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POLYNOMIAL REGRESSION AND ESTIMATING

FUNCTIONS IN THE PRESENCE OF

MULTIPLICATIVE MEASUREMENT ERROR�

WITH APPLICATIONS TO NUTRITION

Stephen J� Iturria� Raymond J� Carroll and David Firth �

January ��� ����

Abstract

In this paper we consider the polynomial regression model in the presence of multiplicative mea�

surement error in the predictor� Consistent parameter estimates and their associated standard

errors are derived� Two general methods are considered� with the methods di�ering in their

assumptions about the distributions of the predictor and the measurement errors� Data from

a nutrition study are analyzed using the methods� Finally� the results from a simulation study

are presented and the performances of the methods compared�
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� INTRODUCTION

Much work has been done in the estimation of regression coe�cients in the presence of additive

measurement error in the predictors� A detailed account of the developments for linear regression

models can be found in Fuller ���	
�� Carroll� et al� ����� summarize much of the recent work

for nonlinear regression models� Considerably less work has been done for cases of nonadditive

measurement error however� Hwang ���	�� derives a consistent estimator for the coe�cients of

the ordinary linear model under multiplicative measurement error by modifying the usual normal

equations of least squares regression� To apply this method� one requires consistent estimates of the

moments of the measurement errors� One of the general methods we will consider is a special case

of Hwang�s estimator� For this method we do not require that any distributional assumptions be

made about the unobserved predictor� other than the usual i�i�d� assumptions� We will consider two

distributional forms for the measurement errors� and propose methods for estimating their moments�

For the second general method we will consider� we model the distribution of the unobserved

predictor as well� Fitting this method will require estimating the distribution of the predictor

conditional on its mismeasured version� We will apply our methods to a nutrition data set taken

from the Nurses Health Survey� We also present the results from a simulation study�

��� The Polynomial Regression Model

The polynomial regression model under multiplicative measurement is given by

Yi � �� �
pX

k��

�kX
k
i � �tp��Zi � �i�

Wij � XiUij �

i � �� � � � � n� j � �� � � � � ri�

where Uij is the measurement error associated with the jth replicate of the error�prone predictor

of Xi� namely Wij� and Zi is a vector of covariates assumed to be measured without error� Further

assumptions are that all elements of ��i�� �Uij�� and �Xi� are mutually independent� the �Xi� assume

positive values only� the ��i� have mean zero� and the �Uij� have either mean or median one� We

will consider three possible models for the distribution of the �Xi� Uij�� No further distributional

assumptions will be made about the �Zi� and ��i��

�
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Figure �� Least squares quadratic �t for Nurses�

��� Nurses Health Survey

The Nurses Health Survey includes measurements of energy intake and vitamin A intake for ��	

individuals calculated from four 
�day food diaries� We will model Y � long�term energy intake

as a quadratic function of X � long�term vitamin A intake plus error� No important e�ects were

evident among the possible covariates so we will only consider the regression of Y on X� Food

diaries are an imprecise method for calculating long�term nutrient intakes so the reported vitamin

A intakes are presumed to be measured with error� Long�term energy intake is also estimated

imprecisely when using food diaries� but for the purpose of illustrating our methods we will take

such measurement errors to be additive� thus absorbing them into the ��i�� A scatter plot of the

averages of the energy replicates against the averages of the vitamin A replicates is given in Figure

�� The p�value for the quadratic term in the ordinary least squares �OLS� �t of the energy replicate

averages as a quadratic function of the vitamin A replicate averages is �����

��� E�ects of Multiplicative Measurement Error on Curvature

One question to consider is whether the curvature exhibited in the OLS �t of the Nurses data

accurately re�ects the curvature in the underlying relationship between Y and the unobservable X�

To see the e�ect that measurement error can have on curvature� consider the plots given in Figure

�� The top two plots are of Y vs� X and Y vs� W for data generated from a linear regression model

with right�skewed� multiplicative measurement errors� Note the curvature exhibited in the plot of

�
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Figure �� Plots for two simulated data sets� �a� Y vs X for linear model� �b� Y vs W for linear
model� �c� Y vs X for quadratic model� �d� Y vs W for quadratic model�

Y vs� W � Measurement errors of this type can also have the e�ect of dampening the curvature of

the underlying model� The second pair of plots are for data generated from a quadratic regression

model with �� � �� The common feature of the two pairs of plots is that the measurement errors

tend to �stretch� the data along the X�axis� giving a distorted view of the true relationship between

Y and X�

��� Diagnostics for Multiplicative Measurement Error

Measurement error models have been most fully developed for the additive error case� W � X�U �

with U being either a mean� or median�zero error term that is independent of X� A convenient

diagnostic for assessing additivity when X is independent of the mean�zero measurement error

term are plots of jWij � Wikj against Wij �Wik for various j �� k� where Wij is the jth repli�

cate for individual i� In the appendix we show that under the additive model� one would expect

to see no correlation in these plots� If� however� the multiplicative model� W � XU � is more

appropriate� then an additive error model is appropriate when considering the logarithm of W �

Plots of jlog�Wij�� log�Wik�j against log�Wij� � log�Wik� therefore provide a ready diagnostic for

multiplicative measurement error�

For our analysis of the Nurses data we will de�ne Yi to be the average of the four energy

replicates for individual i� Wi� to be the average of the �rst two vitamin A replicates for individual

i� and Wi� to be the average of the third and fourth vitamin A replicates for individual i� The

�



•

•

•
•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•
••

•

•

•

•

•

•

•

•
•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

• •

•

•
•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

••

•

•

•
•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

••

•

•

•

•

•

•

|log(W1) - log(W2)| vs. log(W1) + log(W2)

log(W1) + log(W2)

|lo
g(

W
1)

 - 
lo

g(
W

2)
|

1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

•

•

• •

•

•

•

•

•

•

• •

•

•

•

•

•

•

••

•

•

•

•

•

•

•
•

•

•

•

•
•

•

•

•

•
•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•
•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

••

•

•

•

•
•

•

|W1 - W2| vs. W1 + W2

W1 + W2

|W
1 

- W
2|

5 10 15 20 25

0

2

4

6

8

Figure �� Measurement error diagnostics for Nurses data�

diagnostics for the Nurses data are given in Figure �� The correlation coe�cient for the plot of

jlog�Wi��� log�Wi��j against log�Wi�� � log�Wi�� is ����� suggesting that the measurement errors

are additive in the log�scale� and hence multiplicative in the untransformed scale� To see that

an additive model is not appropriate for the data in the original scale� note the strength of the

correlation in the plot for the untransformed data� which has a corresponding correlation coe�cient

of ���

��� Models for �X�U	

We will consider two distributional forms for the measurment error� U � The �rst form is where

U can be expressed as exp�V �� where V is mean�zero and symmetric� The second form is a

special case of the �rst� that U is lognormal�����u�� Note that in both cases we have that W is

median�unbiased for X� �The assumption of median as opposed to mean unbiasedness is not really

important since there is no way to distinguish between the two cases in practice� The advantage

to assuming median�unbiasedness in the case of lognormal measurement error is that it simpli�es

the identi�cation of parameters�� When working with the �rst distributional form for U � we do not

place any distributional assumptions on X other than that X is nonnegative with �nite moments�

We call this the nonparametric case� For the second distributional form of U � the case of lognormal

measurement error� we consider two possibilities for X� The �rst is where once again we assume

only that X is nonnegative with �nite moments� which we call the semiparametric case� The second

form is that X� conditional on Z� is distributed lognormal��� � �t�Z��
�
x�� which we will call the

�



Table �� Three estimation scenarios�

Model U XjZ

Nonparametric exp�V �� V mean�zero symmetric nonnegative

Semiparametric lognormal�����u� nonnegative

Parametric lognormal�����u� lognormal��� � �t�Z��
�
x�

parametric case� The three scenarios are summarized in Table �� Note that the semiparametric

model is a special case of the nonparametric model� and that the parametric model is a special case

of the other two models� Also note that these names refer only to the assumptions placed on the

X and U � For example� the parametric model is not fully �parametric� in that we do not assume

anything beyond independence and a zero expectation for the ��i�� We believe this is one of the

attractive features of our method�

��� Unbiased Estimating Functions for Polynomial Regression under Multi	

plicative Measurement Error

We derive consistent estimators for the coe�cients of the polynomial regression model using the

theory of estimating equations� An advantage to formulating estimators in terms of estimating

equations is that the theory provides a general method for computing asymptotic standard errors� A

brief overview of the method is provided in the appendix� A more detailed description can be found

in Carroll� et al� ������ In practice� the estimating function� ����� is not formulated independently�

but rather is a consequence of the estimation method being considered� For example� a maximum

likelihood approach would imply taking ���� to be the derivative of the log�likelihood�

Note that for the polynomial regression model� an unbiased estimating function for B �

���� �
t
p��� ��� � � � � �p�

t when the distribution of U is known is

��Y�W�Z�B� �

�BBB�
�Y � �� � �tp��Z �

Pp
� �kW

k
	ck���� Z

t�t

�Y � �� � �tp��Z�W	c� �
Pp

� �kW
k��

	ck��
� � �

�Y � �� � �tp��Z�W
p
	cp �

Pp
� �kW

k�p
	ck�p

�CCCA �

where W is the average of the replicates of W � and ck is the kth moment of U � In practice� the

distribution of U will be unknown and the ck will have to be estimated� Unbiased estimating

functions for the nonparametric and semiparametric cases can be found by modifying ���� to

incorporate the estimation of the ck� We take up methods for estimating the ck in the next section�





For the parametric case� we take an alternative approach that allows us to exploit our knowledge

of the distributional form of X� De�ning Ti � ri
��Pri

� log�Wij�� i � �� � � � � n� and noting that

E�Y jT�Z� � ����
t
p��Z�

Pp
� �kE�X

kjT�Z�� a method for estimating B is to regress the Yi on the Zi

and on estimates of the E�XkjTi� Zi�� Simple calculations give us that the conditional distribution

of X given �T�Z� is lognormal with parameters ���u
xjz � ���xT �	��
�
u � ���x� and ��x�

�
u	��

�
u � ���x��

where 
xjz � �� � �t�Z� The exact form of the unbiased estimating equation for the parametric

case is given in the next section�

� ANALYSIS OF MEASUREMENT ERROR

��� Error Parameter Estimation

Computing estimates of the E�U
k
� in the nonparametric and semiparametric cases requires that

we obtain estimates for the moments of U � Let mk denote the kth moment of U � An estimator for

mk in the nonparametric case is given by bmk �
hPn

�

Pri
j ��l fnri�ri � ��g�� �Wij	Wil�

k
i���

� which

follows from the fact that
h
E
n
�Wij	Wil�

k
oi���

� mk� for all i� j� k� l� For the semiparametric

and parametric models� in which U is lognormal�����u�� we can take b��u to be the mean�square

error resulting from an ANOVA on the log�Wij�� which is unbiased for ��u� Since the kth moment

of lognormal�����u� is exp�k
���u	��� an estimator for mk in the semiparametric case is then given

by bmk � exp�k�b��u	��� Moments of U for the nonparametric and semiparametric cases can be

estimated by substituting the bmk into the expansions of the E�U
k
�� For the parametric model� in

addition to b��u� we need estimators for ��� ��� and ��x� Estimates for �� and �� are given by the

regression of the log�Wij� on the Zi� By the independence of X and U � an unbiased estimate for

��x is given by b��x � �b��u �Pn
�

Pri
� �nri�

��flog�Wij�� b�� � b�t�Zig
��

��� Unbiased Estimating Equations for the case of two replicates

An unbiased estimating function for the nonparametric estimator when ri � �� i � �� � � � � n� is given

by

�NP �Y�W�Z�BNP � �

�BBBBBBBBBBB�

�Y � �� � �tp��Z �
Pp

� �kW
k
	ck���� Z

t�t

�Y � �� � �tp��Z�W	c� �
Pp

� �kW
k��

	ck��
� � �

�Y � �� � �tp��Z�W
p
	cp �

Pp
� �kW

k�p
	ck�p

�m�
� �

�
� f�W�	W�� � �W�	W��g

� � �
�m�

�p �
�
�

n
�W�	W��

�p � �W�	W��
�p
o

�CCCCCCCCCCCA
�

�



where BNP � ���� �
t
p��� ��� � � � � �p�m

�
�� � � � �m

�
�p�

t� with the ck treated as functions of the m�
k� For

the semiparametric estimator� an unbiased estimating function is

�SP �Y�W�Z�BSP � �

�BBBBBB�
�Y � �� � �tp��Z �

Pp
� �kW

k
	ck���� Z

t�t

�Y � �� � �tp��Z�W	c� �
Pp

� �kW
k��

	ck��
� � �

�Y � �� � �tp��Z�W
p
	cp �

Pp
� �kW

k�p
	ck�p

����u � flog�W��� log�W��g
�

�CCCCCCA �

where BSP � ���� �
t
p��� ��� � � � � �p� �

�
u�

t� with the ck treated as functions of ��u� Finally� an unbiased

estimating function in the parametric case is given by

�CM�Y�W�Z�BCM � �

�BBBBBBBBB�

�Y � �� � �tp��Z �
Pp

� �kvk���� Z
t�t

�Y � �� � �tp��Z�v� �
Pp

� �kvkv�
� � �

�Y � �� � �tp��Z�vp �
Pp

� �kvkvp�
log�W�� � log�W��� ��� � ��t�Z

�
��� Zt�t

����x � ���u �
�
log�W��� �� � �t�Z

��
�
�
log�W��� �� � �t�Z

��
����u � flog�W��� log�W��g

�

�CCCCCCCCCA
�

where we de�ne vk � E�XkjT�Z�� and BCM � ���� �
t
p��� ��� � � � � �p� ��� ��� �

�
x� �

�
u�

t� We will call the

solution to this estimating equation the conditional mean estimator� in reference to the conditioning

on T and Z� We prefer this name over �parametric� estimator since the latter suggests a likelihood�

based estimator� Note that a likelihood estimator would require assuming a distributional form for

�� something we wish to avoid�

��� Asymptotic Variance Comparisons

Asymptotic variances for the estimators are found by taking one�term Taylor series approximations

of ���� at the estimates� bB� An outline of the derivations for the case of quadratic regression without
covariates is given in the appendix� The variances are calculated under the assumptions of the

parametric model� with the additional assumption of �nite and constant variance for the ��i�� We

can use these formulae to calculate the asymptotic relative e�ciency �ARE� of the conditional mean

estimator relative to both the nonparametric and semiparametric estimators for various parameter

values� This allows us to assess the gain in e�ciency that results from choosing to modelX when the

parametric model holds� Plots of the AREs for b�� are shown in Figure �� The AREs were computed
using the parameter estimates for the Nurses data given in the next section� except that ��u was

allowed to vary� and are plotted as a function of the ratio of the coe�cients of variation for U andX�

This allows us to see how the e�ciency of the conditional mean estimator varies with changes in the
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Figure �� ARE of C�M� estimator vs� C�V��U��C�V��X� for Nurses�

relative amount of measurement error� The plot is consistent with our simulation studies in that

under the parametric model� the nonparametric and semiparametric methods produce virtually

identical estimates for large n� More results from our simulation study are given later�

� NUMERICAL EXAMPLE

��� Diagnostics for U and X for the Nurses Data

In order to determine which of the three methods is the most appropriate for the Nurses data�

we must characterize the distributions of U and X� We can assess the lognormality of U by

constructing the Q�Q plot for log�Wi�	Wi��� i � �� � � � � n� If U is lognormal� this plot should look

like that for normally distributed data� If the lognormality assumption for U is valid� a diagnostic

for lognormality of X is the Q�Q plot for log�Wi�� � log�Wi��� i � �� � � � � n� For lognormal X� this

plot should also look like a Q�Q plot of normally distributed data� Examination of these plots

in Figure  suggests that the lognormality assumption is reasonable for both X and U � Taken

together� the above diagnostics suggest that the conditional mean estimator is reasonable for the

Nurses data�

��� Regression Fits for the Nurses Data

Plots of the �tted regression functions are given in Figure �� We computed �� con�dence intervals

for the estimates of �� using bootstrap percentiles� Con�dence intervals for the NP� SP� CM� and
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Figure � Q	Q plots for log�W
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��log�W�� for the Nurses data�

OLS estimators respectively were� �������������� ������������ ������������� and �������������� Our

simulation results demonstrated that bootstrap percentiles provided the most reliable intervals�

� SIMULATION STUDY

��� Overview

A simulation study was carried out to assess the relative performance of the three methods un�

der the parametric model without covariates� Generating parameter values were taken from the

�t of the conditional mean estimator for the Nurses data� Parameter values used were B �

������ ���	�������t � 
x � ������ ��x � ����� and ��u � ��
�� The ��i� were taken to be i�i�d� N������ ��

with ��� � ���� being the mean of the squared deviations of the data about the conditional mean

�t�

��� Some Descriptive Statistics

Given in Table � are the medians� MADs� and estimated root mean square errors of b�� for ���

simulated data sets� The sampling distributions for the nonparametric and semiparametric esti�

mators� although asymptotically normal� were found to be highly skewed for n � ��	� making

necessary the use of the more robust medians and MADs to assess the bias and standard errors�

As one might expect� the OLS estimates were the least variable� but were also the most biased�

We see that the conditional mean estimator provided the most favorable tradeo� between bias and

�
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Figure �� Nonparametric� semiparametric� conditional mean� and OLS �ts for the Nurses data�

Table �� Summary statistics for b��� �� � ������

median MAD sqrt�MSE�

NP ����� ����	 ����

SP ������ ����� ����

CM �����	 ����� ����

OLS ������ ����� ����

variance reduction� It is important to note that the nonparametric and semiparametric models

both contain the parametric model as a special case� and so are not �incorrect� models for the

simulated data� What is evident� however� is that there may be considerable gains to be made if

one is willing to model the distribution of the predictor� X�

��� Bootstrap
Percentile Con�dence Interval Widths and Coverages

The performances of �� bootstrap�percentile con�dence intervals for �� were examined by gen�

erating �� data sets at the Nurses parameter estimates and computing bootstrap intervals based

on ���� with�replacement samples� Empirical coverage probabilities and mean con�dence inter�

val lengths for the �� intervals are given in Table �� We see that only the con�dence intervals

for the conditional mean estimator provided both accurate coverage and reasonable length� Fur�

ther simulations showed that as sample size increases� the performances of the nonparametric and

��



Table �� Simulated bootstrap con�dence interval coverages and mean lengths� n � ��	�

NP SP CM OLS

Coverage ���� ��
� ���� ��	�
Mean length ��
� ���� ��� ����

semiparametric estimators approach that of the conditional mean estimator� Much of the poor

performance of the nonparametric and semiparametric methods at moderate values of n appears

to be due to highly skewed sampling distributions for the estimators at those sample sizes�

� GENERALIZATIONS

The methods and results of this paper are easily extended to general estimating functions� In the

additive error case� a series of works by Stefanski ���	��� Nakamura ������� Carroll� et al� ������

and Buzas � Stefanski ������ have established the method of corrected estimating equations� Under

various guises� the basic idea is that in some cases� an estimating function ��Y�X�Z�B� can be

expanded as a polynomial

��Y�X�Z�B� �
�X
j��

�j�Y�Z�B�X
j �

For the special structure of the additive model� expansions can be done either in powers of X as

above� powers of exp�X�� or combinations of the two� For the multiplicative model� expanding in

powers of X is most convenient� Note that this is equivalent to �rst replacing X by its logarithm

X�� thus obtaining an additive model� and then expanding the estimating function in terms of

powers of exponentials of X�� For the multiplicative model� if the moments of U are known then

under appropriate regularity conditions relating to convergence of the sum� an unbiased estimating

function for B is

�UB�Y�W�Z�B� �
�X
j��

�j�Y�Z�B�W
j
	cj �

where cj is the jth moment of U � For instance� it is easily seen that for the polynomial regression

model� the estimating equations for the nonparametric and semiparametric estimators are of this

form up to the nuisance parameters �m�� � � � �m�p�
t and ��u respectively� where mk � E�Uk��

The general equivalent of the parametric approach is described brie�y as follows� Suppose that

��



we can expand both the mean and variance of Y in powers of X� so that

E�Y jX�Z�B� �
�X
j��

dj�Z�B�X
j � var�Y jX�Z�B� �

�X
j��

ej�Z�B�X
j � ���

Then provided that the following sums converge� we have

E�Y jW�Z�B� �
�X
j��

dj�Z�B�vj �

var�Y jW�Z�B� �
�X
j��

ej�Z�B�vj �
�X
i��

�X
j��

di�Z�B�dj�Z�B��vi�j � vivj�� ���

where vj � E�Xj jW�Z�� If we assume a parametric distribution for X and U � the vj are known up

to parameters and we can estimate B via ordinary quasilikelihood �generalized least squares��

In our formulation of the conditional mean estimator for polynomial regression� we did not

specify a model for var�Y jX�Z�B�� but rather worked only with E�Y jX�Z�B�� Since we are not

directly specifying a variance model� for the purposes of estimation we have computed the ordinary

least squares estimate of B� given estimates of the vj � This is in e�ect a solution to a general�

ized estimating equation with a homoscedastic �working� variance function �Zeger� et al�� ��		��

Modeling the variance of Y given �X�Z� as in ��� and using ��� as the observed variance function

may lead to a more e�cient estimator� but as seen in Figure �� our working parametric solution

is already reasonably e�cient relative to the nonparametric and semiparametric estimators� We

do wish to reemphasize� however� that the gains in e�ciency come from correctly modeling the

distribution of X�

CONCLUDING REMARKS

In this paper we have considered two general approaches to �tting polynomial regression models in

the presence of multiplicative measurement error in the predictor� The approaches di�ered in that

for one we did not make any distributional assumptions for the predictor beyond the usual i�i�d�

assumption� and for the other we assumed a distributional form� In our analysis we found that the

latter approach� though less robust� can in some cases lead to a substantial increase in e�ciency�

particularly for small to moderate sample sizes� We also found that these gains in e�ciency increase

with the degree of the measurement error� Much of the gain in e�ciency appears due to the slow

convergence to normality of the less parametric approach�
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� APPENDIX

��� Justi�cations for the Measurement Error Diagnostics

For the additive model� Cov�jW��W�j�W��W�� � E fjU� � U�j�U� � U��g� which is
R�
��

R�
�� js�

tj�s� t�fU�
�s�fU�

�t� ds dt� By a change of variable� this is
R�
��

R�
�� js�rj�s�r�fU�

�s�fU�
�r� ds dr�

which is �� Similarly� for the multiplicative model� Cov fjlog�W��� log�W��j� log�W�� � log�W��g

is ��

��� Estimating Functions

A function ��Y�X�B� is an unbiased estimating function for B if E f��Y�X�B�g � �� Given such

a function� ����� one possible estimator for B is the solution� bB� of n��Pn
� ��Yi�Xi�B� � �� Under

a set of mild regularity conditions on �� one can show that bB is a consistent estimator of B�

The limiting distribution of bB can be found by taking a �rst�order Taylor series approximation

of n��
Pn

� ��Yi�Xi� bB� about B� and then applying Slutsky�s Theorem and the CLT� One �nds

that asymptotically n���� bB � B� has mean � and covariance A��BA�t� where A � E
�
��	�Bt��

�
�

B � E
�
��Y�X�B��t�Y�X�B�

�
� and A�t � �A���t�

��� Asymptotic Variance of the Nonparametric Estimator

An unbiased estimating equation for the nonparametric estimator in the quadratic regression case

with two replicates and without covariates is

��



�NP �Y�W�BNP � �

�BBBBBBBBBBBB�

�Y � �� � ��W	c� � ��W
�
	c��

�Y � ���W	c� � ��W
�
	c� � ��W

�
	c�

�Y � ���W
�
	c� � ��W

�
	c� � ��W

�
	c�

�m�
� �

�
� f�W�	W�� � �W�	W��g

�m�
� �

�
�

n
�W�	W��

� � �W�	W��
�
o

�m�
� �

�
�

n
�W�	W��

� � �W�	W��
�
o

�m�
� �

�
�

n
�W�	W��

� � �W�	W��
�
o

�CCCCCCCCCCCCA
�

where BNP � ���� ��� ���m
�
��m

�
��m

�
��m

�
��
t� with the ck treated as functions of the m�

k� In deter�

mining ANP and BNP � it can be shown that

ANP � �

�
E�C� E�F �
���� I�

�
�

where Cij � W
i�j��

	ci�j��� and F has �i� j��element �Y � ���W
i��

ci���j	c
�
i�� � ��W

i
ci�j	c

�
i �

��W
i��

ci���j	c
�
i��� with ci�j de�ned to be �ci	�m

�
j � ��i

�
i
j

�
�mi�j	mj� for j � i� and � otherwise�

Taking expectations� we have that E�C� has �i� j��element 
i�j��� and E�F � has �i� j��element

���
i � ��
i���ci���j	ci�� � ��
ici�j	ci � ��
i��ci���j	ci��� where we de�ne 
k � E�Xk��

To evaluate BNP � �rst note that the upper�left � � � matrix of �SP�
t
SP is given by �DY �

CB��DY � CB�t � DDtY � �DBtCY � CBDtY � CBBC� where D is ���W	c��W
�
	c��

t� Taking

expected values� we get that for � � i � �� � � j � �� the �i� j��element of BSP is

���
ci�j��
ci��cj��


i�j�� �
ci�j��
ci��cj��

�X
k��

�X
l��

�k���l��
i�j�k�l��

�
�X

k��

�k��
ci�j�k��
ci�k��cj��

�X
l��

�l��
i�j�k�l�� �
�X

k��

�k��
ci�j�k��
ci��cj�k��

�X
l��

�l��
i�j�k�l��

�
�X

k��

�X
l��

�k���l��
ci�j�k�l��
ci�k��cj�l��


i�j�k�l���

Next note that for � � i � �� � � j � ��the �i� � � j��element of �NP�
t
NP can be shown to

be ��	��
n
�Y � ���W

i��
	ci�� � ��W

i
	ci � ��W

i��
	ci��

on
�W�	W��

j � �W�	W��
j
o
� which has ex�

pectation ���
i � ��
i��	ci��� gi���j����
i	ci� gi�j����
i��	ci��	� gi���j � where gi�j � E
n
U
i
�U�	U��

j
o
�

��i
Pi

�

�
i
k

�
mj�kmi��j�k	�

Finally� we have that for � � i � �� � � j � �� the �� � i� � � j��element of �NP�
t
NP is given

by m�
im

�
j � �m�

im
�
j � ��	��E

n
�W�	W��

i�j � �W�	W��
i�j � �W�	W��

ji�jj � �W�	W��
ji�jj

o
� which

is �m�
i�j �m�

ji�jj�	��m�
im

�
j �

��� Asymptotic Variance of the Semiparametric Estimator

An unbiased estimating equation for the semiparametric estimator in the quadratic regression case

with two replicates and without covariates is

��



�SP �Y�W�BSP � �

�BBB�
�Y � �� � ��W	c� � ��W

�
	c��

�Y � ���W	c� � ��W
�
	c� � ��W

�
	c�

�Y � ���W
�
	c� � ��W

�
	c� � ��W

�
	c�

���u �
�
� flog�W��� log�W��g

�

�CCCA �

where BSP � ���� ��� ��� �
�
u�

t� and the ck are treated as functions of ��u� We note that ASP �
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