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Abstract 
 

Using data from two Choice Experiment environmental valuation surveys we 

investigate several different ways of handling respondent uncertainty. In both 

surveys respondents are asked to state their certainty of choice after each single 

choice set. We evaluate three different recoding-of-answers methods adapted from 

the Contingent Valuation literature. Furthermore, we evaluate two models which 

directly capture the effect of respondent uncertainty by parameterization of a scale 

function. In one model the scale parameter is a function of respondents’ stated 

uncertainty level. In the other it is a function of respondent and choice set 

characteristics found to be significant determinants of stated uncertainty. All 

approaches are compared to a benchmark utility model. 

While some of the recoding approaches apparently reduce noise in the data, 

they generally have no significant effect on attribute Willingness-To-Pay (WTP) 

estimates, and standard errors on WTP estimates tend to increase.  The explicit 

modelling of the scale parameter using stated uncertainty reveals that unobserved 

variation decreases as certainty of choice increases. While the model performance 

does not improve much, this approach offers a structurally and intuitively much 

more appealing way of accounting for uncertainty in choices in CE.  

 
Keywords: Environmental valuation, stated certainty in choice, recoding, scaling 

approach, variance heterogeneity, random parameter error component logit.  
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1 Introduction  

 
It is usually a key assumption in stated preference methods that respondents’ are able 

to assess without any error the utility they may derive from the good presented to 

them, and hence can answer any valuation question with absolute certainty 

(Hanemann 1984). There are numerous arguments why this assumption may not be 

valid, and recognising this several Contingent Valuation (CV) studies have 

investigated the causes of respondent uncertainty, as well as ways to handle it (e.g. 

Loomis and Ekstrand 1998; Alberini et al. 2003). However, so far this issue has been 

given little attention in Choice Experiments (CE) studies, which have in recent years 

been increasingly used for environmental valuation. While it may be perfectly 

reasonable for respondents to feel uncertain about their stated responses and choices 

(Wang 1997; Li and Mattson 1995), the problem is that failing to accommodate for 

such uncertainty in the modelling of data may bias, if not the valuation estimates, then 

at least the variance estimates and hence the inference and conclusions made (Li and 

Mattson 1995). 

In this paper, we present an analysis of different ways to handle uncertain 

responses in CE surveys. We use data from two environmental valuation CE surveys 

in which respondents stated their certainty of choice after each choice set. For both 

data sets, the effects on model performance and Willingness-To-Pay (WTP) of each 

way of handling uncertain choices are compared with a benchmark model in which 

respondent uncertainty is ignored. Inspired by the way stated uncertainty has been 

handled in CV studies, we estimate three models where we recode the data sets 

according to different ways of interpreting uncertain answers, taking the hypotheses 

summarised by Samnaliev et al. (2006) as points of departure. We also estimate two 

models in which respondent uncertainty in choice is handled directly through the 

explicit modelling of the scale parameter: an approach parallel to that applied in a CV 

study by Alberini et al. (2003). In the first of these we account for variation in scale as 

a function of respondents’ stated level of uncertainty in each choice set. In the second, 

we model the scale parameter as a function of specific variables found to affect 

respondents’ stated uncertainty (Lundhede et al. 2009a). While some of the recoding 

methods reduce noise in the data, the effect on the WTP estimates for the 

environmental attributes is generally insignificant and not unidirectional. The explicit 

modelling of the scale parameter using stated uncertainty reveals that a higher degree 

of certainty of choice is equivalent to a lower degree of unobserved variation. Thus, 

this approach holds the promise of obtaining a higher degree of precision in the 

estimation of the environmental attribute parameters and their estimation errors.  

The remainder of the paper is organised as follows. In Section 2 we provide an 

overview of the handling of uncertainty in the CV literature. We also describe the 

applied econometric models and the five different ways of handling uncertain answers. 

In Section 3 we present the surveys providing the data. Section 4 contains the results 

and in Section 5 we discuss the results in terms of effects on WTP estimates and 

model performance. We summarise with a few concluding remarks in Section 6. 
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2 Theory and Methods 
 

2.1 Handling uncertain answers in Contingent Valuation surveys 

 
Several studies have tried to obtain an expression for the degree of uncertainty felt by 

the respondent when answering CV questions. The approaches taken can roughly be 

classified into two groups. The first approach is to make respondents choose among 

answers to the payment question, which explicitly incorporates some level of 

uncertainty, e.g. ‘Don’t Know’ (Wang 1997), ‘I will definitely pay’ or ‘I most 

probably will not pay’ (Ready et al. 1995; Welsh and Poe 1998; Alberini et al. 2003). 

The second approach is to have respondents first answer the payment question 

(‘Yes’/‘No’) and then state their degree of certainty regarding the answer just 

provided, either in the form of a numeric scale or as text statements (Li and Mattsson 

1995; Champ et al. 1997; Loomis and Ekstrand 1998; Johannesson et al. 1999; 

Blumenschein et al. 2008). There are pros and cons of both approaches. For example, 

the latter has the advantage that it does not directly interfere with the valuation task, 

yet it hinges to some degree on researcher interpretation concerning the stated 

certainty in order to handle it in estimations. We will take this approach, asking 

respondents to indicate their certainty post choice. This stated certainty may of course 

differ from true certainty, which limits how far one can make conclusions on true 

certainty from the observed stated certainty. However, our focus here is the evaluation 

of different approaches to using respondents’ stated certainty in choice to improve 

estimations, which is a relevant objective even if does not coincide perfectly with the 

unobserved true certainty in choice. How the researcher handles respondents’ stated 

certainty will depend on what is assumed to be the reasons for the stated certainty. 

Samnaliev et al. (2006) summarise four such assumptions or hypotheses, which we 

briefly present and discuss here in a slightly different order and wording. One 

hypothesis (adapted from Schwarz and Sudman 1996) is that certainty levels indicated 

by respondents will reflect only their attempt to appear consistent in answers: Once 

they have chosen ‘Yes’ or ‘No’, they indicate some degree of certainty to signal 

consistency. The main objection to this hypothesis is that if such behaviour dominates, 

we should find a fairly constant level of certainty across alternatives – but in fact 

stated certainty varies systematically with, e.g. the bid (Wang 1997; Loomis and 

Ekstrand 1998).  

A second and related hypothesis is that certainty levels may be susceptible to 

protesting and strategic behaviour such as respondents exaggerating certainty along 

with stated WTP (Samnaliev et al. 2006). This sort of behaviour is usually screened 

for in quality studies and samples. While it may be a source of noise, it should not be 

dominant. A third hypothesis concerning preference uncertainty is that when 

respondents are allowed to state uncertainty, they use this option to scale down their 

stated WTP, i.e. an asymmetric effect on WTP reducing hypothetical bias is assumed 

(Champ et al. 1997). A fourth hypothesis is formulated by Wang (1997) and implied 

in Li and Mattsson (1995). This hypothesis maintains the assumption that respondents 

are rational, truth-telling and non-strategic, but may for different reasons assess the 

value of the environmental change with some degree of uncertainty and, therefore, 

they may be quite uncertain as to their answer (‘Yes’/‘No’) when the bid price is close 

to their maximum WTP – but quite certain when very different from it. The 

implication is that the response itself may be subject to error which in a CE setting 
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translates into a probability that the respondent does not choose the utility maximising 

alternative.  

If the third assumption is preferred, it is relevant to apply some sort of 

asymmetric method to correct for the signal sent by respondents stating uncertainty 

about their ‘Yes’. A direct recoding of these answers from ‘Yes’ to ‘No’ has been 

applied by several authors (e.g. Champ et al. 1997; Welsh and Poe 1998), whereas 

Loomis and Ekstrand (1998) propose an asymmetric uncertainty model incorporating 

stated uncertainty levels of ‘Yes’ answers into the likelihood function. Not 

surprisingly, the first approach implies an often dramatic downward adjustment of 

WTP estimates, whereas the effect on WTP is somewhat less with the second 

approach. If the fourth assumption is preferred, it follows that respondents can also be 

uncertain about voting ‘No’. This calls for a symmetric approach and several studies 

have suggested ways to incorporate uncertainty for all responses directly in the 

likelihood function, be the uncertainty level implied by the chosen answer (as in Wang 

1997 and in Alberini et al. 2003), or stated on some sort of scale post decision (Li and 

Mattson 1995; Loomis and Ekstrand 1998). As noted by both Loomis and Ekstrand 

(1998) and Alberini et al. (2003) the symmetric approach tends to increase the 

estimated WTP, even if it also provides a better performing model.  

All of the above literature exclusively treats the issue of uncertainty in CV 

studies. The transfer of these approaches to the data obtained in CE studies is slightly 

complicated by the fact that respondents usually evaluate more than one alternative 

version of the environmental change, potentially against a status quo alternative as in 

the present surveys. Thus, if a respondent states uncertainty about a choice, there will 

be as many possible alternative answers as there are alternatives left in the choice set. 

Next, we elaborate on the way in which we treat the stated certainty levels in the 

different approaches. 

 

2.2 Handling Uncertain Answers in Choice Experiment surveys 

 
In the following, we maintain the common assumption in CE that respondents attend 

to and evaluate all attributes presented in the choice set, and that there is full 

substitutability between attributes within the ranges presented to respondents. If these 

assumptions do not hold, it may lead to discontinuous preferences and lexicographic 

ordering. Recent studies have investigated biases in respondents’ processing of the 

different attributes in CE studies and their use of heuristics in response, as an 

underlying cause of uncertainty and heterogeneity (Campbell 2008; Hensher 2008), 

and found that such biases can be severe. These findings are important and may have 

bearings also on the present study, if respondents are in fact not processing all 

attributes as assumed. This limitation should be kept in mind as we proceed to address 

our objective here: to evaluate the usefulness of stated certainty at the choice set level 

in censoring of responses or as a basis for explicitly modelling heterogeneity in scale. 

 

2.2.1 Three Recoding Approaches 

 

We evaluate the effect of three different ways of recoding respondent choices: 

Uncertain choices are either i) eliminated from the sample, ii) asymmetrically recoded 

in the sense that a choice reported to be uncertain is recoded as a choice of the status-

quo alternative, or iii) symmetrically recoded such that an uncertain choice is recoded 

as a choice of the best alternative different from the one chosen. ‘The best alternative’ 
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is assessed in terms of the utility to each respondent of each alternative, using the 

parameters from the benchmark model in which stated uncertainty is ignored. This 

means that if respondents according to the expected utility have chosen the best 

alternative among the possible alternatives in the choice set and have reported the 

choice as uncertain, we recode their answer into a choice of the second best 

alternative. Correspondingly, if they have chosen the second or third best alternative 

and have reported uncertainty about their choice, we recode the choice as a choice of 

the best alternative in the choice set. In other words, the symmetric recoding should 

reflect uncertain respondents’ most likely choice if they had chosen differently. 

As pointed out in Section 2.1, the recoding approach hinges on the researcher 

deciding on an interpretation of what is an uncertain answer. Based on the 

construction of the scales in which the respondents have reported certainty, see 

Appendices A and B, we assume that a certain choice is one where the stated certainty 

level is either ‘Certain’ or ‘Very certain’. All other response categories are interpreted 

as uncertain
1
. 

 

2.2.2 Uncertainty and Variation in the Scale Parameter 

 

An approach used in CE to take into account differences in unexplained variation 

between groups is scaling, which makes use of the fact that embedded in all random 

utility choice models are scale parameters. Since utility in itself is an ordinal measure, 

it has no absolute scale. The logit scaling approach introduced by Bradley and Daly 

(1994) allows for differences in the amount of unexplained variance across different 

types of data. If one part of a data set has more unexplained variance than the other, 

and this is not recognised in the model, it may lead to biased model parameters and the 

model may wrongly predict changes in choice probabilities (Bradley and Daly 1994). 

The importance of handling variations in scale across data types has been stressed 

repeatedly in studies investigating the merits of joint analysis of Stated Preference and 

Revealed Preference data (Bradley and Daly 1994; Hensher and Bradley 1993; 

Adamowicz et al. 1994; Adamowicz et al. 1997; Hensher et al. 1999; Brownstone et 

al. 2000; Whitehead et al. 2008). In such cases it is crucial that the variations in the 

scale parameter across data set are adequately taken into account, if the underlying 

taste parameters are to be reliably estimated. More generally, variation in scale is 

likely to be an integral part of the behavioural and decision-making processes reflected 

in the response patterns of stated preference studies. To uncover these, several studies 

have focused on the scale parameters dependence on variables like choice complexity, 

effort and fatigue (Bradley and Daly 1994; Swait and Adamowicz 2001; Hensher et al. 

2001; DeShazo and Fermo 2002; Sælensminde 2001), as well as demographic 

variables of the respondents (Louviere and Hensher 2001; Scarpa et al. 2003; Hu et al. 

2006). In this paper, we use respondents’ explicitly stated certainty in choice in two 

models: One in which variation in scale is linked directly to the stated certainty, and 

one in which scale is modelled as a function of other variables found to correlate with 

stated certainty. 

                                                   
1
 The recoding approach may hinge on the distinction that the researcher makes between a 

certain and an uncertain answer. In the motorway data the level ‘Neither certain nor uncertain’ 

has been categorised as an uncertain answer. For the purpose of testing the influence of the 

used distinction, we also estimated the models where ‘Neither certain nor uncertain’ was 

categorised as a certain answer. Results showed that this specific distinction had no noteworthy 

effect on the conclusions drawn 



Lundhede et al. Journal of Choice Modelling, 2(2), pp. 118-147   

 

123 

 

2.3 The Econometric Models 

 

2.3.1 The Random Parameter Error Component Logit Model 

 

The random parameter error component logit model relies on McFadden’s (1974) 

random utility model, where the utility of a good is described as a function of its 

attributes, and people choose among complex goods by evaluating their attributes. 

Since utility can only be imperfectly observed, the random utility model is the basis 

for estimation. In a specific case, where a respondent, i, faces a choice between a 

status quo and two management alternatives, the utility, U, of these j alternatives in 

the n’th choice occasion can be described in the following way: 

 

Uijn = 

;3,2),,,(

;)(1),,,(

~

~

jifxV

quostatusjifxASCV

ijniiijn

ijniijn

(1) 

 

Here the indirect utility, V, is a function of the vector of explanatory variables, xijn, 

including characteristics of the individual, the alternative and the choice situation, as 

well as the vectors of individual-specific random parameters, i

~
, and fixed 

parameters, β. Following Scarpa et al. (2005) an Alternative Specific Constant (ASC) 

is specified for the status quo alternative in order to capture the systematic component 

of a potential status quo effect. Furthermore, an error component additional to the 

usual Gumbel-distributed error term is incorporated in the model to capture any 

remaining status quo effects in the stochastic part of utility. This error component, σi, 

which is implemented as an individual-specific zero-mean normally distributed 

random parameter, is assigned exclusively to the two non-status quo alternatives. By 

specifying a common error component across these two alternatives, a correlation 

pattern in utility over these alternatives is induced. Thus, it captures any additional 

unexplained variance associated with the cognitive effort of evaluating two 

experimentally designed hypothetical scenarios relative to a status quo scenario 

(Greene and Hensher 2007; Scarpa et al. 2007; Ferrini and Scarpa 2007; Scarpa et al. 

2008).   

Assuming that ijn  is IID extreme value distributed, the probability of individual i 

choosing alternative k out of j alternatives can be defined by the Conditional Logit 

model: 

 

Pr(ikn) = 
J

j

x

x

ijnikn

iknikn

'

'

exp

exp
      (2)  

where β’ is a vector of all betas, λ is the scale parameter which is typically normalised 

to 1, and the ASC and error terms from eq. (1) are left out for simplicity. Following 

Train (2003), the Mixed Logit probabilities can be described as integrals of the 

standard conditional logit function evaluated at different β’s with a density function as 

the mixing distribution. Furthermore, this specification can be generalised to allow for 
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repeated choices by the same respondent, i.e. a panel structure, by letting k be a 

sequence of alternatives, one for each choice occasion, k ={k1,…,kN}. Thus, the utility 

coefficients vary over people but are constant over the N choice occasions for each 

individual. If the density, as in this paper, is specified to be normal, the probabilities of 

the model become:  

 

Pr(ik) = dWb
N

n
J

j

x

x

ijni

nniki

,
exp

exp

1

    (3) 

       
where Wb,  is the distribution function for β, with mean b and covariance W. 
The analyst chooses the appropriate distribution for each parameter in β. For 
simplicity, λ is normalised to unity. 
 

2.3.1 The Scaling Approach 

 

In our first four models estimated, i.e. the benchmark model ignoring uncertainty and 

the three models based on recoded samples, the econometric model just described was 

used. In the fifth and sixth models, we expand the model with the logit scaling 

approach (see Louviere et al. 2000). Since utility is an ordinal measure, the scale of 

utility has to be normalised and usually this is done by normalising the variance of the 

error term (Ben-Akiva and Lerman 1985; Train 2003). Assumptions concerning the 

distribution of the unobserved part of utility are required in any random utility model 

for instance by assuming that the error terms are IID Gumbel distributed as above. 

This implies that the scale of utility is normalised. It can be shown that the Gumbel 

scale parameter, λ, is inversely proportional to the standard deviation of the random 

component up to a constant of π
2
/6 ≈ 1.3 (Ben-Akiva and Lerman 1985). 

In the benchmark and recoding models of this paper, we use the common 

normalisation of λ to unity (Train 2003; Scarpa et al. 2003), implying that unexplained 

variance is assumed uniform across responses. In Models 5 and 6 we relax this 

assumption. A general parameterisation of the scale function is (Hensher et al. 2005): 

 

 
6)var(

)exp(
ikn

iknwwikn Z     (4) 

 

where Ziknw is a vector of covariates associated with the individual, the choice set and 

the alternative (the elements in Z are indexed by w), and γw is a row-vector of the 

corresponding scale function parameters. The exponential form of the scale function 

ensures nonnegative estimates of model variance, as the scale is inversely proportional 

to the standard deviation of the unobserved component, μikn.  

In the context of preference uncertainty, it makes sense to assume that uncertain 

choices will exhibit a greater degree of unobserved variability in choices than certain 

choices, and thus a lower degree of estimation precision (Hole 2006). In order to 

incorporate this, in Model 5 we parameterise scale as a function of respondents’ stated 

certainty level for each choice set. Hence, Z consists of the different levels of stated 

certainty in choice, with one parameter fixed to unity for identification purposes. In 

this way, stated certainty is explicitly accounted for in the parametric model as a 

source of unobserved variability in choices. This specification allows us to use a panel 
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specification, as we can index each respondent and choice combination, capturing the 

way respondents’ switch between uncertainty-groups through the course of the choice 

sets. 

We recognise that most CE surveys do not or may not want to ask respondents to 

state their experienced uncertainty after each single choice set. Therefore, in a sixth 

model, we model scale as a function of variables found to determine the respondents’ 

stated certainty levels. This is based on the findings from Lundhede et al. (2009a) 

where respondents’ stated certainty in choice is modelled using an ordered probit 

model. Among other things, they find evidence that stated certainty is higher for men 

than for women, that certainty increases with income, and that a learning effect may 

increase stated certainty as the choice set number increases. 

 

3 Data  
 

The data originate from two CE surveys: one that examined preferences for reducing 

the impact of new motorways on different types of nature and one that examined the 

preferences for the establishment of national parks.   

 

3.1 The Motorway Survey 

 
The hypothetical scenario was that 100 kilometres of new motorways were to be built 

in Denmark during the next ten years. The scenario described that the exact location of 

these stretches of motorway can be decided on with more or less consideration of 

potential encroachment on nature areas.  

Three different types of nature were identified and chosen as attributes in the CE 

design. The three attributes were ‘forest’, ‘wetland’, and ‘heath’. To enable estimation 

of WTP, a price attribute was defined in terms of an extra annual income tax on the 

household. In Denmark, the building of motorways is financed over taxes, lending 

credibility to this payment vehicle. The attributes and their assigned levels are 

summed up in Table 1. 

 

Table 1: Attribute Levels used in the Motorway Survey 

Attribute  Levels  

Forest 0 km, 5 km, 10 km 

Wetland 0 km, 2.5 km, 5 km 

Heath/pastoral land 0 km, 2.5 km, 5 km 

Arable land
 a
 80 km, 82.5 km, 85 km, 87.5 km, 90 km, 92.5 km, 95 km, 

97.5 km, 100 km 

Annual extra tax payment 

per household
 b
 

DKK 0, 100, 200, 400, 700, 1100, 1600  

a
 As the total stretch of motorway was fixed at 100 kilometres, a fourth supplementary attribute, 

‘arable land’, was introduced to account for the location of the remaining kilometres summing up to 

100 in total. This attribute functioned as an accumulation attribute, its level being determined by the 

other attribute levels. Thus, due to perfect correlation, it was not included in the experimental 

choice set design and it is not included in the parametric modelling of preferences. 
b
 Note: DKK 100 ≈ € 13.4  
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The attribute levels were assigned to alternatives using an experimental design and 

paired into choice sets of three alternatives. As a full factorial design comprised 162 

alternatives, a D-optimal fractional factorial design consisting of 18 choice sets was 

identified (Louviere et al. 2000). To minimise the number of dominating and non-

causal alternatives, the initially identified efficient design was subjected to the manual 

swapping procedure suggested by Huber and Zwerina (1996). A choice set consisted 

of three alternatives: the zero-priced status quo alternative (the motorway would be 

placed through 10 kilometres of forest, 5 kilometres of wetland, 5 kilometres of heath, 

and 80 kilometres of arable areas) and two experimentally designed improvement 

alternatives. The respondent sample was split into three groups, so that each 

respondent only had to answer six choice sets, and respondents were instructed to 

choose which alternative they would prefer in each of the choice sets. An example of a 

choice set is displayed in appendix A along with the associated question on certainty 

in choice. The dataset which was collected using an internet-based questionnaire 

consists of 595 responses, resulting in a total of 3,570 answered choice sets
2
. In only 

37 out of these did respondents answer ’Don’t know’ or fail to respond to the certainty 

follow-up question. The distribution of responses is displayed in Table 3. The majority 

of the choices (66.0 percent) were classified as either ‘certain’ or ‘very certain’ 

choices. 

 

3.2 The National Park Survey 

 
Denmark is establishing its first national parks following a long political process and 

public debate. As part of the participatory process included, a study was performed to 

evaluate preferences for different environmental attributes of national parks as well as 

seven potential sites. Respondents were asked to evaluate choice sets in which the 

‘Location’ of the new national park was one attribute along with four generic 

attributes of the parks, namely ‘Extra initiatives for special plant and animals’, ‘Extra 

effort for general nature protection’, ‘Increased amount of walking and biking paths’. 

The establishment, nature protection efforts and management of the national parks will 

be paid for over the general taxes in Denmark, and thus ‘Extra income tax per year and 

household’ was the fourth generic attribute. The attributes and levels are shown in 

Table 2.  

Each respondent was given only four of the seven locations, allocated by a cyclic 

design of seven groups. For each group the same combinations of attribute levels were 

used. The attribute levels were assigned to alternatives by a fractional factorial design 

and resulted in an orthogonal, balanced experimental design of 32 choice sets 

consisting of two alternatives and a status quo (no national park). The choice sets were 

grouped into 4 blocks of 8. No choice sets were eliminated from the design, i.e. also 

alternatives with zero payment for a national park occurred. An example of a choice 

set is shown in Appendix B. Each respondent replied to 8 choice sets. The dataset 

which was collected using self-administered paper-and-pencil questionnaires consists 

of 636 responses resulting in 4,866 choice observations
3
. Compared with the target 

population (Danes), the sample is a little under-represented in age-groups below 35 

and above 65 years; and also in short educations. Also both the lowest and the highest  

                                                   
2
 For a more thorough description of the survey and a full version of the questionnaire used, the 

reader is referred to Olsen et al. (2005). 
3
 For a full description of the data and analysis, see Jacobsen et al. (2006) and Jacobsen and 

Thorsen (2009). 
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Table 2: Attributes Levels used in the National Park Survey 

 

Attribute Levels 

Location None, Læsø, Møn, Thy, Nordsjælland, Mols Bjerge, Lille 

Vildmose, Vadehavet 

Nature preservation No extra effort, Little extra effort, Some extra effort, Large 

extra effort 

Extra effort for specific 

animals and plants 

No, Yes (with indication of which species for the given 

location) 

Walking and biking path No increased amount of path, Increased amount of path 

Extra income tax per 

year per household 

DKK 0, 50, 100, 200, 400, 700, 1500, 2000        

 

 

income groups are under-represented. There is no significant difference on gender. 

The distribution of responses to the certainty groups is displayed in Table 3. With a 

total of 73.6 percent of the choices being classified as either ‘certain’ or ‘very certain’, 

the respondents in this survey seem to express a generally higher degree of certainty 

about their choices than the respondents in the survey considering motorways
4
. 

 

4 Results and Analyses 
 

4.1 The Benchmark Model 

 
Assumptions concerning the distribution of random parameters, i.e. the density 

function   specified in eq. (3), are necessary. The true distribution is unknown, so in 

principle any distribution could be applied (Carlsson et al. 2003; Hensher and Greene 

 

Table 3: Distributions of Stated Certainty 

 

 Percentage of responses 

Certainty group Motorway National park 

Very uncertain 3.1 2.7 
Uncertain 9.8 21.0 
Neither certain nor uncertain 20.0 - 
Certain 45.2 49.5 
Very certain 20.8 24.1 
Don't know 1.0 2.7 

 

                                                   
4
 Considering that Olsen (2009) find evidence of internet respondents generally stating higher 

certainty in choice than mail respondents, it is slightly surprising to find the opposite here. 

However, the two surveys differ in a number of other aspects than survey mode (i.e. the good 

being evaluated, the number of choices per respondent, the presentation of the certainty 

question) which might explain this result. We refrain from elaborating further on this topic 

here, as it is beyond the scope of this paper. 



Lundhede et al. Journal of Choice Modelling, 2(2), pp. 118-147   

 

128 

 

2003). In the present analyses, all parameters except the ones for tax payment and the 

alternative specific constant (ASC) are assumed to be normally distributed random 

parameters to allow for preference heterogeneity. This choice is based on experience 

from other Danish valuation studies, where the preferences for several similar 

attributes have been found to vary considerably across different groups of respondents. 

Extended access rights and facilities can have a negative value for some respondent 

groups, see e.g. Jacobsen et al. (2008) and Lundhede et al. (2009b), probably due to 

concerns for protection and conservation in nature areas. Likewise, Jacobsen and 

Thorsen (2009) find that preferences for national park sites differ greatly across 

respondents – some sites may have a negative value for respondents in some regions. 

Also, the value of increased wildlife and protection of different habitats is not 

necessarily (equally) positive for all (Jacobsen et al. 2009). As the explicit modelling 

of these patterns in preference variation, e.g. through the use of latent-class models, is 

not the focus of the paper, we have chosen the normal distribution as a reasonable way 

of taking into account possible taste variation. The ASC and tax parameters are treated 

as fixed rather than random parameters, even though keeping tax fixed implies that the 

marginal utility of money is fixed over the population. This is done to avoid a number 

of potentially severe problems associated with specifying a random price parameter 

(see e.g. Meijer and Rouwendal 2006; Hensher et al. 2005; Hess et al. 2005; Train and 

Sonnier 2005; Hensher and Greene 2003; Train 2003; Train and Weeks 2005). Tables 

4 and 5 display the results obtained from the random parameter error component 

estimation of our benchmark model, where no measures have been taken to account 

for certainty in choice. All models are based on simulations using 1000 Halton draws. 

In Tables 10 and 11 the resulting WTP estimates are shown alongside the estimates 

from the other models. 

For the motorway data it is evident from the t-values that all parameter estimates 

are significant with ASC being the only exception. As expected, the nature attribute 

mean estimates all have a negative sign, indicating that on average respondents 

experience a diminishing utility when one km of motorway is placed through the 

specific types of nature. Likewise, the price parameter estimate has a negative sign as 

would be expected. The impact of heath on utility is significantly lower than that of 

forest and wetland areas. The estimated standard deviations of the random parameters 

are highly significant, revealing a considerable degree of heterogeneity in the 

respondents’ preferences for the three nature type attributes. The calculated 

probabilities of obtaining reversed sign suggest that this heterogeneity translates into 

between 19 and 31 percent of respondents generally being indifferent or even in 

favour of placing motorways through these types of landscape
5
. The adjusted pseudo-

R
2
 value as well as the likelihood ratio test reveal that the model generally fits the data 

very well (Domencich and McFadden 1975; Louviere et al. 2000). 

 

                                                   
5
 This finding confirms results from focus group interviews where a minor share of the 

participants exhibited strong preferences for driving through scenic landscapes. 
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Table 4: The Benchmark Model for the Motorway Data (Model 1). 

 

Attribute   Estimate (t-value) Prob. rev. sign 

ASC  -0.3356 (-1.60)  

Forest
 a
 - Mean  -0.1641 (-11.31) 0.23 

 - St.dev. 0.2200 (13.12)  

Wetland
 a
 - Mean  -0.2161 (-9.50) 0.19 

 - St.dev. 0.2473 (8.14)  

Heath
 a
 - Mean  -0.0923 (-4.88) 0.31 

 - St.dev. 0.1824 (5.96)  

Price  -0.0020 (-27.17)  

Sigma  3.1437 (14.73)  

Num. observations 3570   

Num. respondents 595   

LLzero -3922   

LLFull -2756   

LRI (pseudo-R
2
) 0.297   

Adj. LRI  0.296   

LR test 2331.9    
a 

 Due to the chosen coding of the landscape type variables, the utility 

estimates are associated with an increase in the number of kilometres of 

motorway going through the landscape types. Hence, the negative 

estimates do not imply that people generally dislike these landscape 

types, but rather the opposite. Accordingly, the calculated probabilities of 

reversed sign denote the probability of obtaining negative preferences for 

the landscape types. In the calculation of WTP estimates presented in 

Table 10, this coding approach is taken into account by multiplying by -1. 
 

For the national park data in Table 5 we see that most parameter estimates are 

significant and with a positive sign. The exceptions are the parameter estimates for 

location Nordsjælland and for ’Walking and biking paths’ which are not significantly 

different from zero. However, this is a result of highly heterogeneous preferences that 

more or less split the sample in two equally sized portions with opposing preferences. 

These results are in line with findings in Jacobsen et al. (2008) and Lundhede et al. 

(2009b). The numerically high negative ASC corresponds to a high WTP for the 

establishment of a park per se, cf. discussion in Jacobsen and Thorsen (2009). As for 

the motorway data, the estimated standard deviations of the random parameters are 

highly significant. Thus, a considerable degree of heterogeneity is established and this 

is underlined by the generally high probabilities of sign reversal. The adjusted pseudo-

R
2
 value as well as the likelihood ratio test indicates that the model fits the data very 

well. 

We use the estimated utility weights implied by the parameters shown in Tables 4 

and 5 to calculate the expected utility of each alternative in each choice set for each 

respondent, cf. eq.(1) and the attribute definitions in Tables 1 and 2. This is used for 

the symmetric recoding approach applied in Model 4 as explained in Section 2.2.1. 
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Table 5: The Benchmark Model for the National Park Data (Model 1). 

 

Attribute   Estimate (t-value) Prob. rev. sign 

ASC  -2.1833 (-10.99)  

Location Møn - Mean  0.3555 (2.49) 0.40 

- St.dev. 1.3458 (7.20)  

Location Thy - Mean  0.2978 (2.02) 0.40 

- St.dev. 1.1871 (6.91)  

Location Nordsjælland - Mean  -0.1146 (-0.66) 0.52 

- St.dev. 1.8776 (10.16)  

Location Mols Bjerge - Mean  0.4415 (2.76) 0.39 

- St.dev. 1.5742 (8.26)  

Location Lille Vildmose - Mean  0.8141 (5.92) 0.28 

- St.dev. 1.3630 (8.17)  

Location Vadehavet - Mean  0.6014 (3.95) 0.35 

- St.dev. 1.6092 (10.09)  

Nature preservation - Mean  0.1216 (3.77) 0.33 

- St.dev. 0.2835 (4.89)  

 Effort for animal/plants - Mean  1.1291 (14.02) 0.09 

- St.dev. 0.8242 (7.46)  

Walking and biking 

paths 

- Mean  0.1615 (1.85) 0.42 

- St.dev. 0.8086 (5.85)  

Price  -0.0020 (-33.49)  

Sigma   2.7036 (14.68)  

Num. observations  4866   

Num. respondents  636   

LLzero  -5346   

LLFull  -3742   

LRI (pseudo-R
2
)  0.300   

Adj. LRI   0.298   

LR test  3205.8   

 

4.2 Estimating Models on Recoded Data 

 
The results of re-estimating the benchmark models using the three different recoded 

data sets are shown in Tables 6 and 7
6
. Due to potential differences in the scale 

parameters confounded within the estimated beta parameters, the attribute parameter 

estimates are not directly comparable across models. Section 4.4 will present a more 

appropriate comparison of attribute preferences by comparing attribute WTP 

estimates. It is however evident from Tables 4 to 7 that the signs of estimated attribute 

parameters are identical across the four models. One exception is that of the ASC 

mean estimate. For both datasets, the asymmetric recoding in Model 3 results in a sign 

reversal for this parameter. Specifically it changes from a negative to a positive sign, 

indicating that the asymmetric recoding entails a marked increase in the utility  

 

                                                   
6
 In order to avoid information overload, the calculated probabilities of reversed sign are not 

reported in Tables 6 to 9, as these were not found to differ much from the benchmark models. 
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Table 6: The Results of Elimination (Model 2), Asymmetric Recoding (Model 3) and 

Symmetric Recoding (Model 4) for the Motorway Data. 

 
 

  

Model 2 

 (Elimination) 

Model 3 

 (Asymmetric recoding) 

Model 4 

 (Symmetric recoding) 

Attribute Estimate (t-value)  Estimate (t-value)  Estimate (t-value) 

ASC  -0.3453 (-0.98)  2.3454 (11.15)  -0.1848 (-1.19) 

Forest - Mean  -0.2211 (-10.45)  -0.1718 (-10.39)  -0.1369 (-11.93) 

 - St.dev. 0.2758 (10.47)  0.2144 (11.70)  0.1685 (13.20) 

Wetland - Mean  -0.3169 (-9.56)  -0.2678 (-10.59)  -0.1968 (-10.50) 

 - St.dev. 0.2221 (4.96)  0.1824 (4.88)  0.1563 (5.33) 

Heath - Mean  -0.1003 (-3.65)  -0.1060 (-4.89)  -0.0966 (-6.08) 

 - St.dev. 0.2060 (5.13)  0.1266 (3.17)  0.0782 (1.89) 

Price  -0.0022 (-20.46)  -0.0019 (-22.80)  -0.0017 (-23.67) 

Sigma  4.4494 (11.22)  3.1785 (15.20)  2.1447 (16.28) 

Num. observations 2358   3570   3570  

Num. respondents 505   595   595  

LLzero -2591   -3922   -3922  

LLFull -1614   -2414   -3003  

LRI (pseudo-R
2
) 0.377   0.384   0.234  

Adj. LRI  0.375   0.384   0.233  

LR test 1951.4   3015.6   1838.1  

 

associated with the status quo situation. Across all models, the estimated standard 

deviations suggest a significant amount of heterogeneity in preferences. 

For Model 2 based on elimination the log-likelihood and the adjusted pseudo-R
2
 

measures suggest a better model fit than in the original model and sample, reflecting 

that eliminating uncertain responses reduces noise in data. This tendency is evident in 

both datasets. Similarly, in Model 3 based on asymmetric recoding, the log-likelihood 

and the adjusted pseudo-R
2
 measures suggest a better model fit than in the benchmark 

model and sample, suggesting that much noise has been eliminated. This is however 

only the case for the motorway data, whereas for the national park data the model fit 

appears to be lower for the recoded data set than for the benchmark data. For Model 4 

based on a symmetric recoding of the choice data, the log-likelihood and the adjusted 

pseudo-R
2
 measures indicate a markedly lower model fit than the benchmark for both 

datasets. This suggests that the symmetric recoding actually increases the amount of 

noise in the data. Note that as the dataset changes across Models 1 to 4 due to the 

applied recoding, the likelihood and pseudo-R
2
 values are strictly speaking not directly 

comparable across Models 1 to 4. Hence, the differences in model fit can only be 

interpreted in terms of the models’ ability to explain the resulting data. The differences 

in model fit do not tell us anything about whether the underlying assumption behind 

one model is more true than the assumptions behind other models. 
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Table 7: The Results of Elimination (Model 2), Asymmetric Recoding (Model 3) and 

Symmetric Recoding (Model 4) for the National Park Data 

 
 

  Model 2 

(Elimination) 

 Model 3 

(Asymmetric recoding) 

 Model 4 

(Symmetric recoding) 

Attribute  Estimate (t-value)  Estimate (t-value)  Estimate (t-value) 
ASC  -2.5647 (-9.45)  0.1356 (0.89)  -1.5371 (-11.58) 

Location Møn - Mean 0.3729 (2.20)  0.2399 (1.73)  0.2499 (2.25) 

- St.dev. 1.3991 (5.94)  1.0958 (5.56)  0.6828 (3.90) 

 

Location Thy 

- Mean  0.3624 (2.04)  0.2512 (1.70)  0.1682 (1.37) 

- St.dev. 1.2046 (5.47)  1.1048 (5.98)  0.9033 (5.46) 

 

Location Nordsjælland 

- Mean  -0.1607 (-0.76)  -0.2232 (-1.21)  0.0076 (0.06) 

- St.dev. 1.8749 (7.61)  1.7239 (9.00)  1.1754 (7.28) 

 

Location Mols Bjerge 

- Mean  0.5371 (2.58)  0.3043 (1.82)  0.3045 (2.30) 

- St.dev. 1.9009 (7.22)  1.6082 (8.38)  1.1501 (7.11) 

 

Location Lille Vildmose 

- Mean  0.8953 (5.20)  0.6157 (4.36)  0.5389 (4.71) 

- St.dev. 1.4776 (6.99)  1.1567 (6.54)  0.8528 (5.26) 

 

Location Vadehavet 

- Mean  0.7891 (4.42)  0.5489 (3.80)  0.4733 (4.19) 

- St.dev. 1.7096 (8.42)  1.2999 (8.04)  0.8247 (5.21) 

 

Nature preservation 

- Mean  0.1186 (3.06)  0.0990 (3.19)  0.0652 (2.42) 

- St.dev. 0.2566 (3.25)  0.2148 (3.12)  0.2271 (4.37) 

 

Effort for animal/plants 

- Mean  1.2476 (12.86)  0.9009 (11.59)  0.8294 (13.44) 

- St.dev. 0.8424 (5.92)  0.8465 (7.47)  0.6436 (6.74) 

 

Walking and biking paths 

- Mean  0.1330 (1.22)  0.0568 (0.72)  -0.0025 (-0.04) 

- St.dev. 0.8082 (4.57)  0.5806 (3.55)  0.4608 (3.13) 

Price  -0.0021 (-29.63)  -0.0018 (-32.28)  -0.0014 (-33.69) 

Sigma  3.0839 (11.45)  2.5009 (19.32)  0.1060 (15.96) 

Num. observations  3581   3581   3581  

Num. respondents  579   579   579  

LLzero  -3934   -5346   -5346  

LLFull  -2663   -4006   -4137  

LRI (pseudo-R
2
)  0.323   0.251   0.226  

Adj. LRI ( Adj.pseudo-R
2
)  0.321   0.249   0.224  

LR test  2542.9   2680.2   2417.4  

          

 

4.3 Explicit Modelling of Certainty in Choice Through use of Scaling 

  
Tables 8 and 9 present the results obtained from the random parameter error 

component models, where we have also allowed for a parametric representation of the 

scale variation as explained in Section 2.2.2. We estimate the scale function models 

using Biogeme (Bierlaire 2003).  
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Table 8: Results from modelling scale variation in the motorway data set using stated 

certainty (Model 5) or determinants of stated certainty (Model 6) 

 
 

    Model 5  Model 6  

Attribute   Estimate  (t-value)  Estimate  (t-value)  

ASC  -0.1300  (-2.45)  -0.2970  (-1.91)  

Forest  - Mean -0.0399  (-4.54)  -0.0884  (-2.33)  

 - St.dev. 0.0572  (4.62)  0.1300  (2.32)  

Wetland - Mean -0.0594  (-4.54)  -0.1230  (-2.35)  

 - St.dev. 0.0591  (4.10)  0.1450  (2.21)  

Heath - Mean -0.0222  (-3.40)  -0.0539  (-2.08)  

 - St.dev. 0.0311  (3.32)  0.0869  (1.90)  

Price  0.0496  (4.82)  0.1170  (2.34)  

Sigma  0.6730  (4.69)  1.3200  (2.52)  

Scale function parameters
 a
        

   Don’t know 0.77  (-0.97)  -  -  
   Uncertain 0.76  (2.27)  -  -  
   Neither/nor 1.01  (0.05)  -  -  
   Certain 1.48  (-0.61)  -  -  
   Very certain 1.71  (3.20)  -  -  
   Income medium -  -  0.88  (-1.24)  
   Income high -  -  1.11  (1.17)  
   Male  -  -  1.02  (0.27)  
   Choice set number -  -  -0.09  (-3.24)  

Num. observations 3570    3570    
Num. respondents 595    595    

LLzero  -3922    -3922    

LLFull  -2717    -2740    
LRI (pseudo-R

2
) 0.307    0.301    

Adj. LRI 0.304    0.298    

LR test   2410.3    2364.2     
a
 The scale function parameters are dummy variables estimated relative to the base levels which 

are normalised to 1. In Model 5, the normalised level is the ’very uncertain’-responses. In Model 

6, the normalised base levels are ’income low’ and ’female’. Hence, the t-test values reported 

for the associated parameters test the hypothesis of the estimated scale function parameter being 

equal to 1. The choice set number variable is, however, entered as a continuous variable, so the 

relevant null hypothesis for this variable is the parameter being equal to zero. 
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Table 9: Results from Modelling Scale Variation in the National Park Data set using Stated 

Certainty (Model 5) or Determinants of Stated Certainty (Model 6) 

 
 

  Model 5   Model 6  

Attribute  Estimate  (t-value)   Estimate  (t-value)  
ASC - Mean -0.6074  (-4.53)   -0.2670  (-7.61)  

Location Møn - Mean 0.1045  (2.97)   0.0354  (1.98)  

- St.dev. 0.3243  (1.85)   0.1580  (4.94)  

Location Thy - Mean 0.1120  (4.78)   0.0368  (2.09)  

- St.dev. 0.3191  (3.13)   0.1000  (2.86)  

Location Nordsjælland - Mean -0.0322  (3.85)   -0.0104  (-0.49)  

- St.dev. 0.5827  (4.09)   0.2530  (-6.93)  

Location Mols Bjerge - Mean 0.1552  (2.85)   0.0564  (2.85)  

- St.dev. 0.4201  (4.20)   0.1630  (5.17)  

Location Ll. Vildmose - Mean 0.2397  (2.34)   0.1010  (4.98)  

- St.dev. 0.3625  (3.71)   0.1610  (5.55)  

Location Vadehavet - Mean 0.1861  (-0.65)   0.0810  (3.91)  

- St.dev. 0.4448  (4.44)   0.2140  (6.47)  

Nature preservation - Mean 0.0326  (1.80)   0.0150  (3.78)  

- St.dev. 0.0496  (2.65)   0.0197  (1.39)  

Effort for animal/plants - Mean 0.3156  (2.38)   0.1280  (8.65)  

- St.dev. 0.1736  (3.78)   -0.0975  (5.36)  

Walking and biking paths - Mean 0.0457  (3.30)   0.0205  (1.92)  

- St.dev. 0.1513  (4.30)   0.0825  (4.13)  

Price   -0.0006  (-4.96)   -0.0003  (-9.47)  

Sigma  0.8271  (4.73)   -0.3600  (-8.76)  

Scale function parameters
 a
         

   Don’t know 0.68  -1.06   -  -  

   Uncertain 1.01  0.05   -  -  

   Certain 1.22  1.07   -  -  

   Very certain 1.21  1.00   -  -  

   Income medium -  -   1.22  2.29  

   Income high -  -   1.08  0.97  

   Male  -  -   0.93  -1.07  

   Choice set number -  -   -0.01  -0.42  

Num. observations 4866     4866    

Num. respondents 636     636    

LLzero  -5346     -5346    

LLFull  -3752     -3767    

LRI (pseudo-R
2
) 0.298     0.295    

Adj. LRI 0.293     0.291    

LR test  3187.3     3157.6    
a
 The scale function parameters are dummy variables estimated relative to the base levels which are 

normalised to 1. In Model 5, the normalised certainty level is ’Very uncertain’. In Model 6, the normalised 

base levels are ’Income low’ and ’female’. Hence, the t-test values reported for the associated parameters test 

the hypothesis of the estimated scale function parameter being equal to 1. The choice set number variable is, 

however, entered as a continuous variable, so the relevant null hypothesis for this variable is the parameter 

being equal to zero.  
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In Model 5, for both data sets we see that all attribute parameter estimates are 

significant and of the expected sign when compared with Model 1. The estimated 

scale parameters provide a test of the hypothesis of equal error variance across 

certainty level groups. For both data sets the base level for the scale function is the 

group of ’very uncertain’-responses, which is normalised to 1. For the motorway data 

the ’don’t know’ and ’uncertain’ groups of responses obtain estimates below 1, 

indicating higher error variance for these choices, but the t-test values cannot reject the 

hypothesis of equality of error variance across these two groups and the base. The 

‘neither certain nor uncertain’ group is estimated with a parameter just above one and 

is also not significantly different from the base group of ‘very uncertain’ answers. 

Turning to the ’certain’ and ’very certain’ responses, these groups obtain significantly 

higher scale function parameter estimates than the base and the other estimated scale 

parameters. For instance, in the motorway data the scale parameter of the ‘very 

certain’ responses relative to the base is exp(1.71) ≈ 5.5, which corresponds to a 

variance of about 0.05 for the assumed Gumbel error term. The base group error 

variance is about 0.22. Hence, the error variance in the ‘very certain’ group is more 

than one fourth of that of the base. The error variance of the ’uncertain’ group is 0.36, 

i.e. seven times higher. For the national park data, the scale function parameter of the 

group ’don’t know’ is the only one to be smaller than the base level. The groups of 

’certain’ and ’very certain’ answers are significantly different from the ‘don’t know’ 

group of responses, but none of the estimated scale parameters are significantly 

different from the base of ’very uncertain’ answers. The fit of Model 5 is better than in 

Model 1 for the motorway data, but worse for the national park data. Contrary to the 

recoding models, direct comparisons of model fit across Models 1, 5 and 6 are valid as 

the datasets underlying these models are identical. Models 5 and 6 simply make use of 

more of the information available in the datasets. 

In Model 6, the scale function contains several of the variables found to influence 

respondents’ stated certainty in choice (Lundhede et al. 2009a). As can be seen, the 

results are less encouraging. The model fit of the motorway data is worse, though still 

marginally improved when compared with Model 1. For the national park data the 

model fit in terms of adjusted pseudo-R
2
 is again slightly worse. The scale function 

parameters do not suggest any evidence of gender differences in any of the data sets. 

For the different income groups we find that medium and high income groups do not 

differ significantly from the low income base group in the motorway data. However, 

the high income group does obtain a significantly higher scale function parameter (and 

hence a lower error variance) than the medium income group. For the national park 

data, the highest scale parameter is for the middle income group, and it is the only one 

that is significantly different from the basis. The effect of the choice set number on 

scale is significant in the motorway model while insignificant in the national park 

model. However, as the parameter in both cases is negative it indicates a weak 

evidence of a possible fatigue effect (Bradley and Daly 1994). The evidence is seen in 

spite of the fact that our surveys had sequences of only six, respectively eight, choices 

per respondent whereas Bradley and Daly applied up to 16 choices per respondent.   

 

4.4 Comparison of WTP Estimates  

 
In Tables 10 and 11, we compare the WTP estimates across all six models along with 

their confidence intervals and changes in these – for both data sets. As can be seen, 

looking across models for both data sets, most of the WTP estimates show only minor 

or insignificant differences for most environmental attributes, when compared with 
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Model 1 – or each other. The largest differences are found for the asymmetric 

recoding in Model 3. More specifically, the WTP for the ASC increases drastically in 

both datasets, whereas remaining attributes are only subject to minor and largely 

insignificant changes. This result is not surprising considering that a large amount of 

improvement choices have been recoded to status quo choices which should lead to an 

increase in the estimated utility associated with for the status quo situation.  

Consider also the relative width of the confidence intervals around the attribute 

level WTP estimates, as compared with the width of the confidence interval of the 

benchmark in Model 1. Note that relative to the benchmark the recoding Models 2 and 

3 generally show increases in the width of the WTP confidence intervals, whereas the 

tendencies for Models 4 to 6 are less clear.  

 

Table 10: Comparison of WTP Estimates and Confidence Intervals for the Motorway Data 

 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

 
Benchmark 

model 

Uncertain 

eliminated 

Asymmetric 

recoding 

Symmetric 

recoding 

Certainty 

level in 

scale 

Respondent 

variables in 

scale 

ASC -169 -157 1251 -106 -262 -254 

 (-373;35) (-469;155) (1004;1498) (-279;67) (-454;-70) (-330;-177) 

 - +53% +21% -15% -6% -62% 

Forest
 
 82 101 92 78 80 76 

 (69;96) (82;119) (75;109) (66;91) (65;96) (69;82) 

 - +30% +22% -13% +12% -55% 

Wetland 109 144 143 113 120 105 

 (86;131) (116;172) (116;170) (91;134) (95;144) (95;115) 

 - +25% +19% -6% +9% -56% 

Heath 46 46 57 55 45 46 

 (28;65) (21;70) (34;79) (37;74) (25;65) (38;54) 

 - +31% +23% -2% +8% -57% 

       

# observations 3570 2358 3570 3570 3570 3570 

# respondents 595 505 595 595 595 595 

LLzero -3922 -2591 -3922 -3922 -3922 -3922 

LLFull -2756 -1614 -2414 -3003 -2717 -2740 

LRI (pseudo-R
2
) 0.297 0.377 0.384 0.234 0.307 0.301 

Adj. LRI  0.296 0.375 0.384 0.233 0.304 0.298 

LR test 2331.9 1951.4 3015.6 1838.1 2410.3 2364.2 

Note: Intervals in parenthesis are 95% confidence intervals obtained using the Krinsky-Robb procedure (Krinsky 

and Robb 1986; 1990) with 10,000 replications. Below these we show the percentage increase in the width of the 

confidence interval for each model compared with the benchmark in Model 1. 
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Table 11: Comparison of WTP Estimates and Confidence Intervals for the National Park Data 

 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

 
Benchmark 

model 

Uncertain 

eliminated 

Asymmetric 

recoding 

Symmetric 

recoding 

Certainty 

level in scale 

Respondent 

variables in 

scale 

ASC 

 

-1078 -1234 75 -1065 -1063 -1068 

(-1256;-899) (-1470;-997) (-90;240) (-1244;-886) (-1278;-848) (-1258;-878) 

 - +33% -7% 0% +20% +6% 

Location 

Møn 

175 179 133 173 183 142 

(39;312) (21;338) (-17;282) (23;323) (39;327) (3;280) 

 - +16% +9% +10% +6% +2% 

Location 

Thy 

147 174 139 117 196 147 

(5;289) (7;342) (-21;299) (-50;283) (42;350) (10;284) 

 - +18% +13% +17% +8% -4% 

Location 

Nordsjælland 

-57 -77 -123 5 -56 -42 

(-226;113) (-280;125) (-326;79) (-182;193) (-238;126) (-211;128) 

 - +20% +19% +11% +7% 0% 

Location 

Mols Bjerge 

218 258 168 211 272 226 

(63;373) (61;456) (-15;351) (30;392) (106;438) (77;374) 

 - +28% +18% +17% +7% -4% 

Location Ll. 

Vildmose 

402 431 341 373 419 404 

(269;534) (269;593) (188;494) (218;529) (271;567) (264;544) 

 - +22% +15% +17% +12% +6% 

Location 

Vadehavet 

297 380 304 328 326 324 

(151;442) (213;546) (148;459) (175;481) (167;484) (174;474) 

 - +15% +7% +5% +9% +3% 

Nature 

preservation 

60 57 55 45 57 60 

(29;91) (21;94) (21;88) (9;82) (24;90) (30;90) 

 - +18% +8% +17% +6% -3% 

 Effort for 

animal/plants 

557 600 498 575 552 512 

(486;628) (516;684) (416;580) (493;656) (475;630) (437;587) 

 - +18% +15% +14% +8% +5% 

Walking and 

biking paths 

80 64 31 -2 80 82 

(-5;164) (-38;166) (-54;117) (-96;92) (-6;166) (1;163) 

 - +21% +1% +12% +2% -4% 

# obs 4866 3581 3581 3581 4866 4866 

# resp 636 579 579 579 636 636 

LLzero -5346 -3934 -5346 -5346 -5346 -5346 

LLFull -3742 -2663 -4006 -4137 -3752 -3767 

LRI  0.300 0.323 0.251 0.226 0.298 0.295 

Adj. LRI  0.298 0.321 0.249 0.224 0.293 0.291 

LR test 3205.8 2542.9 2680.2 2417.4 3187.3 3157.6 

Note: Intervals in parenthesis are 95% confidence intervals obtained using the Krinsky-Robb procedure (Krinsky and 

Robb 1986; 1990) with 10,000 replications. Below these we show the percentage increase in the width of the 

confidence interval for each model compared with the benchmark in Model 1. 
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5 Discussion 
 

We have adapted and evaluated three recoding approaches from the CV literature as 

well as two approaches to capture respondent uncertainty explicitly as systematic 

variations in the scale parameter. We discuss the merits and problems associated with 

the different approaches in turn. 

 

5.1 The Effect of Elimination of Uncertain Choices and Symmetric 

and Asymmetric recoding  

 
The effect of elimination of uncertain responses on WTP in the motorway data is a 

considerable increase for the ’Forest’ and the ‘Wetland’ attributes. For the national 

park data, effects are more mixed, but not significant at the attribute level. These 

observations do not lend support to the hypothesis of Champ et al. (1997) that 

respondents use the certainty question to scale down their stated WTP. If this was the 

case, we should have seen significant decreases in WTP following elimination of 

choices that respondents ‘regret’. On this censored data set, the estimated models 

show a better data fit in terms of pseudo-R
2
, in spite of the much lower number of 

observations. This shows that much noise is eliminated when eliminating uncertain 

answers, but not that the underlying assumption of uncertainty is the true one. 

Furthermore, confidence intervals of WTP increase quite a lot. In conclusion, not 

much is gained by elimination – observations and information are lost and WTP may 

slightly increase, but the differences in terms of for instance confidence intervals of 

WTP-measures give little justification for eliminating uncertain choices. 

The effect of the asymmetric recoding is a dramatic increase in the WTP estimate 

for the ASC in both data sets. This is not surprising considering that all uncertain 

answers are recoded as a choice of the status quo alternative and, hence, the status quo 

alternative would appear relatively more attractive on the recoded dataset. A similar 

effect is well-documented for CV studies (Welsh and Poe 1998; Loomis and Ekstrand 

1998; Alberini et al. 2003). For the other parameters we see two different albeit weak 

reactions. In the motorway data we see a small but mostly insignificant increase in the 

WTP, whereas for the national park data we see a small but insignificant decrease in 

all other attributes. Considering the large increase in the marginal WTP for the ASC 

and the only minor changes in marginal WTP for the quality attributes, the total WTP 

for a change from the current situation is markedly decreased by the asymmetric 

recoding. This result is in accordance with findings from the CV literature (Little and 

Berrens 2004; Blumenschein et al. 2008). For the motorway data, we note that a 

considerable amount of noise is removed with this recoding approach, resulting in a 

better model fit to the recoded data, but this pattern is different for the national park 

data, where the model fit is reduced for the recoded data. This probably reflects the 

strong preferences for picking a national park, any alternative to status quo, as also 

reflected in the high negative parameter for ASC in the benchmark model. Thus, for 

the national park data the asymmetric recoding seems at odds with the respondents’ 

underlying preferences for expressing support to a national park establishment. Again 

we see that the recoding tends to increase the width of confidence intervals of WTP 

estimates. 

The effect of symmetric recoding on WTP is insignificant. The approach here is 

not directly comparable to the symmetric uncertainty model of, e.g. Loomis and 

Ekstrand (1998). The recoding here is inevitably more involved as it concerns a CE 
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with two alternatives to the status quo. Furthermore, the approach we suggest is also 

dependent on the estimated benchmark model. In most symmetric uncertainty models 

in the CV literature (e.g. Loomis and Ekstrand 1998 and Alberini et al. 2003), it is 

found that taking into account symmetric uncertainty increases the WTP estimates. 

Our finding of low impact on WTP estimates indicates that the symmetric approach to 

recoding we have evaluated here mainly recodes choices between alternatives that are 

already quite close in utility level. This confirms the findings in Lundhede et al. 

(2009a) that uncertainty partly origins from a high level of utility balance between 

alternatives. Thus, the symmetric recoding increases the noise in the model, which 

suggests that respondents have on average picked the alternative that best fits their 

preferences, even in the choice situations where they are uncertain. This is supported 

by the fact that elimination and asymmetric recoding hardly affect the WTP estimates 

at attribute level. 

  

5.2 Models Explicitly Modelling Uncertainty as Scale Variations 

 
Recoding implies that the researcher changes the preferences stated by the respondents 

according to what the researcher considers the best alternative answer or choice. As 

such it hinges on the researcher’s interpretation of stated certainty in choice and how 

answers are grouped into certain and uncertain answers. Therefore it is intuitively 

more appealing to use the scaling approach where the stated uncertainty is explicitly 

parameterised in the model through an exponential formulation of the indirect utility 

function. However, Sælensminde (2001) notes that this approach could pose an ethical 

problem. As certain answers are weighted higher than uncertain answers due to a 

higher scale parameter, it may imply putting less weight on choices obtained from 

specific demographic groups. Considering the findings of Lundhede et al. (2009a), 

using the scaling approach in the present case would indeed result in putting less 

weight on for instance choices obtained from female respondents than from male 

respondents. Still, compared to the recoding approaches, which to a much higher 

degree entail a considerable down-weighting of uncertain responses, with the 

elimination of uncertain responses equivalent to a weight of zero being the most 

severe, the scaling approach would seem the preferred method.   

In Model 5, cf. Tables 8 and 9, we have modelled the scale parameter as a 

function of stated certainty, essentially providing six (five) different scale parameter 

estimates for each of the six (five) certainty statements and hence groupings of choice 

sets. The overall effect on WTP is negligible. For the motorway data, the model 

performance as measured by pseudo-R
2
 is slightly better than for the benchmark 

model in Table 4, but the same is not the case for the national park data (Table 5).  

There is strong and significant variation in scale across the choice sets in the 

different stated certainty categories. There are large differences in the unexplained 

error variances across the certainty categories – sometimes to an order of 10. This 

implies two things: First, that mapping respondents’ certainty of choice, as we have 

done here, may enable explicit modelling of scale variation to improve model 

performance. In the present surveys, WTP estimates at attribute level remain largely 

unaffected as compared to the benchmark. For some attributes the confidence intervals 

are tighter than in the benchmark model whereas the opposite is the case for other 

attributes. There is however a tendency that Model 5 generally produces tighter 

confidence intervals than the recoding models. This implies a stronger and more 

reliable inference, as also predicted by Li and Mattsson (1995). Secondly, the results 

stress that reducing uncertainty in response is an important issue, which could be 
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treated already in the design phase of CEs as for instance suggested by Lundhede et al. 

(2009a).  

For both data sets, ’don’t know’ has the lowest scale parameter. It seems 

reasonable that the group of ‘don’t know’ responses has the highest degree of error 

variance, as not knowing how certain one is would indicate a high degree of 

uncertainty to the whole questionnaire as such, and consequently a relatively high 

error variance as compared to at least knowing your degree of uncertainty, whether 

certain or uncertain. The results support this.  

In the sixth model, cf. Tables 8 and 9, we have tried to capture variation in scale 

using respondent and choice set variables as proxies for the stated certainty. These 

proxies are variables
7
  that have been found to correlate with stated certainty levels in 

Lundhede et al. (2009a). The model performs slightly better than the benchmark 

model for the motorway data and slightly worse for the national park data, and there is 

no overall effect on the WTP measures. However, for none of the two datasets does 

Model 6 perform as good as Model 5. For both data sets we find that none of the 

variables are significant in determining the variations in scale. The result is that we 

recommend eliciting respondents’ perceived certainty in choice directly instead of 

using proxies for stated certainty. 

 

6 Concluding Remarks 
  

This paper is, to our knowledge, the first to specifically address and evaluate different 

ways of handling respondents’ stated choice uncertainty in CE. We adapt and evaluate 

three recoding approaches from CV and evaluate two approaches to capture 

respondent uncertainty explicitly as systematic variations in the scale parameter. 

Recoding uncertain choices either by eliminating them or asymmetrically recode 

them as status quo choices may reduce the noise in the data sets, but the effects on 

WTP measures and the confidence intervals of these are ambiguous and in most cases 

insignificant. A symmetric recoding approach, where uncertain choices are recoded to 

the best alternative choice, did not affect WTP measures significantly, but in fact 

increased the noise in data. A shortcoming of all three recoding approaches is that the 

researcher essentially has to change the preferences stated by the respondents in some 

way or leave out information. Whether either is a valid approach, depends on largely 

unrevealed causes for respondent uncertainty. Consequently, recoding approaches do 

not seem to be a satisfactory way to handle uncertain answers unless specific 

behavioural hypotheses are present. 

As an alternative we evaluate the use of stated respondent certainty in choice as a 

basis for modelling scale variation across the responses and data, and find that indeed 

scale varies greatly and significantly with the certainty in choice. Specifically, the 

higher the level of certainty in choice is, the lower is the amount of unexplained 

variance. Again, we find no significant differences in WTP compared with a 

benchmark model ignoring respondent certainty in choice, but explicitly modelling 

variation in scale reduces the unexplained variance considerably and offers a 

                                                   
7
  Lundhede et al. (2009a) find that a key determinant of stated certainty is the level of utility 

balance within choice set. Unfortunately, model identification is not possible when we include 

this variable in model 6, probably due to correlation between this utility balance variable and 

the attribute parameters. If this problem can be solved, we have reason to suspect that model 6 

will perform much better. 
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structurally and intuitively appealing way of accounting for uncertainty in choices in 

CE surveys. 

While our contribution in the present paper sheds some light on particular ways 

of accounting for preference uncertainty, it is obvious that much research still remains 

to be done in this area. Recently, there has been an increasing focus on the behavioural 

decision processes that lead to observed behaviour which deviates from that of the 

traditionally assumed economic man. We believe that delving further into this topic of 

preference uncertainty offers a line of research which can contribute to the great 

challenge of developing more plausible behavioural models of choice. Specifically, 

asking more detailed choice set level follow-up questions aiming to identify 

underlying behavioural mechanisms and reasons for stating an (un-)certain answer 

seems like a promising way forward. Furthermore, there would seem to be an 

interesting research area in the potential linkage between the behavioural implications 

of stated certainty in choice and the very recent and rapidly expanding literature on 

attribute processing (see e.g. Hensher and Rose 2009). One research question in this 

direction could be to establish a mapping between certainty statements and the number 

of strategies derived from heuristics that individuals might invoke when processing 

information in choice experiments, preferably at the choice set level. 
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Appendix A:  

Example of a Choice Set used in the Motorway Survey 
 

 

Q.1: Which of the following locations for the future motorways would you prefer?  

Remember to imagine that the nature areas, which you visit most often, will be affected. 

 Alternative 0 Alternative 1 Alternative 2 

Number of kilometres through: 

 Forest 10 km 0 km 10 km 

 Wetland 5 km 0 km 5 km 

 Heath/common 5 km 5 km 2.5 km 

 Arable land 80 km 95 km 82.5 km 

Annual extra payment 0 DKK 200 DKK 100 DKK 

I prefer …(tick one):    

 
Q.15A:  How certain are you of your choice? 

It’s ok to be uncertain – Your reply will be no less valuable for that reason! 
 

 (tick one) 

 Very uncertain ...........................................................  

 Uncertain ....................................................................  

 Neither certain nor uncertain ..................................  

 Certain ........................................................................  

 Very certain ................................................................  

 Don’t know ................................................................  
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Appendix B:  

Example of a Choice Set used in the National Park Survey 

 
Do you prefer Choice 1, Choice 2 or No national park?
(Mark one)

(The money has to be taken from your normal budget, and you will therefore have less money available for other things)

…….…………...…..

……….…….

Choice I Choice II No national park

Location of the national park Thy Mols Bjerge

Nature preservation Little extra effort Some extra effort

Extra initiatives for special plants and 

animals

Yes Yes

(Crane and red deer) Butterflies and barn owl

Paths No more paths More paths

Yearly extra income tax for your 

household
700 kr. 50 kr. 0 kr.

Uncertain Very uncertain Don't know

Choose only one of the possibilities

How certain were you of your choice?
Very certain Certain
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