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ASYMPTOTIC NORMALITY OF PARAMETRIC

PART IN PARTIALLY LINEAR MODELS WITH

MEASUREMENT ERROR IN THE

NONPARAMETRIC PART
�

Hua Liang

Institut f�ur Statistik und �Okonometrie

Humboldt�Universit�at zu Berlin

D������ Berlin� Germany

Abstract

We consider the partially linear model relating a response Y to predictors �X�T � with mean
function XT� � g�T � when the T �s are measured with additive error� We derive an estimator
of � by modi�cation local�likelihood method� The resulting estimator of � is shown to be
asymptotically normal�
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� INTRODUCTION AND BACKGROUND

The interest in study measurement error model is growing with the publication of a series of

papers on various topics	 especially the monograph of Carroll	 et al� 

����� Broadly it can be

divided into two parts� the �rst one focuses to linear measurement error model� See Anderson



����	 Carroll	 et al� 

���� and Stefanski 

����� The second one mainly deals with nonlinear

measurement error models� See Fan and Truong 

���� and references therein� Liang	 H�ardle and

Carroll 

���� �rstly considered the semiparametric partially linear model relating a response Y

�The author would like to thank Professor Raymond J� Carroll and Mr� Sommerfeld Volker for
their constructive suggestions and valuable comments which greatly improved the presentation of
this paper� This research was supported by Alexander von Humboldt Foundation and in part by
Sonderforschungsbereich ��� �Quanti�kation und Simulation �Okonomischer Prozesse��






to predicators 
X� T � with function XT� � g
T � when the X �s are unobserved and with additive

error� The authors derived an estimator of �	 which is shown to be consistent and asymptotically

normal� If we interchange the roles of X and T� so that the parametric part is measured exactly

and nonparametric part is measured with error	 E
Y jX� T � � �X� g
T � and W � T �U 	 where U

is measurement error� How about the result in this situation� Liang	 H�ardle and Carroll� 

����

conjected that � is estimable at parametric rates� The goal of this paper is just to present a detailed

and positive answer�

Fan and Truong 

���� have treated the case that � � � and T has measurement error� They

have proved that the nonparametric function g
�� can be estimated only at logarithmic rates	 but

not with rate n���� as usual even with normally distributed measurement error�

Consider the semiparametric partially linear model based on a sample of size n	

Yi � XT
i � � g
Ti� � �i� 

�

where Xi is a random vector	 Ti is a random variable de�ned on ��� 
�	 the function g
�� is unknown	
and the model errors �i are independent with conditional mean zero given the covariates� In this

model	 the covariates T are measured with error	 and instead of observing T 	 we observe

Wi � Ti � Ui� 
��

where the measurement errors Ui are independent and identically distributed	 independent of


Yi� Xi� Ti�	 with mean zero and covariance matrix �uu� We will assume that U has a known

distribution	 which is proposed by Fan and Truong 

���� in order to assure that the model is

identi�able�

When T �s are observable	 in literature authors often constructed root�n consistent estimator of

� by local�likelihood algorithm 
See Engle	 et al� 

����	 Heckman 

����	 Chen 

����	 Speckman



����	 Cuzick 

���a	b� and Severini � Staniswalis 

����� as follows� To �x the parametric

component � and obtain an estimate bg
T� �� of the nonparametric component g
�� using some

kind of smoothing method� For example	 in the Severini and Staniswalis implementation	 bg
T� ��
maximizes a weighted likelihood assuming that the model errors �i are homoscedastic and normally

distributed	 with the weights being kernel weights with symmetric kernel density function K
�� and
bandwidth h� bg
T� �� is then used to obtain an estimator of the parametric component of model



�	 using methods such as maximum likelihood or least squares� For example let the solution of

minimize
nX
i��

n
Yi �XT

i � � bg
Ti� ��o� 
��

�



as the estimate for �	 which can be determined explicitly by a projected least squares algorithm�

Let bgy�h
�� and bgx�h
�� be the kernel regressions with bandwidth h of Y and X on T 	 respectively�

Then

�n �

�
nX
i��

fXi � bgx�h
Ti�g fXi � bgx�h
Ti�gT
��� nX

i��

fXi � bgx�h
Ti�g fYi � bgy�h
Ti�g � 
��

It has shown that the estimator 
�� does not require undersmoothing and the usual bandwidth with

order h � n���� leads to that �n is asymptotically normal with mean zero and variance B
��CB��	

where B is the covariance matrix of X�E
X jT � and C is the covariance matrix of �fX�E
X jT �g�
Due to the disturance of measurement error U 	 the least squares form of 
�� has to be modi�ed	

otherwise �n	 more exactly bgx�h
Ti� and bgy�h
Ti�� are not be statistic any more� In next section	 we
will rede�ne an estimator of �� More exactly	 we have to search a new estimator of g
��	 and then

the regression Y and X onW � Section � states our main result� Section � provides some simulation

studies� Several remarks are given in Section �� All technical proofs are postponed in Appendix�

� CONSTRUCTION OF ESTIMATORS

As pointed out in the former section	 our �rst obstacle is how to estimate the nonparametric

function g
�� under the T being unobserved� This can be overcame by borrowing the ideas of Fan and

Truong 

����� That is	 using deconvolution technology	 one can construct consistent nonparametric

estimates of g
��	 which has convergence rate in some sense under appropriate assumptions�

First	 we brie�y describe deconvolution method	 which has been studied by Stefanski and Carroll



����	 Fan and Truong 

����� Denote the densities of W and T by fW 
�� and fT 
��	 respectively�
As pointed in literature	 fT 
�� can be estimated by using the estimator

bfn
t� � 


nhn

nX
j��

Kn

�
t �Wj

hn

�

with

Kn
t� �



��

Z
R�

exp
�ist� �K
s�

�U 
s	hn�
ds 
��

where �K
�� is the Fourier transform of K
��	 a kernel function	 �U
�� is the characteristic function
of the error variable U � More detailed discussion see Fan and Truong 

�����

Denote


ni
�� � Kn

� � �Wi

hn

��X
j

Kn

� � �Wj

hn

�
def
�




nhn
Kn

� � �Wi

hn

�� bfn
��
�



Next let us return to our goal� Notice the fact g
t� � E
Y �XT�jT � t�� as dealt by Fan and

Truong 

���� one can de�ne

gn
t� �
nX
i��


ni
t�
Yi �XT
i ��

as the estimator of g
�� if � were known�

Let b�n be the solution 
�� after in which bg
Ti� �� substituting by gn
Wi�� Then the generalized

least squares estimator b�n of � can be explicitly indicated as

b�n � 
 eXT eX���
 eXT eY� 
��

where eY denotes 
 eY�� � � � � eYn� with eYi � Yi �Pn
j�� 
nj
Wi�Yj and eX denotes 
 eX�� � � � � eXn� witheXi � Xi �

Pn
j�� 
nj
Wi�Xj �

The estimator b�n will be shown to process asymptotic normality	 which forms the core of this

paper� Up to now	 we solve the �rst problem� The further study is to develop asymptotic theory

for the estimator b�n�
� MAIN RESULTS

We make the following assumptions� Firstly some notations are introduced� �j
t� � E
xijjTi � t�	

Vij � xij � �j
Ti� for i � 
� � � � � n and j � 
� � � � � p�

Assumption ���� sup��t��E
kX�k�jT � t� � � and E
V�V T
� � � B and B is a positive de�nite

matrix� where Vi � 
Vi�� � � � � Vip�T �

Assumption ���� g
�� and �j
�� are Lipschitz continuous of order ��

Assumption ���� �i� The marginal density fT 
�� of the unobserved is bounded away from � on

��� 
�� and has a bounded k�th derivative� Here and below k is a integer�

�ii� The characteristic function of the error distribution ��
�� does not vanish�
�iii� The distribution of the error � is super smooth or ordinary smooth�

The de�nitions of super smooth and ordinary smooth distributions are given by Fan and Truong



����� We also state them for easy reference�


� Super smooth of order 
� If the characteristic function of the error distribution ��
�� satis�es

d�jtj�� exp
�jtj�	�� � j��
t�j � d�jtj�� exp
�jtj�	�� as t��� 
��

where d�� d�	 
 and � are positive constants and 
� and 
� constants�

�



�� Ordinary smooth of order 
� If the characteristic function of the error distribution ��
��
satis�es

d�jtj�� � j��
t�j � d�jtj�� as t� �� 
��

for positive constants d�� d�	 
�

For example	 standard normal and Cauchy distributions are super smooth with 
 � � and 
 � 


respectively� Gamma distribution of degree p and double exponential distribution are ordinary

smooth ones with 
 � p and 
 � � respectively�

Assumption ��	� The kernel K
�� is a k�th order kernel function� that is

Z �

��
K
u�du � 
�

Z �

��
ulK
u�du

�
� � l � 
� � � � � k� 

�� � l � k

Assumptions 
�
 and 
�� are required to establish asymptotic normality with observed values Ti�

Assumptions 
�� and 
�� ensure that our estimator of nonparametric function g
�� are still satis�ed
with the analogous conclusion given by Fan and Truong 

�����

Our main result concerns the limit distributions of the estimate of �� which is stated as follows�

THEOREM� Suppose Assumptions ������	 hold and E
�� � kUk�� � �� If either of the follow

two items is proceeding� that is�

�i� When we have super smooth error distribution� �K
t� has a bounded support on jtj �M� and

we take the bandwidth hn � c
logn����� with c � M�
�	��
���


�ii� When we have ordinary smooth error distribution�

t���
t�� c� t������
t� � O

� as t��

for some constant c �� �� andZ �

��
jtj���f�K
t� � ��K
t�gdt ���

Z �

��
jt����K
t�j�dt ���

We take hn � dn�����k�����	 with d � ��

Then b�n is an asymptotically normal estimator� i�e�

n���
b�n � ��	 N
�� ��B���

where B is given in Assumption 
�
�

�



� SIMULATION

We performed a moderate sample Monte�Carlo simulation to show the behaviour of the estimatorb�n� A generalization of the model studied by Fan and Truong 

���� is considered�

Y � XT� � g
T � � � and W � T � U with � � ����

Here X � N
�� 
�	 T � N
���� ������	 � � N
�� ����
���� U � N
�� ��
����� g
t� � t��

� t����

Suppose the function K
�� has a Fourier transform by �K
t� � 

� t����� By 
��	

Kn
t� �



�

Z �

�
cos
st�

� s��� exp

���
���s�
�h�n

	
ds 
��

For the above model	 we use two di erent kernels� 
�� and quartic kernel 

�	
��

�u���I
juj � 
�


ignoring measurement error�� Our aim is to compare the results in cases of considering measure�

ment error and ignoring measurement errors� The results with di erent sample�numbers will be

presented� The simulation number is N � 
���

Each simulation result is taken as an sample� Basing these N samples	 its sample moment is

taken as our estimate value� The mean square error 
MSE� is also calculated� Table 
 gives the

�nal detailed simulation results�

TABEL �� Simulation results �����	�

Kernel n � 
�� n � ��� n � 
��� n � ����
Bias MSE Bias MSE Bias MSE Bias MSE


�� ����� ����� ����� ����
 ����� ����� ����� ��
��

quartic ����� ����� ����� ����
 ����
 ����� ����� ��
��

In simulation procedure	 we also arrive at the nonparametric �tting	 that is	

bgn
t� � nX
i��


ni
t�
Yi �XT
i
b�n� 

��

and b�n is the resulting estimator given in 
���

An analysis ignoring measurement error 
with quartic kernel� found some curvature in T 	 see

Figure 
 for the comparation of g
T � with its estimator 

�� using the di erent�size samples� The

bandwidth used in our simulation is selected using crossvalidation to predict the response� More

precisely	 we compute the average squared error using a geometric sequence of �
 bandwidths

ranging in ���
� ����� The optimal bandwidth is selected to minimize the average squared error

�



Simulation comparation for n=100
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Simulation comparation for n=1000

-0.5 0 0.5
T

0
5

10
15

0 
+ 

0.
00

1 
* 

g(
T)

 an
d 

its
 es

tim
at

e v
al

ue
s

Simulation comparation for n=500
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Simulation comparation for n=2000
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Figure 
� Estimates of the function g�T �

among �
 canditates� The solid lines stand for true values and the dashed lines do the value of

the resulting estimator given by 

��� Table 
 and the four pictures in Figure 
 illustrate that our

estimators for parametric and nonparametric parts are both satis�ed�

� DISCUSSION

The theorem shows us that in large sample there is no cost due to measurement error of T � That is	

the estimator of � given by 
�� is equivalent to the estimator given by 
�� when we suppose that Ti

were known� This phenomina looks like unreasonable until one observe that measurement error of

T mainly a ect the estimator of the nonparametric part so that the estimator of the nonparametric

part can not reach nonparametric�rate as usual� In addition	 k and 
 do not a ect our asymptotic

normal result as long log�k�� n converges to zero and the Lemma A�� holds� On the other hand	

the estimator of nonparametric part which reaches logarithmic rates	 decided by k and 
 and then

log�k�� n� is easily derived by directly copying the related procedure of Fan and Truong 

�����

The cases that the parametric part X of the model has measurement error and the nonpara�

metric part T is measured exactly or that the parametric part is measured exactly and the non�

�



parametric part is measured with error have been discussed� In more general situation	 that is X

and T are both observed with measurement errors� How to seeking parametric rate estimator of

parameter � is an interesting issue	 which is still open one�

� APPENDIX

Lemma A�
 gives a rather general result on strong uniform convergence	 which is applied in the

proofs of the present context� Its proof is refered to Liang and H�ardle 

�����

Lemma A��� Let V�� � � � � Vn be independent random variables with � means and supj EjVjjr � C �

� 
r 
 ��� Assume faki� k� i � 
 � � � � ng be a sequence of positive numbers such that supi�k�n jakij �
n�p� for some � � p� � 
 and

Pn
j�� aji � O
np�� for p� 
 max
�� �	r� p��� Then

max
��i�n




 nX
k��

akiVk



 � O
n�s logn� s � 
p� � p��	�� a�s�

Lemma A�� provides bounds for �j
Ti��Pn
k�� 
nk
Wi��j
Tk� and g
Ti��Pn

k�� 
nk
Wi�g
Tk��

The proof is mainly based upon the conclusion of Fan and Truong 

�����

Lemma A��� Suppose that Assumptions 
�
 and 
�� hold� Then

max
��i�n

jGj
Ti��
nX

k��


nk
Wi�Gj
Tk�j � o

� for j � �� � � � � p�

where G�
�� � g
�� and Gl
�� � �l
�� for l � 
� � � � � p�

Theoretically	 if � were known	 absorbing XT� ino Y 	
Pn

k�� 
nk
w�
Yk � XT
k �� is parallel to

the estimate of nonparametric function proposed by Fan and Truong 

����� No matter what the

error distribution is	 one can �nd from the main results of Fan and Truong 

���� that

max
��i�n




g
Ti�� nX
k��


nk
Wi�fg
Tk� � �kg



 � O
log�k�� n�

It can be derived that

sup
��i�n




 nX
k��


nk
Wi��k



 � o

�

by taking Vi � �i and aki � 
nk
Wi� in Lemma A�
� These arguments imply that

max
��i�n




g
Ti�� nX
k��


nk
Wi�g
Tk�



 � o

�

The proofs for �l
�� 
l � 
� � � � � p� are similarly as the proof of Lemma � of Fan and Truong



����� More precisely	 noting the Lipschitz continuity of �l
�� one obtains that

max
��i�n




�l
Ti�� nX
k��


nk
Wi��l
Tk�I
jTi� Tkj � cn�



 � O
cn�

�



On the other hand

nX
k��


nk
Wi�I
jTi � Tkj � cn� �
nX

k��

Kn

�
Wi�Wk

hn

	
I
jTi � Tkj � cn�Pn

j��Kn

�
Wi�Wj

hn

	 


�

Adopting the proof of Lemma � of Fan and Truong 

����	 the orders of the denominator and

numerator of 


� can be shown to be equal to the orders of ncnhn and nhn	 respectively� Letting

cn tend to zero	 the fact that Lemma A�� hold for �l
�� is immediately derived�

Lemma A��� If Assumptions 
�
�
�� hold� Then

lim
n��

n�� eXT eX � B

Proof� Denote �ns
Ti� � �s
Ti��Pn
k�� 
nk
Wi�Xks� It follows from Xjs � �s
Tj� � Vjs that the


s�m� element of eXT eX 
s�m � 
� � � � � p� is

nX
j��

eXjs
eXjm �

nX
j��

VjsVjm �
nX

j��

�ns
Tj�Vjm �
nX

j��

�nm
Tj�Vjs �
nX

j��

�ns
Tj��nm
Tj�

def
�

nX
j��

VjsVjm �
�X

q��

R�q	
nsm

The strong law of large number implies that limn�� 
	n
Pn

i�� ViV
T
i � B� Notice that �ns
Ti� is juste�s
Ti� �Pn

k�� 
nk
Wi�Vks� In Lemma A�
	 taking aik � 
nk
Wi� and Vk � Vks and p� � �� p� � �

one obtains that
Pn

k�� 
nk
Wi�Vks � o

�� which and Lemma A�� lead �ns
Ti� � o

�� This means

R
��	
nsm � o
n�	 which together with the Cauchy�Schwarz inequality show that R

��	
nsm � o
n� and

R
��	
nsm � o
n�� This completes the proof of the lemma�

PROOF OF THE THEOREM� We �rstly outline the proof of the theorem� We decomposite
p
n
�n � �� into three terms� Then we will calculate the tail probability value of each term� By

the de�nition of �n	

p
n
b�n � �� �

p
n
 eX� eX���h nX

i��

eXigni �
nX
i��

eXi

n nX
j��


nj
Wi��j
o
�

nX
i��

eXi�i
i

def
� A
n�

h 
p
n

nX
i��

eXigni � 
p
n

nX
i��

eXi

n nX
j��


nj
Wi��j
o
�


p
n

nX
i��

eXi�i
i



��

where A
n� � n�� eXT eX and gni � g
Ti��Pn
k�� 
nk
Wi�g
Tk��

Lemma A�� means that A
n� converges to B��� Thus our problem is to prove the �rst and the

second terms in the parenthese of the right�hand side of 

�� converge in probabilty to zero and


	
p
n
Pn

i��
eXi�i converges to normal distribution with mean zero and covariate matrix ��B� The

latter half assertion can be shown by using central limit theorem and Lemma A��	 or refering Chen



����� Let us now verify the former assertion�

�



Taking r � �� Vk � �k or Vkl	 aji � 
nj
Wi�� p� � �	� and p� � � in Lemma A�
	 one obtains

the following equations	 which will play critical roles in the processes of the proofs�

max
i�n




 nX
k��


nk
Wi��k



 � O
n���� logn� a�s� 

��

max
i�n




 nX
k��


nk
Wi�Vkl



 � O
n���� log n� for l � 
� � � � � p a�s� 

��

Notice that

nX
i��

exijgni � nX
i��

Vijgni �
nX
i��

�nijgni �
nX
i��

nX
q��


nq
Wi�Vqjgni

In Lemma A�
 we take r � �� Vk � Vkl	 aji � gnj � 
	� � p� � 
	� and p� � 
� p�� then


 nX
i��

Vijgni



 � O
n���p���	���

By Lemma A��




 nX
i��

�nijgni



 � nmax

i�n
jgnijmax

i�n
j�nijj � o

�

Use Abel�s inequality and 

��




 nX
i��

nX
q��


nq
Wi�Vqjgni



 � nmax

i�n
jgnijmax

i�n




 nX
q��


nq
Wi�Vqj



 � o

��

The above arguments entail that 
	
p
n
Pn

i��
eXigni is o

��

Observe that

nX
i��

n nX
k��

exkj
ni
Wk�
o
�i �

nX
i��

n nX
k��

Vkj
ni
Wk�
o
�i

�
nX
i��

n nX
k��

�nkj
ni
Wk�
o
�i �

nX
i��

�� nX
k��

n nX
q��

Vqj
nq
Wk�
o

ni
Wk�


� �i
We shall prove that all of the above three terms are o
n�����

In Lemma A�
 we take r � �� Vk � �k 	 ali �
Pn

k�� Vkj
ni
Wk�� 
	� � p� � 
	� and p� � 
� p��


 nX
i��

n nX
k��

Vkj
ni
Wk�
o
�i



 � O
n���p���	�� log n�

By Lemma A�� and 

��	 we get


 nX
i��

n nX
k��

�nkj
ni
Wk�
o
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Use Abel�s inequality and 

�� and 

��	 we obtain
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We therefore complete the proof of the theorem�
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