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1 MOTIVATION

1 Motivation

Value-at-Risk (VaR) and Expected Shortfall (ES) are statistical risk measures of po-
tential losses. Inappropriate forecasting methods can systematically lead to an un-
derstatement of market risk which can result in real losses. Therefore, financial risk
managers are concerned with the precision of forecasting techniques. As significant
real losses may endanger the economic stability, regulations are imposed on finan-
cial institutions. They are required to hold a certain amount of capital - a risk-based
capital charge - for unexpected losses. In the Basel II regulation, the capital charge
is increased for forecasting methods which underestimate the VaR. There, an ex-
post backtesting procedure translates the degree of risk underestimation into a capital
charge increase.

The focus of this paper is the understatement of market risk. We want to assess the
degree of underestimating the risk by selected univariate VaR and ES forecasting pro-
cedures. This model validation may help to discriminate between them and discard
inappropriate methods.

The underestimation can be measured by the rate in which the VaR and the ES exceed
an upper confidence limit. This ex-ante analysis, which only holds for Monte Carlo
data, is related to the ex-post backtesting which can be based on real data. There,
forecasting methods for VaR can be considered as reliable when the relative number
of observable losses greater than the forecasted VaR is in line with a certain percentage
fixed in the VaR. The relative number is an estimation of the fixed percentage. A
systematic overestimation indicates a systematic underestimation of risk. A similar
statement holds for the ES.

Our ultimate goal in this paper is to clarify, whether there exists a relationship be-
tween the underestimation in the backtesting procedure and in the interval forecast-
ing, i.e., whether the accuracy of prediction limits can be empirically evaluated by
backtesting based on real data.

By relating the ex-ante analysis with confidence limits to the ex-post backtesting the
validation of underestimating the risk will be of relevance for empirical risk stud-
ies. For reliable methods, VaR and ES point forecasts can be supplemented by valid
confidence limits, which give additional information for financial risk management.

The paper is organized as follows. The framework of risk evaluation will be briefly
discussed in section 2. In section 3, we present the different forecasting procedures.
In section 4, we review the resampling technique to generate the VaR and the ES con-
fidence intervals for the GARCH model according to Chistoffersen and Gonçalves
(2005). In section 5, we describe the Monte Carlo setup which generates data with
volatility and fat tail features similar to real data. We discuss the simulation results
and present an analysis of real data supplemented with confidence limits. Section 6
summarizes our results.
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2 RISK EVALUATION

2 Risk evaluation

In univariate approaches, a series of relative losses yt ( negative log returns) on a
given financial asset or portfolio in period t (t = 1, . . . , T) is typically modelled as
follows:

(2.1) yt = µt + ut

(2.2) ut =
√

htεt

where µt is the conditional mean of yt and ht is its conditional variance (conditional on
the information at time t− 1). The sequence {εt} is an independently and identically
distributed (i.i.d.) process with mean zero, variance one, and distribution function F.
For evaluating the performance of selected forecast procedures in a broader frame-
work, we consider cases in which F is a standard normal distribution, εt ∼ N(0, 1),
a standard skew-Student distribution, εt ∼ t(k, s) (k is the number of degrees of free-
dom and s the skewness parameter, compare Bauwens and Laurent (2002) and (2005)
and Jondeau, Poon and Rockinger (2007)) and a standardized general error distribu-
tion, εt ∼ GED(λ) proposed by Nelson (1991) for GARCH models, see also Johnson
et. al.(1980) (compared with the normal distribution, λ < 2 leads to a higher kur-
tosis). In comparison with the normal distribution, with t(k, s) and GED(λ) we can
specify distributions with thicker tails and greater peakedness which are typical char-
acteristics of financial time series.

The volatility dynamics are modelled by a stationary GARCH(1, 1) model for ht:

(2.3) ht = α0 + α1u2
t−1 + δht−1, 0 < α1 + δ < 1.

For estimating potential losses, we consider two popular risk measures, the Value-at-
Risk (VaR) and the Expected Shortfall (ES). Many firms assess their market risk using
VaR models. The Basel II regulation of market-risk charge is based on VaR methods.
VaR has been defined as the minimum loss that occurs with a probability p over a
fixed time horizon. We focus on the probability p = 0.01 and on the time horizon
of one day. The relative 1−day VaR1−p(1|T) – for $1 invested – is the conditional
quantile of the losses distribution, based on information at time T:

(2.4) P
(
yT+1 > VaR1−p (1|T)

)
= p

Similarly , the ES1−p(1|T) measures, given the information at time T, the expected
loss in the p% worst cases for one day ahead, i.e., when the loss yT+1 exceeds the
VaR1−p (1|T):
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2 RISK EVALUATION

(2.5) ES1−p(1|T) = E[yT+1|yT+1 > VaR1−p(1|T)]

Given (2.1) and (2.2), we can express the VaR1−p(1|T) using the quantile q1−p of the
distribution of the i.i.d. error εt:

(2.6) VaR1−p(1|T) = µT+1 +
√

hT+1q1−p

where q1−p is defined in P(ε ≤ q1−p) = 1− p. Similarly, given (2.1) and (2.2), we can
show that

(2.7) ES1−p(1|T) = µT+1 +
√

hT+1ES1−p,

where ES1−p = E[ε|ε > q1−p].

In empirical analysis, we cannot compute the true values of VaR1−p(1|T) and
ES1−p(1|T), their components µT+1, hT+1, q1−p and ES1−p are unknown. In practice,
these components have to be estimated to forecast the unknown risk measures VaR
and ES. Using resampling techniques, Christoffersen and Gonçalves have quantified
the forecast error by constructing a prediction interval for the future VaR1−p(1|T) and
ES1−p(1|T). Quantifying the uncertainty by forecast intervals is important, because
reliable intervals allows risk managers to make more informed decisions.

However, such an interval can systematically underestimate the true risk measures.
In empirical risk studies it is therefore of importance to avoid forecasting proce-
dures with low reliability, i.e. with a strong systematic underestimation of risk. Our
goal in this paper is to evaluate the reliability of forecasted intervals. The evalu-
ation relates the ex-ante forecast with the ex-post backtesting, based on informa-
tion at time T. There, we examine whether the loss yT+i exceeds the VaR1−p(1|T −
i), i = 0, 1, . . . , 249, or equivalently, whether standardized losses ỹT−i exceed q1−p, i.e.
whether

ỹT−i =
yT−i − µT−i√

hT−i
= εT−i > q1−p.

With i.i.d. errors ε, the number of exceedances H has a Binomial Distribution, H ∼
B(n, p) with n = 250.

Similarly with P(ε > ES1−p) = pE, the number of exceedances HE,

ỹT−i =
yT−i − µT−i√

hT−i
= εT−i > ES1−p,

has a Binomial Distribution, HE ∼ B(n, pE) with n = 250.

In backtesting, we measure the reliability of forecasting procedures by estimating p
by p̂ = H/n and pE by p̂E = HE/n. A systematic overestimation of p, p̂ > p, and of
pE, p̂E > pE, indicate a systematic underestimation of risk.
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3 FORECASTING PROCEDURES

3 Forecasting procedures

We will consider eight different approaches to forecast Value-at-Risk and Expected
Shortfall.

3.1 Historical Simulation (HS) and Historical Volatility (HV)

The HS calculates the VaR(1|T)1−p and the ES1−p(1|T) using the empirical distribu-
tion of past losses. The HS forecast is

(3.1) V̂aR
HS
1−p(1|T) = q̂HS

1−p({yT})

where q̂1−p({yT}) denotes the (1− p)-th empirical quantile of the losses data {yT}T
t=1.

The HS forecast of ES1−p(1|T) is given by

(3.2) ÊS
HS
1−p(1|T) =

1

|{yt > V̂aR
HS
1−p(1|T)}|

∑
yt>V̂aR

HS
1−p(1|T)

yt,

where |{yt > V̂aR
HS
1−p(1|T)}| denotes the number of losses {yt}T

t=1 that are above the

forecasted V̂aR
HS
1−p(1|T).

Assuming constant mean, µt = µ, and volatility, ht = h = σ2, and errors εt with
a standard normal distribution, the sequence of losses {yt} is an i.i.d process with

mean µ and variance σ2, yt
i.i.d∼ N(µ, σ2)

Thus, with û = ȳ and σ̂2 = s2
y =

1
n

n
∑

i=1
(yi − ȳ)2 the VaR1−p(1|T) is

(3.3) V̂aR
HV
1−p(1|T) = µ̂ + σ̂z1−p,

where z1−p is the (1− p)-th quantile of the standard normal distribution, and

(3.4) ÊS
HV
1−p(1|T) = µ̂ + σ̂

φ(1− p)
p

,

where φ is the density function of the standard normal distribution.

3.2 Exponentially weighted moving average (EWMA)

EWMA-N and EWMA-FHS

Following a widely used method proposed by Risk Metrics, which set an industry-
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3 FORECASTING PROCEDURES

wide standard, the variances ht are considered as changing over time and modelled
using an exponentially weighted moving average (EWMA) approach. Formally, the
forecast for time T + 1 is a weighted average of the previous forecast and the latest
loss in form of

hT+1 = (1− λ)(yT − µ)2 + λhT 0 < λ < 1

with starting value h1 = σ2. In substituting hT by observable losses, the λ parameter
places geometrically declining weights on past observations. Therefore, λ is called
the decay factor. In Risk Metrics, the decay factor λ has been chosen to be equal to
0.94. With innovation εt ∼ N(0, 1), the forecast of VaR is

(3.5) V̂aR
E−N
1−p (1|T) = µ̂ +

√
ĥT+1z1−p

and of ES is

(3.6) ÊS
E−N
1−p (1|T) = µ̂ +

√
ĥT+1

φ(1− p)
p

,

where ĥT+1 = 0.06(yT − ȳ)2 + 0.94ĥT with ĥ1 = s2
y.

Dropping the assumption of the normal distribution, the distribution free FHS fore-
cast of VaR is

(3.7) V̂aR
E−FHS
1−p (1|T) = µ̂ +

√
ĥT+1q̂HS

1−p({ỹE
t }),

where q̂HS
1−p({ỹE

t }) ist the (1− p)-th empirical quantile of EWMA standardized losses

ỹE
t =

yt − µ̂√
ĥt

with ĥt = 0.06(yt−1 − ȳ)2 + 0.94ĥt−1 and ĥ1 = s2
y. The distribution free forecast of ES

is

(3.8) ÊS
E−FHS
1−p (1|T) = µ̂ +

√
ĥT+1ÊS

HS
1−p({ỹE

t }),

where
ÊS

HS
1−p(ỹE

t ) =
1

|{ỹE
t > q̂HS

1−p({ỹE
t })}|

∑
ỹE

t >q̂HS
1−p({ỹE

t })
ỹE

t

with |{ỹE
t > q̂HS

1−p({ỹE
t })}| the number of exceedances of q̂HS

1−p({ỹE
t }).

3.3 GARCH based forecasts

GARCH-N and -FHS as well as GARCH-GPD and -Hill
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3 FORECASTING PROCEDURES

According to (2.3), the volatility hT+1 is forecasted by

h̃T+1 = α̃0 + α̃1(yT − ȳ)2 + δ̃h̃T

with the QML estimates α̃0, α̃1, δ̃ and the starting value h̃1 = s2
y.

Compared to the EWMA-N approach, the GARCH-N forecasts V̂aR
G−N
1−p (1|T) and

ÊS
G−N
1−p (1|T) only differ by the estimation of the volatility ht, t = 2, . . . , T + 1.

For the distribution free approach, we build GARCH standardized losses

ỹG
t =

yt − ȳ√
h̃t

, t = 1, . . . , T,

With these losses we compute the (1− p)-th quantile q̂HS
1−p({ỹG

t }) and the Expected

Shortfall ÊS
HS
1−p({ỹG

t }) to calculate the forecasts

(3.9) V̂aR
G−FHS
1−p (1|T) = µ̂ +

√
h̃T+1q̂HS

1−p({ỹG
t })

and

(3.10) ÊS
G−FHS
1−p (1|T) = µ̂ +

√
h̃T+1ÊS

HS
1−p({ỹG

t })

In Extreme Value Theory (EVT), the focus of interest is not the entire distribution
but the relevant tail of the distribution. The tail (or peak-over-threshold) approach
considers the exceedances over a high threshold. Following McNeil and Frey (2000),
we consider two different EVT estimators of q1−p and of ES1−p, respectively. The first
one in based is the Generalized Pareto distribution (GPD), the so-called GPD-based
estimation. The second one has been proposed by Hill and is related to the Fréchet
extreme value distribution, the so-called Hill-based estimation. As we look for an
estimation of q1−p and of ES1−p, the GPD-based and the Hill-based estimators are
based on i.i.d. variables,i.e. on the standardized losses ỹt = (yt − µ)/

√
ht = εt with

distribution function F. In the GARCH-GPD approach, we fix a high threshold u and
assume that the excess residuals ωt = εt − u over the threshold u have a GPD with
distribution function

(3.11) Fξ,β(ω) =

{
1− (1 + ξω/β)−1/ξ , ξ 6= 0,

1− exp(−ω/β), ξ = 0,

where β > 0, and the support is ω 6= 0 and 0 ≤ ω ≤ −β/ξ when ξ < 0.

The choice of the GPD is motivated by a limit result in EVT. According to it, the
function Fξ,β(ω) is approximately equal to the corresponding function Fu(ω) of the
excesses ωt, i.e. Fξ,β(ω) ≈ Fu(ω), where Fu(ω) is given by
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4 PREDICTION LIMITS

Fu(ω) = P(ε− u < ω|ε > u)(3.12)

=
F(u + ω)− F(u)

1− F(u)
, ω = ε− u > 0

From the approximation Fξ,β ≈ Fu and a transformation of (3.12), we get

(3.13) 1− F(u−ω) = [1− F(u)][1− Fu(ω)] ≈ [1− F(u)][1− Fξ,β(ω)]

Using this result, we compute the GPD-based estimators q̂G
1−p and ÊS

G
1−p.

Let ỹ(t) = ε(t) denote the t-th order statistics of εt(i.e. ε(t) ≥ ε(t−1) for t = 2, . . . , T) and
let Tu denote the number of standardized losses ỹ that exceed u. A natural estimate
of F(u) is given by

F̂(u) =
T − Tu

T
,

where Tu is the number of exceedances above the threshold u. We specify the thresh-
old u indirectly by fixing a probability value p∗ near p, say p∗ = 0.02 or 0.05. With p∗

we calculate the (1− p∗)-th empirical quantile û1−p∗({ỹG
T}) of the standardized losses

{ỹG
T}T

t=1. Here, 1− F(û1−p∗) = p∗. With the estimated threshold û, we get estima-

tions q̂E
1−p for the GPD quantile and ÊS

G
1−p for the GPD Expected Shortfall, for further

details see McNeil and Frey (2000), see also McNeil, Frey and Embrechts (2005).

In the GARCH-Hill approach, we suppose that the tail of the distribution of ε is well
approximated by the distribution function

(3.14) F(ε) = 1− L(ε)ε−1/ξ ≈ 1− cε−1/ξ , ε > u, ξ > 0,

where L(ε) is a slowly varying function. As in the GPD approach, here, we also
indirectly fix the threshold. With the estimated threshold, we get estimations q̂H

1−p

and ÊS
H
1−p for the Hill method, for details compare Christoffersen and Gonçalves

(2005).

4 Prediction limits

Here, we briefly describe the resampling technique to compute VaR and ES symmet-
ric confidence intervals introduced by Christoffersen and Gonçalves (2005). The focus
is on the GARCH-FHS approach with µt = µ. As our special interest is the evaluation
of risk underestimation, we consider the one-sided upper confidence limit, too.

According to equation (2.3), the prediction of volatility
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4 PREDICTION LIMITS

(4.1) hT+1 = α0 + α1(yT − µ)2 + δhT

depends on information available at time T and on the unknown parameters µ, α0, α1
and δ. For large T, we can express hT as a function of the sequence of past losses
{yt}T

t=1 in form of

(4.2) hT = σ2
y + α1

T−2

∑
j=0

δj[(yT−j−1 − µ)2 − σ2
y ]

where σ2
y = α0/(1− α1 − δ), please refer to Christoffersen and Gonçalves (2005).

With the estimator of moments µ̂ = ȳ and σ̂2 = s2
y and the QML estimators α̃0, α̃1

and δ̃, we will generate bootstrap losses {y∗t }T
t=1 by a resampling technique. These

losses will be used to reestimate the unknown parameters. With the sequence of past
losses {yt}T

t=1 and the estimated parameters we can renew forecasts for hT+1 accord-
ing to equation (4.1) and (4.2). The replication of resampling allows us to consider the
estimation risk in forecasting VaR(1|T) and ES(1|T).

Bootstrap Algorithm for GARCH-FHS

Step 1. Compute û, σ̂2, α̃0, α̃1 and δ̃ with observed losses {yt}T
t=1 and standardized

losses {ε̃t}T
t=1, where ε̃t = ỹG

t = (yt − µ̂)/
√

h̃t.

Step 2. Generate a bootstrap pseudo series of standardized losses {ε̃∗t }T
t=1 by resam-

pling with replacement from the standardized losses {ε̃t}T
t=1. Using this bootstrap

series {ε̃∗t }T
t=1, compute a bootstrap pseudo series of losses {y∗t }T

t=1 by the recursions

h̃∗t = α̃0 + α̃1(y∗t−1 − µ̂)2 + δ̃h̃∗t−1

y∗t = µ̂ +
√

h̃∗t ε̃∗t , t = 2, . . . , T,

where h̃∗1 = h̃1 = σ̂2 and y∗1 = µ̂ +
√

h̃∗1 ε̃∗1. With the bootstrap pseudo-data {y∗t }T
t=1,

calculate the bootstrap estimates û∗, σ̂2∗, α̃∗0 , α̃∗1 and δ̃∗.

Step 3. Make a bootstrap prediction h̃∗T+1 according to

h̃∗T+1 = α̃∗0 + α̃∗1(yT − µ̂∗) + δ̃∗h̃∗T

with

h̃∗T = σ̂2∗ + α̃∗1

T−2

∑
j=0

δ̃∗j[(yT−j−1 − µ̂∗)2 − σ̂2∗]

Step 4. Build bootstrap forecasts of VaR(1|T) and ES(1|T) by applying the HS proce-
dure on the series of standardized bootstrap losses {ε̃∗t }T

t=1. This application yields

V̂aR
∗
1−p(1|T) = µ̂∗ +

√
h̃∗T+1q̂HS

1−p({ε̃∗t }),
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4 PREDICTION LIMITS

where q̂1−p({ε̃∗t }) is the HS quantile computed with standardized bootstrap losses ε̃∗t ,
and

ÊS
∗
1−p(1|T) = û∗ +

√
h̃∗T+1ÊS

HS
1−p({ε̃∗t }),

where ÊS
HS
1−p({ε̃∗t }) is the HS Expected Shortfall computed with ε̃∗t .

Step 5. Repeat step 2 to 4 a large number of times, B say, and obtain a sequence of
bootstrap V̂aR

∗
1−p,i(1|T), i = 1, . . . , B, and a sequence of bootstrap ÊS

∗
1−p,i(1|T).

Step 6. Compute the symmetric (1− α)-confidence interval for VaR1−p(1|T) (predic-
tion interval PI)

PI1−α(VaR1−p(1|T)) = [q̂HS
α/2({V̂aR

∗
1−p,i(1|T)}B

i=1), q̂HS
1−α/2({V̂aR

∗
1−p,i(1|T)}B

i=1)]

and the one-sided upper confidence limit (upper prediction limit UPL)

UPL1−α(VaR1−p(1|T)) = q̂HS
1−α({V̂aR

∗
1−p,i(1|T)}B

i=1),

where q̂HS
1−α({V̂aR

∗
1−p,i(1|T}B

i=1) is the (1− α)-quantile of the bootstrap-data

{V̂aR
∗
1−p,i(1|T)}B

i=1. Similarly, build the symmetric (1 − α)-confidence interval for
ES1−p(1|T)

PI1−α(ES1−p(1|T)) = [q̂HS
α/2({ÊS

∗
1−p,i(1|T)}B

i=1), q̂HS
1−α/2({ÊS

∗
1−p,i(1|T)}B

i=1)]

and the one-sided upper confidence limit

UPL1−α(ES1−p(1|T)) = q̂HS
1−α({ÊS

∗
1−p,i(1|T)}B

i=1),

where q̂HS
1−α({ÊS

∗
1−p,i(1|T)}B

i=1) is the (1− α)-quantile of the bootstrap-data

{ÊS
∗
1−p,i(1|T)}B

i=1.

With probability 1− α the PI1−α(VaR1−p(1|T)) prediction interval should cover the
true forecast VaR1−p(1|T) which can be generated in a Monte Carlo study. There,
we can examine whether the PI1−α(VaR1−p(1|T)) covers the true VaR1−p(1|T) or
not. This examination can be repeated with m generated time series of length T
(m=number of replications within the Monte Carlo study). For a reliable forecast
procedure the coverage rate C-R should be close to the promised rate 1− α.

When the true VaR1−p(1|T) exceeds the upper limit of the prediction interval PI-U =
q̂HS

1−α/2, i.e. VaR1−p(1|T) > PI-U, then PI1−α(VaR1−p(1|T)) underestimates the risk.
The degree of a systematic underestimation of risk can be measured by the relative
number of exeedances in the m replications, denoted as rate of exeedance E-R. With
higher number of cases where E-R exceeds α/2, the risk underestimation gets higher.
With the upper prediction limit UPL1−α, we can measure the systematic underestima-
tion by the exeedance rate E-R. For E-R> α, there is a systematic risk underestimation.

Similarly, we can examine the risk underestimation of forecasting procedures for ES.
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5 SIMULATION AND REAL DATA RESULTS

5 Simulation and real data results

According to equation (2.6) and (2.7), the reliability of forecasts for VaR1−p(1|T) and
ES1−p(1|T) depends on the efficiency of estimates for the mean µ of losses, the volatil-
ity hT+1 and for the quantile q1−p of standardized losses ỹt = (yt − µ)/

√
ht = εt.

The considered eight forecast procedures differ in their estimation of hT+1 and q1−p.
Especially, methods, which are based on the standard normal distribution, may un-
derestimate the risk of financial time series with heavy-tailed distributions, since in
reality q1−p will be greater than the quantile z1−p of the normal distribution.

In our Monte Carlo design, we follow the Basel II recommendation for a scenario
type evaluation of historical range for volatilities and of historical extreme risk situ-
ations, compare Basel Committee on Banking Supervision (2006), Market risk - The
internal Model approach, 5 Stress testing; p.198. In addition, are analyze the effects
of historical differences in the size of heavy tails.

5.1 Monte Carlo design

Based on a separate study investigating the effect of selected thresholds u on the cov-
erage rate C-R, we fix u indirectly by its 95% quantile for the GARCH-GPD procedure
and by its 98% quantile for the GARCH-Hill method.

For the prediction interval PI1−α and the upper prediction limit UPL1−α we set the
confidence level 1− α = 0.90. The simulation is based on m = 25000 Monte Carlo
replications, each with B = 100 bootstrap replications. The length of the time series
is T = 1000. According to the Basel II regulation, we estimate p = 0.01 with 250
replications. Thus, the average estimate p̂ is based on 100 replications.

As indicated in the introduction, the main purpose of our paper is to evaluate the risk
underestimation of commonly used methods for risk forecasting. To provide quanti-
tative evidence through a Monte Carlo study, we consider the degree of volatility and
heavy tails within real financial time series, i.e. the historical range of variation for
volatilities and for heavy tails.

Following the EWMA-approach of Risk Metrics, we estimate the volatility ht of each
considered real financial time series {yt}T

t=1 by ĥt = 0.06(yt−1 − ȳ)2 + 0.94ĥt−1 with
ĥ1 = s2

y. Thereby, we compute standardized losses ỹE
t = (yt − ȳ)/

√
ĥt and the quan-

tile estimation q̂HS
1−p({ỹE

t }). As a high volatility can lead to a high risk, we measure

the degree of volatility by the relative mean excess (VE) over
√

ĥ as follows:

VE =
1

|{
√

ĥt >
√

ĥ}|
∑√
ĥt>

√
ĥ

√
ĥt −

√
ĥ

√
ĥ

× 100,

with |{
√

ĥt >
√

ĥ}| the number of exceedances of
√

ĥ.

The size of heavy tails is measured by the relative surplus of the quantile estimation
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q̂HS
1−p({ỹE

t }) over the corresponding normal distribution quantile z1−p (QS) as follows

QS =
q̂HS

1−p({ỹE
t })− z1−p

z1−p
× 100

As Basel II fixes p at 0.01, the corresponding normal quantile is z0.99 = 2.326.

Applying the Risk Metrics EWMA-approach to selected financial time series of Dow
Jones, Nasdaq, FTSE and Nikkei, we can describe each of them by their characteristics
(QS, VE). The scatter diagram in Figure (5.1) informs about the volatility risk VE and
the tail risk QS. QS and VE are positive correlated and their center is near (12%, 36%).
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Figure 5.1

Some financial time series have a considerably higher volatility risk than VE = 36%
and tail risk than QS = 12%. They can be regarded as financial time series with a par-
ticularly high risk. Especially for such time series a risk manager needs reliable VaR
and ES forecasts. To evaluate forecast methods in high risk situations, we generate
time series with a higher VE and a higher QS.

The basic choice of the parameters in the data generating process (DGP) is based on
the QML estimation of a GARCH(1, 1) model with daily DAX data. According to this
estimation result, we set the parameters in (2.1) and (2.3) for the base line DGP with
changing volatility as follows: µ = −0.0005, α0 = 0.000018, α1 = 0.06 and δ = 0.85.
These parameter values yield a case of medium VE risk. From the volatility parameter
values the expected volatility σ2 is σ2 = α0/(1− α1 − δ) = 0.0002. This value has
been taken for the case of constant risk, say of no VE , i.e. constant volatility. Here,
ht = h = σ2 = 0.0002. To increase the volatility compared to the medium VE-case, we
double the value α1 from α1 = 0.06 to α1 = 0.12 and we reduce α0 from α0 = 0.000018
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to α0 = 0.000006 for keeping the long run volatility at the level σ2 = 0.0002. This
change yields the case of high VE risk. Thus, in all three VE-cases the long run risk is
identical.

To capture the observed high QS tail risk, we substitute the standard normal distribu-
tion – no QS – by the symmetric t(4)-distribution – low QS – and by the asymmetric
t(4, 1.1)- and the symmetric GED(0.75)-distribution – high QS. Combining the three
VE-cases with the QE-cases yields nine cases of tail and volatility risk. Values of QS
and VE of a presample of 100 time series of length 5000 regarding the nine cases are
listed in the following Table (5.1) and Figure (5.2) visualizes the differences.

Table 5.1: Characteristic (QS, VE) of DGP

VE

QS no medium high

ht = σ2 = 0.002 α1 = 0.06 α1 = 0.12

no: N(0, 1) (0, 0) (0, 9) (0, 28)

medium: t(4) (14, 0) (14, 16) (14, 46)

high: t(4, 1.1) (21, 0) (21, 17) (21, 43)

GED(0.75) (27, 0) (27, 17) (26, 46)

QS and VE are averages from a presample of 100 time series of length 5000, respectively.
The values of QS only slightly differ from their corresponding theoretical values.

Case 1: no QS, no VE; Case 2: medium QS, no VE; Case 3: high QS, no VE
Case 4: no QS, medium VE; Case 5: medium QS, medium VE; Case 6: high QS, medium VE
Case 7: no QS, high VE; Case 8: medium QS, high VE; Case 9: high QS, high VE

Figure 5.2: Representation of nine different DGP cases
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These nine cases cover a wide range of volatility and tail risk, which allow us to
analyse extensively the prediction ability of the eight selected univariate forecasting
procedures. We are interested in the precision of their VaR and ES interval forecasts
– especially in the upper prediction limit –, i.e. the underestimation risk of their VaR
and ES point forecast. In addition, we analyze the relationship between the risk un-
derestimation measured by the prediction interval – the percentage of point forecasts
VaR(1|T) exceeding the UPL – and the measurement of risk by backtesting, i.e. the
percentage p̂ of losses yT+1 exceeding the point forecast VaR(1|T). With backtesting
a risk manager can assess the reliability of a forecast method empirically. For reliable
methods, VaR and ES point forecasts can be supplemented by valid upper prediction
limits UPL(VaR) and UPL(ES), which give additional information about the risk
situation.

The precision of the interval forecasts is measured by the width of the prediction
interval PI-With as percentage of the true VaR point forecast and by the coverage rate
C-R which should not fall short of the 90% confidence level. As our main interest
is the underestimation of risk, we focus on the upper prediction limit UPL0.9 which
measures the precision by its length. The reliability of the UPL0.9 can be measured
by its exceedance rate E-R. When the exceedance rate E-R considerably surpasses the
nominal 10% level, then the prediction limit is not reliable as it underestimates the
risk.

The control of underestimation for real financial time series is regulated by Basel II in
form of the backtesting procedures. When the percentage p̂ of relative losses is signifi-
cantly higher than the target level p = 1% then the concerned methods underestimate
the market risk.

Of further interest is the relationship between p̂ and the exceedance rate E-R. The
estimation p̂ in the backtesting procedure may indicate not only that the point pre-
dictions are precise but also that the upper prediction limits are reliable.

5.2 Simulation results

Table (8.1) to (8.6) present the main results of six cases, the three levels of VE risk are
combined with the no QS risk case and the high QS risk case of the t(4, 1.1) distri-
bution. These tables contain results of VaR as well as of ES forecasts. The first two
columns inform about the relative PI-Width and its coverage rate C-R for VaR and
ES, respectively. These columns allow a comparison with results given in Christof-
fersen and Gonçalves (2005). The next three columns inform about the 90% upper
prediction limit UPL, the exceedance rate E-R and the backtesting p̂ regarding the
underestimation risk, our main interest. For Non-GARCH procedures the results are
presented not only for the sample size T = 1000, but also for the shorter sample size
T = 500, as we expect, that the Non-GARCH procedures are able to pick up some of
the dynamics in the volatility movement in a shorter sample size, but that they are
less able to do so in a greater sample size.

According to Table (8.1) to (8.6), the coverage rate of the HS method often gets worse
with sample size (as stated in Christoffersen and Gonçalves). In the case of medium
volatility risk VE, the HS method has a coverage rate of around 70% for T = 500,
20% points below the nominal rate of 90%. In the case of high volatility risk VE, the
coverage rate drastically goes down to 30%.
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For the no and medium VE cases, the EWMA-FHS method shows a similar perfor-
mance. Contrary to the HS method, the coverage rate C-R of EWMA-FHS does not
decrease in the high volatility case. Whereas, their exceedance rates E-R only slightly
differ, compare Table (8.5) and (8.6), – this discrepancy between the coverage rate C-R
and the exeedance rate E-R may result from the asymmetric distribution of volatility.
Their PI-Widths are considerably higher than those of the HV and EWMA-N meth-
ods. However, these normal distribution based models can have a terribly low effec-
tive coverage rate. In the non-normal DGP-cases, their coverage rate can fall clearly
below 40%. Their underestimation risk is very high. The rates of exceedance higher
than the 90% UPL are often much too high. For the non-normal DGP-cases, these rates
can attain more than 80% instead of 10%. These extremely high exceedance rates E-R
are related to high backtesting values p̂, which are confirming the underestimation.
The distribution free methods HS and the EWMA-FHS perform better. However,
their underestimation risk is still high. Their exceedance rates are clearly above 20%.
For the greater sample size of T = 1000, the results do not change significantly.

In the normal case with no volatility, case 1 ”no QS risk and no VE risk”, the HV
method is appropriate. There is no model risk for HV. As expected, the HV model
performs best. Here, the HV procedure nearly attains the nominal exceedance rate of
10% as well as the nominal coverage rate of 90%.

In case 1, all GARCH procedures nearly attain the good HV performance regarding
the C-R, the UPL, the E-R and the backtesting p̂. The overparameterization does not
result in a great loss of accuracy.

As expected, the GARCH-N procedure performs best in its appropriate case 4 ”no
QS risk, medium VE risk” and case 5 ”no QS risk, high VE risk” because the un-
derlying data generating process fits to the procedure. Here, the GARCH-N method
nearly attains the nominal exceedance rate of 10% and the nominal coverage rate of
90% with a relatively small PI-Width. The good performance is confirmed by the
backtesting, p̂ only slightly overestimates the nominal value p = 0.01. However,
the GARCH-N procedure is not robust. In non-normal distribution DGP-cases, the
GARCH-N method has terribly low effective coverage – coverage rates below 15%
for GED(0.75) and t(4, 1.1) as data generating process – and extremely high underes-
timation – exceedance rates above 90%.

Contrary to the GARCH-N method, the GARCH-FHS and -GPD as well as GARCH-
Hill are relatively robust. In the normal distribution DGP-cases, GARCH-FHS and
-GPD methods have nearly the same coverage rate C-R and the same upper pre-
diction limits UPL as the GARCH-N VaR forecast, and regarding C-R and UPL, the
GARCH-Hill only slightly differs with its ES forecasts from the GARCH-N ES fore-
casts.

In the non-normal DGP-cases, the coverage rate C-R of GARCH-FHS and -GPD for
VaR forecasts and of GARCH-Hill for ES forecasts only slightly fall below the target
level of 90%. But the exceedance rates E-R exceed the target level of 10% and can even
reach 20% in the extreme risk case 9 ”high volatility risk VE and high tail risk QS” for
GARCH-FHS and -GPD in predicting the VaR and for GARCH-Hill in predicting the
ES.

In addition to their high coverage rate C-R and their relative low exceedance rate E-R,
prediction limits UPL of the three non-normal GARCH-based models are relatively
precise as their length is mostly shorter compared to the UPL of HS and of EWMA-
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FHS which are ranking in reliability behind these non-normal GARCH models and
clearly before models with normal distributions. In the extreme risk case 9, the UPL
of HS and EWMA-FHS are around 20% higher than the UPL of GARCH-FHS, -GPD
and GARCH-Hill, respectively.

For the important non-normal DGP-cases, Table (5.2) shows a strong positive corre-
lation between the backtesting p̂ and the exceedance rate E-R of the VaR as well as
between the backtesting p̂E and the exceedance rate E-R of the ES. According to Table
(5.2), the correlation between backtesting p̂ for VaR and backtesting p̂ES for ES is very
high, especially in the non-normal DGP-cases. As a consequence of this relationship,
the backtesting for ES can be based on the backtesting for VaR.

Table 5.2: Correlations between backtesting values
and bootstrap exceedance rates E-R

QS

no medium high
VE N(0, 1) t(4) t(4, 1.1) GED(0.75)

p̂ no 0.90 0.83 0.92 0.94

and medium 0.50 0.95 0.97 0.99

E-R(VaR) high 0.58 0.81 0.89 0.93

p̂E no 0.79 0.90 0.93 0.98

and medium 0.79 0.98 0.97 0.99

E-R(ES) high 0.47 0.90 0.94 0.96

p̂ no 0.89 0.98 0.99 0.99

and medium 0.63 0.97 1.00 0.99

p̂E high 0.93 0.98 0.99 0.99

For all cases, Figure (5.3a) and (5.3b) visualize the relationship between backtesting
and exceedance rates for VaR and ES. As pE only slightly varies around the average
pE in the considered four distributions, the scatterplot in Figure (5.3c) visualizes the
strong positive relationship between p̂ and p̂E.
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Figure 5.3: Scatterplots of backtesting values and bootstrap exceedance rates E-R

Let us examine the relationship between the ex-post backtesting and the ex-ante UPL
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as well as the underestimation risk in detail. For the most interesting cases with
(medium and high) volatility risk VE, Table (5.3) informs about relevant characteris-
tic values for the non-normal forecasting models – normal distribution based predic-
tion models are discarded here, as they have an unacceptable high underestimation
risk. The presented characteristic values regarding the cases with (medium and high)
volatility are:
- the average backtesting p̂,
- the average exceedance rate E-R for VaR and ES,
- the average upper prediction limit UPL as percentage compared

to the UPL of the reference model GARCH-GPD.

Table 5.3: Characteristic average values in the cases with
medium and high volatility risk VE

p̂
1

UPL(VaR)2 E-R(VaR) UPL(ES)2 E-R(ES)

HS 1.28 13.6% 24.2% 12.6% 30.2%

EWMA-FHS 1.21 11.8% 22.9% 12.9% 28.1%

GARCH-FHS 1.15 1.0% 17.4% 0.3% 28.3%

GARCH-GPD 1.11 — 17.3% — 27.2%

GARCH-Hill 1.20 3 -2.2% 24.8% 6.2% 15.7%

1) p̂ multiplied by 100
2) average percentage deviation of the UPL of the other

models from the UPL of the reference model GARCH-GPD
3) in comparison to the other models the backtesting values p̂E of the GARCH-Hill model

are close to the corresponding true values pE .

The GARCH-GPD has been chosen, because it performs best regarding the underes-
timation risk captured by the ex-post backtesting p̂ and the ex-ante exceedance rate
E-R for VaR. Next to the GARCH-GPD comes GARCH-FHS, which has nearly the
same performance in predicting the VaR, i.e. nearly the same UPL, E-R and a bit
higher backtesting p̂, p̂ = 1.11 for GPD and p̂ = 1.15 for FHS. With p̂ = 1.20 and
E-R(VaR)= 24.8% the underestimation risk of GARCH-Hill is clearly greater than the
corresponding values of GARCH-GPD and -FHS. The high value of 24.8% depends
on a relative low UPL estimation of the VaR. On the other hand, its UPL for ES is
around 6% higher which lets GARCH-Hill performing best regarding the E-R(ES).
Compared to these three GARCH-models, the other two non-normal models HS and
EWMA-FHS have a significantly higher underestimation risk.

In the Basel II regulation, a risk underestimation of a certain degree yields an addi-
tional capital charge. The Basel II regulation accepts four exceedances in 250 forecasts
without augmenting an additional penalty factor on-top of the usual factor M which
is fixed at M = 3 (four exceptions are within the green zone with no penalty in-
crease, compare Jorion (2007)). Four exceptions yield an estimate p̂ = 0.016, which
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clearly overestimates the nominal value of p = 0.01. A number of exceedances in
that amount or higher is related to a high underestimation of the risk in terms of the
E-R(VaR), compare Figure (5.3a) and Table (8.1) – (8.6). Especially the normal dis-
tribution based models HV, EWMA-N and GARCH-N are concerned. These models
drastically underestimate the risk in cases with medium and high tail risk QS. There-
fore, they are inappropriate for a sound risk analysis of real financial data. Their
underestimation risk can be detected by the Basel II backtesting procedure. The back-
testing values p̂ are greater than 0.016 – the number of exceptions falls in the yellow
or red zone with an additional penalty factor for the capital charge – indicating a con-
siderably high underestimation risk. As we will see in the following data analysis,
the increase in the penalty factor may be regarded as not high enough.

The Non-GARCH models HS and EWMA-FHS perform better. However, their un-
derestimation risk is still high. Regarding the prediction of VaR, these two models
have an E-R clearly above 20%, although their UPL are more than 10% longer as
those of GARCH-GPD and FHS, which have an E-R clearly under 20%. The back-
testing values p̂ of these two GARCH models are clearly under p = 0.012, whereas
the backtesting values p̂ of the HS and the EWMA-FHS model are above p = 0.012,
i.e. p̂ = 0.0121 for EWMA-FHS and p̂ = 0.0128 for HS, compare Table (5.3). This
means, that in the backtesting HS and EWMA-FHS models often have p̂ values in the
neighborhood of 0.012 or 3 exceptions – the second highest number of exceptions in
the green zone with no penalty factor increase. Thus, the Basel II backtesting proce-
dure will accept models as reliable, which considerably underestimate the risk. To
avoid such an underestimation, the Basel II backtesting procedure should be more
restrictive.

In general, the simulation results show a systematic risk underestimation, even in
the models which perform quite well, which are GARCH-GPD and -FHS for VaR
predictions and GARCH-Hill for ES forecasts. Considering their underestimation risk
and taking precautions, a conservative risk manager should use the reliable GARCH-
GPD or -FHS models to generate upper prediction limits UPL related to VaR forecasts
and the reliable GARCH-Hill models to calculate upper prediction limits UPL related
to ES forecasts.

A conservative risk manager and a rigorous external risk controller will take the esti-
mation risk into account and consider the upper prediction limit UPL as an additional
risk measure. To give an idea, what this additional consideration may mean for the
capital charge of market risk, let us analyze the case of medium volatility risk VE and
high tail risk QS represented by the t(4, 1.1) distribution. According to Table (5.4),
for VaR as well as for ES the risk capital charge would increase more than 10%, when
the capital charge is defined on the considered four risk measures VaR, UPL(VaR), ES
and UPL(ES).
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Table 5.4: A broader risk evaluation in the case
”medium VE and high QS with t(4, 1.1)”

VaR UPL ES UPL

3.842 4.428 5.996 6.766

[15.25%]1 [12.84%]2

VaR and UPL: GARCH-FHS, ES and UPL: GARCH-Hill
1) percentage increase due to the estimation risk of VaR forecast
2) percentage increase due to the estimation risk of ES forecast

5.3 Real data results

According to the Basel II rules, four real financial time series have been analyzed with
the GARCH-FHS model, these are the indizes of Dow Jones, DAX, FTSE and Nikkei.
Therefore, we predicte the VaR on a day-by-day basis over a period of seven years
taking into account a rolling estimation sample as requested by the Basel II guidelines.
Table (5.5) informs about the backtesting results, the average of the relative 1-day
ahead VaR forecasts and its bootstrap 90% upper prediction limit UPL. Figure (5.4)
visualizes the development of the relative losses y, the 99% 1-day VaR and its 90%
UPL for the Dow Jones in the year 2002.

Table 5.5: Basel II analysis with the GARCH-FHS model
and bootstrap UPL

NE YZ RZ M VaR UPL p̂ NP

Dow Jones 23 2 0 3.02 2.3 3.0 1.3 1785

Dax 22 0 0 3.00 3.3 3.8 1.2 1807

FTSE 28 5 0 3.07 2.4 2.8 1.6 1796

Nikkei 24 2 0 3.03 3.2 3.6 1.4 1685

NE = Number of exceedances
YZ = Number in yellow zone within Basel II regulation
RZ = Number in red zone within Basel II regulation
M = Multiplication factor in the Basel II regulation

including an add-on factor due to the backtesting performance
VaR = Average 99% 1-day Value at risk
UPL = Average 90% bootstrap upper prediction limit of VaR

p̂ = Average backtesting value
NP = Number of predictions
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Figure 5.4: Basel II analysis of Dow Jones time series

The backtesting values p̂ in Table (5.5) are relatively high, especially for the FTSE time
series. Here, the backtesting value is p̂ = 0.016. According to our simulation results,
the underestimation risk will be considerably high. The additional penalty factor
on-top of the usual multiplication factor M = 3 only slightly increases the Basel II
multiplicator M. This additional factor is introduced as ”a built-in positive incentive
to maintain the predictive quality” of an applied model, compare Basel Committee on
Banking Supervision (2006, D. Market Risk - The Internal Models Approach, 4 Quan-
titative standards, p. 196). The impact of the underestimation risk on the penalty fac-
tor is presumably to weak. As a consequence, the incentives are not strong enough to
maintain a high predictive quality.

6 Conclusion

To assess the reliability of forecasting models, it is crucial to know the degree of their
potential risk underestimation. Therefore, we systematically analyze the effect of real
market risk situations on the underestimation of risk for eight main univariate fore-
casting models. We calculate upper prediction limits for VaR and ES (based on boot-
strapping) and their corresponding exceedance rates for measuring the degree of un-
derestimation. To capture the historical relevant risk situations, we design our Monte
Carlo study based on real financial time series, i.e. their volatility risk – measured by
the volatility excess VE – and their heavy tail risk – measured by the quantile surplus
QS.

The analysis reveals a systematic underestimation risk for all models, especially in
the interesting cases with volatility and heavy tail risk. In these cases, the models
based on the normal distribution have terribly high underestimation risk. They are
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not reliable to evaluate market risk. The HS and the EWMA-FHS models show a
moderate underestimation risk with a relatively high estimation risk – their upper
prediction limits are considerably high. The Non-Normal GARCH models have a low
underestimation risk and a low estimation risk. Thus, their model risk is small and
they can be regarded as robust. The GARCH-GPD and -FHS model are particulary
reliable for predicting the VaR and the GARCH-Hill for forecasting the ES.

In the important cases with volatility and heavy tail risk, there is a strong positive cor-
relation between the underestimation measured by the ex ante exceedance rates and
the underestimation measured by the ex post backtesting within the Basel II regula-
tion. This means, that the evaluation of risk underestimation in applied studies can
be based on backtesting procedures. However, although we see a strong relationship
between the ex ante and ex post risk evaluation, we conclude that the Basel II crite-
ria within the backtesting procedures should be more restrictive, because we detect
cases with 3 or 4 Basel II exceptions, that are within the Basel II green zone but show
a high risk of underestimation according to the exceedance rates. Furthermore, the
built-in positive incentive by the additional penalty factor in the Basel II regulation
for capital charge of marked risk is not strong enough to ensure automatically a high
quality in predicting the risk. Therefore, an adjustment of the Basel II guidelines has
to be considered.

We suppose that our results should lead to a risk management approach, that is more
integrated, i.e. inclusion of an estimate of the risk inherent in risk estimation not
only for VaR predictions but also for ES forecasts. Especially in high-risk situations
additional risk criteria add value for the risk manager by decreasing the risk of un-
derestimation.

As there is a very strong positive correlation between the backtesting for VaR and for
ES the empirical evaluation of risk can be narrowed to the backtesting of VaR.
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Table 8.1: Case 1: no VE(ht = σ2 = 0.0002), no QS(N(0, 1)), Coverage rate C-R,
90% upper prediction limit UPL, exceedance rate E-R, backtesting p̂ and
p̂E, theoretical values: p = 1, pE = 0.38, VaR = 3.24 and ES = 3.721,
data generating process (DGP): HV

VaR Properties ES Properties

T Method PI-Width C-R UPL E-R p̂ PI-Width C-R UPL E-R p̂E

in % VaR in % ES

500 HS 22.3 84.0 3.45 22.7 1.12 21.4 73.9 3.91 31.8 0.48

HV 11.9 87.8 3.39 12.7 0.97 11.5 87.7 3.88 12.8 0.35

EWMA-N 9.2 28.0 3.32 44.1 1.27 8.0 24.8 3.80 45.1 0.54

EWMA-FHS 25.1 58.5 3.64 23.6 1.10 25.7 57.3 4.23 23.0 0.47

1000 HS 15.9 85.4 3.41 18.5 1.15 16.2 79.9 3.89 25.3 0.48

HV 8.5 88.0 3.34 12.2 1.10 8.2 88.0 3.83 12.3 0.46

EWMA-N 9.1 27.5 3.32 44.7 1.20 8.0 24.2 3.79 45.6 0.57

EWMA-FHS 19.3 48.6 3.61 23.9 1.03 20.5 49.0 4.21 20.9 0.42

1000 GARCH-N 10.5 88.8 3.37 13.4 1.08 10.2 88.7 3.86 13.6 0.44

GARCH-FHS 17.3 87.2 3.43 17.7 1.12 17.8 82.1 3.93 22.5 0.48

GARCH-GPD 15.5 87.4 3.42 15.9 1.05 18.2 84.0 3.95 20.1 0.39

GARCH-Hill 14.6 80.1 3.34 27.8 1.18 21.0 88.5 4.07 11.5 0.44

1) VaR and ES calculated with DGP-parameters; VaR, ES, UPL, p, pE and p̂, p̂E multiplied by 100.

Table 8.2: Case 3: no VE(ht = σ2 = 0.0002), high QS(t(4, 1.1)), Coverage rate C-R,
90% upper prediction limit UPL, exceedance rate E-R, backtesting p̂ and
p̂E, theoretical values: p = 1, pE = 0.32, VaR = 3.96 and ES = 5.601

VaR Properties ES Properties

T Method PI-Width C-R UPL E-R p̂ PI-Width C-R UPL E-R p̂E

in % VaR in % ES

500 HS 45.2 84.2 4.58 22.8 1.15 50.1 67.3 6.39 39.0 0.41

HV 18.6 14.1 3.52 90.1 2.05 14.9 1.8 4.03 98.8 1.26

EWMA-N 13.8 13.2 3.30 85.4 2.54 10.1 3.7 3.77 96.5 1.83

EWMA-FHS 51.1 64.3 4.98 23.6 1.31 61.2 61.8 7.21 30.0 0.54

1000 HS 31.7 85.4 4.43 18.6 1.17 40.7 74.8 6.34 30.5 0.41

HV 14.1 7.2 3.45 95.3 2.03 11.2 0.9 3.96 99.5 1.28

EWMA-N 23.0 24.0 3.37 83.6 2.44 17.5 9.4 3.85 95.8 1.70

EWMA-FHS 49.0 59.5 4.93 22.0 1.18 61.8 62.3 7.23 24.7 0.42

1000 GARCH-N 16.0 8.8 3.46 94.7 1.92 12.9 1.4 3.97 99.2 1.27

GARCH-FHS 34.4 86.9 4.48 17.3 1.11 53.6 75.9 6.33 29.4 0.39

GARCH-GPD 30.1 86.8 4.42 16.3 1.05 53.3 76.7 6.35 28.4 0.47

GARCH-Hill 28.8 83.4 4.33 22.3 1.11 53.5 86.3 6.97 16.4 0.37

1) VaR and ES calculated with DGP-parameters; VaR, ES, UPL, p, pE and p̂, p̂E multiplied by 100.
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Table 8.3: Case 4: medium VE(ht with α1 = 0.06), no QS(N(0, 1)), Coverage rate
C-R, 90% upper prediction limit UPL, exceedance rate E-R, backtesting
p̂ and p̂E, theoretical values: p = 1, pE = 0.38, average values from
simulation: VaR = 3.22 and ES = 3.701, data generating process (DGP):
GARCH-N

VaR Properties ES Properties

T Method PI-Width C-R UPL E-R p̂ PI-Width C-R UPL E-R p̂E

in % VaR in % ES

500 HS 23.7 66.1 3.50 26.0 1.18 23.2 63.0 3.99 29.7 0.49

HV 12.2 44.4 3.39 28.6 1.03 11.8 43.4 3.88 28.9 0.42

EWMA-N 9.1 34.9 3.30 44.3 1.24 8.0 31.0 3.77 45.2 0.56

EWMA-FHS 24.1 66.9 3.58 22.9 1.21 24.5 65.1 4.14 23.6 0.50

1000 HS 17.0 55.3 3.46 24.7 1.06 17.9 55.8 3.98 25.5 0.44

HV 8.7 33.0 3.34 30.6 1.04 8.4 32.2 3.84 30.9 0.42

EWMA-N 9.0 34.7 3.29 44.8 1.26 7.9 31.0 3.76 49.0 0.51

EWMA-FHS 18.6 58.0 3.54 22.6 1.07 19.6 58.2 4.12 20.8 0.43

1000 GARCH-N 13.1 88.2 3.38 12.1 1.04 12.9 88.1 3.88 12.3 0.43

GARCH-FHS 19.0 87.9 3.42 16.6 1.17 19.0 82.8 3.91 22.0 0.47

GARCH-GPD 17.3 87.5 3.42 15.8 1.10 19.4 84.0 3.93 20.0 0.40

GARCH-Hill 16.5 81.4 3.34 25.9 1.21 22.0 88.4 4.04 12.9 0.40

1) VaR and ES calculated with DGP-parameters; VaR, ES, UPL, p, pE and p̂, p̂E multiplied by 100.

Table 8.4: Case 6: medium VE(ht with α1 = 0.06), high QS(t(4, 1.1)), Coverage
rate C-R, 90% upper prediction limit UPL, exceedance rate E-R, back-
testing p̂ and p̂E, theoretical values: p = 1, pE = 0.32, average values
from simulation: VaR = 3.88 and ES = 5.491

VaR Properties ES Properties

T Method PI-Width C-R UPL E-R p̂ PI-Width C-R UPL E-R p̂E

in % VaR in % ES

500 HS 47.9 72.9 4.64 24.9 1.08 51.3 63.3 6.45 36.3 0.42

HV 19.1 27.3 3.49 75.8 2.04 15.2 5.3 4.00 95.7 1.35

EWMA-N 14.3 12.5 3.23 91.1 2.51 10.5 2.8 3.69 98.8 1.72

EWMA-FHS 50.9 70.3 4.85 22.4 1.24 61.5 65.9 7.03 30.8 0.52

1000 HS 33.9 66.3 4.48 20.3 1.07 42.5 66.4 6.45 27.9 0.38

HV 14.8 23.4 3.45 79.1 1.87 11.8 3.3 3.95 97.4 1.28

EWMA-N 22.1 22.8 3.28 89.4 2.22 16.8 7.4 3.75 98.2 1.54

EWMA-FHS 47.2 67.2 4.76 20.6 1.08 59.0 68.9 6.98 24.6 0.40

1000 GARCH-N 20.0 13.2 3.45 91.3 2.04 16.1 1.3 3.96 99.2 1.38

GARCH-FHS 37.2 87.3 4.43 16.5 1.18 42.9 75.0 6.19 30.2 0.49

GARCH-GPD 33.2 86.4 4.38 16.0 1.12 42.7 75.9 6.20 29.8 0.50

GARCH-Hill 32.1 83.4 4.29 21.5 1.20 53.6 85.2 6.77 17.7 0.44

1) VaR and ES calculated with DGP-parameters; VaR, ES, UPL, p, pE and p̂, p̂E multiplied by 100.
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Table 8.5: Case 7: high VE(ht with α1 = 0.012), no QS(N(0, 1)), Coverage rate
C-R, 90% upper prediction limit UPL, exceedance rate E-R, backtest-
ing p̂ and p̂E, theoretical values: p = 1, pE = 0.38, average values
from simulation1: VaR = 3.07 and ES = 3.532, data generating process
(DGP): GARCH-N

VaR Properties ES Properties

T Method PI-Width C-R UPL E-R p̂ PI-Width C-R UPL E-R p̂E

in % VaR in % ES

500 HS 34.1 31.8 3.80 24.1 1.51 34.5 30.0 4.50 23.1 0.67

HV 14.6 17.6 3.37 32.1 1.69 14.2 17.1 3.86 32.2 0.98

EWMA-N 9.4 30.0 3.15 47.7 1.38 8.2 26.7 3.60 49.0 0.59

EWMA-FHS 24.7 62.1 3.44 24.6 1.29 25.0 61.0 3.98 24.7 0.53

1000 HS 26.3 22.5 3.80 21.4 1.35 29.7 21.0 4.64 18.4 0.55

HV 10.8 12.1 3.34 31.0 1.63 10.6 11.8 3.83 31.1 0.98

EWMA-N 9.3 30.1 3.14 49.1 1.36 8.1 26.6 3.59 50.3 0.60

EWMA-FHS 19.1 54.3 3.39 25.4 1.46 19.9 54.2 3.94 23.3 0.44

1000 GARCH-N 14.3 88.3 3.22 12.1 1.11 14.1 88.3 3.70 12.8 0.47

GARCH-FHS 19.8 87.8 3.26 16.9 1.19 19.8 83.4 3.73 22.0 0.50

GARCH-GPD 18.1 87.2 3.25 15.9 1.14 20.1 84.6 3.74 20.0 0.41

GARCH-Hill 17.3 81.6 3.19 25.8 1.29 22.4 88.8 3.85 12.2 0.44

1) According to the Cauchy-Schwarz Inequality
√

h̄ ≥
√

h. The inequality increases with higher VE. As a consequence,
the VaR, which is based on

√
h, will decrease in comparison to Case 1 and Case 4.

2) VaR and ES calculated with DGP-parameters; VaR, ES, UPL, p, pE and p̂, p̂E multiplied by 100.

Table 8.6: Case 9: high VE(ht with α1 = 0.12), high QS(t(4, 1.1)), Coverage rate
C-R, 90% upper prediction limit UPL, exceedance rate E-R, backtesting
p̂ and p̂E, theoretical values: p = 1, pE = 0.32, average values from
simulation1: VaR = 3.31 and ES = 4.692

VaR Properties ES Properties

T Method PI-Width C-R UPL E-R p̂ PI-Width C-R UPL E-R p̂E

in % VaR in % ES

500 HS 59.4 43.6 4.60 22.9 1.33 59.2 44.8 6.38 29.7 0.54

HV 22.4 27.1 3.28 50.7 2.24 18.0 18.2 3.76 74.7 1.56

EWMA-N 18.1 13.8 2.68 88.8 2.55 13.5 3.9 3.27 97.6 1.73

EWMA-FHS 55.4 70.6 4.29 23.2 1.29 67.4 64.4 6.26 31.9 0.53

1000 HS 45.0 30.5 4.52 19.9 1.15 53.0 35.3 6.65 21.9 0.42

HV 18.6 22.9 3.30 46.2 2.06 14.9 18.2 3.78 72.2 1.46

EWMA-N 28.4 24.9 2.92 86.8 2.54 21.8 9.7 3.34 96.9 1.76

EWMA-FHS 54.9 68.7 4.22 20.7 1.14 68.8 68.8 6.23 25.3 0.42

1000 GARCH-N 21.0 12.1 2.88 92.3 2.02 16.9 1.0 3.31 99.9 1.32

GARCH-FHS 37.3 86.8 3.70 19.0 1.13 39.8 72.3 5.07 35.4 0.48

GARCH-GPD 33.4 85.8 3.65 19.4 1.08 39.7 73.4 5.09 34.3 0.50

GARCH-Hill 32.3 81.9 3.58 25.6 1.15 49.7 84.8 5.35 20.3 0.40

1) According to the Cauchy-Schwarz Inequality
√

h̄ ≥
√

h. The inequality increases with higher VE. As a consequence,
the VaR, which is based on

√
h, will decrease in comparison to Case 3 and Case 6.

2) VaR and ES calculated with DGP-parameters; VaR, ES, UPL, p, pE and p̂, p̂E multiplied by 100.
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