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ASYMPTOTIC NORMALITY OF PARAMETRIC

PART IN PARTIALLY LINEAR MODELS WITH

MEASUREMENT ERROR IN THE

NONPARAMETRIC PART
�

Hua Liang

Institut f�ur Statistik und �Okonometrie

Humboldt�Universit�at zu Berlin

D������ Berlin� Germany

Abstract

We consider the partially linear model relating a response Y to predictors �X�T � with mean
function XT� � g�T � when the T �s are measured with additive error� We derive an estimator
of � by modi�cation local�likelihood method� The resulting estimator of � is shown to be
asymptotically normal�
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� INTRODUCTION AND BACKGROUND

The interest in study measurement error model is growing with the publication of a series of

papers on various topics	 especially the monograph of Carroll	 et al� 
����� Broadly it can be

divided into two parts� the �rst one focuses to linear measurement error model� See Anderson


����	 Carroll	 et al� 
���� and Stefanski 
����� The second one mainly deals with nonlinear

measurement error models� See Fan and Truong 
���� and references therein� Liang	 H�ardle and

Carroll 
���� �rstly considered the semiparametric partially linear model relating a response Y

�The author would like to thank Professor Raymond J� Carroll and Mr� Sommerfeld Volker for
their constructive suggestions and valuable comments which greatly improved the presentation of
this paper� This research was supported by Alexander von Humboldt Foundation and in part by
Sonderforschungsbereich ��� �Quanti�kation und Simulation �Okonomischer Prozesse��






to predicators X� T � with function XT� � gT � when the X �s are unobserved and with additive

error� The authors derived an estimator of �	 which is shown to be consistent and asymptotically

normal� If we interchange the roles of X and T� so that the parametric part is measured exactly

and nonparametric part is measured with error	 EY jX� T � � �X� gT � and W � T �U 	 where U

is measurement error� How about the result in this situation� Liang	 H�ardle and Carroll� 
����

conjected that � is estimable at parametric rates� The goal of this paper is just to present a detailed

and positive answer�

Fan and Truong 
���� have treated the case that � � � and T has measurement error� They

have proved that the nonparametric function g�� can be estimated only at logarithmic rates	 but

not with rate n���� as usual even with normally distributed measurement error�

Consider the semiparametric partially linear model based on a sample of size n	

Yi � XT
i � � gTi� � �i� 
�

where Xi is a random vector	 Ti is a random variable de�ned on ��� 
�	 the function g�� is unknown	
and the model errors �i are independent with conditional mean zero given the covariates� In this

model	 the covariates T are measured with error	 and instead of observing T 	 we observe

Wi � Ti � Ui� ��

where the measurement errors Ui are independent and identically distributed	 independent of

Yi� Xi� Ti�	 with mean zero and covariance matrix �uu� We will assume that U has a known

distribution	 which is proposed by Fan and Truong 
���� in order to assure that the model is

identi�able�

When T �s are observable	 in literature authors often constructed root�n consistent estimator of

� by local�likelihood algorithm See Engle	 et al� 
����	 Heckman 
����	 Chen 
����	 Speckman


����	 Cuzick 
���a	b� and Severini � Staniswalis 
����� as follows� To �x the parametric

component � and obtain an estimate bgT� �� of the nonparametric component g�� using some

kind of smoothing method� For example	 in the Severini and Staniswalis implementation	 bgT� ��
maximizes a weighted likelihood assuming that the model errors �i are homoscedastic and normally

distributed	 with the weights being kernel weights with symmetric kernel density function K�� and
bandwidth h� bgT� �� is then used to obtain an estimator of the parametric component of model


�	 using methods such as maximum likelihood or least squares� For example let the solution of

minimize
nX
i��

n
Yi �XT

i � � bgTi� ��o� ��

�



as the estimate for �	 which can be determined explicitly by a projected least squares algorithm�

Let bgy�h�� and bgx�h�� be the kernel regressions with bandwidth h of Y and X on T 	 respectively�

Then

�n �

�
nX
i��

fXi � bgx�hTi�g fXi � bgx�hTi�gT
��� nX

i��

fXi � bgx�hTi�g fYi � bgy�hTi�g � ��

It has shown that the estimator �� does not require undersmoothing and the usual bandwidth with

order h � n���� leads to that �n is asymptotically normal with mean zero and variance B
��CB��	

where B is the covariance matrix of X�EX jT � and C is the covariance matrix of �fX�EX jT �g�
Due to the disturance of measurement error U 	 the least squares form of �� has to be modi�ed	

otherwise �n	 more exactly bgx�hTi� and bgy�hTi�� are not be statistic any more� In next section	 we
will rede�ne an estimator of �� More exactly	 we have to search a new estimator of g��	 and then

the regression Y and X onW � Section � states our main result� Section � provides some simulation

studies� Several remarks are given in Section �� All technical proofs are postponed in Appendix�

� CONSTRUCTION OF ESTIMATORS

As pointed out in the former section	 our �rst obstacle is how to estimate the nonparametric

function g�� under the T being unobserved� This can be overcame by borrowing the ideas of Fan and

Truong 
����� That is	 using deconvolution technology	 one can construct consistent nonparametric

estimates of g��	 which has convergence rate in some sense under appropriate assumptions�

First	 we brie�y describe deconvolution method	 which has been studied by Stefanski and Carroll


����	 Fan and Truong 
����� Denote the densities of W and T by fW �� and fT ��	 respectively�
As pointed in literature	 fT �� can be estimated by using the estimator

bfnt� � 


nhn

nX
j��

Kn

�
t �Wj

hn

�

with

Knt� �



��

Z
R�

exp�ist� �Ks�

�U s	hn�
ds ��

where �K�� is the Fourier transform of K��	 a kernel function	 �U�� is the characteristic function
of the error variable U � More detailed discussion see Fan and Truong 
�����

Denote


ni�� � Kn

� � �Wi

hn

��X
j

Kn

� � �Wj

hn

�
def
�




nhn
Kn

� � �Wi

hn

�� bfn��
�



Next let us return to our goal� Notice the fact gt� � EY �XT�jT � t�� as dealt by Fan and

Truong 
���� one can de�ne

gnt� �
nX
i��


nit�Yi �XT
i ��

as the estimator of g�� if � were known�

Let b�n be the solution �� after in which bgTi� �� substituting by gnWi�� Then the generalized

least squares estimator b�n of � can be explicitly indicated as

b�n �  eXT eX��� eXT eY� ��

where eY denotes  eY�� � � � � eYn� with eYi � Yi �Pn
j�� 
njWi�Yj and eX denotes  eX�� � � � � eXn� witheXi � Xi �

Pn
j�� 
njWi�Xj �

The estimator b�n will be shown to process asymptotic normality	 which forms the core of this

paper� Up to now	 we solve the �rst problem� The further study is to develop asymptotic theory

for the estimator b�n�
� MAIN RESULTS

We make the following assumptions� Firstly some notations are introduced� �jt� � ExijjTi � t�	

Vij � xij � �jTi� for i � 
� � � � � n and j � 
� � � � � p�

Assumption ���� sup��t��EkX�k�jT � t� � � and EV�V T
� � � B and B is a positive de�nite

matrix� where Vi � Vi�� � � � � Vip�T �

Assumption ���� g�� and �j�� are Lipschitz continuous of order ��

Assumption ���� �i� The marginal density fT �� of the unobserved is bounded away from � on

��� 
�� and has a bounded k�th derivative� Here and below k is a integer�

�ii� The characteristic function of the error distribution ���� does not vanish�
�iii� The distribution of the error � is super smooth or ordinary smooth�

The de�nitions of super smooth and ordinary smooth distributions are given by Fan and Truong


����� We also state them for easy reference�


� Super smooth of order � If the characteristic function of the error distribution ���� satis�es

d�jtj�� exp�jtj�	�� � j��t�j � d�jtj�� exp�jtj�	�� as t��� ��

where d�� d�	  and � are positive constants and � and � constants�

�



�� Ordinary smooth of order � If the characteristic function of the error distribution ����
satis�es

d�jtj�� � j��t�j � d�jtj�� as t� �� ��

for positive constants d�� d�	 �

For example	 standard normal and Cauchy distributions are super smooth with  � � and  � 


respectively� Gamma distribution of degree p and double exponential distribution are ordinary

smooth ones with  � p and  � � respectively�

Assumption ��	� The kernel K�� is a k�th order kernel function� that is

Z �

��
Ku�du � 
�

Z �

��
ulKu�du

�
� � l � 
� � � � � k� 

�� � l � k

Assumptions 
�
 and 
�� are required to establish asymptotic normality with observed values Ti�

Assumptions 
�� and 
�� ensure that our estimator of nonparametric function g�� are still satis�ed
with the analogous conclusion given by Fan and Truong 
�����

Our main result concerns the limit distributions of the estimate of �� which is stated as follows�

THEOREM� Suppose Assumptions ������	 hold and E�� � kUk�� � �� If either of the follow

two items is proceeding� that is�

�i� When we have super smooth error distribution� �Kt� has a bounded support on jtj �M� and

we take the bandwidth hn � clogn����� with c � M��	��
���


�ii� When we have ordinary smooth error distribution�

t���t�� c� t������t� � O
� as t��

for some constant c �� �� andZ �

��
jtj���f�Kt� � ��Kt�gdt ���

Z �

��
jt����Kt�j�dt ���

We take hn � dn�����k�����	 with d � ��

Then b�n is an asymptotically normal estimator� i�e�

n���b�n � ��	 N�� ��B���

where B is given in Assumption 
�
�

�



� SIMULATION

We performed a moderate sample Monte�Carlo simulation to show the behaviour of the estimatorb�n� A generalization of the model studied by Fan and Truong 
���� is considered�

Y � XT� � gT � � � and W � T � U with � � ����

Here X � N�� 
�	 T � N���� ������	 � � N�� ����
���� U � N�� ��
����� gt� � t��
� t����

Suppose the function K�� has a Fourier transform by �Kt� � 
� t����� By ��	

Knt� �



�

Z �

�
cosst�
� s��� exp

���
���s�
�h�n

	
ds ��

For the above model	 we use two di erent kernels� �� and quartic kernel 
�	
��
�u���Ijuj � 
�

ignoring measurement error�� Our aim is to compare the results in cases of considering measure�

ment error and ignoring measurement errors� The results with di erent sample�numbers will be

presented� The simulation number is N � 
���

Each simulation result is taken as an sample� Basing these N samples	 its sample moment is

taken as our estimate value� The mean square error MSE� is also calculated� Table 
 gives the

�nal detailed simulation results�

TABEL �� Simulation results �����	�

Kernel n � 
�� n � ��� n � 
��� n � ����
Bias MSE Bias MSE Bias MSE Bias MSE

�� ����� ����� ����� ����
 ����� ����� ����� ��
��

quartic ����� ����� ����� ����
 ����
 ����� ����� ��
��

In simulation procedure	 we also arrive at the nonparametric �tting	 that is	

bgnt� � nX
i��


nit�Yi �XT
i
b�n� 
��

and b�n is the resulting estimator given in ���

An analysis ignoring measurement error with quartic kernel� found some curvature in T 	 see

Figure 
 for the comparation of gT � with its estimator 
�� using the di erent�size samples� The

bandwidth used in our simulation is selected using crossvalidation to predict the response� More

precisely	 we compute the average squared error using a geometric sequence of �
 bandwidths

ranging in ���
� ����� The optimal bandwidth is selected to minimize the average squared error

�



Simulation comparation for n=100
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Simulation comparation for n=1000
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Simulation comparation for n=500
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Simulation comparation for n=2000
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Figure 
� Estimates of the function g�T �

among �
 canditates� The solid lines stand for true values and the dashed lines do the value of

the resulting estimator given by 
��� Table 
 and the four pictures in Figure 
 illustrate that our

estimators for parametric and nonparametric parts are both satis�ed�

� DISCUSSION

The theorem shows us that in large sample there is no cost due to measurement error of T � That is	

the estimator of � given by �� is equivalent to the estimator given by �� when we suppose that Ti

were known� This phenomina looks like unreasonable until one observe that measurement error of

T mainly a ect the estimator of the nonparametric part so that the estimator of the nonparametric

part can not reach nonparametric�rate as usual� In addition	 k and  do not a ect our asymptotic

normal result as long log�k�� n converges to zero and the Lemma A�� holds� On the other hand	

the estimator of nonparametric part which reaches logarithmic rates	 decided by k and  and then

log�k�� n� is easily derived by directly copying the related procedure of Fan and Truong 
�����

The cases that the parametric part X of the model has measurement error and the nonpara�

metric part T is measured exactly or that the parametric part is measured exactly and the non�

�



parametric part is measured with error have been discussed� In more general situation	 that is X

and T are both observed with measurement errors� How to seeking parametric rate estimator of

parameter � is an interesting issue	 which is still open one�

� APPENDIX

Lemma A�
 gives a rather general result on strong uniform convergence	 which is applied in the

proofs of the present context� Its proof is refered to Liang and H�ardle 
�����

Lemma A��� Let V�� � � � � Vn be independent random variables with � means and supj EjVjjr � C �

� r 
 ��� Assume faki� k� i � 
 � � � � ng be a sequence of positive numbers such that supi�k�n jakij �
n�p� for some � � p� � 
 and

Pn
j�� aji � Onp�� for p� 
 max�� �	r� p��� Then

max
��i�n




 nX
k��

akiVk



 � On�s logn� s � p� � p��	�� a�s�

Lemma A�� provides bounds for �jTi��Pn
k�� 
nkWi��jTk� and gTi��Pn

k�� 
nkWi�gTk��

The proof is mainly based upon the conclusion of Fan and Truong 
�����

Lemma A��� Suppose that Assumptions 
�
 and 
�� hold� Then

max
��i�n

jGjTi��
nX

k��


nkWi�GjTk�j � o
� for j � �� � � � � p�

where G��� � g�� and Gl�� � �l�� for l � 
� � � � � p�

Theoretically	 if � were known	 absorbing XT� ino Y 	
Pn

k�� 
nkw�Yk � XT
k �� is parallel to

the estimate of nonparametric function proposed by Fan and Truong 
����� No matter what the

error distribution is	 one can �nd from the main results of Fan and Truong 
���� that

max
��i�n




gTi�� nX
k��


nkWi�fgTk� � �kg



 � Olog�k�� n�

It can be derived that

sup
��i�n




 nX
k��


nkWi��k



 � o
�

by taking Vi � �i and aki � 
nkWi� in Lemma A�
� These arguments imply that

max
��i�n




gTi�� nX
k��


nkWi�gTk�



 � o
�

The proofs for �l�� l � 
� � � � � p� are similarly as the proof of Lemma � of Fan and Truong


����� More precisely	 noting the Lipschitz continuity of �l�� one obtains that

max
��i�n




�lTi�� nX
k��


nkWi��lTk�IjTi� Tkj � cn�



 � Ocn�

�



On the other hand

nX
k��


nkWi�IjTi � Tkj � cn� �
nX

k��

Kn

�
Wi�Wk

hn

	
IjTi � Tkj � cn�Pn

j��Kn

�
Wi�Wj

hn

	 

�

Adopting the proof of Lemma � of Fan and Truong 
����	 the orders of the denominator and

numerator of 

� can be shown to be equal to the orders of ncnhn and nhn	 respectively� Letting

cn tend to zero	 the fact that Lemma A�� hold for �l�� is immediately derived�

Lemma A��� If Assumptions 
�
�
�� hold� Then

lim
n��

n�� eXT eX � B

Proof� Denote �nsTi� � �sTi��Pn
k�� 
nkWi�Xks� It follows from Xjs � �sTj� � Vjs that the

s�m� element of eXT eX s�m � 
� � � � � p� is

nX
j��

eXjs
eXjm �

nX
j��

VjsVjm �
nX

j��

�nsTj�Vjm �
nX

j��

�nmTj�Vjs �
nX

j��

�nsTj��nmTj�

def
�

nX
j��

VjsVjm �
�X

q��

R�q	
nsm

The strong law of large number implies that limn�� 
	n
Pn

i�� ViV
T
i � B� Notice that �nsTi� is juste�sTi� �Pn

k�� 
nkWi�Vks� In Lemma A�
	 taking aik � 
nkWi� and Vk � Vks and p� � �� p� � �

one obtains that
Pn

k�� 
nkWi�Vks � o
�� which and Lemma A�� lead �nsTi� � o
�� This means

R
��	
nsm � on�	 which together with the Cauchy�Schwarz inequality show that R

��	
nsm � on� and

R
��	
nsm � on�� This completes the proof of the lemma�

PROOF OF THE THEOREM� We �rstly outline the proof of the theorem� We decomposite
p
n�n � �� into three terms� Then we will calculate the tail probability value of each term� By

the de�nition of �n	

p
nb�n � �� �

p
n eX� eX���h nX

i��

eXigni �
nX
i��

eXi

n nX
j��


njWi��j
o
�

nX
i��

eXi�i
i

def
� An�

h 
p
n

nX
i��

eXigni � 
p
n

nX
i��

eXi

n nX
j��


njWi��j
o
�


p
n

nX
i��

eXi�i
i


��

where An� � n�� eXT eX and gni � gTi��Pn
k�� 
nkWi�gTk��

Lemma A�� means that An� converges to B��� Thus our problem is to prove the �rst and the

second terms in the parenthese of the right�hand side of 
�� converge in probabilty to zero and


	
p
n
Pn

i��
eXi�i converges to normal distribution with mean zero and covariate matrix ��B� The

latter half assertion can be shown by using central limit theorem and Lemma A��	 or refering Chen


����� Let us now verify the former assertion�

�



Taking r � �� Vk � �k or Vkl	 aji � 
njWi�� p� � �	� and p� � � in Lemma A�
	 one obtains

the following equations	 which will play critical roles in the processes of the proofs�

max
i�n




 nX
k��


nkWi��k



 � On���� logn� a�s� 
��

max
i�n




 nX
k��


nkWi�Vkl



 � On���� log n� for l � 
� � � � � p a�s� 
��

Notice that

nX
i��

exijgni � nX
i��

Vijgni �
nX
i��

�nijgni �
nX
i��

nX
q��


nqWi�Vqjgni

In Lemma A�
 we take r � �� Vk � Vkl	 aji � gnj � 
	� � p� � 
	� and p� � 
� p�� then


 nX
i��

Vijgni



 � On���p���	���

By Lemma A��




 nX
i��

�nijgni



 � nmax

i�n
jgnijmax

i�n
j�nijj � o
�

Use Abel�s inequality and 
��




 nX
i��

nX
q��


nqWi�Vqjgni



 � nmax

i�n
jgnijmax

i�n




 nX
q��


nqWi�Vqj



 � o
��

The above arguments entail that 
	
p
n
Pn

i��
eXigni is o
��

Observe that

nX
i��

n nX
k��

exkj
niWk�
o
�i �

nX
i��

n nX
k��

Vkj
niWk�
o
�i

�
nX
i��

n nX
k��

�nkj
niWk�
o
�i �

nX
i��

�� nX
k��

n nX
q��

Vqj
nqWk�
o

niWk�

� �i
We shall prove that all of the above three terms are on�����

In Lemma A�
 we take r � �� Vk � �k 	 ali �
Pn

k�� Vkj
niWk�� 
	� � p� � 
	� and p� � 
� p��


 nX
i��

n nX
k��

Vkj
niWk�
o
�i



 � On���p���	�� log n�

By Lemma A�� and 
��	 we get


 nX
i��

n nX
k��

�nkj
niWk�
o
�i



 � nmax

k�n




 nX
i��


niWk��i



max
k�n

j�nkj j � On���cn log n�


�



Use Abel�s inequality and 
�� and 
��	 we obtain




 nX
i��

�� nX
k��

n nX
q��

Vqj
nqWk�
o

niWk�

� �i


 � nmax
k�n




 nX
i��


niWk��i



max
k�n




 kX
q��

Vqj
nqWj�





� On��� log� n� � on����

We therefore complete the proof of the theorem�
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