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Abstract 
 

We briefly review and discuss traditional conjoint analysis (CA) and discrete 

choice experiments (DCEs), widely used stated preference elicitation methods in 

several disciplines. We pay particular attention to the origins and basis of CA, and 

show that it is generally inconsistent with economic demand theory, and is subject 

to several logical inconsistencies that make it unsuitable for use in applied 

economics, particularly welfare and policy assessment. We contrast this with 

DCEs that have a long-standing, well-tested theoretical basis in random utility 

theory, and we show why and how DCEs are more general and consistent with 

economic demand theory. Perhaps the major message, though, is that many studies 

that claim to be doing conjoint analysis are really doing DCE. 
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1 Introduction  

 
Interest in the use of stated preference (SP) theory and methods has increased 

dramatically in agricultural and food economics, environmental and resource 

economics and health economics since the mid-1990’s. SP methods are used to elicit 

an individual’s preferences for “alternatives” (whether goods, services, or courses of 

action) expressed in a survey context. Thus, this class of methods for preference 

elicitation differs from traditional economic approaches which are based on revealed 

preference (RP) data obtained by observing individual behavior in real markets. This 

paper defines, compares and discusses two paradigms that are being used more and 

more widely in applied economics, and shows why one of them (conjoint analysis) 

generally is inappropriate for economic evaluation and should be used with caution in 

economic applications.  

There are many ways to elicit stated preferences from individuals. We 

concentrate on two general paradigms for preference elicitation that have evolved over 

the past thirty plus years and that have substantial empirical records that can be 

assessed. These paradigms are “conjoint analysis” (CA) and “discrete choice 

experiments” (DCEs). Here we use the term DCE rather than the more commonly 

used term choice experiment to avoid confusion.
1
  Academics and practitioners often 

seem to confuse both paradigms based on our review of the literature and considerable 

experience with them over the past 20+ years. Indeed, we believe that many 

researchers who claim to apply conjoint analysis really are using DCEs. In turn, this 

suggests that many researchers currently working on SP issues do not realize that both 

paradigms differ, much less how they differ. In fact, the two approaches differ 

substantially, and several of the ways in which they differ have significant 

implications for economic evaluation and related applications. Thus, the purpose of 

this paper is to discuss differences in both paradigms and explain why one should be 

cautious about using CA in many economics applications. We achieve this purpose by 

reviewing both paradigms, which involves describing and comparing both, noting 

differences and similarities. We then discuss how and why differences and similarities 

matter to researchers interested in applying these methods. 

 

2 What is Conjoint Analysis?  
 

Conjoint Analysis is a generic term used to describe several ways to elicit preferences. 

CA’s origins are in psychology, principally associated with research dealing with 

ways to mathematically represent the behavior of rankings observed as an outcome of 

systematic, factorial manipulation (i.e., known as "factorial designs") of independent 

factors (also known as “attributes”). CA methods rely on formal proofs about the 

mathematical (algebraic) representations of rank orderings of orthogonal arrays 

(originally, complete factorial arrays). In particular, it can be shown (e.g., Krantz and 

Tversky 1971) that if a person ranks a full factorial design, their implied preferences 

can be represented “as if” they integrate and combine the factor levels in certain 

algebraic ways, such as “adding” or “multiplying” marginal preferences for each 

factor level to rank all factorial treatments (a treatment is a combination of factor 

                                           
1
 Carson and Louviere (forthcoming) note that the term choice experiment has different 

meanings in other disciplines such as biology and physics and that nothing restricts choices to 

be “discrete” as commonly assumed in SP work. 



Louviere, Flynn and Carson, Journal of Choice Modelling, 3(3), pp. 57-72   

 

59 

 

levels). Specifically, a person’s ranking of a set of factorial treatments must satisfy 

certain conditional and joint preferential independence and dependence properties in 

order to represent the ranking as one of the foregoing simple algebraic processes. 

Thus, CA evolved out of the theory of “Conjoint Measurement” (CM), which is purely 

mathematical and concerned with the behavior of number systems, not the behavior of 

humans or human preferences. That is, the axioms underlying the theory are purely 

mathematical, and posed challenges in early attempts to operationalize and apply the 

theory. Specifically, the rankings of real individuals generally violate one or more 

axioms, posing issues as to how many and which violations are too many and/or are 

sufficient to accept one model over another.  

Two main features of CM are important for our discussion. The first is that the 

axioms of CM have some relationship to utility theory. Unfortunately, however, this 

relationship is very restrictive, such that CM has been superseded by more general 

standard neoclassical utility theory (e.g., Varian 1992) and its variants like prospect 

theory (e.g., Kahneman and Tversky 1979) that allow particular types of deviations 

from CM theory. Second, there is no error theory associated with CM, statistical or 

otherwise, which allow the theory to be represented as testable statistical models; 

hence learning that preference data do not correspond to simple conjoint models 

contributed to the development of statistical error theories in psychology.
2
  Yet, these 

statistical error theories are not used in CA analysis nor do they underlie DCEs. 

The CA literature is most extensive in academic and applied marketing, where it 

is widely used to solve practical marketing research problems (e.g., Green and Rao 

1971; Cattin and Wittink 1982; Wittink and Cattin 1989). Much of the use of the term 

“conjoint” in various other applied microeconomics fields seem to stem from beliefs 

that they emulate what marketers do when collecting preference data with surveys. As 

CA applications began to expand rapidly in marketing in the late 1960’s and early 

1970s, one began to “see” many practical “enhancements” of the formal “Conjoint 

Measurement” theory (e.g., Krantz and Tversky 1971; Michell 1990), such as the 

following:  

 

 Using fractional factorial arrays instead of complete factorial designs to elicit 

preferences for combinations of factor (attribute) levels;  

 Using rating scales instead of rankings to elicit preference orders and/or utility 

differences; 

 Using statistical models to analyze elicited preference responses and estimate 

preference parameters (i.e., part-worth utilities); and 

 Using “choice simulators” to predict individual choices from sets of options and 

aggregate choices over samples of people.  

 

The above list is not exhaustive; it is intended merely to be representative of some 

enhancements arising out of practical experiences. For example, it omits some 

analytical developments, such as multidimensional scaling, two-limit Tobit models, 

ordered logit or probit models and other censored and limited dependent variable 

regression techniques that match particular censoring properties of various types of 

CA preference responses obtained from ranking or rating of attribute combinations 

(e.g., Anderson and Bettencourt 1993; Harrison et al. 2005; Jedidi and Zhang 2002; 

Vriens et al. 1998). Indeed, the latter enhancements were largely statistical because 

                                           
2
 One of the best known statistical error theories is Functional Measurement, which is the 

empirical implementation of Information Integration Theory (e.g., Anderson 1962, 1970). 
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they arose from considering ways to analyze certain types of response outcomes as 

data types. That is, few analytical developments in CA were derived from theoretical 

considerations about decision making processes; and most developments in CA (i.e., 

post-1975) have been ad hoc statistical and methodological “enhancements”, virtually 

none of which were derived from underlying behavioral theory. For example, there are 

so-called “partial profile” methods (e.g., Bradlow et al. 2004), so-called “hybrid 

conjoint” methods (e.g., Green and Srinivasan 1978) or more recently, hierarchical 

Bayes and latent class methods used to estimate, respectively, continuous or finite 

mixture distributions of preferences (e.g., DeSarbo et al. 1992; Moore et al. 1998; Park 

2004).  

 

More generally, all CA methods have the following in common:  

 

 CA research studies typically begin with what usually are ad hoc and researcher-

specific ways to identify attributes. Identification methods/approaches range 

from various types of direct questions asking people what attributes drive their 

preferences (e.g., Louviere 1988) to relatively sophisticated, quasi-theoretical 

methods like Kelly’s Repertory Grid (e.g., Timmermans et al. 1982). Thus, there 

is no accepted “standard” way to identify attributes; and to our knowledge, there 

is no consensus about how to identify attributes, other than possibly a consensus 

that one should identify attributes.  It is worth noting that this stylized fact also 

applies to DCEs. It is worth noting that this step frequently is done by using 

qualitative research involving in-depth interviews and/or focus groups with the 

target population. 

 Once attributes are identified, a researcher must assign them levels/values to 

express a range of actual or potential variation in the context being studied. Like 

attribute identification, there is little consensus about how to “do” this; hence, 

practice varies widely. After identifying attributes and levels, attribute levels are 

combined to describe alternative goods/offers. Attribute level combinations 

typically are generated by some type of experimental design, most often an 

orthogonal fractional array, although this need not be the case, as exemplified by 

work in Social Judgment Theory/Policy Capturing (e.g., Adelman et al. 1975). 

More generally, almost all published applications used low resolution designs 

with few attribute level combinations, the vast majority of which are so-called 

orthogonal main effects plans (OMEPs). OMEPs impose serious restrictions on 

one’s ability to understand decisions and valuation processes as they require 

researchers to assume that preference or utility functions are strictly additive 

(i.e., full preferential independence). Perhaps more seriously, one cannot test the 

validity of this assumption and use more appropriate model specifications if the 

assumption is wrong because higher order interaction effects are deliberately 

confounded with lower order main effects to reduce the number of attribute level 

combinations, and hence, the number of questions. This matters because 

estimates of consumer surplus or WTP can exhibit large differences between 

incorrect additive forms and correct non-additive specifications.  

 After designing an experiment, the next step is to design and implement a 

preference elicitation task based on the design. Again, there is little consensus 

about how to “do” this, resulting in wide variation in practice. For example, the 

literature reveals serious disagreements about how many attributes, attribute 

levels, attribute level combinations, etc., can and/or should be used in any 

particular task. There is much overlap in the traditional CA analysis and DCE 
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literatures, with most of the work done in DCE applications (e.g., Carson et al. 

1994; Louviere et al. 2008). 

 After designing a task, it has to be implemented, which involves sample 

selection and data collection. Again, there is little consensus on this, except 

perhaps that it is difficult to implement CA via telephone interviews. We return 

to sample selection issues later, but for now we note that many traditional CA 

studies potentially suffer from sample selection bias which may influence the 

interpretation of results.  

 After collecting data, the analyst must analyze them. Again, practice differs 

widely with researcher preferences, training and predispositions. Moreover, such 

practices seem to be changing with the advent of computerized design, 

administration and analysis methods for traditional CA. We observed little 

consensus about proper way(s) to analyze and/or model CA preference data for 

particular applications.  

 

The above leads to the conclusion that CA is what CA researchers do. CM theory 

originally was not a theory about the behavior of preferences or choices, but instead a 

theory about the behavior of sets of numbers in response to factorial manipulations of 

factor levels. However, if one can elicit numbers representing preferences from a 

person, and the numbers satisfy certain axiomatic and/or statistical conditions, CM 

theory tells us that one can represent the numbers “as if” the individual used a certain 

algebraic process to combine preferences for each level of each attribute into a 

preference for holistic combinations of attribute levels. For example, suppose one 

describes a health insurance policy by attributes like deductable amount, co-payment 

premium, which items/conditions are covered and to what extent, etc. CM theory can 

be applied if individuals have potentially different degrees of preference for each level 

of each of these attributes and if they combine the preferences for each attribute level 

into an overall preference for each insurance policy option. 

Thus, traditional CM theory provides a way to study how such preferences are 

formed and identify processes individuals use to form them, but one rarely ever sees 

CA methods used to examine and model preference process(es) per se. Moreover, 

mainstream CA evolved away from full ranking of profiles towards these directions 

(e.g., Green et al. 2001): (a) assigning ratings to individual profiles one at a time, (b) 

self-explicated rating of attributes and their importance and (c) various types of 

adaptive models involving ratings of pairs of alternatives, often on the basis of a 

partial set of the attributes.
3
 What is interesting about all of these “innovations” is that 

all depart from collecting data that were potentially consistent with neoclassical utility 

theory (ranking a full set of complete profiles). That is, they collect data in ways that 

cannot be analyzed to be consistent with neoclassical economic theory because ratings 

and attribute importance measures do not readily translate into choice or matching 

(e.g., direct expression of WTP) data, the primitives on which utility theory is based. 

There is a tendency in the academic and practitioner literatures in marketing, as 

well as in some other literatures, to call any and all preference elicitation procedures 

involving some variation of attributes and levels “conjoint analysis”. However, this 

makes the term “conjoint analysis” virtually meaningless because it does not denote or 

connote anything other than to imply any preference elicitation procedure that 

involves variation of attributes and levels. During the 1980s it became common to 

                                           
3
 The exception is what Green et al. (2001) refer to as choice based-conjoint analysis (DCEs in 

this paper). We discuss DCEs at length below. 
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suggest that DCEs were “just another form of conjoint analysis” by calling them 

“choice-based conjoint analyses”. However, this is potentially very misleading. The 

RUT basis of DCEs is very different from CM. Indeed, recognition of this distinction 

led health economists conducting DCEs to stop calling them conjoint analyses in the 

late 1990s; both main health economics journals (Health Economics and Journal of 

Health Economics) have now acknowledged this naming convention. The factorial 

experiment was borrowed from statistics and is standard fare; so it cannot be the core 

of what CA means. Most ways used to elicit preference information in contemporary 

CA are not unique to CA, and those that are unique tend to generate data that do not 

readily conform to standard neoclassical economic theory. Thus, we argue that in spite 

of common usage, it is a mistake to think of DCEs as a special case of CA. 

 

3 What is a DCE?  
 

In contrast to traditional CA that relies on CM, which is not a behavioral theory (of 

choice), DCEs are based on a long-standing, well-tested theory of choice behavior that 

can take inter-linked behaviors into account. The theory was proposed by Thurstone 

(1927), and is called random utility theory (RUT). Recent work in DCE theory and 

methods relies heavily on work by McFadden, who extended Thurstone’s original 

theory of paired comparisons (pairs of choice alternatives) to multiple comparisons 

(e.g., McFadden 1986; McFadden and Train 2000; McFadden 1974; Thurstone 1927).
4
  

Unlike CM, random utility theory provides an explanation of the choice behavior of 

humans, not numbers. 

Specifically, RUT proposes that there is a latent construct called “utility” existing 

in a person’s head that cannot be observed by researchers. That is, a person has a 

“utility” for each choice alternative, but these utilities cannot be “seen” by researchers, 

which is why they are termed “latent”. RUT assumes that the latent utilities can be 

summarized by two components, a systematic (explainable) component and a random 

(unexplainable) component. Systematic components comprise attributes explaining 

differences in choice alternatives and covariates explaining differences in individuals’ 

choices. Random components comprise all unidentified factors that impact choices. 

Psychologists further assume that individuals are imperfect measurement devices; so, 

random components also can include factors reflecting variability and differences in 

choices associated with individuals and not choice options per se. More formally, the 

basic axiom of RUT is: 

 

Uin = Vin + in,          (1)  

where Uin is the latent, unobservable utility that individual n associates with choice 

alternative i, Vin is the systematic, explainable component of utility that individual n 

associates with alternative i and in is the random component associated with 

individual n and option i.  

                                           
4
 It is useful to note that McFadden’s (1986) Marketing Science article, which focused on data 

collected by the then rapidly expanding number of surveys used to collect CA data, raised 

many of the issues that we do. In particular, McFadden noted the highly restrictive nature of 

the CM framework, the advantage of the RUT framework, the need to take account of the error 

structure, the importance of possible divergences between SP and RP contexts, ways to 

incorporate various types of self-explicated preference information on attributes into the latent 

component of RUT models instead of using it to directly indicate preferences, and difficulties 

in using the extra information in rating data in a theoretically consistent manner. 
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Because there is a random component, utilities (or “preferences”) are inherently 

stochastic as viewed by researchers. So, researchers can predict the probability that 

individual n will choose alternative i, but not the exact alternative that individual n 

will choose. RUT leads to families of probabilistic discrete choice models that 

describe how choice probabilities respond to changes in choice options (or 

equivalently, their attributes) and/or covariates representing differences in individual 

choosers. Thus, the probability that individual n chooses option i from a set of 

competing options is:  

 

P(i|Cn) = P[(Vin + in) > Max(Vjn + jn)], for all j options in choice set Cn.   (2)  

 

All terms were defined earlier, except for Max, the maximum operator. Equation 2 

says that the probability that individual n chooses option i from the choice set Cn 

equals the probability that the systematic and random components of option i for 

individual n are larger than the systematic and random components of all other options 

competing with option i.  

Different probabilistic discrete choice models can be derived from equation 2 by 

making different assumptions about probability distributions for in, such as assuming 

the random components are distributed as non-independent, non-identically distributed 

normal random variates (Thurstone also considered restricted cases like IID normal). 

In contrast, McFadden assumed the random components were IID Gumbel (Extreme 

Value Type 1). Unfortunately, Thurstone’s non-IID normal distribution assumption 

retarded development of RUT and delayed development of practical multiple choice 

models because the normal distribution lacks a closed form for more than two choice 

options. Indeed, until recently, good approximations for solving multiple integrals to 

compute choice probabilities were unavailable (e.g., McFadden and Train 2000; 

Yellott 1977). The Gumbel distribution closely resembles the normal but is slightly 

asymmetric; it has the advantage of yielding closed form expressions for the choice 

probabilities if random components are IID, namely the well-known multinomial logit 

(MNL) model (also known as a conditional logit model) still used in practical 

applications. If random components are not IID, Gumbel distributions also do not give 

closed-form expressions for the choice probabilities. The non-IID case has spawned 

relatively new ways to estimate choice models, such as simulated maximum likelihood 

or hierarchical Bayes. Thus, RUT accommodates different distributional assumptions 

that lead to different probabilistic discrete choice models. Specific distributions have 

particular properties, and currently much work is focused on statistical methods for 

distinguishing between competing specifications. 

 

4 Why RUT is a Comprehensive Behavioral Theory  
 

We now introduce an abstraction of the overall process by which individuals come to 

be aware that options exist and evolve into subsequent actions/states leading to a 

researcher observing their market behavior(s) (Figure 1). We can rely on RUT to give 

a comprehensive conceptualization of the entire system and/or any of its substates.
5
 

Relationships implied by Figure 1 comprise a series of conditional probability events 

that can be approximated in a variety of ways, such as a nested, sequential choice 

process that ultimately leads to a set of discrete choice options. It also should be 

                                           
5
 Of course, RUT has many well-known limitations. See Hensher et al. (2005) for a useful 

discussion. 
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obvious that individuals can choose more than one option at a time or over time. For 

example, a person can choose to buy several types of breakfast cereal at the same time 

or over different purchase occasions. The person can choose to consume (use) each in 

different quantities (volumes) and can choose to purchase them more or less often over 

time (different inter-choice or usage periods). The latter behaviors can be viewed as 

volumes or usage rates of options; in turn, they are conditional on prior choices. One 

can view Figure 1 as a series of inter-related choices that consumers can (and typically 

do) make; these inter-related choices can be modeled within a RUT framework.  

CA traditionally has been used to model only one level in the hierarchy in Figure 

1, and has not been used to model inter-related levels in a comprehensive hierarchy of 

choices. Moreover, without a comprehensive, overarching behavioral theory, it is 

unclear how one could use CA to develop sound theoretical models of the processes 

implied by Figure 1. In fact, it is worth noting that CA adherents in marketing and 

transport largely focus on the final-stage process of choosing choice alternatives 

denoted by the dashed line enclosing part of Figure 1 that is labeled “Traditional CA 

Territory”. Thus, traditional CA ignores prior processes and states either because there 

is little awareness that they exist or matter except descriptively (e.g., Howard and 

Sheth 1969) and/or there is no behavioral theory underlying CA to deal with them. 

The emphasis, if not the bias, in CA related research has been predicting outcomes 

instead of understanding decision processes. This emphasis is unfortunate because it is 

well known that one can predict well (at least in the short term like the “next quarter”) 

without basic theory or understanding of process (e.g., Anderson and Shanteau 1977; 

Dawes and Corrigan 1974; Louviere 1988). Many academics and practitioners appear 

to equate prediction success with understanding an underlying behavioral process, 

although they are clearly different; of course, each has its place.  

Many DCE applications resemble traditional CA simply because they use survey 

questions about combinations of attribute levels. The combinations of attribute levels 

typically are generated by an experimental design, and samples of people respond to 

them one-at-a-time. Respondents typically are asked to rate the alternatives on a scale 

or to rank them. Of course, when two alternatives are rank ordered this can be viewed 

as a binary choice; and it is well-known that rank order data can be expanded into 

several sets of implied discrete choices (e.g., Chapman and Staelin 1982). Further, one 

can avoid assuming cardinality of ratings data by simply using the greater than, equal 

to, or less than information implicit in ratings. Nonetheless, neither CA nor DCEs 

should be seen simply an elicitation format or way to combine SP questions with 

associated experimental designs. The key difference in traditional CA and DCEs lies 

in the critical role of error components. For CA, treatment of error components is an 

afterthought, whereas in DCEs, it is the starting point. 

Another difference in traditional CA and DCEs is a link to the economic concept 

of demand based on utility maximization under some type of constraint (e.g., budget 

or time). Here the link with DCEs is direct and easy to establish given its RUT 

foundation and its ability to link different stages of the decision making process. A 

DCE choice set always includes at least one feasible alternative.
6
 In contrast, 

traditional CA sometimes offers respondents an entire set of infeasible alternatives. 

For instance, it would be an acceptable CA task to ask people to rank order automobile 

                                           
6
 This often is a status quo or no purchase alternative; but, of course, some contexts may not 

have a status quo option equivalent to no purchase. For example, parents may be legally 

required to choose a particular school for their child, and a grocery store may offer the choice 

of paper, plastic, or a person’s own bag for groceries. 
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preferences for a Ferrari, a Hummer, and a Rolls Royce even if they could not afford 

to purchase any of them, which would be a meaningless DCE question. The opposite 

variant of this issue may be more important in practice. That is, CA (and some DCE) 

studies often screen out individuals who have not previously purchased a product that 

represents one alternative in the study. Although this (largely) avoids infeasibility 

problems, one then must deal with the issue that some increases in product sales from 

improving one or more attributes (including potentially lowering the cost) may come 

from people who do not currently buy the product. This poses no conceptual difficulty 

for the RUT framework as shown in Figure 1 below. 

 

5 On the External Validity of CA and DCEs  
 

The underlying behavioral theoretical foundation of DCEs is RUT, which allows one 

to deduce the relationship between discrete choice models estimated from DCEs and 

corresponding choices that would likely be made in a different context, such as offers 

made in an actual market. Perhaps the best way to see the difference between 

traditional CA and RUT is to note that a change in the magnitude of the variance of 

the error term under CA has no influence on preferences and choices because CA is  

 

Figure 1: Decision-making process of a respondent 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

unaware of product category or brand/option 
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interested in product category or brand/option 
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not concerned about error variances per se. This is not true under RUT, and an 

extreme case occurs when the error component variance becomes arbitrarily large 

relative to the systematic component. When this happens, the market shares of all 

alternatives become approximately equal. Likewise, as the error component variance 

becomes small relative to the systematic component, the chance of some alternatives 

being chosen becomes arbitrarily close to one or zero. 
Equation 1 allows for the distribution properties of random components to be as 

general as desired. However, there is an important identification restriction that must 

be imposed (e.g., Ben-Akiva and Morikawa 1990). Any particular vector of estimated 

choice model parameters (“betas”) is inversely proportional to the size of the variances 

of associated random components. The restriction does not matter in predicting choice 

probabilities, but one must set the “scale” of the utility vector to some constant for 

identification purposes when making inference about the latent scale. Indeed the focus 

on odds ratios in epidemiology and health services research may be responsible for 

misunderstanding of the importance of the variance scale confound in RUT-based 

tasks (McCabe et al. 2006) recently noted by Flynn et al. (2008). 

Model parameters and random component variances are inversely proportional 

for any probability distribution assumed for random components. So, if one defines a 

constant, say , to be a scalar multiple of the true vector of utility parameters, then in 

general  = k(1/), where k is a constant of proportionality, and  is the standard 

deviation of the random component (error distribution). Due to the inverse relationship 

between error variance and scale, we say that  “scales” the estimated vector of beta 

parameters; that is  

 

Vi =       + i.         (3) 

 

Vi is the systematic utility component,  is a scale parameter, k is a K (=1, 2,…, 

K) element vector of utility estimates (parameters); Xki (i=1, 2,…, I) is a K x I element 

array of attribute effects (a so-called “design matrix”) and i is the random component 

associated with the i-th choice option..  

The inverse relationship between scale and random component variance holds for 

all choice models; so, all parameters estimated from choice data consistent with RUT 

have this inherent identification issue.
7
 In DCEs, this scale confound suggests great 

caution in comparing model parameters for individuals, groups, conditions, contexts, 

etc. That is, small random component variances give rise to larger estimated model 

parameters and larger variances give rise to smaller estimates. Consequently, even if a 

preference generation process in two groups or contexts is the same, if the random 

component variances differ, the magnitudes of model parameter estimates will seem to 

differ. Thus, all comparisons of RUT-based choice models must take differences in 

random component variances into account or risk incorrect and misleading statistical 

conclusions (e.g., Fiebig et al. 2010; Swait and Louviere 1993).  

The parameter estimate-scale confound has profound implications for modeling 

many choices, and starkly differentiates DCEs from traditional CA. For example, Ben-

Akiva and Morikawa (1990) reasoned that if the underlying preference process was 

the same for stated preference (SP) and revealed preference (RP) data sources, the two 

vectors of estimated model parameters should be proportional. That is, rewrite 

                                           
7
 Differences in random component variances for different individuals (or groups) also 

manifest themselves in other ways in parameter and/or standard error estimates in traditional 

CA models, which does not seem widely recognized. 
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equation (3) for SP and an RP data sources, with I and J total choice options, 

respectively, as follows: 

 

SP: ViSP = SPkXkiSP + iSP,     (4a) 

RP: VjRP = RPkXkjRP + jRP.     (4b) 

 

If the two vectors of s are the same in each data source but the scales (s) differ, the 

SP betas will be proportional to the RP betas, and the constant of proportionality will 

be SP/RP. Ben-Akiva and Morikawa tested this expectation in two data sets related to 

preferences for interurban travel in the Netherlands and could not reject the hypothesis 

that the s were proportional. Since then, researchers in different disciplines have 

tested this proposition dozens of times, with the general result being that it often holds 

to a close first approximation (e.g., Louviere and Eagle 2006; Louviere et al. 2000; 

Louviere et al. 1999).  

Without an underlying behavioral theory one is unable to deduce the relationship 

between traditional CA parameters or model predictions and real market or RP 

behaviors. Thus, only RUT-based DCE preference elicitation methods have testable 

(and well-tested) theoretical links with real behavior(s). CA lacks a sound, theoretical 

relationship with real market choice behavior(s), which serves to reinforce the ad hoc, 

predominantly statistical and methodological nature of CA research and practice. It 

also explains why most so-called empirical “validity tests” in the CA literature merely 

represent cross-validation tests with hold-out samples. Naturally, such “tests” have 

nothing whatsoever to do with real “external” validity, and merely measure test-retest 

reliability and prediction shrinkage. Real external validity tests must compare trade-

offs made in SP elicitation tasks with trade-offs made in revealed choice data from 

real markets or in different SP environments. Of course, even worse are so-called “hit 

rate tests”, which are nothing more than percent correct predictions of first choices, a 

criterion with no known statistical properties. 

Error components in SP and RP environments often differ, and it is not surprising 

that “noise” levels in RP environments often can be quite large. That is, extraneous 

factors often compete for consumer attention, and it may well be in the interests of 

some firms to make straightforward comparisons more difficult. Indeed, in many cases 

random component variances should be smaller for SP than RP data because SP data 

are obtained under fairly well-controlled circumstances where individuals focus on 

fairly specific decision and choice tasks that encourage them to ignore omitted factors 

and/or assume that they are constant. When this is the case, one should expect (see 

equation 4) preference parameters estimated from SP data to be larger (in absolute 

magnitudes) than similar parameters estimated from RP data.
8
 These scale differences 

have implications for predicted market shares even if the deep preference parameters 

are equivalent in RP and SP data. This issue lies at the heart of why it is difficult to 

use and validate estimates from traditional CA studies. If one wants to make accurate 

predictions using SP data in an RP context where there are multiple choice options, 

one typically must rescale the SP estimates, yet CA has no mechanism to achieve this 

because it has no real error theory.  

Another problem for traditional CA methods is that they do not naturally yield 

willingness to pay (WTP), the Hicksian consumer surplus measure that economists 

and many other applied researchers like to work with. There are two reasons for this. 

                                           
8
 Clearly, this generalization need not always hold. For instance, if respondents in a particular 

DCE exercise devote little attention to the questions, SP parameter estimates can be noisier. 
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First, traditional CA does not start from the position of a well-defined status quo 

option. As already mentioned, an acceptable CA task would be to ask people to rank 

order preferences for a Ferrari, a Hummer, and a Rolls Royce even if they cannot 

afford to purchase them. Second, the scale factor has an influence on statistics related 

to WTP. For some statistics, like marginal WTP for a change in an attribute level, the 

scale factor drops out in some simple specifications where the ratio of the two 

parameters is the appropriate measure. This happy circumstance often is used in an ad 

hoc manner in CA studies even though it does not naturally follow from the statistical 

specification fit to the data. More generally, WTP measures depend on scale estimates, 

which is particularly true for studies that attempt to estimate total WTP for a good 

rather than a marginal change in a good. That is, a respondent’s certainty in their 

decision (as one, but not the only, characterization of variance scale) almost certainly 

will change when asked about larger changes than smaller ones. This raises the key 

question of to what market context does one “normalize” the WTP estimate? One 

school of thought is to normalize to the RP context, but the opposite argument also can 

be made. That is, particularly in a public policy context, the less noisy SP context is a 

better reflection of what well-informed consumers would do. 

 

6 On the Versatility of RUT-Based SP Methods  
 

Traditional CA methods depend on orthogonal or near orthogonal arrays of attribute 

level combinations as ways to sample profiles from full factorial arrays of attribute 

levels, but RUT-based SP methods do not have this limitation. There are many ways 

to elicit stated preferences that one can use to estimate discrete choice models that are 

consistent with RUT but inconsistent with CA. A few simple examples should suffice 

to make this point. First, consider a task in which respondents are shown a set of 

possible choices and then asked which ones, if any, they would prefer relative to the 

current status quo option (typically making no purchase). Under traditional CA, it 

would be unclear how to proceed with such data. However, RUT makes it clear that 

there is a considerable amount of preference information in this “pick-any” choice task 

on which to estimate a choice model due to several implied order comparisons. Every 

alternative chosen as preferred to the status quo effectively generates a separate choice 

set containing that alternative and the status quo; similarly, separate choice sets can be 

generated for each alternative that was not preferred to the status quo, where the status 

quo should be preferred. Next consider a case where one randomly assigns choice sets 

to people and none of the k offered alternatives in a choice set have attributes; each 

person is asked to choose their preferred alternative. Clearly a choice model can be 

estimated from the data in this task that specifies only alternative-specific constants. 

Further, one can ask respondents (in structured or free format styles) to indicate what 

attributes (and associated levels) they associate with each alternative, with which data 

can be used to estimate a choice model. Both examples yield SP data that bears little 

to no resemblance to traditional CA data, except insofar as there are stated responses 

and a “design matrix.” However, unlike traditional CA data, these sources of 

preference information can be used to estimate discrete choice models consistent with 

RUT.  

Another way to demonstrate the versatility of DCEs is to combine data from 

different DCE tasks or studies. Earlier, we noted that SP data from a DCE could be 

combined with RP data once the structure of both forms of data are clearly recognized 

(see equation 4). The same logic applies to combining data from DCEs with differing 

preference elicitation formats, ranges of alternatives offered to respondents, nature of 
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decision making contexts exemplified by the DCE, and samples used. The statistical 

framework for combining DCE data from different sources was provided by Hensher 

et al. (1999) and by Swait and Louviere (1993). The key insight is that if the vectors of 

model preference parameters are the same for all data sources but random component 

variances differ, vectors of estimated preference parameters should be proportional to 

one another. Several examples of this approach for the case of retail choices are in 

Severin et al. (2001). 

Finally, the large body of work in economics on RUT is applicable to DCEs. 

Thus, researchers using DCEs have immediate access to consistent models to deal 

with complex issues like sample selection and pooling discrete choices and continuous 

responses (e.g., Greene 2007). DCEs also are anchored in utility maximization, so one 

can compare the effects on observed responses of different types of information and/or 

strategic incentives (e.g., Carson and Groves 2007) used in DCEs. In contrast, 

traditional CA should be seen for what it really is, namely a purely descriptive way to 

fit a statistical model to a set of observed ranking or rating data with no ability to 

inform questions about how consumer behavior is likely to change in response to 

changes in the choice context. 

 

7 Conclusion  
 

The terms discrete choice experiment (DCE) and conjoint analysis (CA) should not be 

considered synonymous, nor should DCEs be viewed as a special case of CA.
9
  While 

both may use experimental designs from statistics and/or particular software packages 

may “suggest” similar methods, this is largely an illusion. Traditional CA is based on 

CM, while DCEs are based on RUT. RUT is a well-tested theory strongly associated 

with error components whose properties play key roles in parameter estimates and 

welfare measures derived from DCE data collection. In contrast, traditional CA is 

largely a curve fitting/scaling exercise where error components are largely ad hoc and 

lack clear interpretations. Moreover, by using DCEs to gain a better understanding of 

how people make choices, practitioners are likely to learn how to construct better 

empirical studies in marketing and other applied economic fields where choices play 

important roles. 
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