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Construction of Automatic Con�dence Intervals in

Nonparametric Heteroscedastic Regression by a

Moment�Oriented Bootstrap�

Volker Sommerfeld�

February ��� ����

Abstract

We construct pointwise con�dence intervals for regression functions� The method uses
nonparametric kernel estimates and the �moment�oriented� bootstrap method of Bunke which
is a wild bootstrap based on smoothed local estimators of higher order error moments� We
show that our bootstrap consistently estimates the distribution of �mh�x�	 �m�x�	� In the
present paper we focus on fully data�driven procedures and prove that the con�dence intervals
give asymptotically correct coverage probabilities�

� Introduction

We consider the nonparametric regression model

Yi � m�xi� 	 �i� � � i � n� ��
��

where the errors �i are independent� but not necessarily identically distributed ran�
dom variables with zero mean and �nite central moments ���xi�� ���xi� and ���xi�

The nonrandom design points x� � � � � � xn are assumed to be equally spaced on
the unit interval �� ��


We aim at de�ning a con�dence interval for the value m�x�� of the regression
function m at some interior point x� � ��� �� which has a coverage probability near
to a prescribed nominal level �� �


A usual construction method of such con�dence intervals is as follows
 As a
starting point we take some kernel estimator �mh�x�� of m�x�� with bandwidth h �
h�n�
 Under mild regularity conditions the standardized estimator

Sn �
p
nh

�mh�x���m�x���Bn�x��

V
���
n �x��

converges in distribution to a standard normal random variable
 The unknown
normalizing constants� the bias Bn�x�� and the variance Vn�x�� of �mh�x��� have to
be suitably estimated
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In the present paper we consider an alternative construction method that consists
in estimating the distribution of the pivot

�Sn �
p
nh

�mh�x���m�x��

�V ���
n �x��

by a �wild bootstrap� method where

�Vn�x�� �

nX
i��

w
i�
k�h�x������xi�

is an estimate of the variance ot �mh�x��
 Here� w
i�
k�h�x�� is a weight function and

����xi� denotes an estimator of the error variance at the design point xi which will be
speci�ed later
 Such a construction method was used by H�ardle � Marron ������

Yet� the wild bootstrap distribution� that depends on estimators of ���xi� and ���xi�
which have a strong variability
 On the other hand� Bunke ������ shows for linear
regression models� that for �xed sample sizes the quality of the bootstrap approx�
imation is strongly in�uenced by the estimators of the error moments
 Moreover�
his simulation studies show that for moderate and small sample sizes his moment
oriented bootstrap procedure which is based on smooth �small bias� estimates of
the error moments ���xi�� ���xi� and ���xi� compares favourably with the usual
variant of wild bootstrap


There exists an extensive literature concerning con�dence intervals for nonpara�
metric regression functions �see e
g
 H�ardle � Bowman� ���� and Hall� ���� for i
i
d

errors and H�ardle � Marron� ���� for non i
i
d
 errors�
 Yet� most of the available
literature does not take into account the speci�c bandwidth choice that is necessary
for practical applications
 Exceptions are Neumann ������ and Neumann ������
who proved asymptotic rates for the coverage probability of con�dence intervals ob�
tained by second order normal approximations for non i
i
d
 errors
 He selected the
bandwidth by �full�crossvalidation� and by the

p
n�consistent bandwidth selector of

H�ardle� Hall � Marron ������


In the present paper we prove the asymptotic validity of data�driven con�dence
intervals which are based on the moment�oriented bootstrap
 Hereby we perform
the bandwidth choice by the �full�crossvalidation� procedure proposed by Neumann
������
 The higher order performance of the coverage probability of these con�dence
intervals should be the subject of further research
 Anticipating the following results�
we remark that we need neither undersmoothing nor explicit bias correction as in
the normal approximation case
 This holds because of an implicit bias correction
performed by the bootstrap
 Thus� we can adapt the bandwidth to the data in
a natural way
 Yet� in order to obtain consistent bootstrap con�dence intervals
we have to make sure that the initial bias in the estimation of �mh�x�� and its
bootstrap counterpart cancel out
 To ensure this� we need some more smoothness in
the �implicit� estimation of this bias terms than in the estimation of the regression
function �mh�x��
 For this reason it is not possible to get con�dence intervals which
shrink with the optimal asymptotic rate


�



� Estimation of the error moments

Results of Bunke ������ for linear models indicate that the moments of the bootstrap
error distribution should be good estimates of the true error moments
 Following
results of Gasser� Seifert � Wolf ������ and M�uller � Stadtm�uller �����a� he pro�
posed consistent estimators of the second� third and fourth error moments which he
obtained by smoothing local estimators which are unbiased in a local vicinity of the
design point x� when the model is linear in this vicinity
 In the present section we
de�ne these estimators and state their consistency properties


In what follows we assume that the regression function m�x� is �k 	 �� � times
di�erentiable with a continous �k	 ���th derivative on �� �� �k � ��
 We de�ne the
following local estimators of the error moments


� error variance�

����xi� ��
�

�
�Yi � Yi���

�

� third moment�

����xi� ��
�

�
��Yi � Yi�� � Yi���

�

� fourth moment�

����xi� ��
�

��
��Yi � Yi�� � Yi���

� � �

�
�Yi�� 	 Yi�� � Yi�� � Yi�

��

Note that one could also use a �second order di�erence� estimator of the error
variance which is given by

�����xi� ��
�

�
��Yi � Yi�� � Yi���

��

Generalizing Lemma �
� of M�uller � Stadtm�uller �����a� to higher order moments
it is easily seen that these local estimators are asymptotically unbiased but not
consistent because their variances do not vanish asymptotically
 Yet� assuming
some smoothness of the error moments we get consistency by smoothing these local
estimators in an appropriate way


We assume that the error moments �j�x�� j � �� �� � as functions of the explana�
tory variable x are r�times �r � �� di�erentiable with a continuous second derivative
on �� ��
 We perform the smoothing with the Gasser�M�uller kernel estimator �see
Gasser � M�uller� ������

��j�x�� � ��
�j
j �x�� �

nX
i��

w
i�
r��j
�x����i� ��
��

where

w
i�
r��j
�x�� ��

�

�j

Z si

si��

Kr

�
x� � u

�j

�
du�

sj � �xj � xj���	� and Kr is some usual symmetric r�th order kernel with compact
support �
� 
 � if �j � x� � � � �j and some boundary kernel otherwise
 Explicit

�



formulas for such boundary kernels are given in Gasser� M�uller � Mammitzsch
������
 We further assume that Kr is Lipschitz continous of order �Kr 
 Obviously

the di�erences ��
�j�
i �� ��j�xi� � �j�xi� and ��

�j�
j �� ��j�xl� � �j�xl� are independent

random variables i� ji� lj � j


The following lemma generalizes theorems � and � of Gasser � M�uller ������ for
the moments of the above kernel smoother based on such �j��� � dependent errors

We denote

�j�xi� xl� �� cov����j�i � ��
�j�
l �

and
�j�xi� �� �j�xi� xl� �� V ar���j�i �

For the following lemma we assume that the error moments �j�x� �j � �� 
 
 
 � ��
are continuous in the explanatory variable x
 Note that this assumption and the
continuity of the regression function m implies the continuity of �j�t� s� in s and t


Lemma ��� Under �j � �� n�j �� and the assumptions of this section holds

E��
�j
j �x�� � �j�x�� 	

�rj
r�
�
r�
j �x��

Z �

��

urKr�u� du	O�n��� 	 o��rj �� ��
��

V ar��
�j
j �x�� � ��j � ���j�x��

n�j

Z �

��

K�
r �u� du	O��n�j�

����Kr ��� ��
��

The proof of this lemma and of the following assertions are given in the appendix


From lemma �
� we obtain the weak consistency of the estimates ��
�j
j �x��� j � �� �� �


Note that under stronger conditions on the error moments and assuming Lipschitz
continuity of mk��x�� we may deduce a corresponding strong consistency result
following the lines of theorem �
� in M�uller � Stadtm�uller �����a�
 Yet� such a
stronger result is not necessary for the asymptotic validity of data�driven con�dence
intervals


� Convergence of bootstrap con�dence intervals

As we noted in the introduction� we have to use a k�th order kernel K instead an
optimal �k 	 ���th order one in the estimation of the regression function m�x�� in
order to ensure that the bias and its bootstrap counterpart cancel out
 Thus� let
K be a k�th order kernel
 We estimate m�x�� by a Gasser�M�uller kernel smoother

Thus we get the initial estimator

�m�x�� � �mh�x�� �
nX
i��

w
i�
k�h�x��Yi

where a k�th order kernel is used in the smoothing
 The moment oriented bootstrap
is de�ned as follows


� We denote by Fi the �unknown� distribution of the errors f�ig
 We approximate
Fi by a bootstrap distribution �Fn�i which has the �rst four central moments ��
����i� ����i and ����i


�



� Bootstrap observations are given by independent random variables �condition�

ally under the observations �
�� Y �
i � �mg�xi� 	 ��i with ��i 	 �Fn� i � �� 
 
 
 � n


The bandwidth g will speci�ed later


� A bootstrap estimator �m�
h�
of �mh is obtained by a kernel smoothing of the

bootstrap observations Y �
i 


In this section we will prove the validity of the bootstrap for nonrandom bandwidths

This result will be extended to data�driven bandwidths in the next section
 Note
that for non random bandwidths h � hn with h� � and nh �� for n � � the
following asymptotic formulas are valid �see Gasser � M�uller� �����


EF �mh�x�� � m�x�� 	 ����k h
k

k�
mk��x��

Z
u�K�u� du	O�n��� 	 o�h�����
��

V arF �mh�x�� �
���x��

nh

Z
K��u� du	O��nh�����K��� ��
��

The normalization used in the following lemma stems from the asymptotic behavior
of V arF �m�x�� � O�n��h���


Lemma ��� We denote by  ��V x���z� the normal distribution function with mean
� variance V �x��� Then���P npnh� �mh�x���m�x��� � z

o
�B�x���  ��V x���z�

���� �

where

B�x�� � ����km
k��x��

k�

Z
ukK�u� du

and

V �x�� � ���x��

Z
K��u� du�

We denote by P� the distribution of Y �
i �i � �� 
 
 
 � n� conditional under the

observations Y�� 
 
 
 � Yn
 Furthermore� we denote the expectation with respect to P�
conditional on the observations Y�� 
 
 
 � Yn by E�
 Then we get from equation �
�����E� �m

�
h�
�x��� �mg�x��� ����k h

k
�

k�
�mk�
g �x��

Z
u�K�u� du

���� � OP �n
��� 	 oP �h

k
���

Hence� we should make sure that�� �mk�
g �x���mk��x��

�� � oP ���

in order to achieve the same asymptotic bias for the initial statistic in lemma �
�
and their bootstrapped counterpart� respectively
 According to Gasser � M�uller

������ the variance of �m
k�
g �x�� is of order O�n

��g��k���� so that g has to tend

slower to zero than n����k��� to ensure the consistency of �m
k�
g �x��
 Thus� we use

the optimal bandwidth g for the estimator �mk�
g �x�� of mk��x�� which is of order

g 	 O�n����k�������
 O�n����k����


In what follows let n��� h� h� � � and nh� nh� ��
 Then we get

�



Lemma ������P� npnh�� �m
�
h�x��� �mg�x��� � z

o
�B�x��� ��V x���z�

��� � oP ����

Summarizing Lemma �
� and Lemma �
� we obtain the following proposition


Proposition ��� Under the assumptions of the sections � and � it holds that���P� npnh�� �m
�
h��x��� �mg�x��� � z

o
� P

np
nh� �mh�x���m�x��� � z

o��� � oP ����

A consistent estimator of V �x�� is �see �
� and lemma �
��

�Vn�x�� � �����x��

Z
K��u� du�

Thus� bootstrap con�dence intervals with an asymptotic con�dence level � � � are
given by

I� ��

�
�mh�x�� 	

�Vnp
nh
�b���� �mh�x�� 	

�Vnp
nh
�b�����

�
��
��

where �b� denote the ��quantile of the bootstrap distribution for the pivotal statisticp
nh�� �m�

h�
�x��� �mg�x���	�Vn�x��


� Data�driven bandwidth choice

In order to obtain con�dence intervals applicable in practice a data�dependent band�
width choice for the kernel smoothers is necessary
 Note that an optimal bandwidth
choice for con�dence intervals is not feasible because there is a tradeo� between
the length and the coverage probability of such intervals
 Hence� we apply a �full�
crossvalidation� criterion proposed by Neumann ������ which is an estimator of a
mean integrated squared error �MISE�
 The name �full�crossvalidation� has been
introduced in Bunke� Droge � Polzehl ������ for a similar modi�cation of cross�
validation and its properties has been investigated in Droge������
 The advantage
of the full�crossvalidation criterion� especially for �xed sample sizes� is that one
performs the minimization over the bandwidth interval �� �	�� avoiding not well
de�ned constants as in the case of the usual least�squares cross�validation criterion

We de�ne

FCV �h� ��
�

n

nX
i��

�
Yi � �m

�i�
h �xi�

��
�

where

�m
�i�
h �xi� ��

nX
j��

w
j�
h �x��Y

�i�
j

and

Y
�i�
j ��

	

�


�

Yj � ji� jj � ��
�Yi�� � Yi���	�� � � i � j � n� ��
Y�� i � j � ��
Yn��� i � j � n�

�



The data�driven bandwidth �h � �hn is de�ned by

�h �� arg min
h��������

FCV �h��

Obviously� the estimator �m�h with random bandwidth does not have the structure
of a sum of independent random variables
 Hence� Ess!een"s inequality does not
apply directly in order to derive asymptotic normality as in the proof of lemma
�
�
 Therefore we show that the estimated regression function with data�driven
bandwidth �h is close to an estimator �mh� with nonrandom bandwidth

h� �� arg min
h��������

E FCV �h�

using the fact that h� is close to �h
 We assume the existence of error moments of
any order� additionally that the variance �� is bounded away from zero and thatZ �

�

Z �

��

K�z��m�x	 hz� dz �m�x�

��
dx  � for h  �

and Z �

�

Z �

��

K�z���j�x	 hz� dz � �j�x�

��
dx  � for h  ��

j � �� �� �


The following lemma is the generalization of lemma �
� for data�dependent band�
widths


Lemma ��� Under the above assumptions the convergence���P npn�h� �m�h�x���m�x��� � z
o
�B�x��� ��V x���z�

��� � o���

holds�

Now� in order to obtain a version of the bootstrap lemma �
� for data�driven band�
widths we have to specify the choice for the initial bandwidth g� for the bandwidths
�j used in the estimation of the error moments and for the bootstrap bandwidth
h�
 As we have pointed out at the end of section � we have to choose h� and g such
that the bootstrap bias

�Bh��g�x�� �� E� �m
�
h��x��� �mg�x��

� ����k h
k
�

k�
�mk�
g �x��

Z
ukK�u� du 	O�n��� 	 o�hk��

asymptotically coincides with B�x��
 This requires that �m
k�
g �x�� is an consistent

estimator for mk��x��
 One possibility for such an consistent data�driven band�
width choice for derivatives of the regression function was proposed by M�uller �
Stadtm�uller �����b� and generalized by Neumann ������ for independent but not
necessarily identically distributed errors
 They observed that in the case of a ��

times di�erentiable function mk��x� a bandwidth for �mk�
g �x�� which minimizes the

asymptotic MISE is given by

g� � g��k� �� � Ck���Kk�C�m�x��� ���x��n
����k�������� 	 o����

�



where Kk is a kernel of order k and the constant Ck���Kk� does not depend on m and
��
 On the other hand� the optimal bandwidth for an estimator of the regression
function m at the point x� with smoothness of degree k 	 � is of the form

g���� k 	 �� � C��k���Kk���C�m�x��� ���x���n
����k�������� 	 o�����

Thus� we propose a data�driven bandwidth for �mk�
g of the form

�g ��
Ck���Kk�

C��k���Kk���
�g���� k 	 ��

where �g���� k 	 �� is a consistent estimator of g���� k 	 �� as the minimizer of the
full�cross�validation criterion �see Neumann� �����


Following Bunke ������� the bandwidth �j � �j�n� in the smoothing of the local
error moment estimators ��j�xi� is chosen by the following modi�ed full�crossvalidation

criterion that takes into account the �j��� � dependence of the di�erences ���j�i 
 We
de�ne for j � �� �� �

FCVj�h� ��
�

n

nX
i��

�
��j�xi�� ��h��i�j �xi�

��

with

��
h��i�
j �xi� ��

nX
l��

w
j�
�j
�x����

�i�
j �xl�

and

��
�i�
j �xl� ��

	

�


�
��j�xi�� ji� lj � j�
���j�xi�j�� ��j�xi�j��	�� ji� lj � j � � � l 	 � � i � j � n� �l 	 ���
��j�xi�j�� ji� lj � j � � � i � j�
��j�xn�i�j��� ji� lj � j � � � i � n� j�

Hence�
��j �� arg min

�j��������
FCVj��j��

Finally� we choose the bandwidth �h� for the bootstrap estimator �m�
�h�
�x�� by

minimization of

FCV��h� ��
�

n

nX
i��

�
Y �
i � �m

��i�
h �xi�

��
over h � �� �	��
 Then we obtain
Lemma �������P�

�q
n�h�� �m

�
�h�
�x��� �m�g�x��� � z

�
�B�x���  ��V x���z�

���� � op����

Now� lemma �
� and lemma �
� lead to the main theorem of the present paper


�



We consider fully data�driven bootstrap con�dence intervals de�ned by

�I� ��

�
�m�h�x�� 	

�Vnp
n�h

��b���� �m�h�x�� 	
�Vnp
n�h

��b�����

�

where �b� denote the ��quantile of the bootstrap distribution for the pivot
p
n�h�� �m�

�h�
�x���

�m�g�x���	�Vn�x��


Theorem ��� It holds����P�
�q

n�h�� �m
�
�h�
�x��� �m�g�x��� � z

�
� P

np
n�h� �m�h�x���m�x��� � z

o���� � oP ����

From theorem �
� follows the asymptotic validity of fully data�driven con�dence
intervals� that is

P
�
m�x�� � �I�

�
� � � � 	 o����

� Proofs

Proof of lemma ���

The equation �
� is proven in Gasser � M�uller ������
 We give only a sketch of
the proof of �
� because it follows the lines of that given in Gasser � M�uller ������
for the independent case
 Without restriction of generality let j � �� the proofs for

j � �� � are essentially the same
 We use that cov������i � ��
���
l � � � for ji � lj � � and

derive that����V ar����� �x��� ����x��

n��

Z �

��

K�
� �u� du

����
�

����� ����
X

i�l�I�ji�lj��

Z si

si��

Z sl

sl��

K�

�
x� � u

��

�
K�

�
x� � v

��

�
du dv ���xi� xl�

����x��

n���

X
i�I

Z si

si��

K�
�

�
x� � u

��

�
du

�����
where I � I�x�� denotes the set of indices with non vanishing kernel weights and
where #I � O�nh� holds because of the compactness of the kernel
 We recall that
the continuity of ����� �� is implied by the continuity of �j��� for j � �
 Thus� the
application of the mean value theorem and the continuity of ���s� t� completes the
proof of the lemma


Proof of lemma ���

We decompose

p
nh� �mh�x���m�x��� �

p
nh

�
�

h

nX
i��

Z si

si��

K

�
t� u

h

�
duYi �m�x��

��

� Bn�x�� 	 Vn�x��

	



into a bias term

Bn�x�� �
p
nh

�
�

h

nX
i��

Z si

si��

K

�
t� u

h

�
du�m�xi��m�x���

��

and a stochastic term

Vn�x�� �
p
nh

�
�

h

nX
i��

Z si

si��

K

�
t� u

h

�
du�i

��
�

Note that Bn�x�� � B�x�� 	 o��� follows from �
�
 To complete the proof of this
lemma� we have to show that Vn�x�� converges in distribution to N��� V �x���
 With
the notation

Whi�x�� ��

r
n

h

Z si

si��

K

�
x� � u

h

�
du�

we obtain

Vn�x�� �
nX
i��

Whi�x���i

and therefore

EV �
n �x�� � V arVn�x�� �

nX
i��

W �
hi�x�����xi�

and

EV �
n �x�� �

nX
i��

W �
hi�x�����xi��

Hence it follows that
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�EV �
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Now� applying Ess!een"s inequality for independent but not necessarily identically
distributed random variables �see e
g
 Petrov� ����� S
 ���� we get from �
�

Vn�x��
d� N��� V �x���

which completes the proof of the lemma


Proof of lemma ���

Analogeously to the proof of lemma �
� we decompose
p
nh� �m�

h�x��� �mg�x��� � �Bn�x�� 	 �Vn�x��
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Now� according to �
�� we have

�Bn�x�� � �mk�
g �x��

k�

Z
ukKk�u� du�

Thus� because of �m
k�
g �x�� � mk��x��	oP ��� it follows that �Bn�x�� � B�x��	oP ���


Now we deduce from �
� and the second part of the proof of lemma �
� that���P� n �Vn�x�� � z
o
�  ��limn�� �	�x��

R
K�u�du�z�

��� � oP ����

This� together with ����x�� � ���x�� 	 oP ��� gives���P� n �Vn�x�� � z
o
�  ��V x���z�

��� � oP ����

which completes the proof of lemma �
�


Proof of lemma ���

Note that
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w
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�x��m�xi� 	
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i��

w
i�
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�x���i�

At �rst� we consider the stochastic part
Pn

i��w
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�h
�x���i
 Let h� be the minimizer

of E FCV �h�
 We de�ne a grid of lattice points H �
n �� fh�� 
 
 
 � hmng  Hn
 Then�

applying Markov"s and Whittle"s inequalities� for each hj � H �
n
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holds when k � �



 Here we take k su$ciently large to obtain for any small �  �

a good rate of convergence n��
 On the other hand� the Bonferroni inequality and
�
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P
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where #H �
n � n� is the cardinality of the grid


Now� we denote by h��h� � H �
n the point of the grid which is the closest to

�h

Then� obviously

j�h� h��h�j � n�� ��
��

��



holds in probability because of H �
n  �� �	��
 On the other hand� we derive by

Bonferroni"s and Markov"s inequality that

P ��i � f�� 
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for su$ciently large k
 From �
� follows

P

������
nX
i��

wi�

k��h
�x��� w

i�

k�h�h�
�x����i

�����  n

nX
i��

jwi�

k��h
�x��� w

i�

k�h�h�
�x��j

�

� P

�
max
i�������n

j�ij
nX
i��

jwi�

k��h
�x��� w

i�

k�h�h�
�x��j  n


nX
i��

jwi�

k��h
�x��� w

i�

k�h�h�
�x��j

�

� P

�
max
i�������n

j�ij  n

�

� O�n���� ��
��

Hence with probability � ��O�n��� we have�����
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with � � �
 Hereby the �rst equality follows from lemma �
�� the last from inequality
�
� assuming � � �

Furthermore� we deduce from �
�� �
� and lemma �
� that with probability �
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Note that Neumann ������� lemma �
� proved the relation
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For the bias term we derive by a Taylor expansion of w
i�
h �x�� as a function of h�����
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Summing up �
� and �
�� we getp
nh� � �m�h�x��� �mh��x���

P� �� ��
���

Finally� the application of lemma �
�� equation �
�� and Slutsky"s theoremmakes
the proof of this lemma complete


Proof of lemma ���

The proof of Lemma �
� is similar in spirit to that of lemma �
�
 The only real
di�erence is that we have to show

j�� ��j
j �t�� �j�t�j P� � ��
���

where
��j �� arg min

�j��������
FCVj��j��
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Yet� by applying lemma �
� of this paper� lemma �
� in Neumann ������ is easily
generalized for �j��� � dependent random error terms� that is

��j � �j��
�j��

� OP �n
������

for �j chosen as above and

�j�� �� arg min
�j��������

E FCVj��j��

Furthermore� we conclude from �
� that for nonrandom bandwidth �j

j���jj �t�� �j�t�j P� �� ��
���

Thus� we easily complete the proof of this lemma arguing along the lines of the proof
of lemma �
�


� Some technical lemmas

Lemma ��� Assume for some bandwidths g and h that g�h
h
� �� Then
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The following � lemmas give a generalization of Whittles inequalities to �m��� �
dependent random variables


��



Lemma ��� �Generalization of Theorem � in Whittle	 �
��� Assume that the
random variables Z�� 
 
 
 � Zn are �m��	 � dependent� that is Zi and Zi�m are inde�
pendent� We assume further that P �Zj � ��� � P �Zj � �� � �	�� Then� for
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Proof�

Without loss of generality we restrict ourselves to m � �
 The only di�erence to the
proof in the case of independent random variables is that there is another constant
Cm�s� instead of C�s� in Whittles theorem


Let us de�ne the sets of indicees J� and J� such that the random variables that
are indexed by one index set are independent
 Then�
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Thereby the bounds by the constants C��� are valid according to theorem � of
Whittle ������ so that the lemma is proved


Now� following the lines of the proof of theorem � in Whittle ������ with this
new constant we easily deduce the followig lemma for �m��� � dependent random
variables X�� 
 
 
 �Xn with expectation �


Lemma ��� �Generalization of Theorem � in Whittle	 �
��� Let X �� �X�� 
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