hosted by
various web server packages—Apache or Nginx, with the Phusion Passenger mod-
ule, are recommended—and it works with major databases including MySQL,
PostgreSQL, Oracle and SQL Server. Someone comfortable working at the com-
mand line could expect to get these different elements of the system installed and
running in well under an hour.

4 Extending websperiment for choice experiments

A surveys DSL is well suited to constructing web-based choice experiments, since
these can be relatively complex and dynamic surveys. For a recent study on
vehicle fuel choice, several reusable custom object classes were developed within
websperiment. These classes are now shared as part of the websperiment library
for other researchers to use (though the creation of such classes from scratch is
not necessarily a major task: those discussed below represent no more than than
a day’s work). This section discusses a bare-bones choice experiment based on
these classes.

The experiment aims to value CO2 emissions and engine performance charac-
teristics of vehicle fuels. It retrieves UK fuel price data in real-time, dynamically
setting the ’status quo’ fuel price as the current average fuel price within 10 miles
of the respondent’s postcode,12 and all other fuel price attribute levels as devia-
tions from this value. It assembles choice cards (see Figure 11 on page 40) out
of options that are random combinations of attribute levels, eliminating cards
where any option is duplicated, or dominated by any other. Finally, it routes
respondents who choose the status quo option every time to a special debriefing
page (pictured in Figure 12 on page 41).

12According to http://petrolprices.com/.

39

http://petrolprices.com/

MacKerron, Journal of Choice Modelling, 4(2), pp. 20-48

Figure 11: Survey page showing randomised choice card with dynamic price
attribute levels.

The experiment is viewable online at http://choicesurvey.websperiment.
org/. Its DSL source is under 100 lines of code, described further below and
shown in full in Listings 5 – 9. Note that it is not intended to represent good
survey design or good experimental design, but only to demonstrate the potential
benefits of a DSL in this context.

4.1 Getting a local fuel price

The first page of the survey simply requests the respondent’s postcode, as in the
first example (3.1.3). This postcode is then used by a simple custom Datum::

40

http://choicesurvey.websperiment.org/
http://choicesurvey.websperiment.org/

MacKerron, Journal of Choice Modelling, 4(2), pp. 20-48

Figure 12: Follow-up survey page to be shown based on choice pattern.

class to retrieve the average local fuel price (because it is a Datum:: class, it
stores a value alongside the respondent’s answers, but does not display anything
to the respondent).

These steps are seen in 5. On line 9, the status quo price item is defined as
a subclass of the local fuel price item. On line 10, it is made dependent on the
postcode question (so that its value will be cleared and recalculated whenever
the answer to that question changes). On line 11, it is set to retrieve the price for
the postcode provided by the respondent. On line 12, a fallback price is specified:
this fallback price will be used if no postcode is provided, or if the postcode is not
recognised, or if the request to petrolprices.com fails to return an answer within
an acceptable timeout period.

41

MacKerron, Journal of Choice Modelling, 4(2), pp. 20-48

1 P:: HomePostcode = P::Base.declare_new do

2 questions(

3 Q:: HomePostcode = Q:: Postcode.declare_new do

4 text "What is your home postcode?"

5 end

6)

7 end

8

9 Datum:: StatusQuoPrice = Datum:: LocalFuelPrice.declare_new do

10 depends_on Q:: HomePostcode

11 get_price for_postcode: Q:: HomePostcode.answer ,

12 fallback_price: 109

13 end

Listing 5: Determining the average fuel price in the respondent’s local area.

4.2 Defining attributes

The next step in creating the choice experiment is defining the attributes and
levels. This is accomplished using another reusable custom Datum:: class, as
seen in 6.

The first attribute is defined on lines 3 – 6. Line 3 gives the attribute a
name, by which it can be identified elsewhere in the code. Line 4 defines its
levels: the series of integers from 1 to 9 inclusive. Line 5 specifies the status
quo level, which will be used as the value for the status quo option to be shown
on every choice card. Line 6 specifies that higher values are less desirable: this
information enables the randomisation algorithm to detect when one option (i.e.
a combination of levels) is dominated by another.13 For qualitative attributes, or
other attributes where the desirability of different levels is not known in advance,
this line would be omitted.

The second attribute is defined similarly on lines 7 – 10, and the third on
lines 11 – 14. For the third attribute, the status quo level is set dynamically to
the respondent’s local fuel price as already queried online (line 13). The full set
of levels is then defined as deviations from this value (line 12).14 For this reason,
the whole attribute set is specified as dependent on the status quo price (line 2).
This means that if there is a change in the status quo price (which could in this
case be caused only by a change to the postcode), the attribute levels will be
cleared and recalculated accordingly.

Then, having defined the attributes and their levels, attributes must be com-
bined into options, and options combined into choice cards. This is accomplished

13Option A is dominated by option B if it is worse than B in one or more of its attributes,
and not better in any.

14The map method on line 12 maps the array of values on its left to a new array of values, by
passing each original value into the block that follows, as the value of the variable d, and using
the values returned by the block as the values comprising the new array.

42

MacKerron, Journal of Choice Modelling, 4(2), pp. 20-48

1 Datum:: FuelSet = Datum:: AttributeSet.declare_new do

2 depends_on Datum:: StatusQuoPrice

3 attribute :co2_emitted ,

4 levels: 1..9,

5 status_quo: 5,

6 more_is: :worse

7 attribute :engine_performance ,

8 levels: 0..2,

9 status_quo: 1,

10 more_is: :better

11 attribute :price ,

12 levels: [-10, -5, 0, 5, 10]. map { |d| d + Datum ::

StatusQuoPrice.value },

13 status_quo: Datum:: StatusQuoPrice.value ,

14 more_is: :worse

15 end

16

17 Datum:: ThreeWayFuelSet = Datum:: FuelSet.declare_new do

18 random_set labels: ["a", "b"],

19 status_quo_label: "c"

20 end

Listing 6: Defining choice attributes and levels.

by lines 17 – 20, which specify that two randomised options are to be generated,
labelled ’a’ and ’b’, alongside a status quo option, labelled ’c’.

4.3 Displaying choice cards

Once created, the choice cards must be displayed to respondents (as illustrated
in Figure 11 on page 40). This is achieved by a custom question (Q::) class, as
seen in 7. This class allows formatting to be specified for each attribute, and then
displays HTML tables based on specific sets of attribute values as generated in
6.

Lines 1 – 13 of 7 define the formatting to be used for the choice card. On line
3, the option labels (’a’, ’b’, and ’c’) are used as parts of the file names of images
which are used as the table headings. Lines 4 – 12 define the attribute titles and
formatting (on line 9, the engine performance attribute is used as an index to an
array of text strings: thus, when the attribute level is 0, ’Below average’ will be
displayed; when it is 1, ’Average’ will be displayed; and so on).

Lines 15 – 23 define the choice card survey page. Line 16 creates a new set of
attribute levels (as a subclass of the second Datum:: class defined in 6). The new
class is named not by assignment—the way that has been seen before (e.g. Datum
::X = Datum::Y.declare_new)—but using the method named_with_suffix, which
simply appends a number or text string as a suffix to the name of the class that
is being subclassed. The argument passed to this method here—name_suffix—

43

MacKerron, Journal of Choice Modelling, 4(2), pp. 20-48

1 Q:: FuelsCard = Q:: ChoiceCard.declare_new do

2 text "*Which of these fuel brands would you choose ?*"

3 label_format -> l { "!/ images/pump_#{l}.png(Brand #{l.upcase })!"

}

4 display :co2_emitted ,

5 title: "CO[~2~] emitted per litre",

6 format: -> c { "#{c} kg" }

7 display :engine_performance ,

8 title: "Engine performance",

9 format: -> ep { ["Below average", "Average", "Above

average"][ep] }

10 display :price ,

11 title: "Price per litre",

12 format: -> p { "#{p}p" }

13 end

14

15 P:: FuelsChoice = P::Base.declare_new do

16 choice_attributes = Datum :: ThreeWayFuelSet.declare_new.

named_with_suffix(name_suffix)

17 datum choice_attributes

18 questions(

19 Q:: FuelsCard.declare_new do

20 depends_on choice_attributes

21 attributes choice_attributes.value

22 end.named_with_suffix(name_suffix)

23)

24 end

Listing 7: Formatting choice cards.

44

MacKerron, Journal of Choice Modelling, 4(2), pp. 20-48

1 P:: YourChoices = P::Base.declare_new do

2 questions(

3 Q:: StatusQuoAlwaysReason = Q:: Checkbox.declare_new do

4 text "You chose Brand C in every case. Why was this?"

5 text "Please tick *all* that apply", style: :smaller

6 options [:price , "It was the same price I usually pay"],

7 [:other , "Other reason(s)"]

8 end ,

9 Q:: StatusQuoAlwaysOther = Q::Text.declare_new do

10 show_if "Q:: StatusQuoAlwaysReason.answer.include? :other",

11 human: "you chose ’Other reason(s)’ above"

12 text "What were your other reasons?"

13 text_box size: "70x3",

14 full_width: true

15 end

16)

17 end

Listing 8: Debriefing page for a specific choice pattern, as shown in Figure 12.

returns the suffix part of the page’s own name (since, as will be seen in 9, the
choice card survey pages are themselves named using the named_with_suffix

method). The new class is also assigned to a local variable, choice_attributes,
for later use.

Line 17 adds the newly created set of attribute levels to the page (and hence
to the survey: without this line, the levels would not be stored). Finally, the
choice card question is added to the page on lines 18 – 23. Line 21 specifies
that the question should display the attribute levels created on line 16. Line 20
specifies the question’s dependency on these levels: if the levels change (due to
change in the status quo price, due to a change in the postcode), the answer
entered for this question will be cleared. On line 22 the choice card question is
named using named_with_suffix.

The choice card page and question classes are named using suffixes because
they will be subclassed, and added to the survey, multiple times—once each per
choice card—but still require unique names by which they may be identified (both
elsewhere in the survey and when saving and reporting the respondents’ answers).

4.4 Following up response patterns

Once the respondent has made the choices presented, it may be valuable to ask
follow-up debriefing questions in response to specific choice patterns. In this
example, respondents who always choose option C (the status quo option) are
asked their reasons for doing so. This is illustrated in Figure 12 on page 41, and
the DSL code is shown in 8.

Of greatest interest here are probably lines 10 – 11. These lines specify that

45

MacKerron, Journal of Choice Modelling, 4(2), pp. 20-48

1 P:: Thanks = P::Base.declare_new do

2 text "*Thank you* for completing this survey"

3 completes_survey true

4 end

5

6 S:: FuelChoiceExperiment = S::Base.declare_new do

7 n = 3

8 page P:: HomePostcode

9 (1..n).each { |card_no| page P:: FuelsChoice.declare_new.

named_with_suffix(card_no) }

10 pages(

11 P:: YourChoices , skip_unless { (1..n).all? { |card_no| eval("Q::

FuelsCard #{ card_no}").answer == ’c’ } },

12 P:: Thanks

13)

14 end

Listing 9: Pulling the experiment together.

the second question is to be displayed only where the respondent ticks the ’Other
reason(s)’ check-box on the first question. Line 10 gives the condition in web-
speriment (Ruby) format (this condition is also translated into JavaScript, for
use by the respondent’s web browser15). Line 11 gives the condition as it is to
be displayed to the respondent, if JavaScript is for any reason unavailable in the
browser.

4.5 Putting the experiment together

Finally, the components seen above need to be integrated into a survey, as shown
in 9. Lines 1 – 4 define an acknowledgement page. On line 2, note the use of
asterisks (*) around some of the text. This is one example of the Textile markup
system used by websperiment : it causes the text to be displayed in boldface.16

Lines 6 – 14 define the overall survey object, bringing together the previously-
defined page objects. Line 7 sets the number of choice cards to be displayed, as
a local variable n. Line 8 adds the postcode question page to the survey. On
line 9 all the choice choice card pages are added, as follows: the integers 1 to
n are passed into the block as the value of card_no, and a new subclass of the
P::FuelsChoice page is created each time, named with that integer as a suffix
(P::FuelsChoice1, P::FuelsChoice2, and so on), and added to the survey by
the page declaration. Lines 10 – 13 add the follow-up debriefing page and the
acknowledgement page, and line 11 also defines the condition according to which

15The ’translation’ is accomplished using an enhanced version of a system called HotRuby:
see http://hotruby.yukoba.jp/ and http://github.com/STRd6/hotruby.

16For further details, see http://redcloth.org/textile.

46

http://hotruby.yukoba.jp/
http://github.com/STRd6/hotruby
http://redcloth.org/textile

MacKerron, Journal of Choice Modelling, 4(2), pp. 20-48

the debriefing page will be displayed (it will be skipped unless option ’c’ was
selected on all of the choice cards).

5 Conclusions

Researchers have up to now usually had to pick one of four main options when
implementing surveys and choice experiments online: web-based services, local
software, consultants, or Do-It-Yourself from scratch.

Implementing a web-based survey or experiment using a DSL such as the
websperiment prototype, it has been argued, has a number of advantages over
the options previously available. These include: improved productivity, leading
to reduced time and cost of implementation; greater flexibility and extensibil-
ity, enabling arbitrarily advanced features; and wider accessibility and browser
compatibility, permitting a broader sampling frame and a superior experience for
respondents.

The advantages also include easier communication and sharing, both within a
specific research project and (where relevant) more broadly within the academic
process. This is for three main reasons: first, because the DSL is readable by
domain experts who need not be experts in web survey implementation; second,
because it is designed in a modular way, using reusable, sharable classes; and
third, because it is unencumbered by proprietary licence restrictions.

websperiment has already been used to implement several online surveys and
experiments, but it is not a finished product. Researchers are strongly encouraged
to use and contribute to the development of the project.

References

Armstrong, D. J., 2006. The quarks of object-oriented development. Communi-
cations of the ACM 49 (2), 123–128.

Benenson, I., Torrens, P. M., 2004. Geosimulation: object-based modeling of
urban phenomena. Computers, Environment and Urban Systems 28 (1-2),
1–8.
URL http://www.sciencedirect.com/science/article/

B6V9K-482YTP2-2/2/8257c0fcbb6ed51e8fdf1498fbf0243a

Couper, M. P., 2008. Designing effective web surveys. Cambridge University
Press.

Couper, M. P., Tourangeau, R., Conrad, F. G., Singer, E., 2006. Evaluating the
effectiveness of visual analog scales. Soc. Sci. Comput. Rev. 24 (2), 227–245.
URL http://portal.acm.org/citation.cfm?id=1124607

Dillman, D. A., Tortora, R. D., Bowker, D., 1998. Principles for Constructing
Web Surveys. SESRC Technical Report 98-50, Pullman, Washington.
URL http://www.sesrc.wsu.edu/dillman/papers/websurveyppr.pdf

47

http://www.sciencedirect.com/science/article/B6V9K-482YTP2-2/2/8257c0fcbb6ed51e8fdf1498fbf0243a
http://www.sciencedirect.com/science/article/B6V9K-482YTP2-2/2/8257c0fcbb6ed51e8fdf1498fbf0243a
http://portal.acm.org/citation.cfm?id=1124607
http://www.sesrc.wsu.edu/dillman/papers/websurveyppr.pdf

MacKerron, Journal of Choice Modelling, 4(2), pp. 20-48

Flanagan, D., Matsumoto, Y., 2008. The Ruby Programming Language. O’Reilly
Media, Inc.

Fowler, M., 2009. A pedagogical framework for Domain-Specific Languages. Soft-
ware, IEEE 26 (4), 13–14.

Fraley, R. C., 2004. How to Conduct Behavioral Research over the Internet: A
Beginner’s Guide to HTML and CGI/Perl. Guilford Press, New York.

Heerwegh, D., Aug. 2003. Explaining response latencies and changing answers
using client-side paradata from a web survey. Social Science Computer Review
21 (3), 360–373.
URL http://ssc.sagepub.com/cgi/content/abstract/21/3/360

Kelly, S., Tolvanen, J., 2008. Domain-specific modeling: enabling full code gen-
eration. Wiley-IEEE.

Kuipers, M., 2005. Review of web-based survey tools. UCL Information Systems
resource.
URL http://www.ucl.ac.uk/learningtechnology/opinio/

survey-software.html

Lerner, J., Tirole, J., 2005. The economics of technology sharing: Open source
and beyond. The Journal of Economic Perspectives 19 (2), 99–120.
URL http://www.jstor.org.gate2.library.lse.ac.uk/stable/4134939

MacHenry, M., Matthews, J., 2004. Topsl: A domain-specific language for on-line
surveys. Fifth Workshop on Scheme and Functional Programming.

Marta-Pedroso, C., Freitas, H., Domingos, T., 2007. Testing for the survey mode
effect on contingent valuation data quality: A case study of web based versus
in-person interviews. Ecological Economics 62 (3-4), 388–398.
URL http://www.sciencedirect.com/science/article/

B6VDY-4NBRFTR-1/2/8b55affaa2aa502ad4bb4b5a5f309902

Schonlau, M., Fricker, R. D., Elliott, M. N., 2002. Conducting Research Surveys
via E-mail and the Web. RAND research.
URL http://www.rand.org/pubs/monograph_reports/MR1480/index.html

Snyder, A., 1986. Encapsulation and inheritance in object-oriented programming
languages. ACM Sigplan Notices 21 (11), 45.

Sprinkle, J., Mernik, M., Tolvanen, J., Spinellis, D., 2009. Guest editors’ intro-
duction: What kinds of nails need a Domain-Specific hammer? Software, IEEE
26 (4), 15–18.

Torrens, P. M., Nara, A., May 2007. Modeling gentrification dynamics: A hybrid
approach. Computers, Environment and Urban Systems 31 (3), 337–361.
URL http://www.sciencedirect.com/science/article/

B6V9K-4M4TNDM-4/2/90c46f1242a5a899f27fe95172f61a33

48

http://ssc.sagepub.com/cgi/content/abstract/21/3/360
http://www.ucl.ac.uk/learningtechnology/opinio/survey-software.html
http://www.ucl.ac.uk/learningtechnology/opinio/survey-software.html
http://www.jstor.org.gate2.library.lse.ac.uk/stable/4134939
http://www.sciencedirect.com/science/article/B6VDY-4NBRFTR-1/2/8b55affaa2aa502ad4bb4b5a5f309902
http://www.sciencedirect.com/science/article/B6VDY-4NBRFTR-1/2/8b55affaa2aa502ad4bb4b5a5f309902
http://www.rand.org/pubs/monograph_reports/MR1480/index.html
http://www.sciencedirect.com/science/article/B6V9K-4M4TNDM-4/2/90c46f1242a5a899f27fe95172f61a33
http://www.sciencedirect.com/science/article/B6V9K-4M4TNDM-4/2/90c46f1242a5a899f27fe95172f61a33

	1 Introduction
	2 Existing survey implementation options
	2.1 General limitations

	3 A new approach
	3.1 A domain-specific language...
	3.1.1 What do DSLs do?
	3.1.2 Who are DSLs for?
	3.1.3 Introducing websperiment

	3.2 ...with inheritance...
	3.2.1 Templating with abstract classes
	3.2.2 Advanced question types

	3.3 ...that is open source
	3.4 Technical notes

	4 Extending websperiment for choice experiments
	4.1 Getting a local fuel price
	4.2 Defining attributes
	4.3 Displaying choice cards
	4.4 Following up response patterns
	4.5 Putting the experiment together

	5 Conclusions

