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Technology and Empirical Dynamics of Specialization
in Open Economies

Abstract

This paper applies Markov chain analysis to examine the empirical dynamics of
sectoral specialization in open economies. At issue is here persistence and the
hypothesis of hysteresis in national patterns of industrial specialization, often claimed
as an implication of strong path dependence in the evolution of high-technologies
specific to certain industries. The evidence from twelve OECD member countries' time
series of value added in 17 manufacturing industries and from corresponding patent
count data does not support the hypothesis of hysteresis based on nationally restricted
knowledge spillovers from industrial research and development activities. On the
contrary, there seems to be generally lower persistence in patterns of technological
specialization than in the corresponding production specialization. Moreover, high
persistence in some parts of manufacturing mostly disappears when taking into
account changes in countries' relative factor endowments, which form the basis of
dynamic comparative advantages. These findings cast doubt on the popular belief that
a government can — by making cleverly designed and appropriately timed industrial
policy interventions — secure a permanently larger share of certain industries for the
national economy which are supposed to lock in first mover advantages in terms of
particularly high rates of technological innovation and productivity growth.
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1 Introduction

When economists talk about specialization they usually invoke the theorem of

comparative advantage, which has been known at least since David Ricardo. This

theorem roughly states that any economic actor — a person, a firm or a country —

who is trading his products with others specializes his production in those goods or

services in which he has a relative, not necessarily an absolute, cost advantage over his

trading partners. One possible reason for international differences in absolute and

relative sectoral production costs aTe the different production technologies that

different countries use, as was assumed by Ricardo. Neoclassical economics, by

contrast, has usually assumed that production technologies were ubiquitous across

countries. Comparative advantages which countries have in certain sectors weTe then

entirely due to factor endowments, and under the assumption of constant returns to

scale technologies these comparative advantages alone determined the patterns of

specialization and international trade. Implicitly, R&D is seen as a current input

needed only to apply ubiquitous technical knowledge in actual production.

Another strand of thought has argued that countries follow idiosyncratic paths of
technological development, and that present sectoral patterns of technological
specialization do not necessarily reflect present factor endowments, but rather
historical leads and lags in certain technologies. These leads and lags are, in turn,
thought to have a more powerful influence on specialization in actual production than
traditional notions of factor endowment. This view suggests that temporary historical
events, like temporary price shocks or industrial and technology policies, can have a
lasting effect on a country's pattern of sectoral specialization, and growth rate. In this
sense, specialization in technology as well as in production may be independent of
factor endowments. 1 Rather than being determinants of specialization the endogenous
part of factor endowments, physical and human capital, might change as a result of
investment induced by opportunities specific to the particular sectoral strengths and
weaknesses an economy has inherited.

1 This kind of independence is distinct from the sort of indeterminacy of specialization which arises
in multi-dimensional neoclassical trade models with more goods than factors and factor price
equalization. In these models without externalities it remains true that countries, on average, tend to
export goods which make relatively intensive use of relatively abundant factors and that in response to
exogenous factor supply changes some industries' output must change in certain directions (cf. Ethier,
1984). But idiosyncratic paths of technological development may imply that there are only weak or no
responses of output — especially in high technology industries — to changes in factor supplies and
that countries do not even on average export goods whose production makes relatively intensive use
of relatively abundant factors.



Factor endowments and hysteresis are here considered as competing hypotheses on the

determination of technological specialization in open economies.^ Which of these

better explains the dynamics of sectoral patterns of specialization in the real world is

an important question for company management as well as for economic policy. It is

important for management because it has implications for the choice of R&D strategy

including the extent, scope and geographical range of external technology sourcing in

highly competitive world markets: Should companies allocate their R&D labs close to

established international centres of R&D in their field, betting on beneficial knowledge

spillovers in the future, or should they always choose the location that minimizes

current costs?

The question endowments versus hysteresis is important for economic policy, because
it bears on the choice of industrial and technology policy a country should adopt. If
factor endowments in the traditional sense were found to be the sole determinant of
sectoral patterns of technological specialization, then industrial and technology
policies targeted at selected industries in order to change the sectoral mix of a
country's pattern of technological leads and lags, could be ruled out to have any
lasting, let alone permanent effect. Lasting effects could only be expected from
changes in factor endowments, such as educational investment in human capital. If,
however, current technological leads and lags were found to be determined by past
patterns of technological specialization, then it might pay for a country to use targeted
industrial and technology policies to actively influence and shape its future pattern of
technological specialization, provided certain technologies promise more growth and
higher incomes for those internationally immobile factors, which are used more
intensively in the production of the corresponding sector. A country might be well
advised to pursue not merely the deepening of technological specialization along
established trajectories^, but also to actively promote the shifting of resources towards

2 Somewhat related to these competing hypotheses is the controversy of technology push versus
demand pull in industrial innovation dynamics, which has remained an important theme in the
literature on innovation since Schmookler's (1966) seminal work. If innovation was driven by demand
pull only, then idiosyncratic paths of technological development would be unlikely in today's
advanced open economies — given the ever more closely-knit web of international trade flows and
the overall similarity of final demand in different industrial countries around the world. Technology
push, on the other hand, would be consistent with hysteresis whenever the formulation of research
programmes and their particular results depend on context factors and the prior knowledge and skills
of the scientist or engineer as well as on his serendipity.

3 The term "technological trajectories" was coined by Dosi (1982). He sees continuous technological
innovation as progressing along trajectories defined by a technological paradigm akin to "scientific
paradigms", while associating discontinuities in technological innovation with the emergence of a new
paradigm. He rejects the ideas of the market being the prime determinant of the direction of

... continued



selected newly emerging technological trajectories, provided the government can
identify those of the emerging technologies which hold the greatest promise for future
development and productivity growth.

Section 2 of this paper reviews some of the recent theoretical discussion on

technological change, trade and growth, focusing on the decisive assumptions that

yield the competing hypotheses on the (ultimate) determinants of technological and

production specialization in open economies. Section 3 uses non-parametric methods

to examine the empirical dynamics of specialization, as documented in data on value

added in 17 manufacturing industries and corresponding patent count data for twelve

OECD member countries. Section 4 attempts to assess empirically the influence of

changes in relative factor endowments on the dynamics of specialization. Section 5

suggests directions for further research and concludes.

2 Economic theory on technological change, trade and
growth in open economies

The case for factor endowments as the determinants of sectoral patterns of

technological and industrial specialization has recently been formalized as a theory of

dynamic comparative advantage in international trade. Neo-classical trade theory,

based on the seminal work of Heckscher (1919) and Ohlin (1933), is usually exposed

as a static theory of resource allocation in open economies that assumes a constant set

of goods and ubiquitous production technologies and, thus, does at first sight not have

anything meaningful to say about R&D or technological specialization. However, if

R&D is interpreted as a current non-tradable input needed to apply ubiquitous

technical knowledge in production, a country's sectoral pattern of R&D expenditures

— or some other measure of technological specialization — should simply reflect the

sectoral composition of its production of tradables due to this country's pattern of

comparative advantage vis-a-vis its trading partners. To the extent that R&D output

was itself tradable, the allocation of R&D should — at least on average — reflect the

relative intensity of factor use in R&D and the country's factor endowment, in other

words, the comparative advantage for sectoral R&D just as for any other economic

activity (cf. Casson, 1991).

discontinuous technological change. Similar views are held by Rosenberg (1976) and other economic
historians.



Heckscher-Ohlin theory remained an essentially static theory for a long time, although
a number of authors, notably Bardhan (1970) and Findlay (1973), dealt with the
changes in trade equilibria due to exogenous productivity growth in the spirit of
Solovian growth theory (Solow, 1957). But these did not address the fundamental
question how trade, in turn, affects rates of productivity growth in the long run. To do
so would have required to do away with one of traditional trade theory's basic
assumptions, that the set of goods was given. Recent theoretical work has overcome
this shortcoming and has been able to formulate a new theory of dynamic comparative
advantage (cf. Grossman/Helpman, 1991). This theory, based on models of
endogenous technical change introduced by Romer (1990) and Aghioii and Howitt
(1992), interprets product and process innovations as the result of purposeful R&D
investments made by private, profit-seeking enterprises. Sustained growth of per-
capita productivity is feasible whenever the private incentives to accumulate technical
knowledge are strong enough and do not weaken over time. The models meet this
condition by postulating that the creation of knowledge through private R&D yields
positive external effects: part of the new knowledge adds to the public stock of
technical knowledge and is accessible to all firms doing R&D themselves. Without
these positive externalities, which have the effect of reducing every firm's costs of
future R&D, the pioneers of a new technology would be in a position to establish a
permanent monopoly that could be defended virtually without further R&D effort.

In this body of theory R&D has — at last — a meaningful role to play, in fact it is
seen as the driving force behind long run growth of total factor productivity. Using this
theory to understand trade, growth and technological specialization in open economies,
it is necessary to make some assumptions about the cross border mobility of R&D
output. One important assumption concerns the privately appropriable part of R&D
output. This may be either internationally tradable, like most other private inputs in
production, or may be largely excluded from international trade, since it is often
complementary to specific knowledge and skills available only in the firm or country
that has done the R&D. The assumption of international mobility of R&D output is
supported by the observation of widespread, and increasing (cf. Vickery, 1986), trade
in patents and licences. On the other hand, the assumption of limited international
mobility of R&D output is supported by the fact that the recipient of international
technology transfers often cannot use the acquired R&D output straight away, but
rather has to invest in complementary knowledge and skills and to literally re-search
the acquired knowledge to understand its tacit components. Hence, it does not seem so
surprising that a large and apparently increasing share of international technology
transfers takes place within multinational companies, which are generally in a better



position to move not just pure technical knowledge but also complementary human
capital resources across borders.

Romer (1990) emphasizes that knowledge has the economic properties of non-rivalry

in use and only partial excludability, which distinguish it from most tradable goods.

Another important distinction, however, may be in terms of marketability: while

tangible assets, which cease to be useful to their owner, can usually be resold at

market prices, it is hardly feasible to resell externally acquired knowledge oneself has

failed to understand and make use of. 4 While non-rivalry and partial excludability may

be powerful forces in support of rapid diffusion of new knowledge, imperfect

marketability may work against it. People, firms and countries lacking the necessary

complementary skills will not only be unable to benefit from knowledge spillovers, but

may even face a much worse cost-benefit ratio in the commercial knowledge trade.

. To what extent the privately appropriable part of R&D output, itself an input in other
production, is internationally tradable has interesting implications for resource
allocation and patterns of specialization within the theory of dynamic comparative
advantage (cf. Grossman/Helpman, 1991, pp. 197). By extending the international
division of labour, trade in new technical knowledge^ can lead to a more efficient use
of resources in knowledge creation and so raise the rate of innovation and growth in
the world economy. The crucial assumption, however, which distinguishes the theory
of dynamic comparative advantage from the hysteretic theory of technological

. accumulation, is that the speed, strength and scope, with which the positive external

effects of knowledge creation through R&D spill over to other firms, are not reduced
by international borders, nor by geographical or cultural distance between industry
locations.

Some implications of national external effects for the dynamics of specialization can

be illustrated in their simplest form within a stylized model of a small open Ricardian

economy, which has two sectors, a comparative advantage due to higher labour

productivity in one of them, but increasing returns to scale in the form of a positive

externality in the other sector, and whose reallocation of labour between sectors can be

characterized as a stochastic recontracting process (cf. Arthur, 1988).

4 This is why junior students, before buying a used textbook from a senior student, usually enquire
how well this senior student did in his exam on the subject If the senior student failed, and if
alternatives to his textbook are available, he will have difficulty selling, unless he can persuade
potential buyers that his failure on the exam was not the textbook's fault, but his own.
5 Either through trade in patents and licences or through technology transfers within multinational
companies.



Suppose two new technologies are being introduced, replacing an older technology

used in the small open economy, which has been completely specialized in that one

old technology as is typical for Ricardian economies with only one factor of

production, say, labour. Subsequently the one industry of that economy separates into

two, with each branch specializing in the production of only one of the two new

differentiated products, which are assumed to sell both at the same constant price in

world markets. Each entrepreneur makes an initial random choice for one of the two

technologies. But workers frequently change jobs and decide anew with which

technology to work. On average they are indifferent between the two technologies, so

that in each event of a job change both technologies are chosen with probability Vi.

The result of workers' never-ending recontracting is that the share of workers in each

of the two technologies moves up and down in the form of a Markov random walk^

with reflecting barriers. Three different cases illustrate how comparative advantages

and increasing returns to scale in the form of positive external effects may shape the

dynamics of the stochastic process:

(i) First, labour productivity is exogenous and the same in both constant returns to
scale technologies. The probability of having a certain number n of workers involved
with technology A at time t + 1, which stands here for event time rather than historical
time, is defined as:

P(n, t +1) = P(n, t) (l - PAB (n) - pBA («))

+P(n-l,t)pB/i(n-l)+P(n+U)pJU>(n+l) (1)

l,t)+0.5P(n-l,t).

The evolution of this probability is described by the Master equation of motion:

^ = P(n + U)pAB(n + l)P(n,t)pAB(n)
at (2)

+P(n-l,t)pBA(n-\)-P(n,t)pBA(n).

Approximating the state variable n to a continuous variable would lead to the one-

dimensional Fokker-Planck diffusion equation. Both of these equations have the

property of finally developing into a long-run stationary probability distribution,

irrespective of the initial allocation of workers across industries (cf. Weidlich and

*> A Markov random walk is a well-known type of a stochastic process in discrete (event or historical)
time in which the probabilities of transition of the state variable (here the share of workers in
technology A) from any present state to any other state are not only independent of the past (which
defines a general Markov process) but also independent of the present state. When the Markov
random walk takes place over a discrete state space it is a kind of Markov chain.



Haag, 1983, p. 9 ) J In the case considered here, the Markov random walk with
reflecting barriers will result in equal stationary probability of all possible allocations
of workers, whatever the initial choices of entrepreneurs.

(ii) If workers were more productive in technology B, giving the country a

comparative advantage in that industry, and if sector B's firms therefore paid higher

wages, the stationary probability distribution of the share of workers in technology A

would be highly skewed towards a low long-run share of workers in technology A.

This is because workers would now be more likely to switch jobs from A to B than the

reverse. The p^ and pBA in the Master equation would have to be changed

correspondingly.

(iii) For hysteresis to arise, assume that technology A has increasing returns to scale in

the form of positive external effects. Since firms are unable to internalize the

externality, they remain in perfect competition with each other and pay wages equal to

average productivity in their industry. Average productivity and wages in industry A

are now an increasing function of industry size, so that the probability of choosing a

job there positively depends on the number of workers already involved with

technology A — clearly a case of positive feedback. Perhaps the simplest

parameterization would be pBA=n2/N2and pAB = l-n2/N2, where n is the number of

workers already in technology A and N the total number of workers in the economy.

The probability distribution of this Markov process would converge to a bimodal

distribution with a high probability of almost complete specialization in either

technology A or B. However, the likely allocation of labour resulting from any

particular recontracting process of this kind may depend for a long time on the initial

(perhaps arbitrary) share of workers in technology A. If that share was small the

positive external effects would be weak and wages lower than in industry B so that

workers would be more likely to move there. If the initial share of A exceeded a

critical level — under the suggested parameterization slightly above 2/3 — the

positive external effects would already be sufficiently strong to entice more workers

into technology A reinforcing its productivity and wage lead. The resultant Markov

process may now look almost like a Markov chain with absorbing barriers, where the

economy remains almost completely specialized for long periods of time. But unless

complete specialization in one technology is fully absorbing, there always remains the

possibility of a transition to the other extreme, however unlikely it may seem.8

7 In many cases it is possible to woik out the stationary probability distribution analytically, but it is
often more convenient to get it from computer simulations.
8 If the time horizon is extended to infinity such radical transitions will certainly happen at some
points in time. One may therefore aptly speak of punctuated equilibria.



Similar stochastic processes with hysteresis can as well arise in open economy models

other than the simple Ricardian, although in more complex models of the Heckscher-

Ohlin variety rarely with the result of (almost) complete specialization. In any case, to

rationalize the hypothesis of technological accumulation, based on historical leads and

lags, in economic terms, the assumptions of the standard neoclassical model of

perfectly competitive markets and constant returns to scale production technologies

have to to be altered in some way that affects countries asymmetrically. Grossman and

Helpman (1991) derive a hysteretic variant of their model of dynamic comparative

advantages by simply assuming that knowledge spillovers from R&D are only national

in reach. The unintended by-product of private R&D investments then contributes to

the national stock of public technical knowledge, thereby enhancing productivity in the

R&D of national firms relative to foreign competitors in the same sector.

To summarize, the benchmark model of dynamic comparative advantage assumes both
that the privately appropriable part of R&D output is internationally tradable and that
knowledge spillovers are not impeded by international borders. Then, disregarding
other institutional factors, the international allocation of R&D activities is — at least
in principle — not tied to the location of the users of R&D output. Moreover, patterns
of specialization in technology as well as in actual production would — in the absence
of adjustment and transaction costs — be quite mobile over time and independent of
each other as they respond to changes in the relative factor endowments of countries.
Since the comparative advantages for production and for R&D in an industry would be
distinct and might be located in different countries, not even the specialization patterns
of those technologies which are confined to single industries need to evolve along the
same trends as the corresponding industries.

By contrast, the case for historical events as the determinants of sectoral patterns of

technological specialization, based on the theory of technological accumulation, would

imply that patterns of specialization in technology as well as in production are much

less mobile, especially when a country's industrial structure is already heavily skewed

towards certain industries.^ If knowledge spillovers from R&D were only national in

reach, hysteresis could be decisive in the sense that temporary events, like price shocks

or industrial and technology policies, can have lasting effects on a country's pattern of

' Although related, the theory of technological accumulation is not simply a revamping of earlier
technology gap theories. Whereas the latter assumed a single country to be the technological leader in
all sectors, and all other countries more or less behind, technological accumulation theory allows for
the possibility that technological leads are spread across different countries rather than being all
concentrated in one.
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technological specialization and trade. Such lasting effects might be recognizable

through high persistence of specialization patterns in production and technology

despite changes in the relative factor abundance of countries. Persistence would be

expected to be particularly pronounced in technological specialization where the

positive external effects in the form of knowledge spillovers from R&D would have

their most direct and strongest impact. But in general, a close relationship would be

expected between the dynamics of countries' specialization in certain technologies and

in the production in those industries whose products make intensive use of these

technologies.

3 Empirical dynamics of specialization

The stylized model of the stochastic recontracting process and dynamic specialization

in the small open Ricardian economy lends itself naturally to an empirical

examination. The focus of this will be on questions like: What are the actual dynamics

of specialization in technology and industrial production of open economies? Are

these dynamics quite similar or rather distinct from each other? Is there any evidence

for hysteresis in terms of high persistence of strongly above average or far below

average specialization in either technology, production or both?'0

'0 Research on these questions should be seen as complementary to recent econometric attempts at
diagnosing the international range of positive external effects from R&D more directly. A number of
empirical studies, surveyed in Griliches (1992), have estimated social rates of return to R&D
investments well above the private rates of return. These studies leave little doubt that intra- and
intersectoral knowledge spillovers from R&D are pervasive, yet incomplete and often effective only
after some time lag. The time series regularly show a strong positive correlation between the
productivity growth of a firm or an industry and its own R&D investment. Lichtenberg (1993) extends
this line of research and finds that in a number of industrial economies also the national productivity
growth is significantly and positively correlated with the respective own R&D expenditure of these
countries. Under the assumption that R&D expenditures are themselves exogenous with respect to
productivity, this result leads to a rejection of the hypothesis that knowledge spillovers from R&D are
not at all reduced or slowed down at international borders. Coe and Helpman (1993) find empirical
support for the assumption that international spillovers from R&D depend mainly on the intensity of
bilateral trade relations and that notably small countries with open markets derive considerable
productivity gains from foreign R&D advances.
Despite these findings, it would seem premature to regard the hypothesis of hysteresis in the dynamics
of specialization in open economies as confirmed. Sceptics would rightly point out that, although
positive externalities may have some influence in the direction of idiosyncratic patterns of
specialization, other factors like foreign direct investment and the associated technology transfers
might prevent it. A theory of leapfrogging, like that of Brezis, Krugman and Tsiddon (1993), would
even argue that it is precisely the temporary exploitation of positive external effects and hysteresis in
one country which gives other countries a better starting position in the next round of innovations and
productivity advances, because after a change of technological trajectory the old externalities are
quickly devalued and new innovators are more likely to look for low wage labour rather than for a
location in a high wage country with a fading technology.
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The stylized model of the previous section defined the state variable of the

recontracting process as the share of workers in industry A. Specialization of the small

Ricardian economy was unambiguously measured by the share of industry A in the

total labour force. But how can sectoral specialization in industrial production be

measured in a multi-country, multi-factor world? To obtain a measure which is

comparable across countries and across industries it is suggested to compute — for

each industry in each country — an indicator on the basis of value added, the

contribution of an industry to Gross Domestic Product:

where VtJ stands for value added in country i and industry j , ^ K / f° r t o t a l

added in industry j over all countries, ^ Vi; for total value added in country i, and
j

; for total value added in all countries and all industries. H This indicator of

specialization measures how many times greater or smaller the ratio of a country's
value added to the world's value added is in a specific industry as compared with all of
manufacturing. In a sense, the indicator compares the relative weight of a certain
industry in individual countries with the relative weight of this industry in total world
manufacturing. A logarithmic transformation renders the indicator unbounded on both
sides, symmetric around zero, the point of no specialization, and relatively sensitive to
small deviations from zero, as they are typical for large countries (cf. Grupp, Legler,
1989). Nevertheless, large countries show much less specialization and dynamic
variation of this indicator, basically for two reasons: one is the effect of regional
evening out and the other is large countries' effect on the normalizing quantity since
they themselves make a considerable part of total value added in the world.

Discussing the determinants of specialization in terms of comparative advantage
versus hysteresis due to technological accumulation, it is natural to focus on the
specialization in those tradables for which the hypotheses are primarily formulated,

' ' This formula is closely related to the production intensity index suggested by Bowen (1983) as a
comparative measure of trade specialization for each industry j within each country i:
PI1. j = (Ti. jYw) / (YiQ.. i) +1 = Q . j / [(Yi / Yw)Qw],
where net trade Tjt j is equivalent to domestic production Qj; minus domestic consumption Cj j , and
Yj and Y w are gross national and gross world product, respectively. These kinds of pragmatic
specialization indicators have their roots in the work of Liesner (1958) and Balassa (1965).
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namely manufactures. The limited availability of reliable data on value added by

industry, which is taken from the 1992 version of the OECD STAN database, has

made it necessary to restrict the scope of this study to only twelve countries —

Australia, Canada, Finland, France, West-Germany, Italy, Japan, the Netherlands,

Norway, Sweden, the United Kingdom and the United States — and to the nineteen

year period from 1970 through 1988.

Unfortunately, the sample limitation implies that the specialization indicator could not
be computed with respect to world value added but only with respect to total value
added in the twelve sample countries. This would not matter much if the sectoral
composition of value addition in all countries excluded from the sample was on
average the same as that of the countries included. In reality, however, the sectoral
composition of value addition in the other, mostly less developed countries is likely to
be quite different. The absolute values of the specialization indicator as they have been
computed for the sample countries are therefore misleading as measures for
specialization relative to the world. 12 Anyway, in the present context the absolute
values are of little interest compared with the dynamics of the relative specialization
positions of specific industries in the various countries. So the fact that not all
countries of the world are included in the sample may matter far less than the small
number of observations at the level of individual industries which is a direct
consequence of the small sample size of only twelve countries.

On the other hand, one might argue that the twelve countries considered are
responsible for most of the dynamics in specialization, since they command a
dominant share in world trade, especially in manufactures: about 85 % of OECD
exports and roughly two thirds of world exports in terms of value. The twelve
countries also have a dominant share in the world's value added in manufacturing as
well as in the resources used intensively in manufacturing — especially in technology
and R&D inputs, which are thought responsible for hysteresis.

12 Although the omission of other countries may affect not only the absolute levels of the
specialization indicator but also the relative position of industries in an individual country, the
omission would riot affect the relative ranking of countries in individual industries. In any case, the
observed relative dynamics in industrial specialization between the twelve countries are unlikely to be
affected in a fundamental way by the omission of other, mostly developing countries which are of
lesser importance in world trade. The dynamics of specialization captured by the indicator are also
unlikely to be disturbed by country specific measurement problems. Inflating figures on value added
for an entire country or for a particular industry need not alter the dynamics of specialization
noticeably unless the figures are treated inconsistently over time, say by being first understated and
later overstated.



13 B ib i io thek
des Instituts fur Welhvirtschaft

To measure technological specialization one should ideally use a direct measure of the
creation of new technical knowledge, essentially the output of R&D efforts, whose
international mobility is crucial for the hypotheses considered here. Direct
measurement of intangible R&D output, especially of the part which spills over as a
technological externality, is of course infeasible. In view of these difficulties, Soete
(1981) suggests as a proxy the index of revealed technological advantage (RTA) which
is based on patent count data. This index is defined as the ratio of a country's share of
sectoral patenting to the country's overall share of patenting in a particular foreign
country. This gives some reassurance that patents granted are of similar "quality" in
terms of novelty, since novelty requirements are routinely checked during the
nationally standardized approval procedure. Usually the foreign country is chosen to
be the United States — the country which has the largest and most important market
for technology and, therefore, is most likely to stand high on the patent application
agenda of every commercially minded inventor in any country. Moreover, the US
Patent and Trademark Office publishes patent count data which are aggregated
according to the US Standard Industrial Classification and are thus particularly
suitable for economic analysis (see the data appendix for details). The RTA index
defines the technological activities of a country as more specialized in those areas
where this country gets a larger share of US patents than in the average of all
sectors. 13 In its formal structure, this index is analogous to the indicator of industry
specialization in terms of value added introduced above, so the RTA is:

(4)

" While the RTA index obviously neglects potentially large differences in the economic value of
patents (and may thus not be an all too reliable measure), it does have some important advantages,
especially over R&D indicators based on input data. In contrast to these, the RTA index values are
often directly comparable between countries, across sectors and over time. The index automatically
corrects for common industry trends across countries, such as industry-specific propensities to patent,
and for common economy-wide trends across industries, such as the documented decline in the ratio
of the number of patented innovations to the number of scientists end engineers involved in R&D
since 1960 (Evenson, 1991). A problem, however, remains with domestic US patents because
individual US inventors are known to file relatively more patent applications in certain fields of
technology than in others, while filing very few foreign patent applications at all. Many of the
domestic applications of individual inventors cannot be counted as technical advances comparable to
patents originating from corporate research laboratories. Therefore, US patents held by individuals
have here been deducted before computing the technology specialization indicator in order to avoid
biasing figures for the United States towards those sectors in which leisure inventors were most
active.
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where Gu stands for the number of US patents, by date of application, which are of

practical use mainly in industry j and granted to inventors resident in country i.

A general model of the stochastic process of the evolving cross-section distributions of

measures of specialization is given by the stochastic difference equation (cf. Stokey

and Lucas, 1989, pp. 234, and Quah, 1993a, p. 13):

\ = T*{xt_vu), (5)

where T* is an operator which maps the probability measures X in period t-1, together

with a disturbance u, to probability measures in period t. Ignoring the disturbance u

leaves a difference equation in probability measures, a model of the law of motion in

industrial specialization 14, which can be used, by iteration, to "predict" future cross-

section distributions:

\» = (r**r**-*r*)(A,) = ((r*r)(A,). (6)

Taking this iteration to the limit as s —» °°, gives a characterization of the likely long-

run distribution of the cross-country, cross-industry specialization indicator.

Analogously to the conclusions from the small open Ricardian economy, hysteresis

would imply that the probability measure {A,+,: s > 0} tends towards a bimodal

distribution in the long-run, with very little or virtually no measurable mobility of

individual industries between the two modes. The alternative hypothesis would be that

the future degree of specialization of a certain industry in a certain country is only

temporarily dependent on that industry's starting position, but entirely independent in

the long-run, provided there is either virtual equality of relative factor endowments

across countries, or else enough mobility in relative factor endowments to undermine

established comparative advantages over time. The probability measure would then

tend towards a uniform distribution in the long run.

One way of estimating such a model of evolving cross-section distributions in terms of

probability measures, recently used by Quah (1993a) in a different context, is to

specify the operator T* as a stochastic ke rne l^ which maps the product of the real

14 As Quah (1993b) points out such a model of dynamically evolving distributions is like an

autoregression, except that its values are distributions rather than scalars or vectors of numbers.

!5 The difference equation in probability measures then becomes: \(H)= \ M(x,H) dX,_x (x)

for all H on the real line.
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line with its Borel sets to the unit interval, and to estimate this by appropriately

rescaling a nonparametric density estimate of transitions, to obtain a conditional

probability for each fixed neighbourhood in the continuous state space of degrees of

industrial specialization. While a proper judgement on the hypothesis of hysteresis will

have to take into account the actual movements in relative factor endowments,

unconditional estimation may still give valuable insights into the nature of

specialization dynamics. Indeed, the unconditional dynamics should not be overlooked

since the exogeneity of changes in relative factor endowments may be in doubt.

Figures 1 and 2 graph stochastic kernel estimates 1" of one-year and five-year
transitions in the industry specialization indicator. Figures 3 and 4 do the same for the
corresponding technology specialization transitions. These graphs make clear that
there is high persistence in specialization in the short run — probability mass is
concentrated on and closely around the 45°-diagonal. But there seems to be
considerably less persistence over longer time horizons, particularly in the case of
technological specialization: probability mass leaks out and flows away from the
diagonal, and apparently more so at the ends of extreme specialization. 17 Comparing
Figures 2 and 4 suggests that over a five-year period there is less persistence in
technology than in industry specialization measured in terms of value added —just the
contrary of what would presumably be needed to establish causality from hysteresis in
technological development to hysteresis in industrial specialization patterns.

Although these graphic results give a rather impressive picture of the overall dynamics
in sectoral specialization, as documented in the data, they do not allow to draw proper
statistical inferences, nor to calculate the expected long-run stationary distributions,
should they exist. But these kinds of inferences would be essential for a sound
judgement on the hypothesis of hysteresis.^

1(> Using the squared Epanechnikov kernel, as described in Silverman (1986).
" i n Figure 2 the spikes at the positive end of specialization are merely a consequence of outliers in
non-parametric density estimation and should not distract from the more relevant other parts of the
picture.
'8 One should emphasize here that simple parametric autoregressions also fail to be informative on
the hypothesis of hysteresis formalized here in terms of a probability model of evolving cross section
distributions. An estimated slope coefficient greater than one from regressing an indicator of
specialization on its lagged values cannot be taken as evidence that past specialization in a certain
sector would give this sector an advantage for future growth. A linear regression of the logarithmic
industry specialization indicator in 1988 on a constant and the industry specialization indicator in
1970 (lagged 18 years) yields an estimated slope coefficient of 0.70, a t-value of 20.2 and an adjusted
R2 of 0.67, which seems to imply that past specialization does not give countries much of an
advantage in particular sectors for the future. Instead, the sectoral strengths of countries seem to erode
over time; measured specialization seems to converge to neutrality. Similarly, a regression of the
technology specialization indicator in 1989 on a constant and the technology specialization indicator

... continued
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Therefore, an alternative approach to estimation may be preferable, in which the

operator T* is approximated by a finite Markov chain transition matrix for a

discretized state space. An empirical estimate of the transition matrix can give useful

information on the intra-distributional mobility of individual industries between

different degrees of specialization over time and can be used to calculate long-run

stationary distributions of the specialization indicator — provided they exist —

according to the Chapman-Kolmogorov equation:

p- = p'.p-' with •$-><*>, (7)

where P denotes the transition probability matrix; its rows contain the conditional
probabilities that a transition beginning in a certain discrete state (row i) will end after
one step (in event time) or one period (in historical time) at a certain state (column j).
P' consequently has the probabilities of moving from initial states to intermediate
states after r steps or periods of time.

To discretize the continuous state space of the logarithmic specialization indicator six
states are defined, somewhat arbitrary, by setting upper boundaries at p-sd, u-sd/3, u,
u+sd/3, u+sd, and at °°, where u stands for the sample mean, sd for the standard
deviation of the indicator realizations over all years from 1970 to 1988. The
corresponding 6 x 6 Markov chain transition matrix is estimated by maximizing the
log-likelihood function

in 1972 (lagged 17 years) gives a slope estimate of 0.49, which suggests there was even less long-term
influence of past specialization in technology. But this interpretation is merely an example of the so-
called Galton's regression fallacy, which often arises when the dependent and the independent have a
bivariate normal distribution and are measured as deviations from their means. The conditional
distribution of the dependent variable is then also normal around the mean m:
E(Y\X = x) = m(y) + po(y)/o(x){x — m(x)). If the variances of the two marginal distributions
a1 (.) are very similar, the regression coefficient must be smaller than unity because the correlation
coefficient p always is. This does not reveal any useful information about the relationship between
the two variables (cf. Maddala, 1992, pp. 104). — Moreover, taking the negative slope estimates from
above at face value would imply that the distributions of the specialization indicators must converge
to a single point at the mean. But as can be seen from comparing non-parametric density estimates for
selected years (Figures 5 and 6), the distributions of the specialization indicators do not seem to be
collapsing. Instead, excess kurtosis, made visible in Figure 6 by graphing — in addition to the density
estimates — the normal density for the sample mean and sample variance of the technology
specialization indicator, seems to be decreasing over time, and that for both the technology and the
industry specialization indicator. The density estimates in Figures 5 and 6 are based on the Gaussian
kernel with window width selected automatically as suggested in Silverman (1986), pp. 45.
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(8)

with respect to pLj and subject to the restriction £ ptj = 1,

where P;(1970) are the initial probabilities of having a realization of the specialization

indicator in state i, ptj are the probabilities of having a realization in state j after a

specified transition period, conditional upon a prior realization in state i, and htj are the

observed frequencies of transitions from state i to state j in that period. Ignoring any

information about transition probabilities which may be contained in the initial

probability distribution 19 and assuming the transition probabilities to be invariant with

respect to time as well as across industries and countries, the Maximum Likelihood

estimator can be readily computed as:

P, = V*i. where * = LA- W

This estimator can be shown to be consistent and to have an asymptotic normal

distribution (cf. Basawa and Prakasa Rao, 1980, pp. 54).

Table 1 presents estimates of first-order, time-stationary transition probabilities over
periods of one, five and ten years for the entire data set of industry specialization in
terms of value added, including all twelve countries and the seventeen industries
described in the appendix. The first panel gives the one-step annual transition matrix,
whose (i, j) entry is the conditional probability that the degree of specialization of a
certain industry in a certain country has transited from state i to state j after one year.
The first column gives the total number of observed transitions from all starting states
i, which are arranged in increasing order of indicator values. Entries on the main
diagonal are the probabilities that the degree of specialization of an industry observed
in a certain interval of the state space will not have moved out of that interval after one
year. Entries to the right of the main diagonal give the probabilities that an industry
increases its relative weight in a certain country compared with that industry's weight
in the world, whereas entries to the left of the main diagonal are the probabilities for
an industry to loose ground in a certain country, compared with the overall share of
this industry in the world.20

The first panel shows high persistence at the extremes, with diagonal entries of 89 %

at the low and 90 % at the high end of specialization states. Entries in the middle of

" This is warranted for large h but may be problematic in other cases.
20 Entries are rounded to two decimal places; non-entries indicate that both decimal places are zero
after rounding.
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the diagonal are much lower, indicating substantial mobility of industries in those

countries in which they have a relative weight similar to the world average. In rows 2

and 3 the sum of entries to the right of the main diagonal is greater than the sum of

entries to the left, which indicates that below average specialization is more likely to

be followed by an increase than by a decline. In rows 4 and 5 the reverse is true for

above average specialization. These estimates thus do not indicate perfect persistence,

but considerable inertia in patterns of specialization. Not surprisingly then, the long-

run stationary distribution — computed according to the Chapman-Kolmogorov

equation and reported in panel 1 along with the sample distribution — is ergodic and

does not show any concentration of probability mass at the extreme ends of

specialization.

The second and third panel give estimates of five- and ten-year transition matrices,
respectively. The entries on the main diagonal are here much lower, indicating much
less persistence over longer periods of time. Qualitatively, however, the overall picture
remains basically unchanged from the one-year transitions. The only interesting
difference is in the third panel where the stationary distribution computed from the
ten-year transition matrix does seem to show slightly higher concentration of
probability at the extremes than the sample distribution. But this may merely indicate a
mild general trend towards increasing specialization rather than high persistence,
because the off-diagonal entries in the ten-year transition matrix again show
convergence of countries' shares in industries' value added to the world average.21

A very similar picture emerges from estimates of six-state Markov chain transition

matrices for the RTA-index of technological specialization, reported in Table 2. The

major difference to the results for industry specialization in terms of value added

seems to be that almost all entries on the main diagonal (in all panels) are much

smaller than the corresponding entries in Table I.22 There appears to be considerably

less persistence in technological specialization than in production, which casts doubt

on the hypothesized causality from technological externalities in the form of

21 To illustrate consistency of short- and long-run estimates, the one-year transition matrix has been
iterated ten times, the result of which is reported in the fourth panel. Since the entries on the main
diagonal are much smaller than the corresponding entries in the directly estimated ten-year transition
matrix, this comparison suggests that persistence may actually be higher than estimated by first-order
Markov chain models.
2 2 As a caveat, one should note that part of the higher mobility in technology may be due to
measurement problems: Because the patent count data are integer-constrained, small countries with
often very few patents per year in some industries will show spuriously high mobility, so for instance
when a year with two recorded patents, assigned for a small country to a particular industry, is
followed by a year with only one patented application from the same country in that particular
industry.
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knowledge spillovers from R&D to hysteresis in production. The high mobility in
technological specialization is underlined by the speedy convergence of the iterated
one-year transition matrix to its stationary distribution, which seems to be almost
completed after only ten iterations (panel 4, Table 2).

Although these estimation results on the overall dynamics of specialization in value

added and technology do not seem to support the hypothesis of hysteresis, the picture

may be different at the level of individual industries. After all, the claim of hysteresis

is made mostly in view of those industries which make intensive use of technological

innovation and which are therefore rightly classified as high-technology industries.

Separate estimates of five-year transition matrices for a number of industries, selected

for the high technology content of their typical products, are presented in Table 3, and

that both for the industry and the technology specialization indicators.

Empirical research on positive external effects from innovation at the industry level
has repeatedly found evidence for their existence in parts of the chemical industry, in
Pharmaceuticals, machinery, microelectronics and in the professional instruments
industry (cf. Mohnen, 1990). Particular attention will therefore be paid to the
specialization dynamics in these and the closely related industries of the sample.23 In
chemicals (excluding drugs and medicines) persistence in terms of entries on the main
diagonal appears to be even lower than in the five-year transition matrix for all
industries, except at the extreme end of above average specialization, where the
estimated probability of remaining in the highest state is 94 %. The off-diagonal
entries suggest that the degree of specialization tends to converge towards the average
whenever a national chemical industry is over- or under-represented in its home
country compared with the share of chemicals in total world manufacturing.

In the technological specialization indicator of chemicals, on the other hand,

persistence on the main diagonal is higher for almost all states than in the five-year

technology transition matrix for all industries. Moreover, the entries in the second,

third and fourth row suggest that transitions may often be away from the average share

of chemical patenting in total patents granted in all fields of technology. However, the

bulk of observations, entries in row five, do not show divergence from the mean. And

overall, the chemical technology transition matrix does not look very different from

the transition matrix of specialization in terms of value added.

23 See the data appendix for a listing of all sample industries and their ISIC codes.
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For the industry specialization indicator in drugs and medicines, generally less

persistence is estimated on the main diagonal than in chemicals and in all industries

together. This holds too for the extreme states of the technology specialization

indicator. Moreover, only the third row of the technology transition matrix suggests

slightly higher probability of the indicator moving away from the mean. In the five-

year transition matrix for the rubber and plastics industry, by-contrast, persistence

appears to be high at the extreme ends of industrial specialization, with a tendency in

the second, third and fourth row to move further away from the mean. The technology

transition probabilities appear to be more in line with those of all industries, except for

the fourth row, where a trend away from the mean is estimated.

In the office machinery and computer industry generally less persistence is observable
— in both value added and technology (except for the high end of technology
transitions) — than in all industries together, and no tendency of divergence can be
detected. Also the electrical machinery industry seems to have generally lower
persistence than the specialization indicators for all industries. But divergence is
observed in the second and, albeit only some, in the fifth row of the value added
transition matrix as well as in the fourth row of the technology transition matrix. The
transition matrix estimated for value added in the motor vehicles industry is rather
irregular and difficult to interpret — due to the unfortunate clustering of most
observations in the fifth interval of the discretizing grid. The technology transition
matrix is characterized by low persistence in the middle states and high persistence at
the ends; but only the third row has an entry that signals a trend away from the mean.

High persistence at the end states is again characteristic for the estimated technology
transitions in ship building, but the transition matrix in terms of value added is quite
similar to that of all industries together. Finally, both the aircraft industry and the
professional instruments industry have very high persistence at the exremes in their
value added specialization indicator, but much less so in their technology
specialization indicator.

Except for the value added specialization indicator in the motor vehicle industry and

for the technology indicator in the radio, television and communication equipment

(RTV) industry24, the estimated transition dynamics of industrial and technological

specialization in individual industries are all ergodic with unique stationary

2 4 The MOTV industry and the RTV technology indicator transitions matrices arc divided in two
ergodic sets. In the case of RTV technology, the highest state appears to be absorbing, no transitions
out of this state are observed. In the case of MOTV value added, one ergodic set is comprised of the
two lowest states, the other of the remaining four states.
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distributions. But only for DRUG industry and technology transitions and for AIRC,

ELMA and, arguably, non-metallic minerals (SCG) technology transitions do the

stationary distributions resemble the corresponding sample distribution, as would be

expected in the absence of any path dependence or hysteresis. On the other hand, only

the stationary distributions for MOTV and PROF technology and value added in the

non-metallic mineral industry (SCG) turn out really bimodal, as would be expected in

the case of hysteresis. Most stationary distributions rather have a concentration of

probability mass in the middle states (CHEM, COMP, ELMA value added and AIRC

technology) or at one end only (RTV and PROF value added, CHEM and COMP

technology and both indicators for FOOD, RAP, IRON, NFM, FABM, MACH and

SHIP).

These observations, however, must neither be taken as evidence against nor in support
of high persistence pointing to hysteresis. Instead they are likely to be an unfortunate
consequence of including countries of vastly different sizes in one and the same
transition matrix. When the biggest or a few of the biggest economies increase their
share in total value added in a certain industry, then more of the smaller economies
must be loosing shares in this industry. Consequently, the Maximum Likelihood
estimator assigns a larger weight to the more frequently observed losses of the more
numerous smaller economies than to the corresponding gains of one or very few big
economies. A stationary distribution with a concentration at one end may thus often
reflect a montone trend in the specialization dynamics in the largest economy in the
sample, the United States.^

One way of dealing with the inconvenience caused by the great disparity in the sizes of
countries in the sample is to estimate transition matrices iorfractile Markov chains as
proposed by Geweke, Marshall and Zarkin (1986) and recently applied by Quah
(1993c) in another context. Instead of using an arbitrary grid to discretize the
continuous state space of the specialization indicators, one can fix a set of increasing,
non-redundant probabilities, equally spaced on the open unit interval, say P =
{1/6, 1/3, 1/2, 2/3, 5/6,1}, and let this determine for each period t a corresponding set

25 Similarly, a stationary distribution with a concentration in the middle may lend spurious support to
the hypothesis of convergence in specialization indicators. In fact, it may indicate that the two largest
economies, the United States and Japan, have monotonically moved in opposite directions away from
the middle states, pulling many of the smaller, perhaps initially more specialized economies inwards
from the end states. In theory, the move of two dominating economies in opposite directions may
even be the consequence of hysteresis when one of them is winning a path-dependent technological
race in a certain industry where positive externalities have a strong impact on productivity.
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of quantiles.26 The sequence of quantile sets {Q(t): integer t} then parametrizes

movements in the entire distribution, while the estimated fractile transition probability

matrix — named so by Quah (1993c) — parametrizes intradistribution mobility.

The simple Maximum Likelihood estimator is again based on the assumption of

invariance of the transition probabilities with respect to time and the relevant cross

section dimension — countries, industries or both. If the estimated fractile matrix is

ergodic, its stationary distribution will be uniform relative to the quantiles Q (cf. Quah,

1993c, p. 15). Estimates of intradistribution mobility will here be less disturbed by a

trend movement of a large country since the fractile method basically implies a

redefinition of the grid discretizing the state space in each period of time. In order to

relate the stationary distribution to the original state space one would have to consider

— in addition to intradistributional mobility — movements in the entire distribution as

estimated in the sequence of quantile sets {Q(t): integer t}.27

In the present context, it will suffice to examine whether the interquantile range
increases, decreases or remains constant over time. This can be done by running a
simple linear regression of the interquantile range on time and testing for significance
of the slope coefficient. Within this approach, a significant positive time trend in the
interquantile range combined with high persistence in terms of large entries on the
main diagonal — especially at the ends — of the estimated fractile matrix would point
to hysteresis, whereas a negative or no time trend in the interquantile range and low
persistence in the transitions matrix would appear to contradict the hypothesis of
hysteresis.

Estimates of the ten-year fractile Markov chains for specialization in value added and

technology taking all industries together (reported in Table 4) reveal almost the same

degree of persistence on the main diagonal as observed in the previously reported non-

fractile Markov chain estimates. Again, persistence appears to be lower in technology

than in value added. But for both, a positive time trend in the interquantile range,

albeit a mild one, is found to be significant at the 5 % level.

26 Experimenting with different ways of dicretizing the state space is generally recommended as a test
for robustness of Markov chain estimates, regardless of any specific problems like varying country
sizes. Arbitrary and inappropriate discretization without considering alternatives often is a source of
spurious results.
2 ' But any attempt at forecasting the stationary distribution of individual industries' specialization on
the corresponding original sate space may bear the danger of reintroducing the stated problems
associated with vastly differing country sizes.
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Looking at fractile Markov chain transition estimates for individual industries (Table

5) generally confirms the picture that has emerged from the estimates of non-fractile

Markov chain transitions. However, more persistence at the end states of specialization

is observed in chemicals, electrical machinery and professional instruments, while the

RTV industry divides into two ergodic sets of three states each. But in machinery as

well as office and computing equipment persistence at the end states appears less

pronounced when estimating fractile Markov chains. In the fractile estimates of five-

year technology transition matrices for individual industries, more persistence at the

ends is noticeable in drugs and medicines and electrical machinery, less persistence in

RTV and motor vehicles.

But only for the technology transitions of ship building, machinery and professional

instruments are positive time trends in the interquantile range detected which are
significant at the 5 % level. Of these three industries, machinery also has a significant
positive time trend in the interquantile range of its industry specialization indicator in
terms of value added, whereas the corresponding interquantile range for professional
instruments is significantly negative, and that of ship building not significantly
different from zero. The evidence of high persistence in the estimated fractile
transition matrices of specialization in terms of value added is again undermined by a
negative time trend in the interquantile range in the case of chemicals, electrical

machinery, motor vehicles and aircrafts.

Where a positive time trend coincides with high persistence at the end states of value

added specialization — as in RAP, SCG and NFM — this can still not justify a

hysteretic explanation based on knowledge externalities, because no time trend and

low persistence are observed in the corresponding technology specialization indicators.

It appears that the estimated fractile transition matrices for both technology and value

added specialization are jointly supportive of the hypothesis of hysteresis only in the

case of machinery.

4 The impact of changes in factor endowments

Although the preceding discussion has described the observable dynamics of

technological and industrial specialization for twelve OECD countries in some detail,

this is still a long way from giving conclusive evidence on hysteresis. Methodological

questions — such as robustness of the non-parametric estimates — apart, the main

shortcoming of the preceding analysis is its lack of accounting for relative factor

endowments in the sample countries and changes thereof during the sample period. If
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factor endowments have any impact at all on the international allocation of sectoral

economic activities, they might — in the case of monotonic time trends in the dynamic

comparative advantages of countries — even be responsible for patterns of

specialization dynamics which point to a bimodal stationary distribution, just like

hysteresis would.28 It is surely important to account for the influence of changes in the

relative factor supplies of countries when analysing the dynamics of specialization

with a view to testing hysteresis, although this will — admittedly — be a very difficult

task.

A first attempt is made by simply regressing the familiar value added indicator of an
industry's specialization in the sample countries on conceptually similar indicators of
countries' relative factor endowments, and by subsequently estimating fractile Markov
chain transition matrices on the residuals. Provided all relevant endowments are
appropriately considered, this procedure eliminates that part of the specialization
dynamics which can be accounted for by the dynamics of comparative advantages.
The residual dynamics would then lend support to the hypothesis of hysteresis, if they
showed high persistence at the end states of specialization and a positive time trend in
the interquantile range. They would, on the other hand, cast doubt on hysteresis if
there was low persistence or a negative time trend in the interquantile range.

The factor endowments considered here for each of the twelve countries are: Physical
capital, R&D capital, the number of R&D scientists and engineers in the business
enterprise sector, the labour force, and the years of schooling in the labour force.
While R&D capital, using cumulative R&D expenditures as a proxy for the national
stock of technical knowledge, and physical capital are both stocks from which input
services flow, the other three factors are more direct measures of input flows, although
years of schooling and the number of R&D scientists and engineers stand for facets of
human capital in labour services.29 On theoretical grounds one might argue that these
factor endowments should not be given equal weight as conditioning factors for
sectoral specialization, because they are likely to possess quite different degrees of
international mobility. Only fully immobile factor endowments should ideally be
treated as country-specific characteristics, but this issue is neglected here. To avoid
implicitly regressing on country size, yearly factor supplies have been normalized
dividing each country's share in the total supply of all twelve countries by the country's
share in the sum of the Gross Domestic Products of all twelve countries. As with the

28 This can already be seen from the stylized Ricardian model with stochastic recontracting discussed
in section 2.
29 For sources and methods see the data appendix.
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industry specialization indicators, a logarithmic transformation is made to obtain more
symmetrically distributed variables.

The separate regressions of each industry's indicator of specialization in value added

on the indicators of relative factor endowments have been done by ordinary least

squares, pooling time series across countries. By design, no attempt has been made to

correct the estimation for the substantial autocorrelation (over time) which is evident

in the residuals. After all, it is precisely the structure of this autocorrelation which is

subsequently to be analysed in terms of fractile Markov chain transition probabilities.

A general tendency of divergence in the autocorrelated residuals away from their

theoretical mean of zero could be interpreted as evidence in support of hysteresis,

whereas substantial non-monotonic mobility of the residuals, or even convergence to

the mean, would lend support to the alternative hypothesis of dynamic comparative

advantages as an adequate explanation of industrial specialization dynamics.^O

Results of the regressions are reported in Table 6. But the estimated parameters should
not be interpreted as revealing any specific economic causality — for several reasons.
First, there is substantial collinearity between the factor endowment indicators. Some
bivariate correlations between the exogenous variables are higher than bivariate
correlations with the dependent variable in many of these regressions; the variance
inflation factors are all around two in magnitude. Second, the regressions are, by
ordinary standards, misspecified since the hypothesis of no country fixed effects,
which is implicit in using only one common intercept for each industry regression, is
clearly rejected at any conventional level of significance.31 And third, the estimation of
pooled data by simple ordinary least squares ignores that in reality adjustment costs
are likely to have an important impact on the relationship between changing relative
factor endowments and the industrial specialization in open economies.

Nevertheless, the residuals from these "naive" regressions may be of use in Markov

chain analysis where they are simply taken to be that part of the specialization

30 Notice that neither divergence nor convergence in the residuals is predisposed by the chosen
regression method. But the assumption of exogeneity of factor endowments with respect to industrial
specialization patterns is fundamental to the interpretations advanced. This assumption may, of
course, be open to question.
31 Similarly, the hypothesis of structural stability across time is rejected at the 1 % level of
significance in the case of RAP, IRON, NFM, MACH, COMP, ELMA, RTV and at the 5 % level of
significance in the case of CHEM, SCG, MOTV, SHIP and AIRC. These inferences are based on a
general Wald-test for the joint significance of an intercept and slope dummies for the subperiod 1980
through 1988. hi the case of the PROF industry, slope dummies for the specified subperiod are
significant at the 5 % level for the schooling and the research scientists and engineers endowment
indicators.
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dynamics which is statistically unexplained by movements in countries' relative factor

endowments. The regressions are merely used to filter out those components of the

industry specialization dynamics which are not orthogonal to relative factor

endowments. It would therefore be misleading to include dummies to capture country

specific effects in these regressions. Although such dummies would surely account for

much of the variation in the specialization indicators and greatly improve the fit of the

regressions reported in Table 6, they would spoil those characteristics in the residuals

which bear on the hypothesis of hysteresis. After all, it is precisely the persistence of

country specific effects in the residuals' autocorrelation structures which is here to be

analysed in terms of fractile Markov chains.

A glance at Table 6 suggests that the factor endowments considered here do not
account at all well for the variation in measured specialization in food, beverages and
tobacco, nor in fabricated metals. Most other regressions, however, have an acceptable
coefficient of determination, adjusted for degrees of freedom. So the residuals from
these regressions are likely to have dynamics quite distinct from those of the
unconditioned indicators of industrial specialization in the sample countries.

Estimation of a six-state, five-year fractile Markov chain transition matrix on the

residuals from all industries together reveals clearly less persistence on the main

diagonal than in the corresponding unconditioned fractile transition matrix.32

Moreover, there is no significant time trend. This evidence against hysteresis is in fact

confirmed by most fractile transition probability estimates for individual industries'

residuals: Less persistence than in the unconditional specialization dynamics is

observed in the residuals from drugs and medicines, professional instruments,

aircrafts, ship building, rubber and plastics, electrical machinery, office and computing

machinery as well as from the RTV industry. The RTV residuals also loose their

previously striking division of the five-year fractile transition matrix into two ergodic

sets.

Furthermore, testifying against the case of hysteresis are the significant negative time

trends in the interquantile range — mostly higher in absolute terms than in the

unconditioned dynamics — which are estimated for several industries. But a

significant positive time trend in the interquantile range remains in machinery as well

as in rubber and plastics. Nevertheless, hysteresis on the basis of knowledge spillovers

is most unlikely in the case of rubber and plastics — not only because the residual

32 See Table 7 for the estimated overall residual transition probabilities and for separate estimates of
selected industries' residual transition matrices.
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dynamics show so little persistence, but also because low persistence is as well

characteristic for the technology dynamics, as estimated in terms of either fractile or

non-fractile, five-year Markov chains transitions (reported above). In the case of

machinery, the degree of persistence in technology and in the residual dynamics is

quite similar to that of all industries together — no special case here either. So it

seems that the hypothesis of hysteresis in industrial specialization, based on positive

knowledge spillovers from R&D, finds little support in the available data, once they

are subjected to a close and careful examination.

5 Concluding remarks

This paper has discussed new work, using an approximation in terms of finite Markov
chains, to assess the empirical dynamics of specialization in advanced open economies
— with an eye on the controversial hypothesis of hysteresis allegedly caused by path
dependence and national idiosyncracies in sectoral technological accumulation. The
evidence from the non-parametric estimates of Markov chain transition probabilities
presented here does not point to hysteresis or serious inertia in the dynamics of
industrial specialization. This finding appears to be fairly robust since it is confirmed
both when considering all industries together and when scrutinizing individual
industries separately. Conditioning on five factor endowments, assumed to be of
particular relevance in technological development and modern manufacturing, has not
overturned the findings. On the contrary, conditioning — although done here in a
crude, preliminary fashion — has strengthened the case for dynamic comparative
advantages (the alternative hypothesis) as an adequate explanation of observable
specialization dynamics.

As a caveat, one should note that these conclusions are arrived at without having
considered the possibility that the observed specialization dynamics have in part been
shaped by specific industrial policies, which governments of individual countries may
have undertaken in the past. Moreover, the conclusions drawn from the residual
dynamics hinge on the exogeneity of changes in factor supplies, including physical
and R&D capital, with respect to changing patterns of specialization. This exogeneity
is likely to be disputed by advocates of path dependence in technological change and
industrial specialization dynamics.

A number of other important problems also remain unresolved in this paper. One of
these is how to take the great variation in the size of national economies properly into
account. This problem might be alleviated if a larger cross section of countries became
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available, in which the specialization dynamics of more countries of similar size could

be compared with each other. Another possibility to come to terms with size might be

to apply the methodology explored here to regional data sets, where hysteresis would

again be a serious hypothesis to confront, and where the biggest region might not be as

dominant as the United States are in the world economy. Alternatively, instead of

trying to avoid the statistical problems stemming from vastly differing country sizes,

one could address the issue more directly; an important question would be whether

hysteresis might become effective only when a certain industry, or the pertinent R&D

activities of a country, had passed a certain threshold in terms of absolute size.

Another important question relates to the level of industry aggregation used in this
paper. The hypothesis of hysteresis based on path dependence in technological
dynamics may actually be more relevant at lower levels of sectoral aggregation.
Besides, potentially interesting information may surface from technology measures
other than patent count data. Quantitative information on R&D inputs, for instance,
may reveal how intensively the R&D activities in different industries make use of
scarce factors, like specialized human capital. Finally, the incorporation of
conditioning information needs to be improved upon, and more powerful methods of
statistical inference need to be devised and applied in future work on this subject.
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Data Appendix

Data on sectoral value added for the industry specialization indicator has been taken

from the 1992 version of the "OECD STAN Database for Industrial Analysis", an

estimated database, not composed of OECD member countries' official data, but

geared towards compatibility with national accounts and towards international

comparability. This database covers the twelve countries Australia, Canada, Finland,

France, West-Germany, Italy, Japan, the Netherlands, Norway, Sweden, the United

Kingdom and the United States for the years 1970 to 1988. For these countries data on

patents granted by the US patent office, by date of application, is available from the

Office of Technology Assessment and Forecasting at the US Department of

Commerce, for the years 1972 to 1989. The data used are re-classified according to the

US Standard Industrial Classification (SIC) according to a concordance between the

US Patent Classification System (USPCS) and 55 product fields based on the SIC. The

data are so-called fractional counts, which eliminate multiple counting by dividing

each patent count by the number of product fields to which it is assigned and adding

the resulting fraction to each assigned product field.

Time series on countries' relative factor endowments have been obtained from various
sources: Capital stocks are computed, for the beginning of each period, on the basis of
annual investment data in Heston and Summers (1991), using the perpetual inventory
method, assuming a rate of depreciation of 13.3 % as would be implied by an average
asset life of 15 years. R&D capital stocks are taken from Coe and Helpman (1993),
who have used R&D expenditure data from the OECD's Main Science and
Technology Indicators. Their computations are again based on a perpetual inventory
model, with the assumption of a 5 % rate of depreciation or obsolescence. For further
details see the appendix in Coe and Helpman (1993). Data on the size of labour forces
and on national employment of research scientists and engineers (in the business
enterprise sector) are taken from the OECD Science and Technology Statistics (1992).
Missing figures for research scientists and engineers have been filled in from linear
trend regressions in the case of Canada, the Netherlands, Norway and Sweden, by
intrapolation in the case of Australia, Germany and France. For Finland, a trend
regression on university graduates of science and engineering studies in the business
enterprise sector has been used. In the case of the United Kingdom, a trend has been
extracted from figures on scientists and engineers employed by industry as well as by
government, published by the US National Science Board (1991) in its annual
"Science and Engineering Indicators", p. 301. Figures on years of schooling in the
labour force are based on linear trend regressions for the five-yearly data on average
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years of schooling attained by adults over 25 years of age, which have recently been

compiled by Barro and Lee (1993).

To normalize relative factor endowments, the different shares of each country in the

total factor endowments of all twelve countries have been divided by the country's

share in the sum of all countries' Gross Domestic Product (GDP). A logarithmic

transformation has then been made to assure symmetry of the factor endowment

indicators. GDP figures are from the chain index series of real GDP per capita in

constant dollars at 1985 international prices in Heston and Summers (1991).

Purchasing power parities are from the OECD Science and Technology Statistics

(1992). .

The table on the next page lists the seventeen industries included in the study and
indicates how patent data, based on the concordance between the US patent classes
and product fields of the US standard industrial classification, have been assigned to
the International Standard Industrial Classification of the United Nations (ISIC), on
which the OECD STAN data on industries' value added is based. An adjustment to the
source data has been made when patent count data for a small country was zero in a
particular industry for one or several,consecutive years. In these cases, the sum of
patented applications recorded for the preceding and subsequent year has been evenly
distributed across the years. The purpose of this is to avoid realizations at minus
infinity in the logarithmic transformation of the technology specialization indicator.



31

Industries included in the analysis:

ISIC-CODE INDUSTRY US-SIC OTAF
Sequence

Number

1

4

14

16
17

19

20

Abbre-
viation

in tables

FOOD

CHEM

DRUG
RAP

SCG

IRON

NFM

31

351 & 352

(excl. 3522)

3522

355 & 356

36

371

372

381

382
(excl. 3825)

3825

Food, Beverages, Tobacco 20
Chemicals excluding drugs 281, 282, 284, 285,

286, 287, 289

Drugs and Medicines 283
Rubber and Plastics 30

Non-Metallic 32

Mineral Products
331, 332, 3398
333, 334, 335,
336 3399

341, 342, 343, 344,
345, 3466, 3469,
347, 3493-9

Machinery nee 348-3492,351-356,
(except office & computing) 358-3594, 3599,

3631-33

Office and Computing 3571, 3572, 3575,
Machinery 3577-3579

Iron and Steel

Non-Ferrous Metals

Fabricated Metal Products 21 FABM

22 minus 27 MACH

27 COMP

383
(excl. 3832)
3832

3841

3843

3845
3842, 3844,

3849

385

Electrical Machinery 3612-3, 362, 364,
(except radio, tv & com. equ.) 369

Radio, TV and
Communication Equipment

Shipbuilding and Repair

Motor Vehicles

Aircraft

Other Transport Equipment

Professional Goods

(Instruments)

3651-2, 3661, 3663,
3669, 3671-2,

3674-9, 3844-5
373
371

372, 376

374-5, 379

38, except 384

34

41

49

46
47,54

48 minus 49

55

ELMA

RTV

SHIP

MOTV

AIRC
OTRA

PROF

Missing values for the Netherlands' value added in NFM in 1988 and for Italy's value

added in the DRUG, COMP, SHIP and AIRC industries in 1988 have been added from
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extrapolations by the author. In a number of cases time series of individual industries'

value added are not reported at all in the 1992 STAN database. These cases are

therefore omitted from the analysis: MACH, COMP, ELMA and RTV in France,

AIRC in the Netherlands, OTRA in the United Kingdom and PROF in Canada.



33

References

Aghion, Philippe and Peter Howitt (1992), "A Model of Growth Through Creative
Destruction". Econometrica; Vol. 60, No. 2, pp. 323-351.

Arthur, W. Brian (1988), Self-Reinforcing Mechanisms in Economics. In: Philip W.
Anderson, Kenneth J. Arrow and David Pines (eds.), The Economy as an
Evolving Complex System. Redwood City 1988.

Basawa, Ishawa V. and B.L.S. Prakasa Rao (1980), Statistical Inference for Stochastic
Processes. London.

Balassa, Bela (1965), "Trade Liberalization and 'Revealed' Comparative Advantage".
The Manchester School of Economic and Social Studies, Vol. 23, No. 2, pp. 99
-123.

Bardhan, P.K. (1970), Economic Growth, Development and Foreign Trade. New
York.

Barro, Robert J. and Jong-Wha Lee (1993), International Comparisons of Educational
Attainment. Harvard University Working Paper. Cambridge.

Bowen, Harry P. (1983), "On the Theoretical Interpretation of Indices of Trade
Intensity and Revealed Comparative Advantage". Weltwirtschaftliches Archiv,
Vol. 119, pp. 464-472.

Brezis, Elise, Paul Krugman and Daniel Tsiddon (1993), "Leapfrogging in
International Competition: A Theory of Cycles in National Technological
Leadership". American Economic Review, Vol. 83, pp. 1211 -1219.

Casson, Mark (1991), Comparative Advantage and Location of R&D. In: Mark
Casson (ed.), Global Research Strategy and International Competitiveness.
Oxford.

Coe, David T. and Elhanan Helpman (1993), International R&D spillovers. NBER
Working Paper No. 4444. Cambridge, MA.

Dosi, Giovanni (1982), "Technological Paradigms and Technological Trajectories".
Research Policy, Vol. 11, pp. 147-162.

Ethier, Wilfried J. (1984), Higher Dimensional Issues in Trade Theory. In: R.W.
Jones, P.B. Kenen (eds.), Handbook of International Economics, Vol. I.
Amsterdam.

Evenson, R.E. (1991), Patent Data by Industry: Evidence for Invention Potential
Exhaustion? In: OECD (ed.), Technology and Productivity: The Challenge for



34

Economic Policy. Paris.

Findlay, Ronald (1973), International Trade and Development Theory. New York.

Geweke, John, Robert C. Marshall and Gary A. Zarkin (1986), "Mobility Indices in
Continuous Time Markov Chains". Econometrica, Vol. 54, pp. 1407 - 1423.

Griliches, Zvi (1992), "The Search for R&D Spillovers". Scandinavian Journal of
Economics, Vol. 94, Supplement, pp. 29 - 47.

Grossman, Gene M. and Elhanan Heipman (1991), Innovation and Growth in the
Global Economy. Cambridge, MA.

Grupp, Hariolf and Harald Legler (1989), Strukturelle und technologische Position der
Bundesrepublik Deutschland im internationalen Wettbewerb. Hannover.

Heckscher, Eli (1919), "The Effects of Foreign Trade on the Distribution of Income".
EconomiskTidskrift, Vol. 21, pp. 497 - 512.

Heston, Alan and Robert Summers (1991), The Penn World Table (Mark 5): An
Expanded Set of International Comparisons, 1950 -1988". Quarterly Journal of
Economics, Vol. 106, pp. 327 - 368.

Hippel, Eric von (1976), "The Dominant Role of Users in the Scientific Instrument
Innovation Process". Research Policy, Vol. 5, pp. 213 - 239.

Hippel, Eric von (1988), The Sources of Innovation. Oxford.

Lichtenberg, Frank R. 1993, R&D Investment and International Productivity
Differences. In: H. Siebert (Hrsg.), Economic Growth in the World Economy.
Symposium 1992. Tubingen.

Liesner, H.H.(1958), "The European Common Market and British Industry". The
Economic Journal, Vol. 68, pp. 306 - 316.

Maddala, G.S. (1992), Introduction to Econometrics. New York.

Mohnen, Pierre (1990), "New Technologies and Interindustry Spillovers". 577-
Review, No. 7, pp. 131 -147.

National Science Board (1991), Science and Engineering Indicators -1991 Tenth
Edition. Washington, DC.

OECD (1992a), The OECD STAN database for industrial analysis. Paris.

OECD (1992b), OECD Science and Technology Statistics. Paris.



35

Ohlin, Bertil (1933), Interregional and International Trade. Cambridge.

Quah, Danny (1993a), Dependence in Growth and Fluctuations Across Economies
with Mobile Capital. LSE Working Paper. London.

Quah, Danny (1993b), "Empirical cross-section dynamics in economic growth".
European Economic Review, Vol. 37, pp. 426 - 434.

Quah, Danny (1993c), "Galton's Fallacy and Tests of the Convergence Hypothesis".
Scandinavian Journal of Economics, Vol. 95, pp. 427 - 443.

Romer, Paul M. (1990), "Endogenous Technological Change". Journal of Political
Economy, Vol. 98, pp. 71 - 102.

Rosenberg, Nathan (1976), Perspectives on Technology. Cambridge.

Rosenberg, Nathan (1994), Exploring the black box. Cambridge.

Schmookler, Jacob (1966), Invention and Economic Growth. Cambridge, MA.

Silverman, B.W. (1986), Density Estimation for Statistics and Data Analysis. London.

Soete, Luc L.G. (1981), "A General Test of Technological Gap Trade Theory".
Weltwirtschaftliches Archiv, Vol. 117, pp. 638 - 660.

Solow, Robert M. (1957), "Technical Change and the Aggregate Production
Function". Review of Economics and Statistics, Vol. 39, pp. 312 - 320.

Stokey, Nancy L. and Robert E. Lucas, Jr. (1989), Recursive Methods in Economic
Dynamics. Cambridge, MA.

Vickery, Graham (1986), "International Flows of Technology: Recent Trends and
Developments". STI-Review, No. 1, pp. 47 - 84.

Weidlich Wolfgang and Giinter Haag (1983), Concepts and Models of a Quantitative
Sociology. Berlin.

US Patent and Trademark Office (1991), Patenting Trends in the United Sates 1963 -
1990. Washington, DC.



Table 1

Six-state Markov chain estimates for the
industry specialization indicator 1970 —1988

First-order, time-stationary estimates of the one-year transition probabilities:

Transition end state — upper boundary
Observations

441
497
493
643
1151
321

Stationary
distribution
Sample distr.

u-sd
0,89
0,08

0,116
0,124

u-sd/3
0,11
0,78
0,11
0,02

0,142
0,140

P

0,12
0,64
0,18

0,143
0,139

u + sd/3

0,01
0,23
0,63
0,10

0,185
0,181

u + sd

0,02
0,17
0,86
0,10

0,323
0,325

> u + sd

0,03
0,90

0,093
0,090

First-order, time-stationary estimates of the five-year transition probabilities:

340
385
381
518
886
248

Stationary
distribution
Sample distr

0,78
0,17

0,113
0,123

0,19
0,6

0,15
0,05

0,135
0,139

0,03
0,14
0,46
0,23
0,04

0,139
0,138

0,07
0,24
0,47
0,15

0,172
0,188

0,02
0,15
0,24
0,76
0,17

0,337
0,321

0,05
0,82

0,103
0,099

First-order, time-stationary estimates of the ten-year transition probabilities:

212
257
234
342
572
156

Stationary
distribution
Sample distr.

0,77
0,21
0,04

0,17
0,49
0,18
0,09
0,01
0,01

0,03
0,15
0,37
0,25
0,07
0,03

0,10
0,25
0,35
0,15
0,02

0,02
0,06
0,16
0,31
0,69
0,17

0,01
0,08
0,77

0,149
0,119

0,134
0,145

0,138
0,132

0,152
0,193

0,315
0,323

0,113
0,088

One-year transitions, iterated ten times:

0,44
0,24
0,09
0,05
0,02

0,29
0,27
0,17
0,12
0,06
0,02

0,13
0,18
0,19
0,17
0,12
0,05

0,08
0,16
0,22
0,23
0,21
0,12

0,05
0,14
0,28
0,37
0,47
0,40

0,01
0,04
0,06
0,11
0,40



Table 2

Six-state Markov chain estimates for the
technology specialization indicator 1972 —1989

First-order, time-stationary estimates of the one-year transition probabilities:

Observations
424
661
631
777
892
355

Stationary
distribution
Sample distr.

Transition
p - sd
0,54
0,17
0,04
0,02
0,03
0,04

end state
u-sd/3

0,25
0,50
0,21
0,06
0,05
0,02

— upper boundary
u

0,08
0,16
0,44
0,17
0,06
0,05

u + sd/3
0,04
0,08
0,19
0,56
0,13
0,05

u + sd
0,06,
0,06
0,90
0,16
0,63
0,21

> u + sd
0,03
0,02
0,02
0,02
0,09
0,64

0,116
0,113

0,181
0,177

0,163
0,169

0,201
0,208

0,236
0,239

0,102
0,095

First-order, time-stationary estimates of the five-year transition probabilities:

315
501
487
590
692
275

Stationary
distribution
Sample distr.

0,51
0,18
0,06
0,03
0,03
0,05

0,25
0,48
0,22
0,08
0,06
0,03

0,07
0,18
0,38
0,18
0,08
0,04

0,04
0,07
0,22
0,50
0,15
0,06

0,08
0,07
0,09
0,18
0,56
0,23

0,03
0,02
0,03
0,02
0,12
0,59

0,125
0,110

0,191
0,175

0,164
0,170

0,192
0,206

0,222
0,242

0,105
0,096

First-order, time-stationary estimates of the ten-year transition probabilities:

200
294
296
366
444
160

Stationary
distribution
Sample distr.

0,45
0,21
0,07
0,05
0,02
0,03

0,24
0,43
0,26
0,11
0,08
0,06

0,09
0,13
0,31
0,18
0,11
0,09

0,07
0,10
0,24
0,42
0,17
0,04

0,07
0,08
0,08
0,20
0,48
0,26

0,07
0,03
0,02
0,08
0,14
0,52

0,132
0,114

0,205
0,167

0,156
0,168

0,189
0,208

0,206
0,252

0,112
0,090

One-year transitions, iterated ten times:

0,12
0,12
0,12
0,11
0,11
0,11

0,18
0,19
0,18
0,18
0,18
0,17

0,16
0,16
0,16
0,16
0,16
0,16

0,19
0,19
0,20
0,20
0,20
0,21

0,23
0,23
0,23
0,24
0,24
0,25

0,10
0,09
0,09
0,10
0,10
0,11



Table 3

Six-state Markov chain estimates for the
industry and technology specialization indicators

of individual industries

(First-order, time-stationary estimates of the five-year transition probabilities)

Observations

35
35
17
40
13
28

Station, distr.
Sample distr.

35
25
19
30
39
21

Station, distr.
Sample distr.

Transition end state - upper boundary
u-sd u-sd/3 u ' u+sd/3 u+sd >u+sd

0,51
0,23

0,05
0,23

FOOD — industry specialization:
0,31
0,54
0,59
0,08
0,08

0,09
0,17
0,18
0,07
0,08

0,06

0,18
0,55
0,23

0,03

0,20
0,31
0,04

0,03
0,03
0,06
0,05
0,12
0,96

0,126
0,208

0,193
0,208

0,065
0,101

0,072
0,238

0,189
0,207

0,132
0,148

0,083
0,112

0,142
0,178

0,059
0,077

0,248
0,231

0,484
0,166

0,43
0,28
0,16
0,13
0,08
0,10

FOOD — technology specialization:
0,26
0,28
0,11
0,13
0,08

0,06
0,12
0,32
0,10
0,03
0,05

0,11
0,04
0,16
0,33
0,18
0,05

0,11
0,20
0,16
0,30
0,39
0,24

0,03
0,08
0,11

0,26
0,57

0,206
0,124

30
26
33
14
48
17

Station, distr.
Sample distr.

32
22
10
19
68
18

Station, distr.
Sample distr.

0,67
0,04

CHEM — industry specialization:
0,17
0,58
0,27
0,14
0,04

0,17
0,31
0,54
0,36
0,06

0,07
0,15
0,28
0,06

0,03
0,21
0,77
0,05

0,06
0,94

0,027
0,178

0,237
0,154

0,272
0,196

0,099
0,083

CHEM — technology specialization:

0,279
0,189

0,177
0,13

0,071
0,059

0,082
0,112

0,177
0,285

0,301
0,402

0,188
0,101

0,72
0,27
0,30
0,05
0,02

0,16
0,59
0,10
0,16
0,03

0,06
0,05
0,40
0,16
0,02

0,03
0,09

0,26
0,12

0,03

0,20
0,37
0,71
0,39

0,12
0,61

0,091
0,107



Table 3 continued

27
17
24
10
70
20

Station, distr.
Sample distr.

0,63
0,12
0,04

DRUG —
0,11
0,53
0,29
0,20

industry specialization:
0,15
0,24
0,29
0,40
0,07

0,07

0,08

0,07

0,04
0,12
0,29 -
0,30
0,80
0,50

0,10
0,06
0,50

0,055
0,161

0,123
0,101

0,139
0,142

0,055
0,059

0,554
0,416

0,074
0,119

14
36
39
33
38
9

Station, distr.
Sample distr.

0,14
0,14
0,03
0,09
0,03

DRUG —
0,29
0,53
0,33
0,16
0,03
0,11

technology specialization:
0,14
0,16
0,41
0,28
0,05

0,29
0,14
0,18
0,42
0,21

0,07

0,03
0,06
0,53
0,67

0,07
0,03
0,03

0,16
0,22

0,082
0,083

0,296
0,213

0,22
0,231

0,226
0,195

0,125
0,225

0,051
0,053

18
16
27
24
60
23

distribution
Sample distrib.

20
21
18
16
84
10

Station, distr.
Sample distr.

1,00
0,56
0,19

RAP —

0,19
0,31
0,13
0,08

industry specialization:

0,13
0,11
0,13
0,13

0,07
0,33
0,17
0,04

0,13
0,33
0,42
0,53
0,35

0,08
0,61

1
0,107 0,095 0,161 0,143

RAP — technology specialization:

0,16
0,118

0,127
0,124

0,127
0,107

0,103
0,095

0,357 0,137

0,50
0,29
0,06
0,13
0,04
0,20

0,25
0,10
0,28
0,13
0,06

0,10
0,29
0,17
0,06
0,11

0,05
0,05
0,28
0,13
0,08
0,10

0,05
0,24
0,22
0,50
0,69
0,50

0,05
0,05

0,06
0,02
0,20

0,444
0,497

0,039
0,059

23
40
39
24
22
20

Station, distr.
Sample distr.

0,207
0,137

SCG — industry specialization:
0,78
0,25
0,03

0,17
0,47
0,36
0,08

0,04
0,12
0,41
0,29
0,09

0,07
0,15
0,33
0,23

0,05
0,05
0,29
0,36
0,20

0,03

0,32
0,80

0,167
0,238

0,122
0,232

0,098
0,143

0,149
0,131

0,257
0,119



Table 3 continued

24
22
25
41
40
17

Station, distr.
Sample distr.

0,25
0,36
0,04
0,49
0,03
0,06

SCG — technology specialization:
0,21
0,05
0,08
0,12
0,20
0,12

0,08
0,14
0,24
0,20
0,05
0,06

0,13
0,18
0,48
0,39
0,20

0,17
0,27
0,16
0,20
0,43
0,47

0,17

0,05
0,10
0,29

0,106
0,142

0,137
0,13

0,128
0,148

0,258
0,243

0,287
0,237

0,084
0,101

28
38
30
10
38
24

Station, distr.
Sample distr.

17
39
29
28
23
23

Station, distr.
Sample distr.

0,46
0,07
0,07
0,20

IRON — industry specialization:
0,32
0,39
0,27
0,50
0,18

0,14
0,28
0,30
0,10
0,18

0,08
0,07

0,13

0,07
0,16
0,30
0,20
0,32
0,17

0,18
0,83

0,078
0,167

0,233
0,226

0,177
0,178

0,059
0,059

0,101
0,157

0,231
0,266

0,172
0,224

0,166
0,111

0,215
0,226

0,195
0,146

0,237
0,142

0,47
0,03
0,17
0,11
0,12
0,09

IRON — technology specialization:
0,18
0,46
0,31
0,18
0,15
0,04

0,18
0,28
0,17
0,39
0,21
0,09

0,18
0,05
0,14
0,07
0,15
0,09

0,10
0,14
0,25
0,24
0,26

0,08
0,07

0,12
0,43

0,136
0,095

28
38
30
10
38
24

Station, distr.
Sample distr.

18
44
19
30
36
22

Station, distr.
Sample distr.

0,46
0,07
0,07
0,20

NFM — industry
0,32
0,39
0,27
0,50
0,18

specialization:
0,14
0,28
0,30
0,10
0,18

0,08
0,07

0,13

0,07
0,16
0,30
0,20
0,32
0,17

0,18
0,83

0,078
0,167

0,233
0,226

0,177
0,178

0,059
0,059

NFM — technology specialization:

0,15
0,107

0,214
0,26

0,218
0,112

0,176
0,176

0,215
0,226

0,168
0,213

0,237
0,142

0,67
0,14
0,05
0,03

0,05

0,17
0,50
0,16
0,10
0,14
0,09

0,06
0,18
0,53
0,17
0,14
0,05

0,06
0,05
0,16
0,47
0,17
0,18

0,06
0,14
0,11
0,13
0,36
0,32

0,10
0,19
0,32

0,074
0,13



Table 3 continued

32
33
11
15
55
22

Station, distr.
Sample distr.

25
41
29
10
36
28

Station, distr.
Sample distr.

FABM — industry specialization:
0,63
0,15
0,27

0,31
0,57
0,18
0,07
0,02

0,06
0,24
0,18
0,07

0,03
0,27
0,34
0,07

0,09
0,47
0,64
0,41

0,07
0,27
0,59

0,066
0,191

0,094
0,196

0,039
0,065

0,067
0,089

FABM — technology specialization:

0,141
0,148

0,122
0,242

0,237
0,172

0,08
0,059

0,434
0,327

0,300
0,131

0,64
0,17
0,07

0,03
0,04

0,20
0,39
0,14

0,03
0,04

0,08
0,27
0,66
0,30
0,03
0,04

0,15
0,10
0,20
0,03
0,07

0,04
0,02

0,10
0,64
0,21

0,04

0,03
0,40
0,25
0,61

0,185
0,213

0,235
0,166

21
31
13
6
58
25

Station, distr.
Sample distr.

19
25
20
14
70
21

Station, distr.
Sample distr.

0,48
0,06
0,08

COMP —
0,48
0,65
0,31
0,33
0,09

industry specialization:
0,05
0,16

0,17
0,12

0,03
0,23
0,17
0,09

0,1
0,38
0,33
0,55
0,40

0,16
0,60

0,054
0,136

0,313
0,201

0,105
0,084

0,075
0,039

0,223
0,112

0,266
0,148

0,16
0,118

0,097
0,828

0,326
0,377

0,127
0,162

0,42
0,32
0,10
0,14
0,06
0,05

COMP — technology specialization:
0,42
0,32
0,25
0,29
0,09

0,24
0,25
0,21
0,16

0,20
0,20
0,14
0,09

0,16

0,20
0,21
0,57
0,29

0,04
0,67

0,225
0,414

0,029
0,124

43
8
10
33
45
15

Station, distr.
Sample distr.

0,84
0,25

MACH —
0,07

0,10
0,06

industry specialization:
0,05
0,13

0,09
0,02

0,05
0,38
0,80
0,30
0,16

0,25
0,10
0,55
0,58
0,20

0,24
0,80

0,016
0,279

0,010
0,052

0,021
0,065

0,115
0,214

0,378
0,292

0,416
0,097



Table 3 continued

22
55
18
30
18
26

Station, distr.
Sample distr.

MACH — technology specialization:
0,55
0,15
0,11
0,03

0,32
0,67
0,39
0,10

0,09
0,15
0,17
0,10

0,04

0,45
0,02
0,17
0,43
0,06
0,04

0,02
0,11

0,39
0,19

0,06

0,56
0,73

0,083
0,13

0,188
0,325

0,07
0,107

0,078
0,178

0,169
0,107

0,412
0,154

13
15
23
37
59
7

Station, distr.
Sample distr.

22
14
20
30
73
10

Station, distr.
Sample distr.

0,54
0,47

ELMA —
0,46
0,47
0,13
0,11
0,03

industry specialization:

0,35
0,22
0,07

0,07
0,30
0,54
0,03

0,22
0,14
0,69
0,86

0,17
0,14

0,331
0,084

0,328
0,097

0,048
0,149

0,092
0,240

ELMA — technology specialization:

. 0,084
0,13

0,17
0,083

0,152
0,118

0,144
0,178

0,168
0,383

0,437
0,432

0,033
0,045

0,36
0,14

0,03
0,03
0,30

0,23
0,36
0,35
0,10
0,05
0,00

0,05
0,29
0,20
0,03
0,04
0,20

0,09
0,07
0,15
0,43
0,10

0,18
0,07
0,30
0,33
0,67
0,30

0,09
0,07

0,07
0,14
0,20

0,044
0,059

25
33
13
1

61
21

Station, distr.
Sample distr.

29
25
24
10
55
26

Station, distr.
Sample distr.

0,84
0,39

RTV —
0,16
0,48
0,77

industry specialization:

0,12
0,15

0,11

0,08
1,00
0,70
0,19

0,18
0,81

0,162 0,214 0,084
0,056
0,006

0,238
0,172

0,262
0,148

0,166
0,142

0,057
0,059

0,485
0,396

0,277
0,325

0,459
0,136

0,62
0,24

0,40
0,02

RTV — technology specialization:
0,24
0,52
0,38
0,10

0,10
0,20
0,38
0,30
0,04

0,03
0,04
0,17
0,00
0,04

0,08
0,20
0,91

1,00

0,154



Table 3 continued

36
6
1
6

113
6

Station, distr.
Sample distr.

23
25
14
18
71
18

Station, distr.
Sample distr.

0,86
0,50

MOTV —
0,14
0,50

- industry specialiation:

0,50
0,03 0,12

1,00
0,50
0,79
0,33

0,07
0,66

0,783

0,214

0,217

0,036
0,018
0,006

0,170
0,036

0,187
0,136

0,264
0,148

0,094
0,083

0,074
0,107

0,685
0,673

0,227
0,42

0,127
0,036

0,61
0,24
0,07

0,01

MOTV —
0,26
0,44
0,57
0,28
0,07
0,06

technology specialization:
0,04
0,12
0,14
0,22
0,07
0,06

0,04
0,07
0,16
0,20

0,09
0,16
0,14
0,28
0,18
0,17

0,06
0,17
0,72

0,153
0,107

29
25
20
1

47
32

Station, distr.
Sample distr.

29
18
21
22
58
21

Station, distr.
Sample distr.

0,86
0,04

AIRC —
0,14
0,44
0,20

0,02

industry specialization:

0,52
0,65
1,00
0,06 0,02

0,15

0,77
0,19

0,13
0,81

0,032
0,188

0,111
0,162

0,252
0,130

0,008
0,006

AIRC — technology specialization:

0,157
0,172

0,102
0,107

0,135
0,124

0,185
0,130

0,355
0,305

0,321
0,343

0,242
0,208

0,52
0,22
0,19
0,09
0,02
0,05

0,21
0,22
0,14
0,09
0,03

0,10
0,22
0,24
0,23
0,07

0,07
0,22
0,19
0,41
0,16

0,03
0,11
0,24
0,18
0,53
0,67

0,07

0,19
0,29

0,100
0,124

32
54
12
24
24
31

Station, distr.
Sample distr.

0,56
0,16

SHIP —
0,44
0,64
0,25
0,83
0,04

industry specialization:

0,2
0,17
0,25
0,08

0,50
0,42
0,29

0,08
0,25
0,17
0,19

0,42
0,81

0,087
0,190

0,244
0,268

0,120
0,071

0,164
0,143

0,122
0,143

0,263
0,185



Table 3 continued

19
51
31
13
30
25

Station, distr.
Sample distr.

SHIP — technology specialization:
0,37
0,25
0,06
0,08

0,04

0,47
0,45
0,19
0,08

0,04

0,16
0,39
0,23
0,27
0,04

0,05
0,06
0,06
0,31
0,10
0,08

0,11
0,08
0,19
0,23
0,33
0,16

0,10
0,08
0,30
0,64

0,125
0,112

0,2
0,302

0,18
0,183

0,095
0,077

0,181
0,178

0,219
0,148

19
36
23
5

42
29

Station, distr.
Sample distr.

19
32
28
8
61
21

Station, distr.
Sample distr.

0,79
0,08
0,09

0,05

PROF —
0,05
0,61
0,09
0,20
0,05

industry specialization:
0,16
0,19
0,35
0,40
0,17

0,03
0,09
0,20
0,05

0,08
0,39

0,60
0,03

0,1
0,97

0,116
0,123

0,076
0,234

0,112
0,149

0,025
0,032

PROF — technology specialization:

0,144
0,112

0,163
0,189

0,154
0,166

0,039
0,047

0,178
0,272

0,425
0,361

0,492
0,188

0,42
0,31
0,07

0,03
0,10

0,32
0,25
0,32

0,07

0,05
0,28
0,07
0,50
0,16

0,05

0,04
0,13
0,05

0,11
0,16
0,50
0,38
0,66
0,19

0,05

0,03
0,71

0,075
0,124



Table 4

Fractile Markov chain estimates for the specialization indicators

(First-order, time-stationary estimates of the ten-year transition probabilities)

Industry specialization in value added (1970 — 1988):

Observations
288
297
297
297
297
297

Transition end state
1/6

0,73
0,23
0,02
0,01

1/3
0,19
0,38
0,29
0,10
0,03
0,02

— quantile
1/2

0,06
0,23
0,35
0,23
0,09
0,04

2/3
0,01
0,10
0,23
0,37
0,26
0,02

5/6
0,01
0,07
0,08
0,22
0,48
0,14

1

0,02
0,06
0,13
0,78

A regression of the interquantile range on time (in years) yields a slope
coefficient of 0.005 with a t-value of 2.31 and an adjusted R2 of 0.194.

Technology specialization (1972— 1989):

Observations
264
272
272
272
272
272

Transition
1/6

0,50
0,24
0,12
0,05
0,04
0,04

end state — quantile
1/3

0,20
0,36
0,19
0,11
0,08
0,06

1/2
0,10
0,17
0,31
0,19
0,14
0,08

2/3
0,06
0,11
0,25
0,33
0,19
0,06

5/6
0,06
0,08
0,08
0,23
0,31
0,25

1
0,06
0,04
0,05
0,08
0,25
0,51

A regression of the interquantile range on time (in years) yields a slope
coefficient of 0.006 with a t-value of 2.43 and an adjusted R2 of 0.224.



Table 5

Fractile Markov chain estimates for the
specialization indicators of individual industries

(First-order, time-stationary estimates of the five-year transition probabilities)

CHEM
value added

CHEM
technology

DRUG
value added

DRUG
technology

RAP
value added

Transition end-state — quantile
1/6 1/3 1/2

0,62
0,27
0,12

0,23
0,46
0,23
0,08

2/3

0,11
0,27
0,35
0,27

0,04

0,31
0,42
0,19
0,03

5/6
0,82
0,11
0,04
0,04

0,53
0,28
0,14
0,04

0,14
0,25
0,39
0,18
0,04

0,03
0,11
0,25
0,43
0,18

0,04
0,21
0,75

1

0,15
0,35
0,33

0,08
0,46
0,64

0,64
0,32
0,04

0,28
0,46
0,21
0,04

0,07
0,07
0,46
0,21
0,17

0,11
0,11
0,25
0,42
0,11

0,04
0,11
0,25
0,28
0,32

0,07
0,25
0,11
0,57

0,27
0,35
0,12
0,11
0,12
0,02

0,08
0,42
0,27
0,15
0,08

0,31
0,12
0,15
0,35
0,08

0,19
0,04
0,23
0,12
0,35
0,05

0,12
0,04
0,19
0,27
0,15
0,15

0,04
0,04
0,04

0,23
0,77

0,75
0,17
0,04
0,04

0,21
0,43
0,18
0,15
0,04

0,11
0,43
0,28
0,14
0,04

0,18
0,25
0,17
0,35
0,04

0,07
0,04
0,25
0,32
0,32

0,03
0,04
0,07
0,11
0,14
0,61

RAP
technology

0,35
0,27
0,15

0,08
0,10

0,31
0,38
0,12
0,08

0,08

0,19
0,04
0,31
0,23
0,08
0,10

0,04
0,19
0,12
0,19
0,19
0,18

0,08
0,15
0,23
0,35
0,13

0,12
0,04
0,15
0,27
0,31
0,41



Table 5 continued

SCG
value added

0,61
0,28
0,04
0,04
0,04

0,28
0,28
0,32
0,11

0,04
0,21
0,42
0,21
0,11

0,04
0,17
0,11
0,35
0,32

0,04

0,11
0,28
0,39
0,18

0,04

0,14
0,82

SCG
technology

0,27
0,31
0,23
0,04
0,08
0,05

0,19
0,27
0,12
0,04
0,15
0,15

0,08
0,08
0,19
0,35
0,12
0,13

0,15
0,12
0,15
0,15
0,23
0,13

0,12
0,12
0,23
0,19
0,08
0,18

0,19
0,12
0,08
0,23
0,35
0,36

IRON
value added

IRON
technology

0,35
0,08
0,15
0,08
0,12
0,15

NFM
value added

NFM
technology

FABM
value added

0,23
0,31
0,12
0,15
0,12
0,05

0,08
0,38
0,27
0,04
0,08
0,10

0,12
0,12
0,15
0,27
0,12
0,15

0,12
0,08
0,19
0,19
0,31
0,08

0,12
0,04
0,12
0,27
0,27
0,46

0,46
0,27
0,08
0,04
0,04
0,08

0,27
0,27
0,15
0,12
0,12
0,05

0,04
0,27
0,38
0,12
0,12
0,05

0,12
0,04
0,19
0,35
0,15
0,10

0,04
0,15
0,08
0,23
0,23
0,18

0,08

0,12
0,15
0,35
0,54



Table 5 continued

FABM
technology

0,62
0,19
0,08
0,04
0,04
0,03

0,15
0,38
0,31
0,04
0,04
0,05

0,15
0,19
0,35
0,27

0,03

0,15
0,27
0,31
0,15
0,08

0,04
0,04

0,23
0,38
0,21

0,04
0,04

0,12
0,38
0,32

MACH
value added

MACH
technology

0,62
0,19
0,08
0,04
0,04
0,03

0,15
0,38
0,31
0,04
0,04
0,05

0,15
0,19
0,35
0,27

0,03

0,15
0,27
0,31
0,15
0,08

0,04
0,04

0,23
0,38
0,21

0,04
0,04

0,12
0,38
0,32

COMP
value added

0,36
0,07
0,18
0,07

0,57
0,46
0,18
0,04
0,04

0,07
0,43
0,21
0,25

0,07

0,04
0,39
0,46
0,07
0,04

0,14
0,54
0,32

0,04
0,04
0,41
0,57

COMP
technology

0,46
0,27
0,08
0,08
0,08
0,03

0,35
0,23
0,23
0,12
0,04
0,03

0,08
0,23
0,15
0,27
0,12
0,10

0,04
0,15
0,38
0,19
0,08
0,10

0,08
0,08
0,23
0,38
0,15

0,08
0,04
0,08
0,12
0,31
0,59

ELMA
value added

ELMA
technology

0,50
0,15
0,15
0,04
0,04
0,08

0,04
0,38
0,08
0,08
0,15
0,18

0,15
0,23
0,31
0,19
0,04
0,05

0,12
0,08
0,08
0,31
0,27
0,10

0,04

0,15
0,27
0,15
0,26

0,15
0,15
0,23
0,12
0,35
0,33



Table 5 continued

RTV
value added

0,29
0,36

0,71
0,61
0,04

0,04
0,96

0,82
0,14
0,04

0,14
0,61
0,25

0,04
0,25
0,71

RTV
technology

0,50
0,15
0,15
0,04
0,04
0,08

0,04
0,38
0,08
0,08
0,15
0,18

0,15
0,23
0,31
0,19
0,04
0,05

0,12
0,08
0,08
0,31
0,27
0,10

MOTV
value added

MOTV
technology

0,50
0,31
0,04
0,04

0,08

0,31
0,42
0,12
0,08
0,08

0,08
0,15
0,42
0,12
0,12
0,08

0,04
0,04
0,19
0,31
0,35
0,05

SHIP
value added

SHIP
technology

0,38
0,38
0,08
0,15

0,42
0,31
0,19
0,04

0,03

0,08
0,23
0,23
0,23
0,15
0,05

0,04
0,04
0,19
0,23
0,27
0,15

AIRC
value added

0,04

0,15
0,27
0,15
0,26

0,04
0,04
0,12
0,27
0,19
0,23

0,04
0,23
0,19
0,15
0,25

0,15
0,15
0,23
0,12
0,35
0,33

1
0,75
0,18
0,07

0,07
0,5

0,28
0,07
0,07

0,11
0,21
0,21
0,36
0,11

0,04
0,04
0,21
0,39
0,32

0,04
0,07
0,21
0,18

0,5

0,04
0,04
0,12
0,19
0,27
0,56

0,71
0,17
0,11

0,28
0,46
0,21

0,04

0,32
0,46
0,14
0,07

0,04
0,11
0,61
0,25

0,11
0,25
0,43
0,21

0

0,21
0,79

0,08

0,08
0,15
0,42
0,51

0,86
0,07

0,14
0,68
0,25

0,25
0,71
0,04

0,04
0,68
0,28

0,28
0,61
0,11

0,11
0,89



Table 5 continued

AIRC
technology

0,46
0,31
0,15

0,04
0,03

0,31
0,27
0,19
0,15
0,08

0,12
0,27
0,27
0,23
0,08
0,03

0,08
0,23
0,46
0,12
0,08

0,04
0,15
0,08
0,41
0,28

0,12
0,04

0,08
0,38
0,59

PROF
value added

1,00
0,50
0,28
0,21

0,43
0,32
0,07
0,18

0,07
0,36
0,43
0,14

0,04
0,28
0,68

1,00

PROF
technology

0,62
0,23
0,08
0,04

0,03

0,12
0,38
0,19
0,08
0,19
0,03

0,08
0,27
0,23
0,27
0,11
0,03

0,08
0,08
0,23
0,31
0,15
0,10

0,04
0,04
0,15
0,08
0,46
0,15

0,08

0,19
0,23
0,08
0,67

Table 5 continued

Regressions of interquantile range in
industry specialization on time:

All industries

CHEM
DRUG
RAP
SCG
IRON
NFM
FABM
MACH
COMP
ELMA
RTV
MOTV
SHIP
AIRC
PROF

coefficient

0,00

-0,02
-0,02
0,02
0,01
0,00
0,02
0,00
0,02

-0,12
-0,06
0,01

-0,01
0,01

-0,01
-0,02

t-value

2,31

-6,75
-1,64
8,73
3,19

-0,84
2,28
2,09
5,85

-8,04
-1,61
1,63

-2,31
0,32

-1,68
-2,43

adj.R2

0,194

0,710
0,085
0,807
0,337

-0,016
0,190
0,158
0,649
0,779
0,081
0,085
0,195
0,052
0,091
0,215



Table 5 continued

Regressions of interquantile range in
technology specialization on time:

AH industries

CHEM
DRUG
RAP
SCG
IRON
NFM
FABM
MACH
COMP
ELMA
RTV
MOTV
SHIP
AIRC
PROF

coefficient

0,01

0,01
-0,01
-0,02
-0,01
0,00
0,00
0,01
0,02
0,02
-0,01
-0,01
-0,01
0,04

-0,02
0,01

t-value

2,43

0,65
-0,43
-0,36
-1,25
0,23

-0,11
1,83
5,36
1,26

-1,76
-0,57
-0,61
3,09

-1,27
2,75

adj.R2

0,224

0,035
-0,05

-0,054
0,033

-0,059
-0,062
0,122
0,620
0,034
0,111

-0,041
-0,039
0,336
0,035
0,278



Table 6

Regressions of Specialization in Value Added on Relative Factor Endowments

(Annual data 1970— 1988, twelve countries (eleven countries for MACH, COMP, ELMA, RTV,
AIRC and PROF). Figures in italics are t-values.)

Industry Constant Capital R&D
Capital

R&D
Scientists &

Engineers

Labour Schooling Adjusted
R2

FOOD

CHEM

DRUG

RAP

SCG

IRON

NFM

FABM

MACH

COMP

ELMA

RTV

MOTV

SHIP

AIRC

PROF

0,06

0,01

-0,13

-0,03

-0,09

-0,10

0,12

-0,02

-0,05

-0,15

-0,24

0,11

-0,07

0,06

-0,27

-0,29

0,16
1JS2

0,59
4,79

-1,71
-11,42

-0,36
-4$9

-0,25
-4,02

-0,18
-1,69
0,46

1$8

-0,21
-3,15

-0,04
-036

-0,84
-2JS1

-0,69
-2S>i

0,87
526

-2,64
•1029

2,07
655

-2,58
-1024
-1,21

-4,68

-0,05
•229

0 3
1153

-0,19
•4,67

-0,10
•520

-0,17
-9,91

-0,22
-788

-0,35
-559

-0,04
-2,15

0,19
5,96

-0,16
-1,99

•0,36
-584
0,66
1556

-0,45
-6,49

0,36
422

0,30
430

0,07
0,97

•0,04
-089

-0,22
-3,06

0,65
7,48

0,43
10,18

-0,05
-153
0,71
1158
0,80

5S>5

-0,06
•1,46

-0,05
•0,74

1,44
8,47

0,51
3,78

0,49
530

1,09
736

-0,60
•329

-0,79
-5,60

0,27
1J86

-0,41
-4,07

-03
-2,78

1,63
9J2

0,31
3/69

0,92
1288
0,23

1S>3

-2,42
•9,04

-0,15
•1$9

0,92
682

-0,99
-2$6
2,06

785

-1,34
-7,42

1,29
438

-0,40
• 1 , 1 1

-1,27
-4,48

0,55
1S>3

0,07
104

-0,01
-0,12

-1,16
-936

-0,75
•12,43

-0,65
-1251
-0,50

-5,68

0,30
156

-0,15
-2,71

0,23
123

-1,07
-3,65

-1,03
•451

-0,14
•092

-1,91
•8S>7

2,13
8,7(5

0,14
0,71

-0,89
-4,27

0,16

0,43

0,54

0,47

0,64

0,41

0,39

0,26

0,44

0,37

0,33

0,72

0,47

0,39

0,73

0,30

See explanations in section 4 of the main text.



Table 7

Fractile Markov chain estimates for the
industry residual specialization indicator 1970 — 1988

(First-order, time-stationary estimates of the five-year transition probabilities)

Transition
1/6

All industries 0,57
0,21
0,09
0,06
0,04
0,02

end-state-quantile
1/3

0,2
0,34
0,23
0,13
0,08
0,03

1/2
0,1

0,23
0,32
0,19
0,14
0,03

2/3
0,06
0,1

0,21
0,31
0,21
0,09

5/6
0,05
0,07
0,11
0,24
0,33
0,2

1
0,02
0,03
0,04
0,08
0,2

0,63

CHEM 0,93
0,07

0,04
0,29
0,29
0,25
0,07
0,07

0,04
0,29
0,32
0,14
0,18
0,04

0,21
0,18
0,29
0,18
0,14

0,11
0,11
0,29
0,39
0,11

0,04
0,11
0,04
0,18
0,64

DRUG 0,46
0,29
0,11
0,07
0,07

0,18
0,36
0,18
0,11
0,14
0,04

0,21
0,04
0,21
0,29
0,11
0,14

0,11
0,18
0,11
0,14
0,05
0,21

0,04
0,04
0,25
0,18
0,32
0,18

0,11
0,14
0,21
0,11
0,43

RAP 0,46
0,18
0,14
0,07
0,04
0,11

0,14
0,25
0,21
0,18
0,11
0,11

0,11
0,29
0,18
0,14
0,11
0,18

0,21
0,11
0,11
0,18
0,18
0,21

0,07
0,04
0,14
0,21
0,32
0,21

0,14
0,21
0,21
0,25
0,18

MACH 0,57
0,21

0,43
0,11
0,36
0,25
0,07

0,36
0,29
0,25
0,11

0,11
0,29
0,28
0,25
0,07

0,18
0,04
0,14
0,36
0,29

0,04
0,04
0,07
0,21
0,64

COMP 0,36
0,07
0,14
0,04
0,07

0,43
0,39
0,18
0,14
0,07

0,07
0,07
0,25
0,46
0,14
0,04

0,14
0,29
0,18
0,21
0,21
0,04

0,14
0,25
0,04
0,21
0,36

0,04

0,11
0,29
0,57



Table 7 continued

ELMA 0,14
0,25
0,11
0,04

0,04

0,21
0,39
0,09
0,04
0,11
0,07

0,36
0,21
0,21
0,14
0,25

0,11
0,18
0,32
0,21
0,18

0,21

0,18
0,35
0,18
0,18

0,07
0,04
0,04
0,11
0,25
0,54

RTV 0,21
0,29
0,11

0,43
0,43
0,21
0,11
0,04

0,21
0,18
0,18
0,25
0,14
0,14

0,14
0,07
0,19
0,25
0,25
0,07

0,04
0,21
0,36
0,29
0,11

0,04
0,29
0,67

MOTV 0,79
0,11
0,04
0,04
0,04

0,11
0,46
0,32
0,11

0,11
0,39
0,04
0,07
0,07

0,04
0,14
0,36
0,39
0,07

0,14
0,29
0,39
0,18

0,14
0,11
0,75

SHIP 0,61
0,18
0,14
0,04
0,04

0,07
0,36
0,29
0,21
0,07

0,18
0,25
0,21
0,14
0,21

0,11
0,11
0,29
0,25
0,18
0,07

0,04
0,11
0,07
0,32
0,43
0,04

0,04
0,07
0,89

AIRC 0,43
0,11
0,14
0,04

0,14
0,21
0,57
0,07
0,07

0,21
0,5

0,11
0,29

0,21
0,11
0,18
0,32
0,18
0,11

0,07

0,14
0,43
0,36

0,14
0,32
0,54

PROF 0,71
0,07
0,07

0,29
0,50
0,32

0,04

0,36
0,36
0,21
0,04
0,04

0,04
0,21
0,64
0,07
0,04

0,04
0,04
0,14
0,54
0,25

0,36
0,64



Table 7 continued

Regressions of interquantile range in residuals on time:

All industries

CHEM
DRUG
RAP
MACH
COMP
ELMA
RTV
MOTV
SHIP
AIRC
PROF

coefficient

0,00

0,00
-0,02
0,01
0,01

-0,11
-0,07
-0,01
-0,01
0,01

-0,04
-0,02

t-value

-0,72

-0,75
-7,65
3,18
3,21

-6,36
-1,77
-1,52
-0,06
0,84

-5,35
-2,11

adj.R2

-0,028

-0,025
0,762
0,336
0,340
0,687
0,106
0,068

-0,059
-0,017
0,600
0,161



Figure 1

Stochastic kernel estimate for industry specialization transitions after one year



Figure 2

Stochastic kernel estimate for industry specialization transitions after five years



Figure 3

Stochastic kernel estimate for technology specialization transitions after one year



Figure 4

Stochastic kernel estimate for technology specialization transitions after five years



Figures

Non-parametric density estimates for the industry specialization indicator for the years
1970 (above) and 1988 (below)

f (x)

- 5 - 4 - 3 - 2 - 1

- 5 - 4 - 3 - 2 - 1



Figure 6

Non-parametric density estimates for the technology specialization indicator for the
years 1972 (above) and 1989 (below)
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