
Haensel, Alwin; Koole, Ger; Erdman, Jeroen

Article

Estimating unconstrained customer choice set demand: A
case study on airline reservation data

Journal of Choice Modelling

Provided in Cooperation with:
Journal of Choice Modelling

Suggested Citation: Haensel, Alwin; Koole, Ger; Erdman, Jeroen (2011) : Estimating unconstrained
customer choice set demand: A case study on airline reservation data, Journal of Choice Modelling,
ISSN 1755-5345, University of Leeds, Institute for Transport Studies, Leeds, Vol. 4, Iss. 3, pp. 75-87

This Version is available at:
https://hdl.handle.net/10419/66804

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  http://creativecommons.org/licenses/by-nc/2.0/uk/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/66804
http://creativecommons.org/licenses/by-nc/2.0/uk/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Journal of Choice Modelling, 4(3), 2011, 75-87
www.jocm.org.uk

Estimating unconstrained customer choice set
demand: A case study on airline reservation

data

Alwin Haensel1,∗ Ger Koole1,† Jeroen Erdman2,‡

1 Department of Mathematics, VU University Amsterdam, De Boelelaan 1081a, 1081
HV Amsterdam, The Netherlands

2 transavia.com, Piet Guilonardweg 15, Gebouw TransPort, 1117 EE Schiphol Airport ,
The Netherlands

Received 15 February 2011, revised version received 20 September 2011, accepted 21 November

2011

Abstract

A good demand forecast should be at the heart of every Revenue Manage-
ment model. Yet most demand models do not incorporate customer choice
behavior under offered alternatives. We are using the ideas of customer
choice sets to model the customer’s buying behavior. The demand estima-
tion method, as described in Haensel and Koole (2011), is based on max-
imum likelihood and the expectation maximization (EM) algorithm. The
main focus of the paper is the application case on real airline reservation
data. The reservation data, consisting of the airline’s daily flight offers, is
used to unconstrain the underlying customer demand in terms of price sensi-
tivity. Using this demand information per choice sets, the revenue manager
obtains a clear view of the real underlying demand.
Keywords: customer choice behavior; demand estimation and unconstrain-
ing; revenue management

1 Introduction

Accurate demand information is essential for the success of all kinds of sophis-
ticated booking or pricing controls, short Revenue Management (RM). A non-
scientific introduction to RM with its main concepts, tactics and execution steps
is given by Cross (1997). Any successful RM systems needs customer information
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on the micro-market level. The information should not only contain the number
of customers to expect, but also comprise information on customer behavior such
as price sensitivity. Historical data mostly consists of sales information per price
class or product. But customers who book the same price classes or buy the same
products are not necessarily equal; possibly some of them are also interested in
other products or would also buy the product at a higher price. As van Ryzin
(2005) formulates on page 206: what is needed in RM research is a change from
product demand models to models of customer behavior. Our focus is to estimate
unconstrained demand per choice behavior from given sales data. Unconstrain-
ing methods, such as the ones compared in Queenan et al. (2007), are applied
to estimate the true demand quantities in cases of stock-outs. We understand
unconstraining in a broader sense: We are not only interested in the number of
unobserved customers, but also in their specific choice behavior. Therefore, we
apply the unconstrained demand estimation method described by Haensel and
Koole (2011) to a dataset of real airline reservation data.
The article continues in the following section with the explanation of the airline
dataset, followed by the choice set model in Section 3. The estimation results are
presented in Section 4, and our general findings are concluded in the final section.

2 Airline Data

In our case study, we are able to work on real airline booking data of two routes
provided by Transavia, which we will from this point simply call Route 1 and
Route 2. Both routes are connecting the Amsterdam airport Schiphol (AMS)
with a Spanish airport and there is only one competitor airline serving the same
direct connection. Unfortunately, we have no information of historic competitor
prices available for our analysis. The datasets consist of the booking information
for 11 consecutive departure day of weeks, i.e., we fixed a certain weekday for each
route and work with the data of 11 weeks. The separation of different weekdays
is very common in the airline business and based on statistical test which show
a higher dependency and more common characteristics for consecutive weekdays
than for consecutive days. The total bookings per departure day and route are
shown in Figure 1.

The usual possible booking horizon consist of several months and can span
a period up to a whole year. Even so, we observe that most of the bookings
are made in a much smaller time span, namely 12 weeks prior to departure.
The average number of bookings per week are shown in Figure 2, where week 1
denotes the beginning of the booking horizon and week 12 the week including the
departure day.

On both routes we have F = 12 fare classes which only separate in price, as
given in Table 1.

There are no extra services or standards associated with different fare classes.
Thus, the price is the only differentiator, so there is only one active fare class at
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Figure 1: Total bookings for both routes and each departure.
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Figure 2: Average weekly bookings for both routes.

a time. The fare class booking and availability data is given on daily level. This
means we know for each day in the booking horizon which fare class is available
for booking, which is open, and also how many bookings are made. A whole
flight can be unavailable for bookings if all fare classes are not available/closed.
Table 2 shows the summarized information per fare class for both routes.

This information contains the number of departures when each fare class is
open, the percentage on total booking days it is open (11 × 12 × 7 = 924 total
booking days), the total number of sales/bookings and the averaged number of
sales over all departures when the fare class was open. We find by adding the
percentages of open days in Table 2 that Route 1 is 12.9% and Route 2 is 9.4 %
of all considered booking days closed, i.e., no fare class is available. The case that
all fare classes are closed can have two causes: First, there were no available seats
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Table 1: Fare classes
most expensive - Y Z S B M H Q V K L T N - cheapest

Table 2: Performance data of Route 1 and 2
Route 1

Y Z S B M H Q V K L T N

Dep. open 0 1 3 3 5 7 8 9 4 3 1 1
% open - 0.6% 0.9% 3.4% 7.5% 20% 11% 29.5% 10.1% 3.7% 0.3% 0.1%

Total sales 0 2 18 24 48 149 105 160 45 45 7 7
Avg. sales 0 2 6 8 9.6 21.3 13.1 17.8 11.3 15 7 7

Route 2
Y Z S B M H Q V K L T N

Dep. open 2 2 3 3 4 6 8 8 6 3 1 0
% open 0.2% 2.4% 4.3% 6.3% 6.6% 10.2% 16.6% 26.5% 15% 2.2% 0.5% -

Total sales 2 17 39 40 101 76 136 148 121 26 12 0
Avg. sales 1 8.5 13 13.3 25.3 12.7 17 18.5 20.2 13 12 0

Dep. open - number of departures where this fare class is open, % open - fraction of possible
booking days this class is open, Total sales - total sales per class over all departures, Avg. sales
- averaged sale per class over open departures

and no further seats could have been sold. And second, when data points are
removed by our outlier detection. From the datasets we have only information
about the total sales per day, but not how they are made up. For example, if
we observe six sales for a given day, we don’t know if they are six individual
sales or two sales of size 3, etc. We observe in our datasets some days with very
large daily bookings, see Figure 3. The average daily booking size of Route 1 is
2.8 with a standard deviation of 2.2, for Route 2 we observe small values with
an average of 2.5 and a standard deviation of 1.8. The extreme booking sizes
are likely generated by group bookings, which we choose to exclude from our
computation. Group bookings are normally not made via the usual online sales
channels, but by direct negotiation with airlines representatives. Therefore, we
will exclude booking days with more than seven bookings and the availability for
these days is set to zero. Thereby, we are not overwriting sales data, we only
exclude outlier data points from our estimation analysis.

3 Customer Choice Set Model

The concept of choice sets is earlier explained in Ben-Akiva and Lerman (1985).
The proposed approach of unconstraining demand rate function per customer
choice sets is described by Haensel and Koole (2011). Choice sets are sets of
choice alternatives/product offers with a strict preference order. The customer’s
choice behavior is supposed to be represented by a choice set. The usual ap-
proach in travel demand modelling is to divide customers into different groups or
segments based on their characteristics, best example is a segmentation in busi-
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Figure 3: Histogram of daily booking sizes for both routes.

Table 3: Choice set example
Choice set c {A} {B} {A,B} {B,A}
Expected demand Dc 20 7 15 10

ness and leisure customers. Both segments are assumed to have very different
buying behavior. The first are seen to buy more on short notice and are consid-
ered to have a high willingness to pay, and the second are supposed to be more
price sensitive but book long in advance. The demand is then usually forecasted
independently for each segment. In fact, our airline observes many leisure cus-
tomers who have a relatively high willingness to pay and book close to departure,
and on the other hand also observes early booking and price sensitive business
customers. Therefore, our choice set approach is to distinguish customers by
choice behavior independent of their individual characteristics. This can lead to
choice sets made up by a very homogene customer group, but also allows a mix
of different types of customers if their observed buying behavior is similar. The
proposed demand estimation method associates demand quantities with different
choice sets, representing different choice behaviors. Let us illustrate the choice
set concept on a small example, where we consider an airline which offers two
fare classes A and B. Fare A is the discount ticket consisting of the seat and no
extra services and fare class B is the full ticket including a meal served during the
flight. The possible choice sets are: {A}, {B}, {A,B} and {B,A}, C will denote
the set of all choice sets. Choice sets are written with a decreasing preference
from left to right. Therefore, the choice set {A,B} states that customers being
represented by this choice set are strictly preferring ticket A over ticket B. In
contrast, customers with choice set {B,A} prefer the B over A. See Table 3 for
some example choice set demand rates.

The airline can control the booking availability of all fare classes. O denotes
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the set of available products/open fare classes. The demand D(f |O) of prod-
uct/fare class f under offer set O is defined by

D(f |O) =
∑
c∈C

Dc · IU(c,O)=f , (1)

with I denoting the indicator function and U(c,O) returns the fare class contained
in choice set c with the highest preference under the set of offered alternativesO or
zero if c∩O = ∅. The amount of rejected customers, i.e., customers whose choice
set c is non-overlapping with O and therefore turned down, can be calculated by

D(0|O) =
∑
c∈C

Dc · IU(c,O)=0. (2)

Hence, the sales probability of product f ∈ O is given by

P (f |O) =
D(f |O)

D(0|O) +
∑

h∈OD(h|O)
. (3)

The non-purchase probability is equivalently computed by

P (0|O) =
D(0|O)

D(0|O) +
∑

h∈OD(h|O)
. (4)

By definition, we set P (x|O) = 0 if x /∈ O. Returning to our small airline
example, the probability of selling a certain ticket to an arriving customer for
different O is

P (A|O = {A,B}) =
20 + 15

0 + 20 + 15 + 7 + 10
= 0.67, (5)

P (B|O = {A,B}) =
7 + 10

0 + 20 + 15 + 7 + 10
= 0.33, (6)

P (A|O = {A}) =
20 + 15 + 10

7 + 20 + 15 + 10
= 0.87, (7)

P (B|O = {B}) =
7 + 15 + 10

20 + 7 + 15 + 10
= 0.62. (8)

A more general example can be given by assuming the market to be segmented
in such a way that different conditions are attached to the product itself, for
example minimum length of stay, cancellation costs or membership credits. Each
of these groups are again differentiated into different price categories. See Table
4 for an example airline portfolio.

Again, we assume that each customer has a set of classes which represent his
willingness to buy (regarding price and conditions). These choice set may consist
of any coherent sequence of subclasses, e.g.,{L2, L1,M2} or {M2,M1, H2}. The
choice sets have again a strict preference order from left to right, i.e., customers
whose behavior can be represented by choice set {M2,M1, H2} want a possibility
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Table 4: Choice set example 2, with groups: high, medium and low

Booking Class Miles earned Changes Cancellations Price

H1 100 % charge 50 charge 100 520
H2 100 % charge 50 charge 100 460
M1 50 % charge 50 No 370
M2 50 % charge 50 No 320
L1 25 % No No 250
L2 25 % No No 230

to change the ticket and their willingness to pay is larger or equal to 460 but
strictly less to 520, since they are not willing to buy the H1 class. Of course
the number of possible choice sets can be very high, but with some reflection of
marketing and sales ideas we can usually restrict our selves to choice sets which
are coherent and are of limited length. Another interesting possibility in choice
set modelling is to incorporate competitor prices. To illustrate this, let us return
to our first example with two fare classes, A and B. Say we have a competitor
serving the same route and overing also two classes a and b, equivalently denoting
the discount and full fare ticket. Our previous choice set {A,B} is now divided
into three corresponding choice sets which account for the different competitor
pricing:

{A,B} ⇒


{A[a, b, ∅], B[a, b, ∅]}
{A[a, b, ∅], B[b, ∅]}
{A[b, ∅], B[∅]}


with [·] we denote the competitor’s active classes under which we can observe
a sale, ∅ represents the case that the competitor does not offer any class. For
example, {A[b, ∅], B[∅]}means that customers represented by this choice set prefer
A over B for our company, but only buy class A if the competitor does not offer
class a and they will only buy class B if we do not offer A and the competitor
does not offer any class. For our dataset, we do not have any competitor pricing
information available.

The example calculation (1)-(8) considers so far constant demands quantities.
Usually the booking horizon is divided into T time stages t = t1, . . . , tT , where
t1 denotes the beginning of the booking horizon and tT last time stage before
the departure of the airplane. In general, we observe strictly increasing demand
curves over the booking horizon, i.e., the demand increases towards the time of
departure. Even though one often observes a drop in demand very close to the
airplane’s time of departure, the width of time stages can be defined such that the
assumption of increasing demand over time stages is justified. The assumption
can be relaxed to allow more complex demand functions, at the costs of additional
parameters and the loss of structural properties of the estimation problem. In our
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Table 5: Choice sets in airline test case
highest acceptable fare class choice set

Y N T L K V Q H M B S Z Y
Z N T L K V Q H M B S Z
S N T L K V Q H M B S
B N T L K V Q H M B
M N T L K V Q H M
H N T L K V Q H
Q N T L K V Q
V N T L K V
K N T L K
L N T L
T N T
N N

case of European flights, we only observe a very small demand drop just before
departure.

The estimation of the choice set model is divided into two steps: 1) The iden-
tification of different choice sets, and 2) The demand estimation per choice set.
The identification of possible choice sets in our test case is very straightforward.
The airline offers no extras with the airline seat, such as extra services or cancella-
tion possibilities, and the considered flights are at most operated once day. Thus,
the only product differentiation for a fixed itinerary is the price of the offered fare
classes. Consequently the airline has only one available fare class at a time. All
possible choice sets can therefore be given by combinations of consecutive fare
classes (in fare order) starting with the cheapest class. Since price is the only
differentiator, the cheapest fare class has the highest preference for all customers
and the choice sets are only distinguishable by the upper willingness to pay. The
choice sets in our airline test case are shown in Table 5.

For the second estimation step, the demand estimation per choice set, we
apply the method proposed by Haensel and Koole (2011). They describe a pa-
rameter estimation method for the case of Poisson distributed demand with expo-
nential demand functions λc(t) = βc · exp(αc · t), for choice sets c and time stage
t. The estimation method is based on maximum likelihood estimation (MLE)
with an application of the EM-Algorithm. The open and closing decision of fare
classes are on a daily level, but the time stages generally cover multiple days.
Hence, we have to define Ot =

⋃
d∈tOt(d) as the union of all sets of open classes

Ot(d) for each day d in time stage t. Further, we have to redefine the U(c,Ot)
for the input of sets of open classes by

U(c,Ot) =
⋃
d∈t

{{
U
(
c,Ot(d)

)}
, if U

(
c,Ot(d)

)
> 0

∅ , else.
(9)
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The general log-likelihood functions of the estimation problem is given by

L =
∑
c∈C

∑
t=t1,...,tT

logP
[
X = S(t, c)|X ∼ Poisson

(
λc(t) · I{U(c,Ot) 6=∅}

)]
, (10)

where S(t, c) denotes the number of sales/observed demand in time stage t cor-
responding to choice set c. In our input data, we have only the information of
sales per day and fare class S(d, f) and not per choice sets. As in Haensel and
Koole (2011), we propose to use the EM algorithm, introduced by Dempster et al.
(1977), to overcome this information problem in the MLE. The EM algorithm is
an iterative method, where parameters are computed under an expectation based
on values from previous iterations. In our application, we compute the expected
number of sales at time stage t corresponding to choice set c in iteration i by

Si(t, c) =

⌈∑
d∈t

λi−1c (t)

λi−1overlap(c, t, d)
· S
(
d, U

(
c,Ot(d)

))⌉
, (11)

where λjc(t) denotes the demand rate of choice set c at time t in the jth iteration of
the EM algorithm, d·e denotes the ceiling operator and λjoverlap(c, t, d) is defined
by

λjoverlap(c, t, d) =
∑
s∈C

λjs(t) · I{U(s,Ot(d))>0 and U(s,Ot(d))=U(c,Ot(d))}. (12)

Another problem occurs when the demand of choice set c is not observable at
all days in times stage t, i.e., c is overlapping with Ot(d) for some but not all
d ∈ t. Days within a time stage do not have the same booking intensity, e.g.,
we observe different booking intensities for different weekdays. The estimated
booking intensity πt(d) of day d in time stage t is computed over historic booking
horizons and reflect the different weighting between days in the same time stage
and

∑
d∈t πt(d) = 1. The definition of Si(t, c) is extended to incorporate the

booking intensity with an application of the rule of proportion by

Si(t, c) =


∑

d∈t
λi−1
c (t)

λi−1
overlap(c,t,d)

· S
(
d, U

(
c,Ot(d)

))
∑

d∈t πt(d) · I{U(c,Ot(d))>0}

 . (13)

The starting values of the EM algorithm are obtained by ignoring the intersection
of choice sets

S0(t, c) =


∑

d∈t S
(
d, U

(
c,Ot(d)

))∑
d∈t πt(d) · I{U(c,Ot(d))>0}

 . (14)
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λ0c with the corresponding α0
c and β0c parameters are obtained by minimizing the

negative log-likelihood function separately per choice set

(α0
c , β

0
c ) = arg minα,β>0 − L0c

= arg minα,β>0 −
T∑
t=1

log

{
P
(
Xt = S0

(
t, c)

))
, if U(c, t) > 0

1 , else,

(15)

where Xt ∼ Poisson
(
λ = βc · exp(αc · t)

)
. The EM algorithm can be separated in

two steps: The E-step, an application of equation 13 in the negative log-likelihood
function for each choice set. Second, the M-step, which consists of minimizing
−Lc separately for all choice sets c ∈ C. The algorithm stops if one of the
following criteria is satisfied:

• maximum number of iterations reached,

• no changes in α and β values between iterations.

In general, we observe Li+1 =
∑

c∈C Li+1
c ≥

∑
c∈C Lic = Li. This results in the

optimal solution of the MLE. Occasionally we observe that the EM algorithm
reaches a likelihood maximum within the iteration cycle and that the final results
hold a lower likelihood. In such a case we do not use the final EM output, but
rather the intermediate results with the maximum likelihood.

4 Estimation Results

The proposed demand estimation method is tested on real airline reservation
data to verify: 1) that the choice set model approximates the underlying demand
closely, and 2) the estimation method is applicable for practitioners. In our
estimation example we will consider the weeks in the booking horizon as time
stages and the booking intensities π are obtained from the previous year’s data.
The estimation error is simply defined as

error = actual − estimate.

The demand estimate for any open fare class f at every booking day and depar-
ture combination is simply computed by

D(f |O) =
∑
c∈C

λc · IU(c,O)=f , (16)

where O denotes the given set of open classes, in our case a singleton. The choice
set demand is estimated for all 11 departures in both datasets. In the following,
we will examine the choice set estimation errors from different perspectives, such
as: total relative errors over all booking days and price classes, errors per time
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Figure 4: Total relative estimation errors per departure for both routes.

Table 6: Error Results per fare class for both routes
Route 1

Y Z S B M H Q V K L T N
% open - 0.6% 0.9% 3.4% 7.5% 20% 11% 29.5% 10.1% 3.7% 0.3% 0.1%

Avg. sales 0 2 6 8 9.6 21.3 13.1 17.8 11.3 15 7 7
Est. error - -0.5 2.3 -0.3 0.8 1.3 -0.5 -1.3 -1.0 -2.6 -0.1 -0.1

Route 2
Y Z S B M H Q V K L T N

% open 0.2% 2.4% 4.3% 6.3% 6.6% 10.2% 16.6% 26.5% 15% 2.2% 0.5% -
Avg. sales 1 8.5 13 13.3 25.3 12.7 17 18.5 20.2 13 12 0
Est. error 0.5 -1.8 -1.7 0 -1.5 1.4 -0.6 0 -2.3 1 0.6 -

% open - fraction of possible booking days this class is open, Avg. sales - averaged sale
per class over open departures, Est. error - averaged estimation error per class

stages, and the error on fare class level. The total number of bookings over all
fare classes and per departures is slightly overestimated by 1% for Route 1 and
2.6% for Route 2, i.e., the estimation error is negative if the estimate exceeds the
actual. The total relative estimation errors for all departures are shown in Figure
4.

We observe no pattern of constant over or under estimation and please note
that we are considering total numbers of usually less than 100 bookings. Figure
5 shows the average weekly bookings and the corresponding estimation errors.
We observe, especially for Route 1, a slight constant overestimation in booking
weeks 7-11. The last time stage, week 12, is underestimated for both routes. But
when comparing the estimation errors to the average bookings, we find the errors
to be considerably small in proportion.

Finally, we look into the estimation error on fare class level, with the results
given in Table 6.
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Figure 5: Average weekly bookings with the average approximation error for both
routes.

As also shown in Table 2, we find that some fare classes are used much more
often than other. Very high and very low classes are not often available for
booking and thus we have limited data to estimate the corresponding choice
sets. But even with this limited data, the estimation errors are considerably
small compared to the average booking number when the considered fare class
was available. The consideration of error results at more frequently used classes
shows very low average errors for both routes. These results reinforce our positive
conclusion on the proposed choice set based estimation method.

5 Conclusion

In this article, we study the problem of unconstraining sales data per price classes
into demand estimates per customer choice behavior. Our proposed estimation
method is tested on real airline data. The results show a slight overestimation
on the total demand over all fare classes, but it should be noted that the total
considered sales figures are usually smaller than 100. Hence, estimation errors of
5% are equivalent to an actual error of at most 5 bookings. Much more interesting
than the results on the total bookings are the estimation errors on the fare class
level. Here we observe small errors for all fare classes and especially very low
values for frequently used classes. Further, the estimation method shows a very
good computational behavior; the EM method converges in general within 10-15
iterations. This makes the algorithm feasible for practitioners. Overall, we find
that the choice set model gives a very close approximation of the real underlying
customer choice behavior, and that the estimation method can be successfully
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implemented in real-world applications. Demand information on choice set level
provides the revenue manager with detailed information on the price elasticity
and the buying behavior of his customers. This information is crucial for any
form of pricing or booking control. So far, the presented estimation method
enables us to unconstrain choice set demand from given sales data. Further
research on forecasting techniques at choice set level is needed to incorporate
instant adjustments to demand fluctuations and shifts per choice sets.
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