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Abstract

This paper describes and implements three computationally attractive
procedures for nonparametric estimation of mixing distributions in discrete
choice models. The procedures are specific types of the well known EM
(Expectation-Maximization) algorithm based on three different ways of ap-
proximating the mixing distribution nonparametrically: (1) a discrete dis-
tribution with mass points and frequencies treated as parameters, (2) a dis-
crete mixture of continuous distributions, with the moments and weight for
each distribution treated as parameters, and (3) a discrete distribution with
fixed mass points whose frequencies are treated as parameters. The meth-
ods are illustrated with a mixed logit model of households’ choices among
alternative-fueled vehicles.

Keywords: Mixed logit, probit, random coefficients, EM algorithm, non-
parametric estimation

1 Introduction

Unobserved preference heterogeneity is usually represented in discrete choice
models by treating preferences as random and estimating the parameters of their
distribution. The choice probability takes the form P (θ) =

∫
K(β)f(β | θ)dβ,

where the kernel K(β) is the choice probability conditional on preferences β, and
mixing distribution f(β | θ) is the distribution of preferences in the population,
which depends on parameters θ, such as the mean and covariance of the distribu-
tion. Mixed logit is a prominent example, where the kernel is the logit formula
for a single choice of the agent, or a product of logits for repeated choices by the
agent (Revelt and Train, 1998; Train, 1998). McFadden and Train (2000) have
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demonstrated that any random utility model can be approximated to any degree
of accuracy by a mixed logit with the appropriate specification of variables and,
importantly, mixing distribution. As they point out, this generality is also ex-
hibited by other models, such as mixed probit where the iid extreme value error
that generates the logit formula is replaced with an iid standard normal.

Unfortunately, McFadden and Train’s theorem is an existence proof only and
does not provide guidance for finding the mixing distribution that attains an ar-
bitrarily close approximation. In practice, researchers have tended to specify a
parametric distribution and estimate its parameters, with testing of alternative
distributions. However, whatever distribution is used, dissatisfaction with the
properties of the distribution soon surface. The normal distribution is proba-
bly the most widely used; however, its support on both sides of zero makes it
problematic for coefficients that are necessarily signed, such as price coefficients
and coefficients of desirable attributes that are at worst ignored by the agent.
Lognormals have been used in many applications because they avoid wrong signs
(e.g. Bhat, 1998, 2000; Revelt and Train, 1998). However lognormals have rel-
atively thick tails extending without bound, which implies that a share of the
population has implausibly large values for the relevant attributes. Triangular
distributions with the spread constrained to equal the mean have been used to
assure the correct sign while also avoiding unboundedly large values (e.g. Hen-
sher and Greeene, 2003; Hensher, 2006). However, this specification uses one
parameter for two purposes which can be overly restrictive.

Nonparametric methods have been developed that offer the possibility of not
being as constrained by distributional assumptions. In nonparametric estimation,
an approximating family of distributions is used, where the family has the prop-
erty that the accuracy of the approximation rises with the number of parameters.
By allowing the number of parameters to rise with sample size, nonparametric
estimators are consistent for any true distribution. In a sense, the term “non-
parametric” is a misnomer: “super-parametric” would more appropriate, since
the number of parameters is larger than in most parametric specifications and,
by definition, rises with sample size.

Fosgerau and Hess (2007) and Bajari et al. (2007) have proposed nonpara-
metric estimators for mixing distributions in discrete choice models. Fosgerau
and Hess (2007) utilize two methods: (1) an extension of a continuous base dis-
tribution with a series expansion, where the number of terms in the expansion
rises with sample size, and (2) a discrete mixture of normals, with the number of
normals rising with sample size. Bajari et al. (2007) utilize a discrete distribu-
tion with fixed mass points (i.e. grid points) and estimated frequencies at each
point, where the number of points rises with sample size. Both sets of authors
illustrate their methods with Monte Carlo data on models with one (Fosgerau
and Hess, 2007) or two (Bajari et al., 2007) random coefficients. Fosgenau and
Hess also apply their methods to real-world data on route choice, using four ran-
dom coefficients. To our knowledge, there have been no other applications on
real-world data of nonparametric estimation of mixing distributions in discrete
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choice models.
The primary difficulty with nonparametric methods is computational rather

than conceptual. The flexibility of nonparametric methods arises from their use
of an increasing number of parameters, and yet standard maximum likelihood
estimation becomes more difficult numerically as the number of parameters rises.
The numerical difficulty is attributable in part to the nature of gradient-based
optimization. With more parameters, the calculation of the gradient requires
more time; inversion of the hessian becomes more difficult numerically, with the
possibility of empirical singularity at some iteration; and the optimization rou-
tine can become “stuck” in areas of the likelihood function that are not well
approximated by a quadratic.

The Expectation-Maximization (EM) algorithm is a procedure for maximizing
a likelihood function when direct maximization is difficult (e.g. Dempster et al.,
1977). It involves repeated maximization of a function (namely, an expectation)
that is related to the likelihood function but is far easier to maximize. It has
been applied extensively in various fields; see, e.g. McLachlan and Krishnan
(1997) for a review of applications and Bhat (1997) for an application in discrete
choice. The attractiveness of an EM algorithm in general depends on how well
a given model can be re-characterized in a computationally convenient manner.
In this paper we describe EM algorithms that are computationally attractive for
nonparametric estimation of mixing distributions in discrete choice models. Three
nonparametric estimation methods are described that are particularly amenable
to an EM algorithm. They differ in how the mixing distribution is approximated.
The approximation, and the implementation in the context of a mixed logit, can
be summarized as follows:

1. A discrete distribution whose parameters are obtained by repeated estima-
tion of standard (non-mixed) logit models on weighted observations. This
approximation constitutes a latent class model with numerous classes to
represent the true underlying distribution. The EM algorithm is similar
to that applied by Bhat (1997) for his latent class model with up to four
classes. We extend his analysis by showing that the procedure can be used
with a large number of classes as a form of nonparametrics.

2. A discrete mixture of normals whose means and covariances are estimated
by repeatedly taking draws from each normal, weighting them in a partic-
ular way, and calculating the mean and covariance of the weighted draws.

3. A discrete distribution with fixed points (such as a grid on the parameter
space), where the share at each point is estimated by calculating the logit
formula at each point and then repeatedly calculating weights and the share
of weights at each point. For a given number of points, this third specifica-
tion is a restriction on the first, with the locations of the points being fixed
instead of estimated. However, the restriction speeds estimation sufficiently
that far more points can be used in this third approach than the first.
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To illustrate the methods, we apply them to data on consumers’ choice among
alternative-fueled vehicles in stated-preference (SP) experiments.

Section 2 describes the EM algorithm in general. Section 3 provides the
setup for a mixed logit model. Sections 4-6 present EM algorithms for three
nonparametric methods of estimating the mixing distribution. Section 7 applies
the algorithms to SP data on vehicle choice, discussing issues that arise in imple-
mentation.

2 EM Algorithm

The EM algorithm was developed as a procedure for dealing with missing data
(Dempster et al., 1977). For continuous missing data z, discrete observed sample
outcomes (dependent variables) y, and parameters θ, the log-likelihood function
is LL = log

∫
P (y | z, θ)f(z | θ)dz, where P (·) is the probability of the outcomes

conditional on z, and f(·) is the density of the missing data which in general
depends on parameters to be estimated. This LL can be maximized by standard
gradient-based methods. It can alternatively be maximized through a recursion
defined as follows, with i denoting the iteration. Starting with initial values of
the parameters, labeled θ i for i = 0, the parameter values are updated repeatedly
by the formula:

θ i+1 = argmaxθ

∫
h(z | y, θ i)log[P (y | z, θ)f(z | θ)]dz (1)

where h(z | y, θ i) is the density of the missing data conditional on y and the
previous value of θ. Note that θ i enters the weights h while the maximization to
find θ i+1 is over the θ in the joint probability P (y | z, θ)f(z | θ). This is the key
distinction in an EM algorithm: that the weights are calculated using the prior
value of the parameters and then are fixed in the maximization for the new value.
Under conditions given by Boyles (1983) and Wu (1983), this recursion converges
to a local maximum of LL. As with standard gradient-based maximization, it
is advisable to check for whether the local maximum is global, e.g. by using
different starting values.

Label the term being maximized in each iteration as E(θ | θ i) such that the
recursion is more succinctly described as θ i+1 = argmaxθ E(θ | θ i). In many
situations, repeated maximization of E is easier computationally than gradient-
based maximization of LL. The recursion is called an EM algorithm because
it consists of an expectation (namely, E) that is maximized. In particular, the
term being maximized is the expectation of the log of the joint likelihood of
the observed and missing data, where this expectation is over the distribution
of the missing data conditional on the observed data and the previous value of
the parameters. When the missing data are discrete, or a combination of discrete
and continuous, the expectation is defined the same but its calculation is adapted
appropriately.
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Standard errors can be calculated using asymptotic formulas or bootstrap-
ping. Ruud (1991) shows that the gradient of the argument in Equation 1 can be
used to calculate the asymptotic covariance of the estimates, the same as for stan-
dard maximum likelihood estimation. However, when the number of parameters
is very large, as often occurs with nonparametric (aka super-parametric) esti-
mation, this procedure can be computationally burdensome or even infeasible.1

Alternatively, standard errors can be obtained by bootstrapping. Bootstrapping
is particularly useful when the statistics of interest are not the parameters them-
selves but functions of them, as is often the case with nonparametrics. We use
Ruud’s procedure for our second algorithm, since it has a manageable number
of parameters that are directly interpretable. We use bootstrapping for the first
and third procedures.

Convergence of the EM algorithm is usually defined as a sufficiently small
change in the parameters (e.g. Levine and Casella, 2001) or in the log-likelihood
function (e.g. Weeks and Lange, 1989; Aitkin and Aitkin, 1996). These criteria
need to be used with care, since the EM algorithm can move slowly near conver-
gence. Ruud (1991) shows that the gradient that is used to calculate standard
errors can also be used to provide a convergence statistic. However, calculating
this statistic can be more computationally intensive than the iteration of the EM
algorithm itself, and in some cases can be infeasible. The issue of convergence of
EM algorithms, particularly for nonparametric estimation, is an important area
for future research.

3 Mixed Logit Model

Because of its wide-spread use, we describe nonparametric procedures in terms
of the mixed logit model with repeated choices by each agent (e.g. Revelt and
Train, 1998). However, other kernels can be used instead, and the generalization
is obvious. The utility that agent n obtains from alternative j in choice situation
t is Unjt = βnxnjt + εnjt where εnjt is iid extreme value and each βn ∼ f(β | θ)
where θ represents the parameters of the distribution of β in the population, such
as its mean and covariance. The agent chooses the alternative in each choice
situation that maximizes its utility. Let ynt denote the alternative that agent n
chooses in situation t, and let yn = 〈yn1, . . . , ynT 〉 collect the agent’s sequence of

1Ruud points out that the derivative of each observation’s contribution to E(θ | θ i) is equal to
the observation’s score (ie, the derivative of the observation’s contribution to the log-likelihood
function) when evaluated at θ i. This equality implies that the standard BHHH procedure for
estimating the covariance matrix for maximum likelihood estimation (namely, to estimate the
information matrix as the variance of the scores and then estimate the covariance matrix as
the inverse of this information matrix divided by sample size) can be performed using these
derivatives as the scores. Of course, if the BHHH covariance could be calculated easily, then
BHHH estimation of the log-likelihood could be performed directly, obviating the need for an
EM algorithm.
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choices. Conditional on β, the probability of yn is

Kn(β) =
∏
t

Lnt(β) (2)

where L is the logit formula:

Lnt(β) =
eβxnyntt∑
j e

βxnjt
(3)

For continuous mixing distributions, the choice probability is

Pn(θ) =
∫
Kn(β)f(β | θ)dβ (4)

for density f with parameters θ. The density f is the unconditional density of
β, i.e. its density in the population. Given the agent’s sequence of choices yn,
the density of β conditional on these choices is derived by Bayes’ theorem as
hn(β | θ) = Kn(β)f(β | θ)/Pn(θ). This conditional density is the density of β
among the subpopulation of agents who, when facing the same choice situations
as agent n, would make the same choices as that agent.

For discrete mixing distribution with support at βc, c = 1 . . . , C, the choice
probability is

Pn(θ) =
∑
c

scKn(βc) (5)

where sc = f(βc | θ) is the share of the population that has coefficients βc. Con-
ditional on the agent’s choices, the probability that the agent has coefficients βc is
hnc(θ) = scKn(βc)/Pn(θ). A mixed logit model with discrete mixing distribution
is often called a latent class model.2 Some authors consider the term “mixed
logit” to require a continuous distribution, such that latent class models are not
a type of mixed logit. However, the distinction is arbitrary, and we follow the
definition in McFadden and Train (2000) that includes any mixing distribution.
This more inclusive view is particularly useful for nonparametrics, since a contin-
uous distribution can be estimated nonparametrically by a discrete distribution
with numerous support points.

4 Discrete Mixing Distribution with Points and Shares
as Parameters

Any distribution can be approximated arbitrarily closely by a discrete distribution
with a sufficient number of support points. For a given number of points C called

2Examples of latent class models with logit kernels are Swait (1994), Bhat (1997), Swait
and Adamowicz (2001), Boxall and Adamowicz (2002), Greene and Hensher (2002), Provencher
et al. (2002), Shonkwiler and Shaw (2003), and Shen et al. (2006). In most latent class models,
the class shares are specified to depend on demographics, unlike the fixed shares that we assume
here and in the nonparameteric methods to follow.
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classes, let the coefficients, βc, and the share of agents with those coefficients, sc,
for c = 1, . . . , C, be the parameters of the model. That is, θ = 〈βc, sc, c =
1, . . . , C〉. As stated in the previous section, the choice probability is Pn(θ) =∑

c scKn(βc) and the conditional probability of agent n being in class c is hnc(θ) =
scKn(βc)/Pn(θ).

Latent class models have been estimated by gradient-based maximum likeli-
hood methods in numerous contexts (see citations in footnote 2.) However, the
number of classes is generally small in these applications, often only two or three.
This limitation is due in part to the difficulty of estimating these models with
larger numbers of classes. An EM algorithm can help in this regard. For the
discrete mixing distribution, the missing data for the EM algorithm are the class
membership of each agent. The EM recursion becomes

θ i+1 = argmaxθ
∑
n

∑
c

hnc(θ i)log scKn(βc). (6)

Since log scKn(βc) = log sc + logKn(βc), the maximization can be performed
separately for each set of parameters:

s i+1 = argmaxs

∑
n

∑
c

hnc(θ i)log sc (7)

where s = 〈s1, . . . , sC〉 is the shares for all classes (which must be considered
together since they are constrained to sum to one), and

β i+1
c = argmaxβc

∑
n

hnc(θ i)logKn(βc)

= argmaxβc
∑
n

∑
t

hnc(θ i)logLnt(βc) (8)

for each c. The maximization in Equation 7 is attained at

s i+1
c =

∑
n hnc(θ

i)∑
c′

∑
n hnc′(θ i)

(9)

for each c. That is, the updated share for class c is simply class c’s weights as a
share of the total weights. The term being maximized in Equation 8 is the log-
likelihood function for a standard logit model with each choice situation of each
agent treated as an observation, weighted by hnc(θ i). A separate logit model is
estimated for each class, using the same observations but different weights for
each class.

The steps for estimation of the latent class mixed logit by the EM algorithm
are:

1. Select initial values β 0
c and s 0

c , ∀c. In our applications, we started with equal
shares for each class. Starting values for the coefficients were obtained by
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partitioning the sample into C subsamples and estimating a separate logit
on each subsample.3

2. Calculate the weights as

h 0
nc ≡ hnc(θ 0) =

s 0
cKn(β 0

c )∑
c′ s

0
c′Kn(β 0

c′)
. (10)

Note that the denominator is Pn(θ 0).

3. Update the shares as

s 1
c =

∑
n h

0
nc∑

c′
∑

n h
0
nc′
. (11)

4. Run C standard logits on the data for all choice situations, using weights
h 0
nc in the c-th run. Note that these weights are the same for all choice

situations by a given agent. The estimates for run c are the updated values
β 1
c .

5. Repeat steps 2-4 to convergence, using the updated parameter values in
lieu of the initial values.

This procedure can be implemented in high-level statistical software packages,
such as stata, that have standard logit estimation routines. An advantage of this
approach is that researchers can estimate a nonparametric mixed logit using only
standard statistical packages. In our application with nearly 10,000 choice situ-
ations and seven variables, a model with 20 classes and 159 parameters required
less than 30 minutes to run using stata. Of course, run times would be much
shorter if the researcher codes the algorithm in matlab or gauss or, even more-so,
Fortran or C.

Standard errors can be calculated by Ruud’s procedure, discussed in Section
2 above, using the gradients in Equation 7 and Equation 8. Such calculation is
difficult when using high-level packages, since these packages do not output the
gradients that are utilized internally. Alternatively, the standard errors can be
calculated by bootstrap. If the model contains a large number of classes, then
summary statistics can be more relevant than each sc and βc. Bootstrapping
allows the standard errors for these summary statistics to be calculated straight-
forwardly. By contrast, if standard errors are calculated for the parameters using
asymptotic formulas, the application of derivative formulas is required to obtain
standard errors for the summary statistics. Stata contains a bootstrap command.

3Note that these subsamples do not represent a partitioning of the sample into classes. The
classes are latent and so such partitioning is not possible. Rather, the goal is to obtain C sets of
starting values for the coefficients of the C classes. These starting values must not be the same
for all classes since, if they were the same, the algorithm would perform the same calculations
for each class and return for all classes the same shares and up-dated estimates in each iteration.
An easy way to obtain C different sets of starting values is to divide the sample into C groups
and estimate a logit on each group.
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5 Discrete Mixture of Continous Distributions

Any continuous distribution can be approximated by a discrete mixture of normal
distributions. This approximation is used by Fosgerau and Hess (2007) for one of
their nonparametric mixed logits. With C normals, the parameters are the share
sc, mean bc, and covariance Vc of each normal. To provide greater structure in the
approximating distribution, the utility coefficients can be specified as transfor-
mations of underlying latent normal terms, as Train and Sonnier (2005) utilized
in Bayesians estimation with normals. For example, exponentiating the normal
terms gives log-normally distributed coefficients. However, since the general-
ization is obvious and yet notationally cumbersome, we maintain in the current
description that the coefficients are normally distributed without transformation.

The choice probability is

Pn(θ) =
∑
c

sc

∫
Kn(β)φ(β | bc, Vc)dβ. (12)

where φ(β | bc, Vc) is the normal density with mean bc and variance Vc. This
probability is simulated by taking R draws from each normal distribution for
each agent, labeled βncr for draw r from normal c for agent n, and averaging over
the draws and classes:

P̃n(θ) =
∑
c

sc
∑
r

Kn(βncr)/R (13)

The missing data for the EM algorithm are the class membership and value of β
for each agent. Conditional on the agent’s choices, the probability-density of β
and class c is

hnc(β | θ) = scφ(β | bc, Vc)Kn(β)/Pn(θ). (14)

The expectation in the EM algorithm is

E(θ | θ i) =
∑
n

∑
c

∫
hnc(β | θ i)log [sc φ(β | bc, Vc)Kn(β)]dβ. (15)

Substituting Equation 14 and rearranging gives

E(θ | θ i) =
∑
n

∑
c

∫
[scKn(β)/Pn(θ i)]log [sc φ(β | bc, Vc)Kn(β)]φ(β | bc, Vc)dβ.

(16)

The integrals over densities φ(·) are approximated by simulation using the same
draws as for P̃ above. The simulated expectation is:

Ẽ(θ | θ i) =
∑
n

∑
c

∑
r

h incr log [sc φ(βncr | bc, Vc)Kn(βncr)]/R (17)
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where the weights are defined by h inrc = scK(βnrc)/P̃n(θ i). Note that Kn(βncr)
does not depend on the parameters: a change in the parameters changes the
density of βncr, which is captured in φ(βncr | bc, Vc), but does not change the
evaluation of Kn(βncr) for any particular value of βncr. Kn(βncr) therefore drops
out of the log (but not the weights) for maximization of Ẽ with respect to the
parameters. The recursion becomes

s i+1 = argmaxs

∑
n

∑
c

∑
r

h incr log sc (18)

and

〈bc, Vc〉 i+1 = argmaxbc,Vc

∑
n

∑
r

h incr log φ(βncr | bc, Vc) (19)

for each c. The maximization in Equation 18 is satisfied by

s i+1
c =

∑
n

∑
r h

i
ncr∑

c′
∑

n

∑
r h

i
nc′r

(20)

which is just the share of weights in class c. Recursion 19 is the maximum
likelihood estimator for a sample of weighted draws from a normal distribution.
The ML estimator of the mean and covariance of a normal distribution based on
weighted draws from that distribution is, of course, the mean and covariance of
the weighted draws. The mean and covariance of the c-th normal distribution is
updated simply by taking the mean and covariance of the N ·R draws βncr with
weights h incr ∀n, r. No logit estimation is required for this algorithm, only the
calculation of logit probabilities for the weights.

The steps are as follows:

1. Select initial values s 0
c , b

0
c , V

0
c , c = 1, . . . , C. In our application with two

normals, we started with equal shares, a vector of zeros and ones, respec-
tively, for the means, and covariances with large diagonal elements and zero
off-diagonal elements.

2. Take R draws from each normal for each agent, using mean b 0
c and covari-

ance V 0
c for the c-th normal. Label the r-th draw for agent n from normal

c as β 0
ncr.

3. Calculate the weight for each draw from each normal for each agent as
h 0
ncr = scK(β 0

nrc)/P̃n(θ 0).

4. Update the shares as

s 1
c =

∑
n

∑
r h

0
ncr∑

c′
∑

n

∑
r h

0
nc′r

. (21)
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5. Update the mean and covariances as

b 1
c =

∑
n

∑
r h

0
ncrβ

0
ncr∑

n

∑
r h

0
ncr

(22)

and

V 1
c =

∑
n

∑
r h

0
ncr[(β

0
ncr − b 1

c )(β 0
ncr − b 1

c )′]∑
n

∑
r h

0
ncr

. (23)

6. Repeat steps 2-5 until convergence, using the updated values in each itera-
tion.

Standard errors are readily calculated using the gradients for 18 and 19, as de-
scribed by Ruud (1991). Train (2007) adapts Ruud’s formulas for application to
a normal mixing distribution.

As mentioned above, the procedure can be readily generalized to allow the
coefficients that enter utility to be transformations of β, such that the distribu-
tion of coefficients is, e.g. a discrete mixture of lognormal or truncated normal
distributions. Utility is expressed as Unjt = T (βn)xnjt + εnjt for transformation
T (·) that depends only on the value of βn, which is itself distributed as a discrete
mixture of normals with mean bc and covariance Vc in class c. The logit formula
in Equation 3 is adapted appropriately as:

Lnt(β) =
eT (β)xnyntt∑
j e

T (β)xnjt
(24)

All other formulas remain the same. In the iterative process, the transforma-
tion affects only the weights h inrc ∀n, r, c since these weights depend on the logit
formula. However, given the weights, the recursion still calculates the weighted
mean and covariance of the draws of (untransformed) β from each normal to
update bc and Vc ∀c.

6 Discrete Distribution with Fixed Points and Shares
Treated as Parameters

The procedure in Section 4 requires repeated estimation of standard logits. The
procedure in Section 5 does not require logit estimation, but requires repeated
calculation of the logit formula. The procedure in this section requires neither.
The logit probabilities are calculated once for the fixed points, and then all it-
erations use these calculated values. As a result, a very large number of fixed
points (e.g, hundreds of thousands) can be specified while still maintaining rela-
tively fast estimation. The drawback of this procedure, which we explain more in
discussion of the applications, is that we have found summary statistics, such as
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mean coefficients, to be highly sensitive to the specification of the range of fixed
points.

Let the mixing distribution be approximated by a discrete distribution with
share sc at point βc for c = 1, . . . , C, as in Section 4. However, we now consider
βc∀c to be specified by the researcher instead of estimated. The parameters of the
model are the shares sc, ∀c. Bajari et al. (2007) utilize this specification for their
nonparametric estimation of a mixed logit. The fixed points can be specified as
a full grid over the parameter space, a sparse grid, a Halton or other sequence
of points, or drawn randomly from a generating distribution. To maintain the
same nomenclature as in Section 4, each point is called a class, with C classes in
total. The choice probabilities and conditional probabilities of class membership
are the same as in Section 4. The EM recursion is also the same, except that
now the parameters θ = s do not include the βc’s:

s i+1 = argmaxs

∑
n

∑
c

hnc(s i)log scKn(βc). (25)

However, since the βc’s are fixed rather than parameters, Kn(βc) drops out. The
recursion becomes simply

s i+1 = argmaxs

∑
n

∑
c

hnc(s i)log sc, (26)

which is satisfied by

s i+1
c =

∑
n hnc(s

i)∑
c′

∑
n hnc′(s i)

. (27)

The algorithm is implemented by the following steps:

1. Select the fixed points βc,∀c.

2. Calculate the logit kernel, Kn(βc), for each agent at each point.

3. Specify initial shares s 0
c , ∀c. In applications, we have used equal shares as

starting values.

4. Calculate weights for each agent at each point:

h 0
nc =

s 0
cKn(βc)∑

c′ s
0
c′Kn(βc′)

. (28)

5. Update the share at each point as:

s 1
c =

∑
n h

0
nc∑

c′
∑

n h
0
nc′
. (29)

6. Repeat steps 4 and 5 until convergence, using the updated shares.

As with the method in Section 4, standard errors for the parameters and summary
statistics are most readily obtained by bootstrap.
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7 Application

We apply the methods to data on consumers’ choice among alternative-fueled
vehicles in stated-preference experiments. The data were developed in a project
for the National Renewable Energy Laboratory and are described in detail by
Baumgartner et al. (2007). The sample consists of people who live in the 10-
county area of Southern California, are at least 18 years old, and had purchased
a new vehicle in the last three years. Each respondent was presented with 10
choice experiments. In each experiment, the respondent was offered a choice
among three alternatives: the conventional-fuel vehicle (CV) that the respondent
had recently purchased and two alternative-fueled vehicles (AV’s) with specified
attributes. The attributes represent relevant features of hydrogen vehicles, but
the respondents were not told that the alternative fuel was hydrogen so as to
avoid any preconceptions that respondents might have developed with respect to
hydrogen vehicles. The attributes included in the experiments are:

• Fuel cost (FC), expressed as percent difference from the CV. In estimation,
the attribute is scaled as a share, such that fuel costs of 50 percent less than
the conventional vehicle enters as -0.5, and 50 percent more enters as 0.5.

• Purchase price (PP), expressed as percent difference from the CV, scaled
analogously to fuel cost when entering the model.

• Driving radius (DR): the farthest distance from home that one is able to
travel and then return, starting on a full tank of fuel. As defined, driving
radius is one-half of the vehicle’s range. In the estimated models, DR is
scaled in hundreds of miles.

• Convenient medium distance destinations (CMDD): the percent of destina-
tions within the driving radius that “require no advanced planning because
you can refuel along the way or at your destination” as opposed to des-
tinations that “require refueling (or at least estimating whether you have
enough fuel) before you leave to be sure you can make the round-trip.”
This attribute reflects the distribution of potential destinations and refu-
eling stations within the driving radius, recognizing that the tank will not
always be full when starting. In the estimated models, it is entered as a
share, such that, e.g. 50 percent enters as 0.50.

• Possible long distance destinations (PLDD): the percent of destinations
beyond the driving radius that are possible to reach because refueling is
possible, as opposed to destinations that cannot be reached due to limited
station coverage. This attribute reflects the extent of refueling stations out-
side the driving radius and their proximity to potential driving destinations.
It enters the models scaled analogously to CMDD.

• Extra time to local stations (ETLS): additional one-way travel time beyond
the time typically required to find a conventional fuel station required to
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get to an alternative fuel station in the local area. ETLS was defined
as having values of 0, 3 and 10 minutes in the experiments; however, in
preliminary analysis, it was found that respondents considered 3 minutes
to be no inconvenience (i.e. equivalent to 0 minutes). In the estimated
models therefore, we enter a dummy variable for ETLS being 10 or not,
rather than ETLS itself.

In the experiments, the CV that the respondent had purchased was described as
having a driving radius of 200 miles, CMDD and PLDD equal to 100 percent, and,
by definition, ETLS, FC and PP of 0. For the AV’s, several levels were specified
for each attribute4 and 480 distinct experiments (i.e. combination of levels) were
generated based on the efficient choice designs of Zwerina et al. (2005). The 480
experiments were combined randomly into 48 sets with 10 experiments in each.
Each respondent was randomly assigned to one of the 48 sets.

In each experiment, the respondent was asked to identify the best and worst
of the three alternatives, thereby providing a ranking of the three. In estimation,
the ranking probabilities were specified in the standard way, using the “exploded
logit” formula conditional on the coefficients (Luce and Suppes 1965, as discussed
in Train 2003, Section 7.3.1). That is, the probability of the ranking is the logit
probability of the first choice from the three alternatives in the experiment, times
the logit probability for the second choice from the two remaining alternatives.
With random coefficients, this kernel probability is mixed over the distribution
of coefficients. The specification is equivalent to the mixed logit model described
in Section 4 above, with the repeated choices being the first and second choice of
the respondent in each of the ten choice situations (for T = 20 total choices per
respondent, if the respondent answered all of them.) A total of 510 respondents
completed the survey, of which 508 answered at least some of the choice experi-
ments. These 508 respondents are used in our estimation, generating a total of
9,844 choices including first and second choices.

Table 1 presents the results of a standard logit model estimated on these
data. All coefficients take the expected signs and are highly significant. The
estimates indicate that respondents consider a percent increase in purchase price
to be equivalent to about a two percent increase in fuel cost. An increase in the
percent of long distance locations that can be reached is estimated to be more
valuable than an increase in the percent of medium distant locations that can be
reached without needing to think about refueling. The last variable is a dummy
identifying the CV that the respondent purchased. Its negative coefficient indi-
cates that respondents would prefer an AV over a CV if the AV had the same
price, fuel cost, 200 mile radius, 100 percent of medium distance locations acces-
sible without needing to thinking about refueling, 100 percent of long distance
destinations accessible, and equivalent time to a local refueling station. This
preference can reflect respondents’ value of the reduced emissions of the AV’s,

4As follows: FC: -0.5, 0, 0.5. PP: -0.15, 0. 0.15. DR: 200, 150, 100. CMDD: 1, 0.9, 0.5, 0.
PLDD: 1, 0.9, 0.5, 0. ETLS: 0, 3, 10.
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Table 1: Standard Logit Model of Vehicle Choice

Estimated Standard
Variable Coefficient Error
Fuel Cost -1.066 0.0439
Purchase price -2.327 0.143
Driving radius 0.382 0.0426
CMDD 0.517 0.0467
PLDD 0.997 0.0459
ETLS=10 dummy -0.227 0.0370
CV dummy -0.351 0.0433
Log Likelihood -7884.63

Table 2: Mixed Logit Model of Vehicle Choice: coefficients are independently
normally distributed

Estimated Standard Estimated Standard
Variable Mean Error Std dev Error
Fuel Cost -1.8342 0.0846 1.3033 0.0972
Purchase price -4.2476 0.2900 5.0382 0.3166
Driving radius 0.6608 0.0621 0.5230 0.0912
CMDD 0.9029 0.0667 0.4202 0.0989
PLDD 1.7631 0.0920 1.5510 0.1009
ETLS=10 dummy -0.3623 0.0528 0.4232 0.1007
CV dummy -0.5635 0.1155 2.7038 0.1098
Log Likelihood -6317.89

which were described to respondents as part of the general description of the
choice experiments (and held constant over the experiments.) Alternatively, the
estimated coefficient could reflect a tendency for respondents to choose the AV’s
because they thought they were supposed to.

Table 2 gives the results of a mixed logit with independent, normally dis-
tributed coefficients, using 100 standard Halton draws for simulation. The es-
timated means have the same signs and similar relative magnitudes as in the
standard logit. The standard deviations are large relative to the means and
highly significant, indicating considerable differences in preferences over respon-
dents. Of course, the normal distribution implies that a portion of respondents
dislike desirable attributes and like undesirable attributes.

Alternative models were estimated (not shown) that allowed the normally
distributed coefficients to be correlated. The estimated correlations were found
to be significant, with reasonable patterns. For example, the coefficients for fuel
cost and purchase price are positively correlated, as are the coefficients of CMPP
and PLDD. However, the shares with wrong signs was higher than in the models
without correlation. Models were also estimated with lognormal coefficients and
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Table 3: Latent Class Models with Different Numbers of Classes

Classes Log-Likelihood Parmeters AIC BIC
1 -7884.6 7 15783.2 15812.8
5 -6411.5 39 12901.0 13066.0
6 -6335.3 47 12764.6 12963.4
7 -6294.4 55 12698.8 12931.5
8 -6253.9 63 12633.8 12900.3
9 -6230.4 71 12602.8 12903.2
10 -6211.4 79 12580.8 12915.0
15 -6124.5 119 12487.0 12990.4
20 -6045.1 159 12408.2 13080.8
25 -5990.7 199 12379.4 13221.3
30 -5953.4 239 12384.8 13395.9

truncated normal distributions for the signed coefficients (i.e. for all the coef-
ficients except that on the CV dummy which could logically take either sign.)
These specifications fit considerably worse than the model with a normal distri-
bution.

We applied each of the three nonparametric methods described above. We
discuss each in turn.

7.1 Discrete Distribution with estimated shares and coefficients

For the latent class model in Section 4, the researcher specifies the number of
classes C and estimates the share sc and coefficients βc for each class. We coded
the EM algorithm into stata, which has a logit estimation procedure (clogit).
In each iteration, a logit model is estimated for each of the C classes using the
same observations but different weights for each class. We utilized 50 iterations
in each run. Fewer iterations would have probably been sufficient, since the log-
likelihood function rose less than one-twentieth of one percent during the last
ten iterations combined for all the models that we estimated with this method.
However, as mentioned in Section 2, it is advisable to be cautious in assessing
convergence since EM algorithms can move slowly near convergence. Run time
is proportional to the number of classes, requiring about 1.5 minutes per class
(for all 50 iterations) on our standard-issue PC. For example, the model with 10
classes took about 15 minutes to run. As stated in Section 4, run times would be
lower if the procedure were coded into lower-level languages than stata.

The selection of C can be based on information criteria, such as the AIC
or BIC,5 and on examination of the reasonableness of the results with different
numbers of classes. Table 3 gives the log-likelihood value, AIC, and BIC for the

5The Akaike Information Criterion (AIC) is −2LL + 2K where LL is the value of the log-
likelihood and K is the number of parameters. The Bayesian, also called Schwartz, criterion
(BIC) is −2LL+ log(N)K where N is sample size, in our case 508.
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Table 4: Latent Class Model with Eight Classes

Class: 1 2 3 4
Shares: 0.107 0.179 0.115 0.0699
Coefficients:
Fuel cost -3.546 -2.576 -1.893 -1.665
Purchase price -2.389 -5.318 -12.13 0.480
Driving radius 0.718 0.952 0.199 0.472
CMDD 0.662 1.156 0.327 1.332
PLPP 0.952 2.869 0.910 3.136
ETLS=10 dummy -1.469 -0.206 -0.113 -0.278
CV dummy -1.136 -0.553 -0.693 -2.961
Class: 5 6 7 8
Shares: 0.117 0.077 0.083 0.252
Coefficients:
Fuel cost -1.547 -0.560 -0.309 -0.889
Purchase price -2.741 -1.237 -1.397 -2.385
Driving radius 0.878 0.853 0.637 0.369
CMDD 0.514 3.400 -0.022 0.611
PLPP 0.409 3.473 0.104 1.244
ETLS=10 dummy 0.086 -0.379 -0.298 -0.265
CV dummy -3.916 -2.181 -0.007 2.656

model using various numbers of classes. The AIC is lowest (best) with 25 classes
and the BIC, which penalizes extra parameters more heavily than the AIC, is
lowest with 8 classes.

Table 4 gives the estimated model with 8 classes. The estimates for the model
with 25 classes, which is best by the AIC, are not given for the sake of brevity.
The largest of the 8 classes is the last one with 25 percent. Interestingly, this
class has a large, positive coefficient for CV, unlike all the other classes. This
class consists of people who prefer their CV over AV’s even when the AV has
the same attributes – perhaps because of the uncertainty associated with new
technologies. Other distinguishing features of classes are evident. For example,
class 3 cares far more about purchase price than the other classes, while class 1
places more importance on fuel cost than the other classes.

Figure 1 and Figure 2 give the histogram for each of the seven coefficients
for the models with 8 and 25 classes. There are fewer bars than classes in these
histograms because the histograms place the values in bins, and more than one
class can fall into a bin. The distributions are fairly similar, with the 25-class
distribution being less “peaked” than that from the 8-class model, as expected.

Standard errors were calculated by bootstrap, using 20 bootstrap samples. As
expected, the standard errors for sc and βc ∀c are fairly large, while the standard
errors for relevant summary statistics, such as means, are relatively small. Table
5 gives estimates and standard errors for class 1’s share and coefficients, which
is exemplary of all classes, and for the mean and standard deviations of the

56



K.E. Train, Journal of Choice Modelling 1(1), pp. 40-69

Figure 1: Distribution of coefficients in models with 8 and 25 classes (part I)

coefficients over all classes, based on the model with 8 classes. As the table shows,
the standard errors for the class 1 parameters are large. It is not clear, however,
what exactly is meant by a standard error for class “1”, since the class labeling
is arbitrary. Suppose, as an extreme but illustrative example, that two different
bootstrap samples give the same estimates for two classes but with their order
changed (i.e. the estimates for class 1 becoming the estimates for class 2, and
vice versa). In this case, the bootstrapped standard errors for the parameters for
both classes rise even though the model for these two classes together is exactly
the same. Summary statistics of course avoid this issue. All but one of the means
are statistically significant, with the CV dummy obtaining the only insignificant
mean. All of the standard deviations are significantly different from zero.

The means and standard deviations are somewhat smaller in magnitude than
those obtained with normal mixing distribution (Table 2). However, this differ-
ence disappears for the the model with 25 classes, which gives means and standard
devaitions that are somewhat larger than the model with 8 classes and similar to
the model with normal mixing distribution. The similarity indicates, as we find
below for the other procedures as well, that the nonparametric methods provide
greater flexibility in the shape of the distribution while maintaining about the
same means and standard deviations.
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Figure 2: Distribution of coefficients in models with 8 and 25 classes (part II)

Table 5: Standard Errrors for Latent Class Model

Class 1 Means Std devs
Est. SE Est. SE Est. SE

Share: 0.107 0.0566
Coefficients:
Fuel cost -3.546 2.473 -1.648 0.141 0.966 0.200
Purchase price -2.389 6.974 -3.698 0.487 3.388 0.568
Driving radius 0.718 0.404 0.617 0.078 0.270 0.092
CMDD 0.662 1.713 0.882 0.140 0.811 0.126
PLPP 0.952 1.701 1.575 0.240 1.098 0.178
ETLS=10 dummy -1.469 0.956 -0.338 0.102 0.411 0.089
CV dummy -1.136 3.294 -0.463 1.181 2.142 0.216

With unconstrained latent class estimation, estimated coefficients can take
the wrong sign due, if nothing else, to sampling variance. In the model with 8
classes, three of the 56 coefficients have the wrong sign. Each of these three is
relatively small in magnitude and is not significantly different from zero. With
more classes, the number of wrong signs increases, as one would expect. With 25
classes, 22 of the 175 coefficients had the wrong sign. There are two ways that
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Table 6: Mixed Logit Model with Mixture of Two Normals

Class 1
share: 0.4962 std err: 0.1440
Variable Mean Std Err Variance Std Err
Fuel Cost -1.969 0.119 0.678 0.140
Purchase price -2.396 0.474 12.523 2.814
Driving radius 0.933 0.051 0.149 0.036
CMDD 1.532 0.163 1.650 0.377
PLDD 2.946 0.226 3.562 0.739
ETLS=10 dummy -0.204 0.052 0.090 0.027
CV dummy -1.720 0.239 5.572 0.874

Class 2
Variable Mean Std Err Variance Std Err
Fuel Cost -2.029 2.814 3.704 0.256
Purchase price -6.241 2.898 33.840 0.174
Driving radius 0.631 0.140 0.153 0.051
CMDD 0.347 1.039 0.297 0.369
PLDD 0.860 0.666 0.597 0.849
ETLS=10 dummy -0.479 1.141 0.295 0.065
CV dummy 0.717 0.874 5.900 1.501
Log Likelihood -6230.9

incorrect signs could be avoided. First, the model could be reestimated with the
variables with wrong signs for a given class removed for that class. Alternatively,
the logit estimation in each iteration for each class could incorporate inequality
constraints on the signed coefficients. Such constraints cannot be specified within
the clogit proc in stata; however, they are feasible in matlab or gauss using their
constrained optimization routines. This issue is a potentially fruitful area for
further analysis.

7.2 Discrete Mixture of Continuous Distributions

We estimated a model using the method in Section 5, with a discrete mixture
of two multivariate normal distributions. The results are given in Table 6, using
for simulation 100 standard Halton draws for each normal for each respondent.
Standard errors are calculated by the method in Train (2007) which is easier
than bootstrapping for this type of model. Recall that each iteration consists
of taking draws from the two normals using the previous values of their mean
and covariance, calculating weights for each draw, and calculating the mean and
covariance of the weighted draws, which then become the new values. We coded
the procedure in matlab since the iterations consist only of arithmetic, for which
stata is particularly slow. In matlab, estimation of the model with two normals
and 71 parameters (7 means, 7 variances, and 21 off-diagonal covariances for each
normal, plus one share, with the other share being 1 minus the first) took only 2
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minutes and 42 seconds, including the calculation of the standard errors.
The two classes are essentially the same size. We used equal shares for starting

values; however, the share for class 1 dropped to 37 percent during iteration before
rising back to its estimated value of 49.6 percent. Class 2 has a positive coefficient
for the CV dummy, while class 1 has a negative coefficient. This result mirrors
the finding in Section 7.1 that a share of the population prefer a CV over an AV
even when the AV has the same attributes as the CV. Class 2 has much larger
(in magnitude) coefficients than class 1 for purchase price and the dummy for
10 minutes extra to drive to a refueling station. Class 2 can be characterized
as people who are very unlikely to buy an AV (at least in the early stages of
AV introduction), because of their positive CV dummy as well as the fact that
AV’s will initially cost more than CV’s and will require longer drives to refueling
stations, both of which attributes these people have strong preferences against.
In contrast, class 1 consists of people who prefer AV’s, all else equal, place far
less weight on purchase price and time spent driving to a refueling station, and
place far greater positive value on driving radius, CMDD, and PMDD.

The off-diagonal covariance terms are not given in Table 6 for the sake of
brevity. For class 1, the largest correlations are between:

• driving radius and CMDD. The correlation is -0.80, indicating that people
in this class who place a greater-than-average importance on driving radius
tend to place a less-than-average importance on the share of destinations
within that radius that can be reached without thinking about refueling.

• fuel cost and purchase price, 0.65, indicating that people who care greatly
about one of these costs also tend to care greatly about the other.

• the dummies for CV and 10 minutes extra time to a refueling station,
−0.60, indicating that people who tend to like AV’s more than average (i.e.
have a more negative coefficient for the CV dummy) also tend to place less
importance on extra refueling time (i.e, have a less negative coefficient for
the extra time dummy.)

For class two, the largest correlations are between:

• extra driving time and fuel cost, 0.72, indicating that respondents in this
class who have greater-than-average dislike for driving time 10 extra min-
utes to a refueling station also tend to have a greater-than-average dislike
of higher fuel costs.

• extra driving time and driving radius, -0.68, indicating that respondents
who dislike the extra driving time more than average also tend to place a
greater-than-average importance on driving radius.

• extra driving time and CMDD, 0.54, indicating that respondents who have
a greater-than average dislike for extra driving time also tend to put a
smaller-than-average value on CMDD.

60



K.E. Train, Journal of Choice Modelling 1(1), pp. 40-69

• driving radius and fuel cost, -0.54, indicating that people with greater-
than-average value of a wider driving radius also tend to have greater-than-
average concern about fuel cost.

The estimates for each class can be used to calculate the oveall means and
standard deviations for the population. The means are very similar to those
in Table 2 for a model with one normal distribution. The standard deviations
are also similar, except for CDDD which obtains a considerably larger standard
deviation in the model with two normals than one.

We estimated models with the utility coefficients being transformations of β,
such that the distribution of coefficients is a discrete mixture of lognormal, and
truncated normal, distributions. These models obtained a lower LL than that in
Table 6 but had the advantage, of course, of correctly signed utility coefficients
for the entire population. The relative fit is case-specific. In the application by
Train and Sonnier (2005), for example, lognormals and truncated normals gave
a considerably higher LL than normals. Such transformations are, therefore,
worth examining when approximating the mixing distribution nonparametrically
through a discrete mixture of normals.

7.3 Discrete Distribution with Fixed Coefficients

This third nonparametric procedure is the easiest conceptually and computation-
ally. As with the previous procedure, we coded it into matlab since it requires
only arithmetic. The key element of this procedure, which we discuss in more
detail below, is the specification of the fixed points. We determined the maxi-
mum and minimum for each coefficient, using the estimation results from Section
7.1 above combined with sign constraints. (That is, we set the maximum of the
price coefficient at 0, even though the latent class models in 7.1 contained some
classes with positive price coefficients.) One advantage of this approach is that
sign constraints are easy to implement, simply by maintaining the constraints in
the specification of the fixed points. We then estimated models with two alter-
native ways of defining the points between the minimum and maximum for each
coefficient: (1) complete grids, and (2) Halton sequences. The complete grids
were created from equally spaced points in each dimension between the mini-
mum and maximum for that dimension (with the endpoints included as points.)6

We specified two complete grids and estimated the model on each. For one of
the complete grids, we used 5 values for each of the 7 coefficients, for a total of
57 = 78, 125 values of β in the complete grid. For another grid, we used 6 values
for 6 of the coefficients and 5 for the remaining coefficient (the CV coefficient),
for 233,280 points in total. Estimation was fast with both of these grids: taking

6We included zero as a possible value for each signed coefficients because in SP experiments,
each respondent might ignore one or more attributes, which is equivalent to giving them utility
coefficients of zero. As the results given below indicate, each of the signed coefficients is estimated
to have a non-neglible share at zero, indicating that some respondents are estimated to have
ignored each attribute.
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Table 7: Mixed Logit with Fixed Points

Halton Grid 1 Grid 2
Points: 10,000 78,125 233,280
Coefficients:
Fuel cost mean -1.869 -1.943 -1.938

stdev 1.304 1.478 1.462
Purchase price mean -4.639 -4.753 -4.762

stdev 4.586 5.163 5.125
Driving radius mean 0.591 0.638 0.634

stdev 0.306 0.438 0.434
CMDD mean 1.121 1.113 1.119

stdev 1.103 1.263 1.254
PLPP mean 1.852 1.919 1.919

stdev 1.449 1.588 1.572
ETLS=10 dummy mean -0.486 -0.476 -0.481

stdev 0.442 0.575 0.575
CV dummy mean -0.595 -0.614 -0.610

stdev 2.341 2.486 2.484
LL -6089.1 -6021.8 -6019.1

11 minutes for the grid of 78,125 points and 31 minutes for the grid with 233,280
points. We did not attempt any finer grids because of memory constraints, which
we could have, but did not, code around.7 A Halton sequence of 10,000 points
was created in the standard way (Halton 1960, as described by Bhat 2001 and
Train 2003, Section 9.3.3), using the seven primes between 2 and 17, inclusive, for
the 7 dimensions.8 Run time with 10,000 Halton points as commensurately faster
that the complete grids with more points, clocking in at 2 minutes, 9 seconds.

Table 7 gives summary statistics for the models estimated on the three dif-
ferent set of points, using the same maximum and minimum values for each set.
The means and standard deviations are very similar across the three models. The
complete grids provide considerably better fit than the Halton sequence, which
might be expected since the complete grids have many more points. The complete
grid with 233,280 points obtains only a very slightly better fit than the complete
grid with 78,125 points. The means and standard deviations are also fairly sim-
ilar to those obtained for the model with a normal mixing distribution (Table
2). The one main difference is a larger standard deviation for the CMDD coef-

7The capacity of matlab’s memory map was reached with 233,280 points, which translated
into about 120 million double-precision numbers since the logit kernel is calculated and held for
each agent at each point. More points can be used in estimation by writing these values to a
file and reading them into memory in blocks at each iteration.

8In maximum simulated likelihood, usually a much smaller number of Halton points are used
for each observation, since simulation noise cancels out when averaging over observations. For
the current use, the same Halton points are used for each person, and the points are intended to
“cover” the parameter space. An potentially interesting extension is to examine the implications
of using a different set of points for each person within the nonparametric EM algorithm.
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Figure 3: Distribution of coefficients in models with discrete distributions (part
I)

ficient, which was also found for the model with two normals, discussed above.
Again, this similarity implies that the procedure provides greater flexibility in
the shape of the distribution while obtaining similar over-all means and standard
deviations.

Figure 3 and Figure 4 give the frequency distribution for each coefficient
based on the finer grid. Figure 5 and Figure 6 show the joint distribution for
selected pairs of coefficients, namely, fuel cost and driving radius, and CMDD
and PLDD. An advantage of the full grid is that is it very easy to obtain any
specific marginal and/or conditional distribution implied by the joint distribution
over the grid points. For example, Figure 7 shows the distribution of the fuel cost
coefficient conditional on the CV coefficient being positive (i.e. prefer an CV to a
comparable AV) and the price coefficients being less than -4.8 (indicating more-
than-average concern about price), and marginal over all the other coefficients.

Given the wealth of information that is obtained with this procedure, and the
speed of its estimation, this form of nonparametric estimation seems particularly
attractive. There is, however, an important issue that requires attention. In
particular, we found that the summary statistics changed considerably when the
range of the parameter space was changed. Table 8 illustrates the issue, giving
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Figure 4: Distribution of coefficients in models with discrete distributions (part
II)

the estimated means and standard deviations of the coefficients under alternative
ranges for the coefficients (but the same number of points within the range.) The
first column is the model already presented in Table 7, using the ranges that
we originally specified. The second column gives results for a model with the
maxima and minima doubled. Note that for all the signed coefficients (i.e. all
except the coefficient of the CV dummy), this change increased the range in one
direction only. In all cases, the estimated means and standard deviations rose
in magnitude (though less than double.) This result would perhaps not be a
problem if ratios remained stable. However, column 3 gives results for a model in
which the range of the fuel cost coefficient is doubled and the other coefficients
retain their original ranges. The mean of the fuel cost coefficient rises, while the
others do not (or not nearly as much.)9

There are several ways that this issue could be addressed. One procedure is
to select the range that provides the highest LL. By this criterion, our original

9A referee suggested that these discrepancies might have arisen because the range was origi-
nally set by the maxima and minima from the latent class models in Section 7.1, which contained
relatively few classes and consequently might have under-represented the true spread of the co-
efficients. This explanation is consistent with our finding, stated in the next paragraph, that
increasing the range raised the log-likelihood.
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Figure 5: Joint distribution of coefficients of fuel cost and driving radius

Table 8: Mixed Logit with Fixed Points using different ranges for the points

Original Double FC Coef
double

Coefficients:
Fuel cost mean -1.869 -2.558 -2.053

stdev 1.304 2.182 1.721
Purchase price mean -4.639 -6.545 -4.788

stdev 4.586 6.846 4.592
Driving radius mean 0.591 0.967 0.596

stdev 0.306 0.594 0.305
CMDD mean 1.121 1.604 1.138

stdev 1.103 1.707 1.116
PLPP mean 1.852 2.492 1.880

stdev 1.449 2.296 1.458
ETLS=10 dummy mean -0.486 -0.751 -0.527

stdev 0.442 0.748 0.434
CV dummy mean -0.595 -1.033 -0.609

stdev 2.341 3.544 2.364
LL -6089.1 -6085.1 -6088.5
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Figure 6: Joint distribution of coefficients of CMDD and PLDD

ranges would be doubled for all coefficients, since the LL is slightly higher with
the wider ranges. A second procedure is to specify ranges in the way we originally
did, namely, by first estimating a latent class model and then using the ranges
implied by the estimated classes in a model with fixed points. A third procedure
is for the researcher to place a prior distribution on the parameter values, and
incorporate this prior in estimation. Of course, choosing a range is equivalent
to placing a prior that is constant within the range and zero outside the range.
Specifying a prior involves the same decisions and possible arbitrariness, though
stated differently and with greater generality, as specifying the range. In any case,
this form of nonparametrics based on fixed points seems sufficiently promising to
warrant further research on the appropriate specification of the points.
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Figure 7: Distribution of coefficients of ETLS=10 dummy and driving radius
conditional on cv coefficient > 0 and price coefficient < −4.8
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