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Abstract 
 

This paper considers the stability of the dynamical system which arises when a 
responsive control system is utilised in a signal-controlled urban road network. In 
this case current traffic flows change current green-times (according to the 
responsive control policy) and current green-times change current delays and 
hence drivers’ route choices and current flows. Simple networks only are 
considered; starting with a small symmetrical network with two routes and a traffic 
signal which follows the equisaturation control policy. The symmetrical 
equilibrium, with equal flows on both routes, is (under reasonable conditions) 
unstable. The paper then shows that, within the simple network considered, 
bottlenecks may be added which makes the symmetrical equilibrium stable for 
certain steady Origin-Destination loads. Finally the paper considers the stability of 
a similar asymmetrical network when a special responsive policy is used. Under 
natural conditions the network is shown to be stable under this policy for all 
feasible Origin-Destination loads. The stability proof given for this network is 
designed to generalise so as to apply to a general signal-controlled network under 
suitable conditions; however such a general stability proof is not included in this 
paper. 
 
 
Keywords: Route choice, Signal control, Dynamics of route choice and signal 
control.  
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1. Introduction 
 

1.1 Outline of the paper 
 

This paper considers simple models of routeing changes as drivers seek better routes 
and signal control changes as an adaptive control system responds to traffic flows.   

We start by considering the responsive equisaturation control policy on a simple 
three-link network. In this network; for each origin-destination (OD) load the 
symmetrical equilibrium, with equal flows on both routes, is unstable. The paper 
shows that bottlenecks may be added to this network which make the symmetrical 
equilibrium stable for most Origin destination loads. The added bottlenecks reduce the 
unpredictability of the network very substantially although a little of the rather 
complicated behaviour familiar in complex systems is present.   

Then the paper considers the stability of a similar network with the same delay 
formulae, when a new traffic control policy very similar to the P0 policy (see Smith 
1979a, b) is utilised. It is shown that in this case the natural adjustment of routeing and 
green-times becomes stable, and there is then of course no need to improve that 
stability with added bottlenecks. The proof of stability given here appears to generalise 
so that it applies to a general network. A related more general stability result, but in a 
very different context, is given in Smith and Mounce (2011). 

 
1.2 The P0 control policy 

 
The P0 policy on a junction with just two approaches seeks green times which equalise 
the following two values: 

 
the saturation flow on approach 1 × average delay felt on approach 1 = s1d1  

 
and  

  
the saturation flow on approach 2 × average delay felt on approach 2 = s2d2. 

 
 

 
Figure 1. A simple representation of a dynamical system arising when a responsive 
control system is utilised. This loop in which current route-flows change current green-
times (according to some responsive control policy) and current green-times change 
current delays and hence current flows (according to drivers’ route-choices) may be 
regarded as being traversed indefinitely. 
 
 

CONTROL 
Current route-flows (and green-

times) cause green-times to change  

ASSIGNMENT 
Current green-times (and route-
flows) give rise to costs which  

cause route flows to change  
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When faced with two approaches where s1d1 < s2d2 the policy transfers some of the 
green-time from approach 1 to approach 2. (This will normally tend to increase s1d1 
and reduce s2d2.) The green-time transfer will continue until either s1d1 = s2d2 or the 
green-time awarded to approach 1 is a minimum. This statement of the policy 
generalises easily so as to apply to a more complicated junction with different stages 
during which different sets of links are shown green. 

The main difference between the P0 policy and standard policies is that with P0 
the two measurements of “disbenefit” being equalised above (s1d1 and s2d2) do not 
explicitly involve the flow volumes on the two approaches. The policy is less driven 
by the flows themselves than standard policies, such as equisaturation or delay-
minimisation.  

The central property of the P0 policy is as follows. Suppose that some 
responsive policy P is applied locally at each junction of an arbitrary capacitated 
network N. Suppose that there is a given Origin-Destination matrix M. Let K be the 
greatest multiplier of the given Origin-Destination matrix M which has a feasible 
equilibrium consistent with the responsive control policy P. Then K depends on the 
network N, the OD matrix M and the responsive policy P; so K = K(N, M, P) and it is 
natural to seek a policy P which maximise K(N, M, P). It turns out that K(N, M, P) is, 
under reasonable conditions, maximised by choosing the policy P to be the P0 policy. 
See Smith (1979a, b, 1987). The policy achieves this capacity-maximisation effect by 
seeking to ensure that approaches with high saturation flows at a junction have lower 
delays, encouraging drivers to use scarce junction capacity resource economically. The 
policy “prices” the approaches suitably using delays instead of prices. The conditions 
required to prove the above result preclude blocking back. 

 
1.3 Context 
 
Both traffic control and route choice have been studied very widely indeed. A very highly 
selective list of references is given below. These papers address one or more of the following 
five topics: 

 
  1 Equilibrium route choice modelling; 
  2 Non-equilibrium route choice modelling; 
   3 Signal control modelling;  
  4 Equilibrium route choice and signal control modelling; and   
  5 Non-equilibrium route choice and signal control modelling.  
 

Below, all references have been placed approximately chronologically within the most 
relevant section: section 1.2. x below deals with topic x above for x = 1, 2, 3, 4, 5.  

Many of these papers discuss models which are not explicitly motivated by the 
concept of random utility; and random utility is rarely if ever mentioned. Those route 
choice models which are stochastic are random utility models; and almost all the 
models discussed are utility maximising models. The combined dynamics of signal 
timings and route choices have been very rarely studied.  

The main aspect missing from almost all these studies below (and also missing 
from this study) is blocking back; which happens if a junction is blocked by queues 
arising from downstream bottlenecks.  

Cascetta (2009) addresses several of the issues also studied in the papers below. 
Bell (1992) conceives of integrating traffic signal control with other aspects such as 
road pricing and information provision.   
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1.3.1 Equilibrium route choice modelling 
 

Transportation planning depends critically on good models estimating how OD flows 
are likely to spread over the links of a network; and the simplest such models are route 
choice models. Wardrop (1952) is credited with the first clear statement that the total 
OD flow is likely to distribute itself over the links of a network so that:  

 
  for each OD pair more costly routes are not used.  

 
The central paper on this equilibrium subject is due to Beckmann et al. (1956) – this 
paper allowed for elastic demand and capacity constraints. Smith (1979b, 1984b,c, 
1987), Dafermos (1980), Fisk (1980, 1984), Aashtiaani and Magnanti (1983), Sheffi 
(1985) and Cantarella (1997), among many others; have extended this theory 
conceptually and algorithmically. Kupiszewska and Van Vliet (1999) make a strong 
computational case for utilising route-flows (rather than link flows) in traffic 
assignment programs. 

Recent work by Bar Gera (2002, 2010) and Bar Gera and Boyce (2003, 2006) 
using approach proportions merits emphasis. This has transformed both the accuracy 
and the convergence speed (when high accuracy is required) of equilibration 
algorithms. Gentile (2009) and Gentile and Noekel (2009) have implemented 
equilibration algorithms using splitting rates (or leaving proportions) at nodes rather 
than approach proportions.  

Dynamic equilibrium models have been considered by very many including, for 
example, de Palma et al. (1983), Carey (1987), Cascetta (1991), Ran and Boyce (1996) 
and Friesz and Mookherjee (2006). A recent exposition of the dynamic equilibrium 
problem is provided by Friesz and Bernstein (2007); the references therein provide 
further information on this important topic. 

 
1.3.2 Non-equilibrium route choice modelling 

 
Non-equilibrium route choice models seek to represent the non-equilibrium route 
choice behaviour of travellers or drivers. There is an increasing number of these 
including models outlined by Smith (1984a), Cantarella and Cascetta (1995), Watling 
(1996, 1999), Mahmassami and Liu (1999), Watling and Hazelton (2003), Bellei et al. 
(2005), Hamdar et al. (2008), He et al. (2010), Bie and Lo (2010) and Smith and 
Mounce (2011).  

  
1.3.3 Signal control modelling  

 
Webster (1958) was one of the first to seek to model signal timings and their effect on 
traffic flow at a single junction. Robertson (1969) gives a model of a whole network 
(TRANSYT) allowing whole network optimisation of traffic signals (for know OD 
inputs and known routes). The subject is a very large one; Wood (1993) provides a 
review of certain urban traffic control systems. 

 
1.3.4 Equilibrium route choice and signal control modelling   

 
Allsop (1974) pointed out the importance of allowing for route choices when 
considering the impacts of signal control changes. Gartner (1976) considers area traffic 
control and network equilibrium and Gartner (1983) specifies a traffic control policy 
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which responds to varying demand. Allsop and Charlesworth (1977) gave an example 
where different equilibrium routeings arise from the same control policy, and Dickson 
(1981) showed that optimising signals for fixed flows does not give optimum timings 
when route choices are variable.  

Smith (1979a,b) specified a local traffic control policy which under certain 
conditions automatically maximises the overall travel capacity of a signal controlled 
network, allowing route choices to vary. Bentley and Lambe (1980) showed how green 
times and traffic flows may be combined within a single assignment model. There are 
strong connections between these two papers.  

Smith (1987, 2010), Van Vuren and Van Vliet (1992), Smith and van Vuren 
(1993), Yang and Yagar (1995) and Yang (1996) have considered in detail the 
interaction between signal control and routeing. Meneguzzer (1996, 1997) reports 
computational experiments with combined traffic assignment and control models and 
provides a review of models linking signal control and route choice. Taale and van 
Zuylen (2001) provide an interesting discussion of their own work and the work of 
others in combining signal control and route choice.  

Smith (2009) gives a two direction method of calculating variable or fixed 
demand equilibria consistent with the P0 policy. Mounce (2009) has shown that a time-
varying equilibrium exists with responsive control (under conditions which prohibit 
blocking back).  

Bilevel programming has been applied to optimising urban traffic signal settings 
and prices subject to equilibrium routeing. See for example Marcotte (1983), Sheffi 
and Powell (1983), Clegg et al. (2001), Cipriano and Fusco (2004), Cascetta et al. 
(2006), Smith (2006) and Teklu et al. (2007). 

LINSIG (2010) software generates signal timings for given flows; this software 
is often used in real life for junctions and small networks, and often involves relatively 
small scale routeing considerations.  
 
1.3.5 Non-equilibrium route choice and signal control modelling   

 
Hunt et al. (1982) developed the real time control system SCOOT; essentially from the 
TRANSYT model. Hu and Mahmassami (1997) studied, within a model, day to day 
evolution of network flows under real-time information and reactive signal control. 
Heydecker et al. (2004, 2007) propose an adaptive dynamic control system for traffic 
signals and also considered possible future objectives for traffic signal control. Smith 
and Mounce (2011) present a splitting rate model embracing in a simplified way both 
traffic re-routeing and signal control adjustments. 

 
2. Responsive control in a simple network; following the 
equisaturation policy 

 
The network in Figure 2 is signal-controlled and has a finite capacity.  
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Figure 2. A simple symmetrical signal-controlled network. The network may be part of 
a large grid network. The signal follows the equisaturation policy. 

 
We suppose that the equisaturation policy is used to set the signal in Figure 2. The 
signals are supposed here to adjust quickly and drivers are supposed to switch toward 
cheaper routes. 

In this network in Figure 2 the two routes have the same undelayed travel time 
and the same saturation flow of s vehicles per minute at the signal. We suppose that 
there is a fixed (or rigid or steady) demand T (vehicles per minute) for travel from the 
origin to the destination. But we consider various feasible values of this demand T. It 
is easy to see that since the two approaches cannot be given green simultaneously, T ≤ 
s. [We are here considering a steady state non-equilibrium model; and so all flow 
patterns considered are feasible steady state patterns.] 

Let H1 be the proportion of the fixed demand T choosing the lower route 1, let 
H2 be the proportion of the fixed demand T choosing the upper route 2 and consider 
Figure 3.  

A reasonable delay formula (specified in section 3 below) is used to obtain 
Figure 3. Here, with the equisaturation policy there are two stable equilibria as shown: 
all flow on route 1 or 2. In addition there are symmetrical equilibria; with equal flows 
along the two routes. These equilibria are unstable under natural assumptions (with the 
equisaturation policy). It follows from Figure 3 that the way any fixed OD demand 
spreads out over the links of this network will be subject to great uncertainty; such 
uncertainty is undesirable within a planning model. The model here is small; however 
the network may be part of a large network, and a large network may have many 
copies of networks similar to that shown in Figure 2.  

 
 
 
 
 
 
 
 
 

DESTINATION 

ROUTE 2

ROUTE 1

ORIGIN 

SIGNAL

These nodes impose zero delay and have infinite capacity 

Saturation flow = s vehicles/minute on both signal-controlled approaches. 
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Figure 3. The set of (T/s, H2) pairs which are at equilibrium when the equisaturation 
policy controls the junction is as shown here in bold lines: dotted = unstable equilibria 
and solid = stable equilibria. The arrows show, for all feasible T, the natural direction 
of motion of non-equilibria as time passes. 

 
 
 
 

 
 

Figure 4. The same symmetrical network; but now with two upstream bottlenecks 
added.  

 
 

DESTINATION 

ROUTE 2

ROUTE 1

ORIGIN 

Possible stabilising upstream bottlenecks:  
saturation flow = u vehicles/minute. 

Saturation flow = s vehicles/minute on both signal-controlled approaches. 

SIGNAL

    1 
 
 
   

    
H2 

 
   
   

1/2  
 
 
 
    

  
  
  
  

 0     
        0               1/4                1/2     T/s           1    
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3. Equisaturation control in the simple network with two 
upstream bottlenecks  

 
It is clear from Figure 3 that network performance is very unpredictable: all traffic will 
at equilibrium be using either route 1 or route 2; the central symmetrical equilibria are 
all unstable.  

One way of seeking to make the network more predictable may be to add two 
upstream bottlenecks as shown in Figure 4. This section explores this possibility. 

Again the equisaturation policy is used to set the signals quickly and again the 
network flows are supposed to seek cheaper routes. But now two identical bottlenecks 
are present. These have equal capacities of u vehicles per minute. Can we choose u 
intelligently? Can we choose u to improve the stability of the central unstable 
equilibria and make network behaviour more predictable?   

Let:  
 

K1  = uncongested or free-flow travel time along route 1 (ignoring bottleneck delays);  
 
K2  = uncongested or free-flow travel time along route 2 (ignoring bottleneck delays); 
 
T  =  total steady OD flow via the routes in vehicles per minute (for feasibility 0 < T < 
max{s, 2u});  
 
H1  = proportion of the Origin-Destination flow which travels along route 1;   
 
H2  = proportion of the Origin-Destination flow which travels along route 2;   
 
G1  = green time proportion awarded to route 1;  
 
G2  = green time proportion awarded to route 2;  
 
d12  = delay felt at the signal by vehicles traversing route 1 (minutes per vehicle);   
 
d22  = delay felt at the signal by vehicles traversing route 2 (minutes pr vehicle);   
 
u    = saturation flow at each “upstream” bottleneck (vehicles per minute); 
 
d11  = “upstream” bottleneck delay on route 1 (minutes per vehicle);   
 
d21  = “upstream” bottleneck delay on route 2 (minutes per vehicle); 
 
C1     = travel time or cost via route 1 = K +  d11 +  d12 (minutes per vehicle); 
 
C2     = travel time or cost via route 2 = K +  d21 +  d22 (minutes per vehicle);  
 
We will suppose that   
 
  d12=BTH1/[sG1(sG1–TH1)];  
 
  d22=BTH2/[sG2(sG2–TH2)]; 
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  d11=BTH1/[u(u–TH1)] and  
 
  d21=BTH2/[u(u–TH2)]. 
 
Webster’s famous two term delay formula d12W is, in this context, as follows: 
 
 d12W = 9/20{cs(1- G1)2/(s - TH1) + TH1/[sG1(sG1 – TH1)]} 
 
where c minutes is the cycle time of the signal. It can thus be seen that our chosen 
delay formula above is exactly the second term of Webster’s delay formula when B = 
9/20. With B = 9/20, the delay formula chosen in this paper will be very close to 
Webster’s two-term delay formula when flows are close to capacity; since it is only the 
second term which is unbounded as (sG1 – TH1)  0. The first term here estimates the 
delay due to the stop-start nature of traffic signal operation (assuming that flow is 
steady). The second term allows for the random nature of arrivals.  

[The Pollaczek-Khintchine (P-K) formula for the average waiting time W felt by 
a Poisson stream of arrivals (with arrival rate r) at a single server (with a constant 
service rate s) is as follows: 

 
  W = ½ r/[s(s – r)]. 

 
Thus the second term of Webster’s formula is identical to the P-K formula if 9/20 is 
replaced by ½. See Pollaczek (1930), Khintchine (1932), Cohen (1969), Takacs 
(1971), Kingman (2009) and the Wikipedia entry for “Pollaczek-Khinchine formula” 
(consulted on 23.11.11).]   

In this section, we are supposing that the signal moves the green time vector G 
quickly so as to equalise saturation ratios, so here, for all route-split vectors H, the 
green-time vector G satisfies:   

 
  H1T/sG1 = H2T/sG2. 
 

It follows immediately that, for all feasible T:  
 

  G1 = H1 and G2 = H2. 
 

With these responsive green times G1 and G2: 
 

  d12 = BT/[s(sH1 – TH1)]  
 
and 
 

  d22 = BT/[s(sH2 – TH2)]. 
 

In this initial example we suppose that K1 = K1 = K. Suppose now that flow seeks 
lower cost routes as day succeeds day. Then the direction of motion of the route split 
vector H will (at non-equilibria) be determined by the sign of C1 - C2. Now 
(remembering that K1 = K1 = K)  

  
C1 - C2  = BT{1/[s(sH1–TH1)] + H1/[u(u–TH1)] – 1/[s(sH2–TH2)] – H2/[u(u–TH2)]}.  
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So:  
   

[s(sH1–TH1)][u(u–TH1)][s(sH2–TH2)][u(u–TH2)] [C1 - C2] 
  =   BT {[u(u–TH1)][s(sH2–TH2)][u(u–TH2)]  
             + H1[s(sH1–TH1)][s(sH2–TH2)][u(u–TH2)] 
       -  [s(sH1–TH1)][u(u–TH1)][u(u–TH2)] 
       - H2[s(sH1–TH1)][u(u–TH1)][s(sH2–TH2)]}.    (1) 

 
Here we must suppose that T satisfies: 0 < T < min{2u, s}, so as to ensure that T is 
positive and feasible, or within the capacity of the network. Then BT > 0 and if further 
the route proportion vector H is feasible for this T then the multiplier of C1 - C2 on the 
left hand side of (1),  
 

  [s(sH1–TH1)][u(u–TH1)][s(sH2–TH2)][u(u–TH2)],   
 
is positive because each of the four components in this product is then positive.  

It now follows, by (1), that at each feasible (T, H), C1 - C2 = C1(T, H) - C2(T, H) 
has the same sign as  

 
  {[u(u–TH1)][s(sH2–TH2)][u(u–TH2)]  
     + H1[s(sH1–TH1)][s(sH2–TH2)][u(u–TH2)] 
     - [s(sH1–TH1)][u(u–TH1)][u(u–TH2)] 
     - H2[s(sH1–TH1)][u(u–TH1)][s(sH2–TH2)]}.     (2) 

 
Expanding this expression (by multiplying out each of the four terms) and then leaving 
out all positive factors, the expression (2) above and so C1 - C2 has the same sign as  

  
  [H1H2(T2 + sT – s2) + (u2 - uT)][H2-H1].      (3) 

 
The regions where C1 - C2 > 0 and C1 - C2 < 0 may be separated by sets of equilibria 
where C1 - C2 = 0. It is clear from the factor [H2-H1] in (3) above that one way of such 
equilibria arising is if  
 

  H1 = H2 = ½.  
 
The other factor in (3) shows that another way of equilibria arising is if  
 

  A(H, T) = [H1H2(T2 + sT – s2)  + (u2 - uT)] = 0.    (4) 
 

So each equilibrium falls into at least one of the following three sets: 
  
  (1) the set of symmetrical equilibrium vectors H, 
  (2) equilibrium vectors H determined by equation (4), and 
  (3) equilibrium vectors H with all flow on a single least cost route.   

 
To discuss non-equilibrium dynamics let us now suppose that  

 
  H2 > H1 > 0.        (5) 
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This of course ensures that H1 ≠ H2. In this case, we may divide (3) by [H2-H1] > 0. 
Thus if 
   

  A(H, T) = [H1H2(T2 + sT – s2) + (u2 - uT)] > 0  
 
then C1 - C2 > 0. Now with our assumption (5) there is positive flow on the more costly 
route 1 and flow will (under our hypothesis) swap from the higher cost route 1 to the 
lower cost route 2. Thus H2 will increase (and H1 will decrease).  

The behaviour of the flows on the network will depend on u. For example, 
Figures 5 and 6 below show bifurcation diagrams corresponding to u=s/4 and u=s/2. In 
both figures, equilibria are shown as heavy lines and non-equilibrium directions of 
motion are indicated by heavy arrows. Figure 6 suggests that u = ½ may be an 
intelligent choice for u for this network.  

Network performance may vary suddenly as the OD flow T changes. Suppose 
for example that for small T the flow pattern has H2 = 0. Suppose now that T increases 
through s/4; the stable equilibrium with H2 = 0 disappears and the central equilibrium 
with H2 = ½ becomes attracting for all feasible H which are feasible (for each T > s/4). 
This value of u stabilises all symmetrical equilibria for 0 < T/s < ½; however this u 
does reduce network capacity to 2u = s/2 and substantially reduces the set of feasible 
(T/s, H2). 

 

 
 
Figure 5. The set of (T/s, H2) pairs which are at equilibrium when the equisaturation 
policy controls the junction and there are two upstream bottlenecks of capacity u = s/4 
is shown here in bold lines: dotted = unstable equilibria and solid = stable equilibria. 
The arrows show the natural direction of motion of non-equilibria.  
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        0               1/4                1/2     T/s           1    
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Figure 6. (T/s, H2) diagram for u = s/2; again showing that network performance may 
vary significantly with load variations. This u does not reduce network capacity and 
stabilizes symmetrical equilibria for all T satisfying 0 < T < s.     

 
By looking at Figures 5 and 6 it seems that u = s/2 is able to stabilise this network for 
all T such that 0 < T < s. There are still some uncertainties on the left of the figure, for 
small values of T, and as the OD load T varies. There also some restrictions on the 
route-split vector H for T/s > ½.  

 
4. Responsive control in a simple asymmetrical network; 
following a modified P0 policy 

 
Now consider the similar, but asymmetrical, network in Figure 7 below (redrawn for 
clarity); this does not have additional bottlenecks. Here we suppose flows are 
controlled by using a control policy very similar to the P0 policy (see Smith 1980). We 
call this policy P1. Here there are bottlenecks only at the signal. No stabilisation will be 
needed or considered. 

We show now that with the P1 control policy the network shown in Figure 7 
becomes stable under certain conditions. We assume that the saturation flow on the 
lower route at the signal is s1 (vehicles per minute) where s1 < s2 (the saturation flow 
on the upper route). We also assume that route 1 is shorter than route 2. These 
assumptions are made for purely technical reasons: the stability arguments here seems 
likely to generalise to a wide class of networks with the same delay formulae. 

(T/s, H2) is 
not feasible 
in these 
regions 

   
1 

 
   

    
H2 

 
   
   

1/2  
 
 
 
    
 
 
 
      
    0 

        0              1/4               1/2      T/s            1    
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Figure 7. A simple asymmetrical signal-controlled network. Route 2 is longer and 
(ignoring delays) more costly than route 1. Route 2 is wider than route 1 at the signal.  
Here the signal follows the new P1 policy. The lengths of the bars represent current 
delays. Uncongested travel costs via route 1 and 2 are K1 minutes and K2 minutes 
where K1 < K2. 

 
We suppose as before that the delays d1 on the lower route and d2 on the upper route at 
the signal are derived as before from Webster’s formula and are as follows: 

 
  d1 = BTH1/[s1G1(s1G1–TH1)] = B/(s1G1–TH1) – B/s1G1;    (6) 

 
and 

 
  d2 = BTH2/[s2G2(sG2–TH2)] = B/(s2G2–TH2) – B/s2G2.   (7) 
 

This is just as in the previous symmetrical network at the junction. 
Replace each green time proportion by 1 - (the corresponding red time 

proportion), or G1 by 1 - R1 and G2 by 1 – R2 and also let  
 

  f1(x) = B/[s1- x] and f2(x) = B/[s2 – x]  
 
for all real numbers x ≥ 0. It follows that: 
 

  f1(s1R1 +  TH1) = B/[s1 - (s1R1 +  TH1)] = B/(s1G1-TH1), 
  f2(s2R2 +  TH2) = B/[s2 – (s2R2 + TH2)] = B/(s2G2-TH2),   (8) 
  f1(s1R1) = B/[s1 – s1R1] = B/s1G1 and 
  f2(s2R2) = B/[s2 - s2R2] = B/s2G2.  

 
It further follows from (6) and (7) that    

  
  d1 =  f1(s1R1 +  TH1)  -  f1(s1R1) and   
  d2 =  f2(s2R2 +  TH2)  -  f2(s2R2).      (9) 
 
 
 
 
 

DESTINATION SIGNAL 

ROUTE 2 

ROUTE 1 

ORIGIN 

CURRENT 
DELAYS 
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4.1  Equilibrium consistent with a modified P0 policy 
 

Here we will utilise a modification of the P0 policy. Under the current circumstances, 
the usual formulation of the P0 policy is: for any flows on route 1 and route 2, choose 
green-time proportions (or red time proportions) so that  
  

  s1d1 =  s2d2. 
 
The modification will apply this rule to only f1(s1R1 + TH1) and f2(s2R2 + TH2); these 
are only parts of the delay formulae d1 and d2 in (9) above. This modified version of P0 
is thus to be: for any flows H1 and H2 choose red time proportions1 R1 and R2 so that  
 

  s1f1(s1R1 + TH1) =  s2f2(s2R2 + TH2).  
 
s1f1(s1R1 + TH1) will sometimes be written s1f1 and s2f2(s2R2 + TH2) will sometimes be` 
written s2f2. 

 We here suppose that s1, s2, K1, K2 and T are such that there is a consistent 
equilibrium at which flows and red time proportions are all positive. In this case at this 
consistent equilibrium: 

 
  C1 = C2 and s1f1 =  s2f2.                 (10) 
 

4.2   Dynamics  
 

Let 0 < T < s. The set D of demand-feasible quadruples is defined below.    
 

  D = {[H1, H2, R1, R2]; H1 + H2 = 1, R1 +  R2 = 1}. 
 

Also the set S of supply-feasible quadruples is as shown below.  
 
 S = {[H1, H2, R1, R2]; TH1 + s1R1 < s1,TH2 + s2R2 < s2, H1 ≥ 0, H2 ≥ 0, R1 ≥ 0, R2 ≥ 0}. 

 
Finally we suppose, largely for simplicity, that the ensuing trajectory generated below 
always lies in the interior of S.  

There are many dynamical systems which would be natural to describe the non-
equilibrium evolution of the system here. To be specific we suppose, most simply, that 
the starting (H, R) starts in D and in the interior of S and that (for t > 0): 

 
  dH1/dt = T(C2 – C1) = T{K2 + d2 – [K1 + d1]} 
  dH2/dt = T(C1 – C2) = T{K1 + d1 – [K2 + d2]} 
  dR1/dt =  s2f2 – s1f1        (11) 
  dR2/dt =  s1f1 – s2f2. 

 
Let - F(H, R) stand for the right hand side of (11); then the whole dynamical system 
(11) may be written: 
 

  d[H, R]/dt = - F(H, R).    
 

Dynamical system (11) is consistent with the two equilibrium Equations (10); 
inasmuch as all the variables H1, H2, R1, R2 do not vary under the dynamical system 
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(11) if and only if (10) holds. Thus equilibria of the dynamical system (11) are 
consistent equilibria as already defined above in (10). 

The dynamical system (11) comprises only swaps of route-flow proportions and 
red time proportions; so the trajectory followed by (H, R)(t) as dynamical system (11) 
unfolds remains in D. (We are supposing that it remains in the interior of S too.)  

We now outline a proof that, under these assumptions, any solution trajectory of 
the dynamical system (11) converges to a unique consistent equilibrium  (H1

*, H2
*, R1

*, 
R2

*) in D. The key is to show that  
 

  F[H, R)] = - [the right hand side of equations (11)]  
 
is a strictly monotone function of [H, R] = [H1, H2, R1, R2]. Some details of this proof 
are given in the appendix. Strict monotonicity implies that there is at most one 
equilibrium in D∩S.  

As shown in the appendix, strict monotonicity of F also ensures that the “kinetic 
energy”  

 
  V = ½{[TC1 – TC2]2 + [s1f1 – s2f2] 2}  

 
decreases (as (11) is followed) at each [H, R] where V[H, R] > 0. Assuming that the 
trajectory does not approach the boundary of S (by a variable becoming close to zero 
or by the capacity constraints in S becoming nearly violated) V will decline along the 
whole solution trajectory of (11). Lyapunov’s theorem now applies: as time increases 
the solution (H, R)(t) converges to the single consistent equilibrium (H*, R*) as this is 
the only point at which the kinetic energy V is zero. (This is the unique minimum of V 
in D∩S.)   

The set-up and the arguments given here and in the appendix appear to be 
generalisable. After generalisation, they should apply to a general network with a more 
general version of dynamical system (11). However this paper does not state this more 
general dynamical system and does not give the general proof of stability. A related 
general stability result (with very different details and a very different setup) is given 
in Smith and Mounce (2011). 

  
5. Conclusion 

 
The paper shows, by considering a simple example network, that standard responsive 
controls may give rise to unpredictable behaviour in transport network models (and 
also in transport networks themselves); in our example there are two widely separated 
stable equilibria. The paper shows that for just the simple network here controlled by 
the equisaturation policy, this unpredictability may be ameliorated to a high degree by 
adding upstream bottlenecks.  

The paper shows further that the responsive P1 control on a similar network may 
be expected to behave in a much more predictable manner. Further the paper shows 
that natural dynamics involving both green-times and traffic flows, will in this case 
(under natural conditions) be stable. Further work is needed to extend the stability 
arguments here so that they apply to a general network with similar delay formulae, 
however these arguments, as presented here, do appear to be generalisable.  
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7. Appendix: Proof that V declines to zero as (H, R) follows the 
dyamical system (11). 

 
7.1. Assumptions 

 
We assume the following conditions hold. 
 
1. f1 is a positive differentaible, increasing, convex real-valued function of a real 
variable. 
2. f2 is a positive differentaible, increasing, convex real-valued function of a real 
variable. 
3. As [H, R](t) follows dynamical system (11), [H, R](t) never approaches the 
boundary of S. 

 
7.2. Proof that V declines at non-equilibria (H, R) 

 
The key to showing that (away from equilibrium) V declines along a solution 
trajectory of (11) is to show that  
 

 F[H, R)] = - [the right hand side of equations (11)]  
    = - [T(C2 – C1), T(C1 – C2), s2f2 – s1f1, s1f1 – s2f2]T 
    = [T(C1 – C2), T(C2 – C1), s1f1 – s2f2, s2f2 – s1f1]T 
 

is a strictly monotone function of [H, R] = [H1, H2, R1, R2].  
 

For any [H,R] in D and in the interior of S, F[H, R] is the projection onto the set D of 
the 4-vector  
 

[TC1, TC2, s1f1, s2f2]T = [T(K1 + d1), T(K2 + d2), s1f1, s2f2]T.   (A1) 
Thus F is strictly monotone if (A1) is strictly monotone so consider (A1). Split this 4-
vector (A1) into two parts: 
 

  [T(K1 + d1), s1f1] and [T(K2 + d2), s2f2]. 
 
The first of these depends only on  [H1, R1] and the second depends only on [H2, R2]. 
To show that these are both strictly monotone we need only consider T(K1 + d1), s1f1]; 
a similar argument will then apply to [T(K2 + d2), s2f2]. 

The vector 
 

  [T(K1 + d1), s1f1] = [TK1 + Td1, s1f1] = [TK1, 0] + [Td1, s1f1]. 
 
This is strictly monotone if and only if   
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  F1(H1, R1) = [Td1, s1f1] = [T{f1(s1R1 + TH1) - f1(s1R1)}, s1f1(s1R1 + TH1)] 
 

is strictly monotone.  
Let h > 0 and consider moving from the point [H1, R1] in the arbitrary direction 

[δH1, δR1] to the point [H1, R1] + h[δH1, δR1]. The consequent change in F1(H1, R1) 
which is caused by the above change in [H1, R1] is      

 
∆F1(H1, R1)  
= [T{f1(s1(R1 + hδR1) + T(H1 + hδH1)) - f1(s1(R1 + hδR1))}, s1f1(s1(R1 + hδR1) + 
T(H1 + hδH1))] - [T{f1(s1R1 + TH1) - f1(s1R1)}, s1f1(s1R1 + TH1)]. 

 
The direction of motion DF1([H1, R1]; [δH1, δR1]) of F1(H1, R1) as (H1, R1) moves in 
the direction [δH1, δR1] is obtained by letting h  0+ in ∆F1(H1, R1)/h. We obtain:  
 

DF1([H1, R1]; [δH1, δR1])  
= [T{(s1δR1 + TδH1)f1′(s1R1 + TH1) - s1δR1f1′(s1R1)}, s1(siδR1+ TδH1)f1′(s1R1+ 
TH1)]. 

 
DF1([H1, R1]; [δH1, δR1]), the directional derivative of F1 in the direction [δH1, δR1] will be 
important in what follows. 

The dot product of this directional derivative, DF1([H1, R1]; [δH1, δR1]), with 
the direction [δH1, δR1] is then given as follows: 

 
DF1([H1, R1]; [δH1, δR1]) · [δH1, δR1] 
=[T{(s1δR1 + TδH1)f1′(s1R1 + TH1) - s1δR1f1′(s1R1)}, s1(s1δR1 + TδH1)f1′(s1R1+ 
TH1)]· [δH1, δR1]  

 
Let a = f1′(s1R1) and b = f1′(s1R1 + TH1). Then  

 
DF1([H1, R1]; [δH1, δR1]) · [δH1, δR1]  

  = {bT2(δH1)2 + (δH1)(δR1)[bTs1  - aTs1 + bTs1] + bs1
2(δR1)2} 

  = bT2(δH1)2 + [2b - a]Ts1(δH1)(δR1) + bs1
2(δR1)2.    

  ≥ (b – a/2)T2(δH1)2 + [2b - a]Ts1(δH1)(δR1) + (b-a/2)s1
2(δR1)2 

  = (b – a/2)[T(δH1) + s1(δR1)]2       (A2) 
  > 0 

if (δH1, δR1) ≠ 0 and b > a/2, since (A2) is then a sum of squares of numbers some of 
which are positive and all are non-negative.  

Now suppose that f1 is non-negative, convex, and strictly increasing. Then f1′ is 
a non-decreasing positive function. It then follows that, always,   

 
  0 < a = f1′(s1R1) ≤ f1′(s1R1 + TH1) = b 
 

and so always indeed 
 

  b > a/2  
 
and it then follows by the inequality string containing (A2) that  
 

  DF1([H1, R1]; [δH1, δR1]) · [δH1, δR1]  >  0. 
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This shows that F1[H1, R1] is a strictly monotone function of [H1, R1]; and we will 
write this as follows. For all [H1, R1] and non-zero [δH1, δR1]:  

 
  DF1([H1, R1]; [δH1, δR1]) · [δH1, δR1]  > 0. 
 

Strict monotonicity is inherited by Cartesian products and so  
 

  [T(K1 + d1), T(K2 + d2), s1f1, s2f2] 
 

is strictly monotone. Strict monotonicity is also inherited by projections and so, 
further,  

 
  F(H, R) = ProjD[T(K1 + d1), T(K2 + d2), s1f1, s2f2].  
 

is strictly monotone. 
Now let the kinetic energy of the dynamical system (11) be V where:  
 

 V = [TC1 – TC2]2 + [s1f1 – s2f2] 2 = ½ [-F(H, R)]T[-F(H, R)] = ½ [F(H, R)]T[F(H, R)]. 
 

We show that V declines in the direction –F.  
Strict monotonicity of F implies that the Jacobian matrix J of F is positive 

definite everywhere. We will use this to show that V declines along a solution of (11), 
away from equilibrium. 

Let  
 

  x = (H1, H2, R1, R2) 
 

be a non-equilibrium. Then J = J(x) is positive definite, (11) may be written: 
 

 dx/dt = - F(x)  
 

(where F(x) is a non-zero vector) and also 
 
 V(x(t)) = V(x) = ½ F(x)TF(x) > 0.  
 

Using this notation it now follows that  
 

 dV/dt = gradV(x) · dx/dt = [JT(x)F(x)] · (- F(x)) = F(x)T J(x) (- F(x)) = - F(x)T J F(x) < 0 
 

since J is positive definite and F(x) ≠ 0.  
 
7.3. V declines to zero and x(t) converges to equilibrium  

 
Provided x(t) does not approach the boundary of S, dV/dt < 0 as x(t) moves along the 
dynamical system (11). In this case, by letting t ∞, the standard Lyapunov argument 
shows that:  

 
 (1) V(x(t))  0, 
 (2) the set E of points x in D∩S with V(x) = 0 is non-empty and 
 (3) dist(x(t), E)  0. 
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By strict monotonicity of F, the set E of equilibria contains just one point x* = [H1*, 
H2*, R1*, R2*] and so x(t)   x* as t  ∞. Convergence to equilibrium has been 
proved. 
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