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Abstract

In a discrete choice experiment, each respondent chooses the best product
or service sequentially from many groups or choice sets of alternative goods.
The alternatives are described by levels of a set of predefined attributes and
are also referred to as profiles. Respondents often find it difficult to trade
off prospective goods when every attribute of the offering changes in each
comparison. Especially in studies involving many attributes, respondents
get overloaded by the complexity of the choice task. To overcome respon-
dent fatigue, it is better to simplify the choice tasks by holding the levels
of some of the attributes constant in every choice set. The resulting designs
are called partial profile designs. In this paper, we construct D-optimal par-
tial profile designs for estimating main-effects models. We use a Bayesian
design algorithm that integrates the D-optimality criterion over a prior dis-
tribution of likely parameter values. To determine the constant attributes
in each choice set, we generalize the approach that makes use of balanced
incomplete block designs. Our algorithm is very flexible because it produces
partial profile designs of any choice set size and allows for attributes with
any number of levels and any number of constant attributes. We provide
an illustration in which we make recommendations that balance the loss of
statistical information and the burden imposed on the respondents.
Keywords: discrete choice experiments; Bayesian D-optimal design; partial
profiles; lexicographic choice behavior; attribute balance; coordinate-exchange
algorithm
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1 Introduction

Discrete choice experiments (DCEs) are widely used to study people’s prefer-
ences for certain attributes of products or services in different applied fields such
as marketing, transport, health economics and environmental economics. They
are also called stated choice or conjoint choice experiments. Typically, DCEs
involve respondents choosing among hypothetical (occasionally real) alternatives
presented in choice sets where the alternatives are described by levels of a set of
predefined attributes. The alternatives in the choice sets are also named profiles.
The design of a DCE comprises a select number of choice sets administered to a
group of respondents.

Respondents’ choices are analyzed with discrete choice models in a random
utility framework to estimate the preference parameters attached to each at-
tribute level. The assumption implicit in these models is that respondents are
willing to make compensatory decisions. This means that unattractive levels of
an attribute can be compensated for by attractive levels of another attribute. If
the assumption of compensatory decision making is violated, then this will have
a detrimental effect on the validity of the estimated preference values.

Many practitioners use DCEs to study the relative importance of a large num-
ber of attributes (see, e.g., Sculpher et al. 2004; Witt et al. 2009). Constructing
the design of a DCE involving many attributes is, however, not straightforward
because respondents are limited in their cognitive ability to process the infor-
mation presented in the DCE (Mazzotta and Opaluch 1995). Several studies
exploring the complexity and cognitive burden associated with DCEs provide ev-
idence that a large number of attributes has a detrimental effect on the ability to
choose, contributing to an increased error variance. For example, Arentze et al.
(2003) found that, when increasing the number of attributes from three to five
in a transport mode choice study, the error variance increased substantially and
the parameter estimates, corrected for the error variance differences, changed as
well. Caussade et al. (2005) examined the use of 3, 4, 5 and 6 attributes through
different designs for a route choice experiment, in which they also varied the
number of alternatives in a choice set, the number of choice sets, the number of
attribute levels and the range for those levels. They concluded that the num-
ber of attributes had the largest influence on the error variance out of all design
dimensions.

According to Green (1974) and Schwabe et al. (2003), respondents get over-
whelmed if they have to choose from a set of profiles that vary on more than four
attributes. Restricting the number of attributes to a maximum of four bounds
the increase in error variance, though we believe this cut-off number is rather
arbitrary and should be re-evaluated for different DCEs. Nevertheless, it has
been shown that, as respondents attempt to process many attributes, they of-
ten shortcut the compensatory process by making choices that are based on the
levels of just one attribute or a small subset of the attributes (see, e.g., Hensher
2006; Hensher and Rose 2009; Scarpa et al. 2009). These attributes are typically
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the most important ones. They dominate the decision making process while the
other attributes are ignored. The corresponding decision rule respondents apply
then is non-compensatory.

To accurately measure respondents’ trade-offs, it makes sense to simplify the
comparison by holding the levels of some of the attributes constant in every choice
set. These constant attributes need not be the same in each choice set. They
can be ignored in the choice task so that the remaining attributes whose levels
are varied make up the resulting choice set. The profiles in such a choice set are
called partial profiles, and the number of attributes that are allowed to vary in
the partial profiles is called the profile strength. The advantage of using partial
profiles is that the compensatory discrete choice models remain valid because they
help prevent respondents resorting to non-compensatory decision rules, such as
lexicographic decision rules. Also, in the presence of a dominant attribute, we
still obtain information about trade-offs made between the remaining attributes
when partial profiles are used. The downside of partial profiles is that, in theory,
they provide less information on the parameter values compared to full profiles
that allow all attributes to vary in each choice set (Kessels et al. 2010).

It is interesting to note that the construction methods for full profile designs
proposed in the choice design literature range from forcing the levels of each
attribute to differ as much as possible between the profiles in each choice set
to allowing for constant attributes, or complete attribute level overlap, in the
choice sets. The most well-known full profile designs tying in with the former
design approach are the designs by Street and Burgess. As pointed out by Rose
and Bliemer (2009), the Street and Burgess designs may promote lexicographic
choice behavior. Because the designs typically show all levels of each attribute in
each choice set, a particularly dominant attribute level may govern every choice.

The contrasting approach to constructing full profile designs allows for at-
tribute level overlap, or, in the extreme, complete attribute level overlap if an
attribute has a constant level in a choice set. Attribute level overlap or con-
stant attributes may be necessary in full profile designs to prevent the creation
of choice sets with a dominant profile. Well-known design methods that allow
for attribute level overlap are the locally and Bayesian optimal design methods
that make use of prior information in the design construction. These methods
are described later in this section. Kessels et al. (2011a,b) provide a detailed
discussion comparing different full profile designs in terms of their numbers of
constant attributes. Strictly speaking, if constant attributes are present in full
profile designs, then the corresponding choice sets also have partial profiles. How-
ever, the term “partial profiles” is generally reserved to the systematic creation
of a prespecified number of constant attributes in each choice set. As a result,
systematically enforcing the use of constant attributes in every choice set leads
to partial profile designs.

Thus far, partial profile designs have only been constructed for main-effects
models under the convenient but unrealistic assumption that people have no pref-
erence for any of the profiles (Grasshoff et al. 2003, 2004; Grossmann et al. 2006,

54



Kessels et al., Journal of Choice Modelling, 4(3), 2011, 52-74

2009). These so-called utility-neutral partial profile designs are created using or-
thogonal designs based on linear design principles. To improve the quality of the
designs, innovative construction methods have been developed based on optimal
design theory for linear models (see, e.g., Atkinson et al. 2007). Nevertheless, the
most recent utility-neutral optimal designs created by Grossmann et al. (2009)
only allow for the construction of DCEs with two profiles per choice set and two
groups of attributes where the number of levels of the attributes is fixed in every
group. There are also limitations on the allowable number of constant attributes.
This approach is therefore not applicable in a wide variety of practical problems.

However, a more fundamental problem with the use of utility-neutral optimal
designs is that they do not match the discrete choice models. This is because
discrete choice models are nonlinear in the parameters, implying that the quality
of the design of a DCE depends on the unknown parameters (Atkinson and
Haines 1996). One justification for the use of the utility-neutral design approach
is that the nonlinear design problem can be transformed into a linear one by
assuming zero prior parameter values. A key feature of the utility-neutral optimal
designs is thus that they are optimal for one specific set of parameter values.
Therefore, utility-neutral optimal designs belong to the class of locally optimal
designs which are constructed using prior point estimates for the parameters
(Huber and Zwerina 1996).

To provide a more sound solution to the nonlinear design problem, we con-
struct partial profile designs using the Bayesian design methodology. The Bayesian
design approach, introduced in the choice design literature by Sdndor and Wedel
(2001), assumes a prior distribution of likely parameter values and optimizes the
design over that distribution. In this way, it accounts for the uncertainty about
the proposed parameters into the problem formulation. This leads to a better
reflection of reality than in the utility-neutral design approach. Many researchers
have implemented the Bayesian design approach to construct full profile designs
for DCEs (see, e.g., Sdndor and Wedel 2001, 2002; Scarpa and Rose 2008; Kessels
et al. 2008, 2009, 2011a; Bliemer and Rose 2010). To create partial profile de-
signs, we built on the work by Kessels et al. (2011a) who construct Bayesian full
profile designs using the Bayesian D-optimality criterion for the multinomial logit
(MNL) model (McFadden 1974). These designs maximize the expected logarithm
of the determinant of the information matrix of the maximum likelihood param-
eter estimators in the MNL model (Gotwalt et al. 2009). They are also referred
to as Dp-optimal designs. The models we consider are main-effects models only.

To generate Dp-optimal partial profile designs, we use a two-stage design al-
gorithm. In the first stage, we determine the constant attributes in each choice
set, while in the second stage, we determine the levels of the non-constant at-
tributes. To determine the constant attributes in each choice set, we maximize the
D-optimality criterion for a very specific fixed block effects model. This solution
provides a generalization to the approach by Green (1974) who suggests using
balanced incomplete block designs (BIBDs) to select the constant attributes. Our
two-stage design algorithm is very flexible because it produces partial profile de-
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signs of any choice set size and allows for attributes with any number of levels
and any number of constant attributes.

The outline of the remainder of the paper is as follows. Section 2 reviews
the multinomial logit model and the Dp-optimality criterion used to construct
partial profile designs. In Section 3, we give an overview of the features of the
Bayesian full profile design algorithm and present the Bayesian partial profile
design algorithm. In Section 4, we adapt the algorithms for generating utility-
neutral designs with full and partial profiles. Section 5 provides an illustration
in which we construct and compare a series of Dg-optimal partial profile designs.
We study their performance relative to full profile testing and use utility-neutral
designs as benchmarks. Section 6 concludes the paper and highlights some further
research possibilities.

2 The multinomial logit framework

The multinomial logit (MNL) model (McFadden 1974) relies on random utility
theory which describes the utility that respondent n (n = 1,..., N) attaches to
profile j (j = 1,...,J) in choice set s (s = 1,...,5) as the sum of a systematic and
a stochastic component:

Unjs = Xjs + Enjs. (1)

In the systematic component X;j B, Xnjs is a k x 1 vector containing the attribute
levels of profile j in choice set s for respondent n. The vector 3 is a k x 1 vector
of parameter values representing the main effects of the attribute levels on the
utility. The stochastic component &5 is the error term, which is assumed i.i.d.
Gumbel distributed. The cumulative distribution function of an individual error
term is

F (enjs) = exp (—exp (—penjs)) , (2)

where p > 0 is a scalar equal to 7/ V60 with ¢ the standard deviation of Enjs
(Ben-Akiva and Lerman 1985). The MNL probability that respondent n chooses
profile j in choice set s is the closed-form expression

exp (x;jsm)
S exp (X iB)

The embedded scalar constant, u, in the MNL model is the scale factor for a
particular data set. It is inversely related to the size of the stochastic component
and indicates what the quality of the data is. The smaller the value for u,
the larger the error variance o2, and vice versa. If j approaches zero, then o?
approaches infinity, indicating a completely stochastic choice process with equal
MNL probabilities. Conversely, if  approaches infinity, then o approaches zero,

(3)

Pnjs =
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indicating a deterministic choice process leaving no doubt about the preferred
choice.

However, estimation of the MNL model (3) does not allow to separately iden-
tify both 3 and p (Ben-Akiva and Lerman 1985; Swait and Louviere 1993; Lou-
viere et al. 2002). Only the product puB3 can be estimated. Because of this
identification problem, it is standard practice to normalize p to 1. This normal-
ization leads to the MNL model with choice probability

exp (x;@j S,@)
Z;ﬁjzl exp (X{ntSIB) 7
where 3 is estimated using maximum likelihood. Because the same parameter
vector 3 is attached to every respondent, it is assumed in this model that people’s
preferences for the attribute levels are homogeneous across the population.

The construction of an optimal design X,, = [X;Ljs]j:17_”7‘];5:17“_7S for respon-

dent n for estimating 3 in the MNL model (4) is based on the Fisher information
matrix

(4)

Pnjs =

S
M (Xn,,@) = Z X;Ls (Pns - pnsp;s) an; (5)
s=1
with X,s = [X%js]jzl,m’ J the submatrix of X,, corresponding to choice set s,

Pns = [Prlss s Pnys) and Ppg = diag [pnis, ..., Pnss). Huber and Zwerina (1996),
Sédndor and Wedel (2001), Kessels et al. (2006, 2009, 2011a), Scarpa and Rose
(2008), among others, implemented different design criteria or functions of the
information matrix (5) for constructing optimal discrete choice designs. This task
is far from trivial since the information on 3 depends on the unknown values of
B through the probabilities p,;s so that parameter values are required before it
is possible to construct optimal designs. To deal with this dependency on 3, one
can use a single prior guess, Bp, in a locally optimal design approach. The most
popular local design criterion is the Dp-optimality criterion, which we define as

Dp = log|M (X, Bp)| . (6)

The design that maximizes the Dp-criterion is the locally D-optimal or Dp-
optimal design for the MNL model (4).

However, because of the uncertainty on 3, locally optimal designs are only ef-
ficient for parameters 3 close to Bp. A more robust design solution is a Bayesian
strategy that averages the design criterion over a prior distribution of likely pa-
rameter values, 7 (3). Often, this distribution is the multivariate normal distri-
bution, N (8|8, o), with prior mean 3, and prior variance-covariance matrix
9. As opposed to locally optimal designs, Bayesian optimal designs perform
well for a broad range of parameters 3 (Kessels et al. 2011a,b; Rose 2011). To
generate them, we use the Dg-optimality criterion, which we define as

D = /R log M (X,,, 8)] 7(8)d8. (7)
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The design that maximizes the Dp-criterion is the Bayesian D-optimal or Dp-
optimal design for the MNL model (4). Kessels et al. (2011a) were the first to
use this definition of the Dp-criterion to generate Dp-optimal designs. It dif-
fers from the Dp-optimality criterion used in most of the literature on optimal
choice design (see, e.g., Sdéndor and Wedel 2001; Kessels et al. 2006, 2008, 2009;
Bliemer and Rose 2010) because of the logarithmic transformation of the deter-
minant. This transformation ensures that in a Bayesian information theoretic
sense, the design that maximizes the Dp-optimality criterion (7) also maximizes
the expected Shannon information (Chaloner and Verdinelli 1995; Atkinson et al.
2007). A practical advantage of the logarithmic transformation is that it makes
the Dp-criterion less sensitive to parameter vectors resulting in very small or very
large determinant values.

To compare the statistical efficiency of a Dg-optimal partial profile design to
the Dp-optimal full profile design, we compute the relative Dp-efficiency. We
define the Dp-efficiency of a design X,, relative to a design X as

DP(Xn) - IDP(X:L)> )

- )

By analogy, the Dp-efficiency of a design X,, relative to a design X is

Dp(X,) — Dp(X},)
. > . 9)

Also Holling and Schwabe (2011) proposed using Equation (9) to compute the
relative Dp-efficiency of two designs.

Rather than adopting a Bayesian design approach, some researchers have
transformed the design problem for the MNL model (4), which is in essence non-
linear, into a linear one by creating locally optimal designs assuming 3 = O,
where 0, is a k-dimensional vector of zeroes (see, e.g., Street and Burgess 2007;
Grossmann et al. 2009). The assumption that 3 = 0 causes the probabilities
pnjs of all J profiles in choice set s to be equal to 1/J, which corresponds to
a situation in which respondents have no preference for any of the profiles in
the choice set. Therefore, these designs are referred to as utility-neutral designs.
Kessels et al. (2011a) showed that, up to a proportionality constant, the infor-
mation matrix of a utility-neutral design equals the information matrix of a block
design, which is given by

Effp (X, X)) = exp <

Effy (X, X2) = exp (

S
M (Xn) - X%Xn - Z J! (X'/nle) (1{]an) ) (10)
s=1

where 1; is a J-dimensional vector of ones.
Therefore, to construct D-optimal utility-neutral designs, we maximize the
linear D-optimality criterion,

S
D=|X X, — > T (X)1y) (1Xo) | (11)
s=1
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3 Bayesian design algorithms

In this section, we describe the Bayesian design algorithms for generating Dpg-
optimal full and partial profile designs. In Section 3.1, we review the features
of the algorithm to construct Dp-optimal full profile designs. We discuss this
algorithm because it provides the basis for the algorithmic construction of Dp-
optimal partial profile designs, which we explain in Section 3.2.

3.1 Algorithm for generating Dpz-optimal full profile designs

The algorithm for generating Dg-optimal full profile designs is an improvement
to the alternating sample algorithm for generating Bayesian full profile designs
developed by Kessels et al. (2009). Characteristic of the alternating sample
algorithm is that it alternates between two different samples of prior parameters
to approximate the k-dimensional integral related to a multivariate normal prior
7w (B) = N(B|By, X0) in the definition of the Dp-optimality criterion (7). The
alternating sample algorithm uses a small systematic sample of prior parameters
to generate design improvements in a random start, but still checks the designs
produced by each random start using a large Monte Carlo sample. The approach
works well because the small systematic sample agrees almost completely with
the large Monte Carlo sample on design improvements in a random start.

The use of two different samples of prior parameters drastically speeded up
the Bayesian design generation compared to using a large Monte Carlo sample
only, as was done in Sandor and Wedel (2001) and Kessels et al. (2006). However,
we increased the speed and precision of the algorithm even further by adopting
the fast and accurate quadrature scheme presented by Gotwalt et al. (2009) and
Gotwalt (2010) as integration method to compute the Dp-optimality criterion
(7). The quadrature scheme is based on the work of Monahan and Genz (1997)
and combines two efficient integration rules, one for radial integration and one for
integration over a sphere. The combined integration method is therefore called
the spherical-radial transformation method. Bliemer et al. (2008) and Yu et al.
(2010) showed that quadrature methods often outperform any other methods for
Bayesian objective function evaluation.

Apart from using a more efficient sampling scheme from the multivariate
normal distribution to compute the Dp-optimality criterion (7), the Bayesian
design algorithm works similarly to the alternating sample algorithm described
in Kessels et al. (2009). It uses Meyer and Nachtsheim’s (1995) coordinate-
exchange algorithm that changes one coordinate or attribute level of a profile at
a time. For each attribute level in the design, the coordinate-exchange algorithm
tries all possible levels and chooses the level corresponding to the largest Dp-
criterion value. The algorithm runs several times through the design and restarts
for a given number of randomly generated starting designs.

As opposed to the alternating sample algorithm, which has been developed
for generating Dp-, Ap-, G- and Vp-optimal full profile designs, we use the
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Bayesian design algorithm to generate Dp-optimal full profile designs only. These
designs are most popular because they are easier to compute and do not only
guarantee precise parameter estimates, but also precise predictions (Kessels et
al. 2006). The Dp-optimal full profile design algorithm has been implemented in
the statistical software package JMP, which we use to generate the designs. Also
Kessels et al. (2011a) generated a series of Dg-optimal full profile designs in this
way.

3.2 Algorithm for generating Dg-optimal partial profile designs

This section discusses the adaptation of the Bayesian full profile design algorithm
described in Section 3.1 so that it allows for the creation of Dg-optimal partial
profile designs. Given there are t attributes under study, the Dp-optimal partial
profile design algorithm requires the number of constant attributes, ¢., as an
input. The remaining ¢, = t — . attributes are the non-constant attributes.

The Bayesian partial profile design algorithm for ¢. constant attributes is
characterized by the following two stages:

Stage 1: Determining the constant attributes in each choice set,
Stage 2: Determining the levels of the non-constant attributes.

Note that for main-effects models, the levels of the t. constant attributes can be
chosen randomly because they have no effect on the information acquired from
the experiment, as expressed by the information matrix (5). We now describe
each of the two stages in more detail.

3.2.1 Stage 1: Determining the constant attributes in each choice set

To determine the constant attributes in each choice set in Stage 1, we attempt to
balance the number of times an attribute is held constant in the choice design.
Also, if t. > 1, we attempt to balance the number of times an attribute is held
constant with another attribute. We refer to the first type of balance as first-order
balance and to the second type of balance as second-order balance or pairwise
balance. We refer to the entire approach as attribute balance.

As Green (1974) proposed, we can use balanced incomplete block designs
(BIBDs) to determine patterns of t. constant attributes that perfectly satisfy
attribute balance. By definition, a BIBD describes how to arrange the levels of a
single qualitative factor, called treatments, in groups or blocks of a certain size.
Each treatment thereby occurs an equal number of times in the entire design and
the number of times two different treatments occur together in a block is the
same for all pairs of treatments.

Table 1 shows a Dp-optimal partial profile design containing 15 choice sets
of size 2 for t = 6 attributes where t. = 2 attributes are constant in each choice
set. The first three attributes have two levels each, the fourth and fifth attribute
have three levels each and the last attribute has five levels. The t. = 2 constant
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attributes are marked in gray and can assume any possible attribute level. As
such, the choice design has a profile strength of four. We selected the t. = 2
constant attributes according to a BIBD that has 15 blocks with ¢, = 2 of the
t = 6 attributes as treatments in each block. The BIBD ensures first-order
balance because each attribute is constant in five choice sets and second-order
balance because each pair of attributes is constant in exactly one choice set.

A problem with using BIBDs as a way to determine the . constant attributes
in choice designs is that they only exist for certain numbers of observations,
treatments and block sizes. To circumvent this problem, we propose a more
general D-optimal design approach that satisfies attribute balance to the largest
possible extent in every design situation. This D-optimal design approach is
based on the fixed block effects model for data from a BIBD,

Yo = Ay + Z07y + €, (12)

where Yy, denotes the response of the vth treatment (v = 1,...,t.) in the uth
block (u = 1,...,5). Next, quy is a t X 1 vector that has a one as first element
followed by t — 1 effects-type coded elements representing the vth treatment in
the uth block. The vector & = [ag, 1, ...,a;—1]" contains the corresponding ¢
parameters with «q the intercept and a1, ...,a;_1 the treatment effects. Then,
z, is a (S —1) x 1 vector containing effects-type coded elements for the uth block
and ~ is the corresponding (S — 1) x 1 vector containing the fixed block effects.
Finally, the term ¢, is the random error associated with the vth treatment in
the uth block, which is assumed to be independently distributed with zero mean
and variance o2,

In matrix notation, the fixed block effects model (12) becomes

Y = Qa+Zv +e, (13)

where Y is a vector of r = St. responses, Q = [dl,,Ju=1,...S;v=1,....t. 1S the r x t
design matrix having a vector of ones in the first column and treatment codings
in the remaining columns, Z = [1;, ® 2} ]y=1,...s is the 7 x (S — 1) design matrix
of associated block codings and € is a random error vector. We denote by B the
combined design matrix [Q Z] which has dimension r x (t + 5 — 1).

The fixed block effects model (13) is linear in the parameters v and ~y, imply-
ing that the information matrix of the design B is independent of their values.

The information matrix is given by

m_ |QQ QZ
pe- (92 97 "

By maximizing |B’B|, we obtain the D-optimal design for the fixed block effects
model (13). This design will be a BIBD if a BIBD exists for the specified values
of S, t. and t. Otherwise, if no BIBD exists, the D-optimal design will be as close
as possible to a BIBD.
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Table 1: Dp-optimal partial profile design involving 15 choice sets with 2 profiles
and three 2-level attributes, two 3-level attributes and one 5-level attribute, where
t. = 2 of the attributes are constant.

Choice Attributes
set 1 2 3 4 5 6
1 *x * 2 1 1 5
1 *x x 1 3 3 3
2 *x 1 % 2 3 5
2 * 2 x 3 1 1
3 *x 2 1 *x 2 1
3 *x 1 2 x 1 2
4 x 2 2 2 9 x 2
4 *x 1 1 3 % 5
) *x 2 1 2 1 =%
) * 1 2 3 3 %
6 1 %= % 2 3 1
6 2 x x 1 2 3
7 2 x 1 % 1 3
7 1 x 2 % 2 4
8 1 % 2 2 % 3
8 2 x 1 3 % 2
9 2 x 1 1 3 =
9 1 x 2 3 1 =«
10 2 1 x x 1 4
10 1 2 % % 2 2
11 1 2 % 3 *x 5
11 2 1 x 1 % 4
12 2 1 % 2 2 x
12 1 2 % 1 3 =%
13 1 2 1 x x 4
13 2 1 2 % x 1
14 2 2 2 % 1 =
14 1 1 1 % 2 =%
15 1 1 2 1 % =%
15 2 2 1 2 % =x
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Based on the information matrix (14), we can compute |B’B| by applying
Theorem 13.3.8 of Harville (1997) to find that

! ,Z / !/ / / - /
7a %Z'ZIZZIIQQQZ(ZZ)leI. (15)

Because the matrix Z only depends on S and t., it is constant. Also, |Z'Z| and
Z(Z'Z)"'Z' are constant so that we only need to compute them once. If we
denote Z (Z'Z) "' Z' by H and the r-dimensional identity matrix by I, then in
our algorithm, we maximize |B’B| by maximizing

Q'(I. - H)Q] . (16)

This approach leads to computational time savings that increase with the number
of blocks, S.

3.2.2 Stage 2: Determining the levels of the non-constant attributes

To determine the levels of the t, non-constant attributes in Stage 2, we apply
the same methods as in the Bayesian full profile design algorithm described in
Section 3.1. We generate changes in the levels of the non-constant attributes
using the coordinate-exchange algorithm and we evaluate these changes using
the Dp-optimality criterion (7). To compute the Dp-criterion value of a design
for the multivariate normal prior 7 (3) = N (8|8, Xo), we rely on the spherical-
radial transformation method presented by Gotwalt et al. (2009) and Gotwalt
(2010).

In the Dp-optimal partial profile design for ¢, = 2 constant attributes shown
in Table 1, we observe that the levels of all ¢, = 4 non-constant attributes vary in
the choice sets. However, in some other instances, we observed that the levels of
one or more of the t, attributes we allow to vary do not change in certain choice
sets. In that case, we see more than the specified minimum number of attributes
remaining constant in such choice sets. This result is in line with Sandor and
Wedel (2002) and Kessels et al. (2006, 2011a,b) who also found the presence of
constant attributes, or complete attribute level overlap, in some choice sets of
full profile designs. Using constant attributes in certain choice sets of full profile
designs helps avoiding uninformative choice sets with very high and very low
choice probabilities.

The number of constant attributes selected by the Dp-optimality criterion (7)
in addition to the t. constant attributes depends primarily on the number of ¢,
constant attributes already present. Additionally, the specification of the prior
mean B, and prior variance-covariance matrix 3y in the multivariate normal
distribution plays a role. Kessels et al. (2011a) showed that the larger the
prior variances and the Euclidean distance d(8,0x) of the prior mean 3, to
the zero vector 0y, the more constant attributes the Dp-optimality criterion
selects in a full profile design. As a result, for partial profile designs, the Dp-
optimality criterion is more likely to select constant attributes to complement the
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t. constant attributes given large values for the prior variances and d(3, 0x). In
the illustration in Section 5, we describe the prior parameter distribution used
to generate the partial profile design of Table 1 and discuss the example in more
detail.

In many DCEs, it is, however, desirable that the number of constant attributes
is the same in each choice set. In particular, in DCEs where the profiles are
displayed as rows or columns of words or sentences and the constant attributes
are dropped, the rows or columns do not all have the same length if the number of
constant attributes is not the same in each choice set. This is aesthetically jarring.
On the other hand, if the profiles are shown as images or real-life prototypes (e.g.
images or prototypes of products), then the use of choice sets with different
numbers of constant attributes is generally not a problem. In that case, the
images or prototypes do not immediately reveal how many attributes are constant
or non-constant.

For DCEs that require partial profile designs with a fixed number of ¢. con-
stant attributes, we modified the partial-profile coordinate-exchange algorithm
so that it does not allow for additional constant attributes selected by the Dpg-
optimality criterion. We thus restrict the levels of the non-constant attributes
to vary in the choice sets. We refer to the entire two-stage algorithm as the re-
stricted partial profile design algorithm and to the resulting designs as restricted
partial profile designs. Accordingly, we can then also call the original version
of the algorithm, without the restriction, the unrestricted partial profile design
algorithm and the resulting designs unrestricted partial profile designs. The un-
restricted partial profile design algorithm has been implemented in JMP. For the
restricted partial profile design algorithm, we created our own script using JMP
Scripting Language (JSL).

4 Utility-neutral design algorithms

As described in Section 2, utility-neutral designs are in essence block designs with
blocks of size J. For that reason, we generate D-optimal utility-neutral full profile
designs by maximizing the linear D-optimality criterion (11). The algorithm we
use is the coordinate-exchange algorithm which is implemented in JMP. For main-
effects models, the linear D-optimality criterion varies the levels of all attributes.
Moreover, the resulting D-optimal utility-neutral full profile designs are level
balanced within and over all choice sets given appropriate numbers of attribute
levels, blocks and block sizes. For other design situations, the main-effects designs
are level balanced to the largest possible extent.

To generate D-optimal utility-neutral partial profile designs for ¢. constant
attributes, we apply a similar two-stage design scheme as described in Section
3.2 for generating Bayesian partial profile designs. In Stage 1, we select the
constant attributes so as to achieve attribute balance. In Stage 2, we generate
the levels of the non-constant attributes by maximizing the linear D-optimality
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criterion (11) using the coordinate-exchange algorithm. Also here, the linear D-
optimality criterion varies the levels of all ¢,, attributes for main-effects models, so
that the partial profile designs have exactly t. attributes constant. Furthermore,
these main-effects designs are level balanced in the non-constant attributes within
and over all choice sets for appropriate numbers of attribute levels, blocks and
block sizes. For other design dimensions, the designs are level balanced to the
largest possible extent. The utility-neutral partial profile design algorithm has
been implemented in JMP.

5 Illustration

This section provides an illustrative study in which we compare a series of Dp-
optimal partial profile designs to the corresponding D g-optimal full profile design.
Other benchmark designs are the D-optimal utility-neutral designs with full and
partial profiles. All designs are main-effects designs. They consist of 15 choice
sets with 2 profiles and three 2-level attributes, two 3-level attributes and one
5-level attribute. We assume a single design for all N respondents, so that X; =
... = X for every design case. We examine the loss in Dp-efficiency due to using
partial profiles instead of full profiles. We describe the setup of the comparison
study in Section 5.1 and discuss the optimal designs and their Dp-efficiencies in
Section 5.2.

5.1 Setup of the comparison study

In Section 3.2, we described our two-stage design procedure to construct Dp-
optimal partial profile designs using the Dp-optimal partial profile design for
t. = 2 constant attributes shown in Table 1. In this comparison study, we discuss
this design in more detail and present the unrestricted and restricted D pg-optimal
partial profile design for ¢, = 1 constant attribute. We compare these partial
profile designs with the Dg-optimal full profile design in terms of Dg-efficiency.
We also study the D-optimal utility-neutral design with full profiles, and the
D-optimal utility-neutral partial profile designs for t. =1 and t. = 2 constant
attributes.

We generated the Dp-optimal and D-optimal utility-neutral designs using the
algorithms described in Sections 3 and 4, respectively. For each optimal design,
we used 2000 random starts. We modeled the attribute levels using effects-type
coding. If L; denotes the number of levels for attribute 7, i = 1, ..., ¢, then effects-
type coding constrains the parameters associated with the L; levels of attribute ¢
to sum to zero. This requires that only the parameters attached to the first L; —1
levels of attribute 7 need to be estimated as the parameter attached to the last
level L; automatically results. Therefore, the vector 3 contains £ = 11 unknown
parameter values in our design situation.

For the construction of the Bayesian designs, we used the multivariate normal
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prior 7 (8) = N(B|By, X0), with prior mean
By = [-0.5,—0.5,-0.5,—0.5,0, —0.5,0, —0.5, —0.25, 0, 0.25)’ (17)

and prior variance-covariance matrix

[0.16 O 0 0 0 0 0 0 0 0 0 7
0 016 0 0 0 0 0 0 0 0 0
0 0 0.16 0 0 0 0 0 0 0 0
0 0 0 0.16 —0.08 0 0 0 0 0 0
0 0 0 —-0.08 0.16 0 0 0 0 0 0
o= 0 0 0 0 0 0.16 —0.08 0 0 0 0
0 0 0 0 0 —0.08 0.16 0 0 0 0

0 0 0 0 0 0 0 0.16 —0.04 -0.04 -0.04

0 0 0 0 0 0 0 —-0.04 0.16 —-0.04 -—-0.04

0 0 0 0 0 0 0 —-0.04 —-0.04 0.16 —0.04

L 0 0 0 0 0 0 0 -0.04 -0.04 -0.04 0.16 |

(18)

For the specification of the prior mean 3, we chose to equally space the parameter
values between —0.5 and 0.5 for each attribute. The first three parameter values
in B, are the prior mean utilities associated with the first level of each of the three
2-level attributes. The next two sets of two parameter values reflect the prior
mean utilities of the first and second level of each of the two 3-level attributes.
Finally, the last four parameter values correspond to the prior mean utilities of
the first four levels of the 5-level attribute. Due to the effects-type coding, a
prior mean parameter value of 0.5 automatically results for the last level of each
attribute.

By using the prior mean B in (17), we assume that all ¢ = 6 attributes are
equally important and that they are ordinal, where the levels of each attribute are
ordered from least preferred to most preferred. Because there are t = 6 attributes
involved in the study, which is reasonably large, we followed the recommendation
by Kessels et al. (2008) to use small absolute prior mean parameter values. None
of the parameter values is therefore larger than 0.5 in magnitude. As a result,
the multinomial logit probabilities given 3 for the most and least desirable full
profile forming a choice set of size two are 0.99753 and 0.00247, respectively,
which are values that are not too extreme.

For the prior variance-covariance matrix X, we specified k¥ = 11 variances
that are all equal to 0.16 and negative covariances between the L;—1 parameters of
each attribute 7. We computed these covariances using a correlation coefficient of
—1/(L;—1). As explained by Kessels et al. (2008), this ensures that the variances
of all parameters corresponding to a given attribute are the same, meaning that
the variance associated with the last implied level L; of attribute i also equals
0.16.
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5.2 Optimal designs and their Dp-efficiencies

Table 2 shows the Dp-optimal full profile design and the unrestricted and re-
stricted Dp-optimal partial profile design for ¢, = 1 constant attribute. The un-
restricted design has four choice sets (namely choice sets 3, 4, 6 and 12) with
two constant attributes instead of one. The additional four constant attributes
imposed by the Dp-optimality criterion (7) involve the three two-level attributes
only. In the partial profile designs, the attribute balance in the constant attributes
is not perfect because the number of choice sets, S = 15, is not a multiple of the
number of attributes, ¢ = 6. Also, in the unrestricted design, the attribute bal-
ance is not perfect because of the four additional constant attributes.

Notice that in the Dg-optimal full profile design, there are seven choice sets
with one constant 2-level attribute. There are 6 attributes and 15 choice sets
giving 90 possibilities for such level overlap. Here, we see about 8% of level
overlap, which is rather small compared to the percentages from a series of design
instances reported by Kessels et al. (2011a). This is due to the fairly small prior
variances and covariances in the variance-covariance matrix ¥ in (18) and the
comparatively small Euclidean distance d(8,011) of the prior mean 3 in (17)
to the zero vector 011, which equals 1.27. In the case of t. = 1 constant attribute,
we were therefore somewhat surprised to see some additional constant attributes
in the unrestricted Dp-optimal design. On the other hand, in the case of t. = 2
constant attributes, the unrestricted partial profile design of Table 1 does not
have more constant attributes than required. As a result, the generation of a
restricted partial profile design for this situation is unnecessary.

Table 3 shows the D-optimal utility-neutral full profile design and the D-
optimal utility-neutral partial profile designs for ¢, = 1 and t. = 2 constant at-
tributes. Characteristic of the utility-neutral designs is that they are level bal-
anced in the non-constant attributes within and over all choice sets. Similar to
the Bayesian partial profile designs, the use of S = 15 choice sets and ¢t = 6
attributes resulted in imperfect attribute balance for the utility-neutral design
with t. = 1 constant attribute and in perfect attribute balance for the utility-
neutral design with t. = 2 constant attributes. If there are one or more dominant
attributes in the study, then the full profile design does not prevent the selection
of profiles based on these dominant attributes, whereas the partial profile designs
do to some extent.

To evaluate the statistical efficiency of the Bayesian and utility-neutral opti-
mal designs, we compared them to the Dp-optimal full profile design in terms of
Dp-efficiency. By doing so, we learn how much we lose in Dg-efficiency by using
constant attributes and/or a D-optimal utility-neutral design. Table 4 shows the
Dp-optimal criterion values and Dpg-efficiencies of the designs. In the case of
t. = 1 constant attribute, the Dp-optimal partial profile designs lose about 10%
in Dp-efficiency. Also, there is hardly any difference in performance between the
unrestricted and restricted design. This means that in order to obtain the same
amount of information as from full profile testing, we need about 10% more re-
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Table 2: Dp-optimal designs involving 15 choice sets with 2 profiles and three

2-level attributes, two 3-level attributes and one 5-level attribute.
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Table 3: D-optimal utility-neutral designs involving 15 choice sets with 2 profiles
and three 2-level attributes, two 3-level attributes and one 5-level attribute.
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spondents (computed as 1/0.91—1) if we keep one attribute constant. In the case
of t. = 2 constant attributes, the Dg-optimal partial profile design loses about
20% in Dp-efficiency, requiring 27% more respondents compared to full profile
testing. This is twice the efficiency loss of the Dp-optimal partial profile designs
with ¢, = 1 constant attribute. Also, this efficiency loss is approximately as large
as the efficiency loss incurred by the D-optimal utility-neutral full profile design.

Table 4: Dp-optimal criterion values and Dp-efficiencies of the optimal designs.

Optimal design
Criterion Profile Dp-value Dp-efficiency
Dp-optimal full 11.24378 100.00%
Dp-optimal 1 cst partial 10.21495 91.07%
Dp-optimal 1 cst partial restricted | 10.20127 90.96%
Dp-optimal 2 cst partial 8.64183 78.94%
D-optimal utility-neutral full 8.77159 79.87%
D-optimal utility-neutral 1 cst partial 7.16088 68.99%
D-optimal utility-neutral 2 cst partial 6.36122 64.15%

To evaluate the efficiency loss of 20% of the D-optimal utility-neutral full
profile design, we need to take into account the fact that the outperformance
of Bayesian designs over utility-neutral designs depends on the prior parameter
specification used. Kessels et al. (2011a) showed that when the prior variances are
relatively small and the Euclidean distance d(3, 0y) is relatively large, Bayesian
designs perform much better than utility-neutral designs with respect to the
variance of the parameter estimates. In our example, the prior variances all
equal 0.16, which is relatively small, but the distance d(8,011) of 1.27 is not
large. This means that the efficiency loss of 20% of the D-optimal utility-neutral
full profile design is not extreme, but rather average. Lastly, using t. = 1 and
t. = 2 constant attributes in the utility-neutral design case yields efficiency losses
of 31% and 36%, respectively, which makes these design options the worst to
consider.

6 Summary and future research

We provided a flexible design algorithm for constructing Dg-optimal main-effects
designs for DCEs that reduce the complexity of the choices that a respondent must
make by keeping one or more attributes constant within each choice set. We refer
to these designs as Dp-optimal partial profile designs. The benefits of the Dpg-
optimal partial profile designs are twofold. First, by reducing the complexity of
the choices, they have the potential to prevent respondents from resorting to non-
compensatory approaches towards making their choices, which would violate the
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assumption of compensatory decision making in discrete choice models. Second,
having attributes that remain constant within each choice set means that even
if one attribute is dominant over all others, it will not appear in certain choice
sets. Thus, the utility of the remaining attribute levels can be assessed.

Keeping certain attributes constant in each choice set also has a cost. It
reduces the theoretical information content of each choice set compared to using
full profiles. In our illustration, these efficiency losses were 10% to 20%, meaning
that to obtain the same amount of information as from full profile testing, an
investigator will need 10% to 27% more respondents. However, this theoretical
drawback is outweighed by the potential of partial profile designs to prevent non-
compensatory decision making. It would be interesting to verify these results by
comparing designs with full and partial profiles in an empirical setting.

The partial profile design algorithm is flexible in that it can accommodate
arbitrarily many attributes, each with any number of levels. Choice sets may have
any number of profiles and though the number of choice sets must be adequate
to fit the underlying model, there can be as many choice sets as desired. These
may be divided into separate surveys so that each respondent is not overburdened
by having to make too many choices. Our illustration had choice sets with two
profiles only. Quantifying the efficiency of scenarios with more profiles per choice
set would be a natural extension of this work.

Also, a number of more general extensions are worth investigating. First,
the partial profile design algorithm considers main-effects models only. Exam-
ining the use of constant attributes when possible two-attribute interactions are
present would be an interesting research topic. Second, the Bayesian design algo-
rithm only allows for a multivariate normal prior distribution of the parameters.
Extending the method to support other distributions would be a useful contribu-
tion. Finally, the algorithm only applies to the multinomial logit model assuming
homogeneous preferences of the respondents. Exploring the use of more sophis-
ticated nonlinear models that take into account respondent heterogeneity would
be a challenging topic for future research. For example, the work by Bliemer and
Rose (2010) and Yu et al. (2011) on full profile design construction methods for
the panel mixed logit model could be extended to partial profiles.
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