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Abstract� Theory in time series analysis is often developed in the context of
�nite�dimensional models for the data generating process� Whereas corresponding
estimators such as those of a conditional mean function are reasonable even if the
true dependence mechanism is of a more complex structure� it is usually necessary
to capture the whole dependence structure asymptotically for the bootstrap to be
valid� However� certain model�based bootstrap methods remain valid for some inter�
esting quantities arising in nonparametric statistics� We generalize the well�known
�whitening by windowing� principle to joint distributions of nonparametric estima�
tors of the autoregression function� As a consequence� we obtain that model�based
nonparametric bootstrap schemes remain valid for supremum�type functionals as
long as they mimic the corresponding �nite�dimensional joint distributions consis�
tently� As an example� we investigate a �nite order Markov chain bootstrap in the
context of a general stationary process�

�� Introduction

One of the major merits of the bootstrap is its universality� it is valid for a variety
of di�erent purposes �statistics� and under quite general assumptions on the distri�
butions of the observations� For i�i�d� data� it is easy to implement and usually one
does not need severe conditions for its validity�
Without the assumption of independence of the observations� the construction of
valid resampling schemes becomes more di�cult since one has to appropriately mimic
the dependence mechanism� Also in this context� there exist nearly assumption�
free methods� Hall ������� Carlstein ������ and Shi ������ proposed resampling
from nonoverlapping blocks of increasing length which was later re�ned by K�unsch
������� Other modi�cations are the circular block bootstrap proposed by Politis and
Romano ����
� and Shao and Yu ������� the stationary bootstrap of Politis and
Romano ������ and the matched�block bootstrap of Carlstein� Do� Hall� Hesterberg
and K�unsch �������
On the other hand� there exists an extensive literature on model�based bootstrap
methods in the time series context� Under the assumption of i�i�d� innovations in
a linear autoregressive model� Efron and Tibshirani ������ proposed to generate
bootstrap series by drawing bootstrap innovations independently with replacement
from the set of mean�adjusted residuals� Kreiss and Franke ����
� generalized this to
autoregressive moving average models� Furthermore� there exists a series of proposals
for bootstrapping Markov chains� see the brief survey in Section �� There also exist
several semiparametric methods� For example� Kreiss ������ approximated linear
autoregressive processes by a bootstrap process of �nite� but increasing order� Franke
and Wendel ����
� and Kreutzberger ������ generalized the method of Efron and
Tibshirani ������ to the case of nonlinear autoregressive processes�
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Concerning universality� blockwise bootstrap schemes with a block length tending to
in�nity dominate model�based methods since they do not require structural assump�
tions on the data generating process to be ful�lled� They are nearly assumption�free
regarding both the distributions of the observations as well as the dependence struc�
ture between them� These methods are shown to be asymptotically correct for a
number of important statistics� see� for example� K�unsch ������� B�uhlmann ������
and G�otze and K�unsch ������� In contrast� model�based methods re�ect the depen�
dence mechanism of a general process only partially� even if the sample size tends to
in�nity� They are usually more powerful than model�free methods 	 at least as long
as the data generating process obeys indeed the assumed structure�

In view of possible gains of power� one might be tempted to prefer model�based
methods whenever there is some evidence for the �exact or approximate� correct�
ness of a certain simple form of the dependence mechanism� However� often such a
structure is at best approximately true� In such a case� if one had actually applied
such a model�based bootstrap� it seems that one had risked too much in order to
bene�t from a supposed gain by this method� This is indeed the case with ��nite�
dimensional� parametric problems where even weak dependence of the observations
in�uences �rst�order asymptotics of corresponding parameter estimates� In sharp
contrast� �rst�order asymptotics of nonparametric estimators is often not a�ected by
weak dependence� Robinson ������ established corresponding results for the point�
wise behaviour of nonparametric estimators under mixing in conjunction with an
additional condition on the boundedness of joint densities� Hart ������ coined the
term �whitening by windowing� for this e�ect� This suggests that model�based boot�
strap methods can correctly imitate the pointwise properties of nonparametric es�
timators based on the m�dimensional joint distribution of the observations if only
these m�dimensional distributions are correctly retained� no matter whether or not
the dependence mechanism of the bootstrap process actually coincides with that of
the original process�

On the other hand� many methods of statistical inference are based on the whole
nonparametric estimator rather than on an estimate at a single point� To bene�t
from the whitening by windowing principle� it is necessary to generalize it beyond
the pointwise case� Such a result was established by Neumann ������ for a kernel es�
timator of the stationary density of a weakly dependent process� By embedding both
the observations from the time series model and the observations from a correspond�
ing i�i�d� model in a common Poisson process� Neumann obtained a pairing of these
random variables such that the unordered sets of observations are nearly the same�
This led to a strong approximation of a kernel estimator in the time series model
by an analogous kernel estimator in the i�i�d� model� and allowed to apply bootstrap
techniques that were originally developed under the assumption of independence�

In the present paper we intend to establish a version of the whitening by window�
ing principle that concerns the joint distribution of nonparametric estimators of the
conditional mean function� m�x�� � � � � xd� � E�Xt j Xt�l� � � � � �Xt�ld� � The result is
again formulated in terms of a strong approximation of a nonparametric estimator in
the time series model by an analogous estimator in a regression model with indepen�
dent errors� To this end� we establish �rst a strong approximation of partial sums
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with respect to small hypercubes Ik � ��k� � ��g�� k�g��� � � � � ��kd � ��gd� kdgd� �

Zk �
X

t� �Xt�l� ���� �Xt�ld
��Ik

�Xt � E�Xt j Xt�l�� � � � �Xt�ld�� �

by corresponding partial sums in a regression experiment� The link is achieved by
embedding the summands from both models in a common set of Wiener processes
Wk assigned to the intervals Ik� As described in Subsection 
��� attempts to embed
the summands I��Xt�l�� � � � �Xt�ld� � Ik��Xt � E�Xt j Xt�l� � � � � �Xt�ld�� in their
natural order failed� Quite surprisingly� an embedding of these quantities in reverse
time order turned out to be successful and led to an approximation with a su�ciently
small error� The derivation of the strong approximation is mainly achieved by this
construction� whereas the analytical part of the proofs is comparatively simple�
This theoretical result can be applied as the �rst and most important step in proving
robustness of certain model�based bootstrap methods against deviations from the
underlying structural assumptions of the data generating process� As a particular
model�based method we investigate in Section � a local bootstrap which is motivated
by a Markov chain approximation of the process� According to our main result� this
bootstrap procedure remains valid even if the true data generating process is of a
more complex form� The same can be assumed for other model�based methods as
well� for example� the moving blocks bootstrap with a �xed length of the blocks� We
apply our Markov chain bootstrap to the construction of supremum�type tests in the
context of general �not necessarily Markovian� processes� The proofs are deferred to
the Appendix�


� Whitening by windowing for the joint distribution of

nonparametric estimators

We make the following basic assumption for the process fXtg under consideration�

�A�� fXt � t � 
g is a �strictly� stationary process� Furthermore� we assume absolute
regularity �i� e� ��mixing� for fXtg and that the ��mixing coe�cients decay at
an exponential rate�

Throughout the whole paper� we do not impose any kind of structural assumptions on
the data generating process� Although those assumptions are often made in the time
series literature� it is always a potential source of an inadequate analysis and erroneous
conclusions because they are rarely exactly ful�lled in practical applications�
Even if the dependence mechanism is much more complex� it makes sense to look
at conditional expectations in �nitely many lags� for example for the purpose of
displaying marginal e�ects� Let

m�x�� � � � � xd� � E�Xt j Xt�l� � x�� � � � �Xt�ld � xd��
���

be the conditional expectation of Xt given Xt�l� � x�� � � � �Xt�ld � xd � where
� � l� � l� � � � � � ld �
There are several di�erent options to estimate m� One may do this in a fully non�
parametric manner� for example� by a multivariate kernel estimator as proposed by
Robinson ������ or by a local polynomial estimator as considered by H�ardle and
Tsybakov ������ and Masry ������� Alternative methods include semiparametric
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estimators� for example those based on additive models for m� or even paramet�
ric estimators� For example� Yang and H�ardle ������ investigated a nonparametric
estimator in an additive model� Unfortunately� up to now theory in this �eld is of�
ten developed under the assumption that the data generating process obeys indeed
the structure underlying the �tted model� Nevertheless� it is reasonable to �t such
dimension�reduced schemes� although it is often hard to believe that the true process
follows actually such a rather speci�c structure�
After de�ning any point estimate for m� the next step in a statistical data analysis
consists of making assertions which characterize the accuracy of these estimates like�
for example� con�dence intervals or bands for m� or forecast intervals for future ob�
servations� Generally� one would always prefer estimators based on lower�dimensional
models over fully nonparametric methods as long as the corresponding model is in�
deed adequate� Therefore� testing a lower�dimensional against a fully nonparametric
hypothesis is an important step in data analysis� In principle� these problems can
be tackled by methods based on asymptotic theory� However� sometimes such as�
ymptotic theory is not easily available� and there also exist cases where �rst�order
asymptotic theory is known to provide rather poor approximations� A familiar ex�
ample are simultaneous con�dence bands in nonparametric regression� where it is
known that their actual coverage probability converges to the nominal one with the
rather slow rate of �log T ���� see Hall ������ for details� This is a typical case where
bootstrap methods are really important�
Unless we have extraordinarily large sample sizes� we always have to take care of the
curse of dimensionality� Owing to the sparsity of data in high dimensions� the per�
formance of nonparametric estimators deteriorates rather quickly as the dimension
increases� If we intend to generate a bootstrap process without structural assump�
tions on the original process like linearity� we are essentially in the same situation
as with nonparametric estimators� Hence� such methods necessarily su�er from the
curse of dimensionality� Therefore� it is tempting to implement a fully nonparametric
bootstrap with almost the same dimensionality as the �tted model� Even if the di�
mension of the bootstrap model is slightly larger than that of m� an almost adequate
asymptotics is that for a �nite�dimensional bootstrap model� In order to show that
such simpli�ed bootstrap methods which imitate only the dependence from a �xed
number of lagged variables are asymptotically valid� we prove �rst an even more rigor�
ous result� We show that� in our nonparametric context� the dependence between the
observations can be completely neglected� This is formalized in terms of a strong ap�
proximation of statistics connected with nonparametric estimators by corresponding
statistics in a regression model� More exactly� the random variables of both models
are paired in such a way that the error of approximation is of smaller order than
the stochastic �uctuations of the statistic of interest� This means in principle that
the dependence of the data generating process can be completely neglected when one
intends to devise valid bootstrap methods�
An appropriate candidate for a model that is asymptotically equivalent to the process
fXtg concerning nonparametric inference on m is the nonparametric regression model

Zt � m�xt�� � � � � xtd� � �t��
�
�

where �xt�� � � � � xtd� � �Xt�l�� � � � �Xt�ld� corresponds to a �xed realization of fXtg�
The errors �t are assumed to be independent with E�t � 
 and E��t � E��Xt �
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m�xt�� � � � � xtd��� j Xt�l� � xt�� � � � �Xt�ld � xtd� � Model �
�
� is an analogue to
bootstrap methods that do not mimic the randomness in the lagged variables as
for example the wild bootstrap� This method was investigated in the context of
nonparametric autoregressive processes by Franke� Kreiss and Mammen ������ and
Neumann and Kreiss ������� Another natural counterpart to fXtg is a nonparametric
regression model with random design�

Zt � m�Yt�� � � � � Ytd� � �t��
���

where �Yt�� � � � � Ytd� are i�i�d� with the same marginal distribution as �Xt�l� � � � � �Xt�ld�
and �t as above� For de�niteness of our presentation� we will stick to model �
��� in
the following�
In the present paper we focus on the joint distribution of nonparametric estimators or
similar statistics� A usual kernel estimator of Nadaraya�Watson type� with a product
kernel� has the form

cmh����� �hd�x�� � � � � xd� �

P
tK��x� �Xt�l���h�� � � �K��xd �Xt�ld��hd�XtP
tK��x� �Xt�l���h�� � � �K��xd �Xt�ld��hd�

�

�
���

The bandwidths h�� � � � � hd may take di�erent values� preferably in accordance
with the smoothness properties of the function m in the respective coordinates� One
may indeed expect that di�erent degrees of smoothness in di�erent coordinates are
present� Since the dependence on higher lags is decaying� one might suppose that m
shows less variability in coordinates corresponding to such high lags�
To reduce the burden of multiple indices� we use the following shorthands� h �
�h�� � � � � hd� � x � �x�� � � � � xd� � X t � �Xt�l� � � � � �Xt�ld� � Y t � �Yt�� � � � � Ytd� and
w�x� y� � K��x� � y���h�� � � �K��xd � yd��hd� � The deviation of cmh�x� from the
conditional mean m�x� can be decomposed into a stochastic term��X

t

w�x�X t�

���X
t

w�x�X t� �Xt � m�X t�� ��
���

and a bias�type term��X
t

w�x�X t�

���X
t

w�x�X t�m�X t� � m�x���
���

�We call the latter expression �bias�type term� rather than �bias�term� since it is
only asymptotically nonstochastic��
It can be seen that the bias�type term is rather close to the corresponding term for the
regression model� The more di�cult part in proving asymptotic equivalence concerns
the stochastic term� Since the denominator in �
��� converges to its expectation with
a su�ciently fast rate� we focus on the numerator in the following� We will show that
this term can be approximated by its analogue in the regression model �
�����X

t

w�x� Y t�

���X
t

w�x� Y t��t��
���
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To formalize such an approximation� we construct� on a su�ciently rich proba�
bility space� a pairing of the random vector �X �

��ld
� � � � �X �

T � with another vector
�Y �

�� � � � � Y
�
T � �

�
�� � � � � �

�
T � such that

�� �X �
��ld

� � � � �X �
T �

d
� �X��ld� � � � �XT ��


� �Y �
�� � � � � Y

�
T � �

�
�� � � � � �

�
T �

d
� �Y �� � � � � Y T � ��� � � � � �T �

and
�� sup

x�R
d fjP fw�x�X �

t��X
�
t �m�X �

t�� � w�x� Y �
t��

�
tgjg is small with high prob�

ability�
To facilitate notation� we do not distinguish between the original random variables
Xt� Y t� �t and their arti�cial counterparts X �

t� Y
�
t� �

�
t� A �rst step toward an approxi�

mation as in �� is an approximation of partial sums
P

t�Xt�Ik
�Xt �m�X t�� on small

hypercubes Ik by their respective counterparts
P

t�Y t�Ik
�t �

The construction of the desired pairing of �X��ld� � � � �XT � and �Y �� � � � � Y T � ��� � � � � �T �
is based on a Skorokhod embedding of the random variables vt�k � I�X t � Ik��Xt �
m�X t�� as well as evt�k � I�Y t � Ik��t in a common set of independent Wiener
processes Wk� A similar method was used in Neumann and Kreiss ������ to prove
asymptotic equivalence of nonparametric estimators of the autoregression function
in a nonparametric autoregressive model and analogous estimators in a usual regres�
sion model� In this paper we develop an embedding scheme which deviates from
approaches that people would most probably �rst try in this context� Before we
describe this method in detail� we explain in the next subsection why the seemingly
most natural attempt fails�

���� Failure of a natural attempt� The ultimate goal of our construction of an
embedding of the Xt in the Wiener processes is to obtain an �at least approximate�
representation

Zk �
X

t�Xt�Ik

�Xt �m�X t�� � Wk��k���
���

In a similar manner� the Y t and �t from model �
��� will be embedded in the same
Wiener processes� namely eZk �

X
t�Y t�Ik

�t � Wk�e�k���
���

Provided we can show that j�k � e�kj is small compared to the magnitude of either
one of these stopping times� then most of the randomness of both partial sums is
driven by the same stretch of Wk� Hence� the di�erence between Zk and eZk is small
as compared to the standard deviation of either one of these quantities�
It is quite natural to try to construct a representation of the Xt s leading to �
���
by a successive embedding of I�X t � Ik��Xt �m�X t�� in the Wiener processes� We
explain in this subsection why an embedding of the Xt in their natural order fails� A
successful embedding in reverse time order will be described in the next subsection�
To simplify notation� we restrict our considerations in the next two subsections to
the case of one lagged variable with l� � � � Assume for a moment that fXtg is a
Markov chain� Then the observations obey the model

Xt � m�Xt��� � 	t�
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where E�	t j Ft��� 	 
 � Fs � 
�X�� � � � �Xs� � De�ne Ik � ��k � ��g� kg� and
let Wk be independent Wiener processes� Now we can embed the 	t s successively
in the Wiener processes� Given X� falls into Ik� � we can represent 	� by Wk� with
the aid of a stopping time ��� that is 	� � Wk����� � �� has to be chosen such that
L�Wk������ � L�	� j X�� � Such a representation is called Skorokhod embedding�
cf� Hall and Heyde ����
� Appendix I�� Since E�	� j X�� 	 
 � the stopping time
�� has a certain number of �nite moments� in dependence on the number of �nite
moments of 	�� The next steps can be de�ned recursively� Assume that 	�� � � � � 	t��
are already embedded� By the strong Markov property� the remaining parts of the
Wiener processes� fWk�s �

P
u�u�t�Xu���Ik

�k� � Wk�
P

u�u�t�Xu���Ik
�k�� s � 
g � are

again Wiener processes� Given Xt�� falls into Ikt� then we embed 	t in the remaining
part of Wkt� and so on� The same is done with the �t s which are embedded in the
same set of Wiener processes by means of stopping times e�k� Finally� we obtain that

Zk �
X

t�Xt���Ik

	t � Wk��
�k��� where � �k� �

X
t�Xt���Ik

�t�

and eZk �
X

t�Yt���Ik

�t � Wk�e� �k��� where e� �k� �
X

t�Yt���Ik

e�t�
As it was shown in Neumann and Kreiss ������� � �k� and e� �k� are close to their
respective expectations and� moreover� these expectations coincide� Hence� most of
the randomness of Zk and eZk is driven by the same stretch of Wk� which �nally leads
to the closeness of Zk and eZk�
Now it is tempting to generalize this idea to our case of a general� not necessarily
Markovian process� Since E�I�Xt�� � Ik��Xt�E�Xt j Xt���� j Ft��� is in general not
equal to 
� one might decompose the vector vt � �I�Xt�� � Ik��Xt�E�Xt j Xt�����k
into sums of martingale di�erences� that is

vt � �E�vt j Ft� � E�vt j Ft���� � �E�vt j Ft��� � E�vt j Ft���� � � � �
�
��
�

This is a well�known standard approach to derive central limit theorems for dependent
random variables� In the case of only one interval I� we could indeed perform such an
embedding� However� in our multivariate context with more than one interval� we run
into serious problems with joint distributions� According to �
��
�� at the transition
from Ft�� to Ft� we have to embed the vector E�wt j Ft� � E�wt j Ft��� � where
wt � vt � vt�� � � � � � in the Wiener processes� The obstacle is that the components
of wt are dependent in a manner which is di�cult to handle� For example� the
value of the �active� component of vt �which has the index kt where Xt�� � Ikt�
determines which component of vt�� will be active� A subsequent embedding of these
components� as proposed by Kiefer ����
� for vectors with a martingale structure�
is not possible since E�vt�� j Ft��� vt� is nonzero in general� Moreover� although
the conditional expectation E�vt�� j Ft��� is of negligible order� the conditional
expectation E�vt�� j Ft��� vt� is of a nonnegligible order of magnitude� In view of
these di�culties� we did not found an appropriate way to embed the vectors wt in
the Wiener processes Wk�
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���� Backward embedding� In order to present the essential ideas in an clear
as a possible manner� we restrict our considerations again to the one�dimensional
case� Moreover� we consider only a �nite number of intervals Ik � ��k � ��g� kg� �
k � �� � � � �KT � In order to obtain a useful result� we let g tend to 
� which leads to
KT 
 � as T 
 � � The generalization to the general case requires only a few
technical modi�cations and is described in the proof of Theorem 
���
In contrast to the unsuccessful attempt of the previous subsection� it will turn out
that an embedding in reverse time order does lead to a useful approximation� De�ne
Gt � 
�Xt� � � � �XT � � At the transition from Gt to Gt��� we have to represent the
vector vt � �vt�k�k������ �KT

by the Wiener processes Wk� Again� E�vt�k j Gt� is
not guaranteed to be 
� However� at least for a single k� we can embed the mean�
corrected quantity vt�k � E�vt�k j Gt� in Wk� Under natural conditions concerning
the boundedness of conditional moments of vt�k under Gt� it turns out thatX

t

E�vt�k j Gt� � OP �g
p
T ���
����

which is negligible compared to the stochastic �uctuations of Zk �
P

t vt�k that are of
order OP �

p
Tg�� The simultaneous embedding of the whole vector will be described

below�
Here is just the point where the essential di�erence to our attempt of a forward
embedding becomes visible� When we embed the vector vt at the transition from Gt
to Gt��� we have correction terms of order OP �g� for all components� These correction
terms have an unconditional mean 
 and are weakly dependent� which leads to a
total sum of order OP �g

p
T �� In contrast� at the transition from Ft�� to Ft� the

vector vt has only one nonzero component� vt�kt� where kt is de�ned by Xt�� � Ikt �
Accordingly� we need only a single correction term� now of order OP ���� for the kt�th
component of vt� Although these correction terms are again weakly dependent with
unconditional mean 
� they sum up to

P
tE�vt�k j Ft��� � OP �

p
Tg� � which is no

longer negligible�
With our backward embedding we are in a situation similar to density estimation from
weakly dependent data� Besides the additional random factor �Xt � E�Xt j Xt���� �
we have to determine the position of Xt��� The above discussion sheds also some new
light on a result of Neumann ������ for the case of density estimation� where also
a uniform version of the whitening by windowing principle was derived� There the
link to the independent case was established via an embedding of the observations
both from the time series model and from the i�i�d� model in a common Poisson
process� which led to the even stronger result that the unordered sets of observations
from both sets were almost identical� The perhaps more elegant application of such
a Poisson embedding is not possible here since we have to deal with the additional
factors �Xt �E�Xt j Xt���� �
Now we describe how the whole vector vt can be embedded in the Wiener processes
Wk� k � �� � � � �KT � So far there does not exist an appropriate generalization of
the Skorokhod embedding to random vectors with an arbitrary joint distribution�
However� Kiefer ����
� developed such an embedding in the special case that the
components of the vector form a martingale� We will use this idea as a starting
point for the construction of an approximation of vt by the Wiener processes Wk�
Remember that we are �nally interested in a close connection of Zk �

P
t I�Xt�� �



	

Ik��Xt � m�Xt���� and eZk �
P

t I�Yt � Ik��t � Conditioned on Gt� the vector vt�k
does not have a martingale structure� However� we can appropriately generalize our
mean�correction and obtain �nally a su�ciently close approximation by a vector that
can indeed be embedded�
Suppose that we have already de�ned Xt� � � � �XT � Now we have to determine Xt��

which will be attained by an embedding of vt in the Wk s� We begin with the �rst
component vt��� As described above� we represent instead of vt�� the mean�corrected

quantity vt�� � E�vt�� j Gt� by means of an appropriate stopping time �
�t�
� as

vt�� �E�vt�� j Gt� � W�

�
�
�t�
� � �

�t���
� � � � �� �

�T �
�

�
� W�

�
�
�t���
� � � � �� �

�T �
�

�
�

Suppose now that vt��� � � � � vt�k�� have been de�ned with the aid of W�� � � � �Wk�� �
respectively� If Xt�� �� I� 
 � � � 
 Ik�� � then we proceed with our embedding and
represent the mean�corrected quantity

vt�k � E�vt�k j Gt�Xt�� �� I� 
 � � � 
 Ik���
with the aid of a stopping time � �t�k as

Wk

�
�
�t�
k � �

�t���
k � � � �� �

�T �
k

�
� Wk

�
�
�t���
k � � � �� �

�T �
k

�
�

If Xt�� � I�
 � � �
 Ik�� � then we set vt�k equal to zero� that is we set �
�t�
k � 
 � This

can be done for all k � �� � � � �KT �
After performing this procedure for all t down to �� we hope to get �nally a signi�cant

approximation of Zk �
P

t vt�k by Wk��
���
k � � � � � �

�T �
k �� The mean�corrected terms

satisfy

E �vt�k j Gt�Xt�� �� I� 
 � � � 
 Ik���
�

E�vt�k j Gt�
P �Xt�� �� I� 
 � � � 
 Ik�� j Gt�

� O �g�P �Xt�� �� I� 
 � � � 
 Ik�� j Gt�� ��
��
�

Since vt�k has an unconditional mean 
 one might expect that the sum of these terms
satis�es X

t

E �vt�k j Gt�Xt�� �� I� 
 � � � 
 Ik��� � OP �g
p
T ���
����

This would be indeed enough� since the stochastic �uctuations of
P

t vt�k are of order
OP �

p
Tg�� However� the right�hand side of �
��
� deteriorates as k 
 KT � since

then P �Xt�� �� I� 
 � � � 
 Ik�� j Gt� becomes small� In order to keep all these
mean�correction terms uniformly small� we use a simple modi�cation� We introduce
an additional bin� IKT��� and generate Xt�� according to the law P �� where

P ��Xt�� � A� � P �Xt�� � A j Gt��

and P ��Xt�� � IKT��� � ��
� Now it happens with a probability of ��
 that Xt��

does not fall into one of the intervals I�� � � � � IKT
� In this case we just repeat the

whole procedure once more� and so on� In a similar manner to the description above�

we compose �
�t�
k perhaps from more than one stopping times� say �

�t�
k��� � � � � �

�t�
k�rt

�
where rt is the number of trials needed to hit I� 
 � � � 
 IKT

� The number of
these loops has a geometric distribution with parameter ��
� We have� as above�



�


vt�k � Wk��
�t�
k � � � ���

�T �
k ��Wk��

�t���
k � � � ���

�T �
k � � OP �g� � With this modi�cation�

we are able to show in the proof of Theorem 
�� that �
���� is indeed true up some
logarithmic factor�
The random variables from the regression model �
��� can be connected with the
Wiener processes Wk in an analogous manner� which leads to the desired strong
approximation of the partial sums� As a result of this construction� we obtain Zk �P
vt�k � Wk��k� � OP �g

p
T � and eZk �

P evt�k � Wk�e�k� � where �k �
P
�
�t�
k ande�k �

P e� �t�k �
Now it is easy to �nd an appropriate generalization to the case of more than one
lags l�� � � � � ld as well as to the case of an in�nite number of intervals Ik� The
corresponding modi�cations are described in the proof of Theorem 
���
Before we formalize this result by a theorem� we introduce two more assumptions�
Remember that �
���� requires some condition on the conditional distribution of vt�k
under Gt� Let pXt��jG be the conditional density of Xt given the event G� Moreover�
remember that X t � �Xt�l�� � � � �Xt�ld� � We will assume

�A�� �i� supt supG�Gt supvfpXt��jG�v�g � C �
�ii� � M �� � CM �� such that

E�Xt �m�X t��
M � CM �

�iii� supx
n���E�Xt j Xt�l� � x�� � � � �Xt�ld�� � xd��� � E�Xt j X t � x�

���o � C�

�A�� K is Lipschitz and compactly supported�

In order to derive rates for our approximation rather than only consistency� but also
for deriving uniform results from pointwise approximations� we will frequently use
the fact that some remainder terms are smaller than certain bounds with a high
probability� For notational convenience� we introduce the following notation�

De�nition ���� Let fZTg be a sequence of random variables and let f�Tg and
f�Tg be sequences of positive reals� We write

ZT � eO��T � �T��

if

P �jZT j � C�T � � C�T�
����

holds for T � � and some C �� �

This de�nition is obviously stronger than the usual OP and it is well suited for our
particular purpose of constructing con�dence bands and critical values for tests� see
the applications in Subsection ��
�
Whenever we claim that eO holds uniformly over a certain set� we mean that �
���� is
true for a unique constant C� Moreover� we use the letter C to denote any constants
whose exact value is not important� and which may attain di�erent values at di�erent
places� Here and in the following we make the convention that 
 denotes a positive
but arbitrarily small� and � an arbitrarily large constant�



��

Theorem ���� Suppose that �A�� to �A�� are ful�lled� Furthermore� we assume
that �Th� � � � hd��� � O�T��� � On an appropriate probability space� there exists a
pairing of the random variables from �	��� with those from �	��� such that

sup
x�R

d

������X
t

w�x�X t��Xt �m�X t�� �
X
t

w�x� Y t��t

�����
�

� eO 	qTh� � � �hd 
qhd log T � T��
�
� T��

�
�

Under quite natural assumptions on the bandwidth hd� Theorem 
�� provides a sig�
ni�cant approximation� If

hd � o��log T ������
����

then the error of approximation is below the level of pointwise �uctuations of
P
w�x�X t��Xt�

m�X t�� � Moreover� if

hd � o��log T ��	���
����

then the error of approximation is below the level of �uctuations of sup
x�R

dfjPw�x�X t��Xt�
m�X t��jg �
There are some interesting implications from this approximation� First� on a more ab�
stract level� it formalizes in some sense that nonparametric inference from weakly de�
pendent data is asymptotically equivalent to nonparametric inference from i�i�d� data�
For example� with some additional considerations� we immediately obtain the equiv�
alence of risks of nonparametric estimators in both models� Second� it means that
we can neglect the dependence beyond those within the blocks of observations of
length m when we intend to devise bootstrap methods for nonparametric statistics
that depend only on a m�dimensional joint distribution� In particular� this delivers
a justi�cation for model�based bootstrap schemes which usually capture only some
part of the dependence mechanism� To prevent possible misunderstandings� we do
not propagate to neglect uncritically the whole dependence structure� Sometimes it
needs quite large sample sizes to make this e�ect really signi�cant� Therefore� it is
certainly important to spend some e�orts to capture the dependence structure as
good as possible�

�� Finite order Markov chain bootstrap for general stationary

processes

It is quite a popular practice to use semiparametric models in time series analysis�
Such models can provide useful approximations to perhaps more complex processes
if the dependence between the observations is rapidly decaying� Especially for mod�
erate sample sizes� the application of such �nite�dimensional models is a reasonable
compromise between the two requirements of imitating the true dependence struc�
ture as good as possible and of avoiding the curse of dimensionality by too complex
models�
On the other hand� with semiparametric models such as nonparametric autoregres�
sive models or Markov chains of �xed order� a rather strong structural assumption on
the dependence mechanism is imposed� whereas the distribution of the innovations



��

or the transition probabilities are modeled nonparametrically� Since it is rather un�
likely in practical applications that the true data generating process actually obeys a
��nite�dimensional� semiparametric model exactly� it is of considerable interest what
happens with the validity of corresponding bootstrap methods� According to the
uniform version of the whitening by windowing principle derived in the previous sec�
tion� there is some hope that certain model�based bootstrap methods which capture
only some part of the whole dependence mechanism remain valid for certain purposes
in nonparametric statistics� In what follows we analyze a �nite�order Markov chain
bootstrap in the context of a general stationary process�
There is already an extensive literature on bootstrap methods for Markov chains�
Kulperger and Prakasa Rao ������ and Basawa� Green� McCormick and Taylor ����
�
devised methods for �nite state Markov chains� Athreya and Fuh ����
a� ���
b� con�
sidered the countable case� Furthermore� Rajarshi ����
� proposed a valid bootstrap
for the case of a general state space based on nonparametric kernel estimators of
the transition probabilities while Lall and Sharma ������ and Paparoditis and Politis
������ discussed a Markov chain bootstrap without explicit nonparametric estimation
of the transition probabilities� Within this list of methods� the �nearest neighbors�
to our proposal below are the methods of Lall and Sharma ������ and Paparoditis
and Politis ������� However� whereas all of the above Markov chain bootstrap meth�
ods are derived under the assumption that the data generating process has indeed a
Markovian structure� we do not impose any kind of structural assumptions and show
the validity of our Markov chain bootstrap in this more general context�
Now we describe our bootstrap proposal in detail� Denote by ��s����� �sm� the stationary
distribution of �Xt�s� � � � � �Xt�sm�� Notice that the approximation of the distribution
of cmh�x� requires at least a consistent reproduction of ����l����� �ld�� Hence� we have to
generate a Markov chain of order at least ld which is based on reasonable estimates of
the transition probabilities with respect to the lags l�� � � � � ld � Moreover� as can be
seen from the proof of Proposition ���� the consistency of the stationary distribution
requires that the Markov chain is based on lags that are consecutive multiples of a
certain natural number�
According to this discussion� we take lags r�� � � � � r
 such that

ri � ir�� i � �� � � � �!������

and

fl�� � � � � ldg � fr�� � � � � r
g����
�

We denote the vectors of lagged variables �Xt�r� �Xt�r� � � � � �Xt�r�� and �X�
t�r�

�X�
t�r�

� � � � �X�
t�r�

�
byXt andX�

t� respectively� Moreover� we use the symbols ex � �x�� � � � � x
� and ey �
�y�� � � � � y
� � To initialize the recursive scheme� we draw �X�

��r�
�X�

��r���
� � � � �X�

��r�
� �

�X�
��r�

�X�
��r���

� � � � �X�
��r�

� � � � � � �X�
r��r�

�X�
r��r���

� � � � �X�
� � independently� ac�

cording to their stationary distribution ���r����� �r���

Let D��� �� � R
 � R
 �
 �
��� be any distance function� Further� let NT be
chosen such that NT 
� and NT�T 
 
 � Given X�

��ld
� � � � �X�

t�� � we draw X�
t

with respective probabilities of ��NT from the set

bUT �X�
t� NT�T � � fXs jD �X�

t�Xs� � cT g �



��

where cT � cT �X�
t� is chosen such that f� � � g contains exactlyNT elements� This set

is the empirical counterpart to U�ex�NT�T �� where U�ex�NT�T � � fey j D�ex� ey� � cTg
and cT is chosen such that P �X t � U�ex� cT �� � NT�T � Although other choices of D
are possible as well� we restrict our considerations to the case of

D�ex� ey� � max
��i�


fjxi � yij�fig �

where f�� � � � � f
 are certain bandwidths and NT � �Tf� � � � f
� �
Such a nearest neighbor bootstrap has already been considered on a heuristical level
by Lall and Sharma ������� Paparoditis and Politis ������ proposed a similar version
of a Markov chain bootstrap where the transition probabilities are determined by
kernel weights� The nearest neighbor approach is an alternative� which circumvents
the risk that conditional distributions deteriorate to one�point measures in regions
of sparse data� A related idea of a local bootstrap has been used by Shi �������
Rutherford and Yakowitz ������ and Falk and Reiss ����
� in the regression context�
in order to deal with conditional heteroscedasticity� Moreover� Paparoditis and Politis
������ implemented such an idea in the frequency domain� for bootstrapping the
periodogram�

���� Some important properties of the bootstrap process� In the follow�
ing we intend to show some important properties of the bootstrap process fX�

t g�
First we prove the consistency of the transition probabilities with respect to the
lags r�� � � � � r
 � Then we intend to derive an appropriate mixing property for the
bootstrap process� Such properties are important for the wide applicability of par�
ticular bootstrap methods� and have been the subject of recent research� see� for
example� Rajarshi ����
� and Paparoditis and Politis ������ for Markov chain boot�
strap� Bickel and B�uhlmann ������ for a sieve bootstrap for linear processes� and
Franke� Kreiss� Mammen and Neumann ������ for a nonparametric autoregressive
bootstrap� Finally� we show the consistency of the stationary distribution ���r��r����� �r��
for ��r��r����� �r��� which implies the consistency of ���l��l����� �ld� for ��l��l����� �ld��

Before we turn to an assertion about the consistency of the transition probabilities�
we �rst state a useful lemma about the empirical process indexed by hyperrectangles
of an m�dimensional stationary process�

Lemma ���� Suppose that the m
dimensional random vectors �Zt�t������ �T form a
stationary� exponentially �
mixing process� Denote by Cm the set of all hyperrect

angles in Rm� Then

P


� sup
C�Cm

��� j"ft j Zt � Cg � TP �Z� � C�jq
TP �Z� � C� log T � �log T ��

��� � C�

�A � O�T����

The important fact is that the supremum is inside the probability� that is with a
probability exceeding ��O�T��� the deviations of "ft j Zt � Cg from TP �Z� � C�
can be simultaneously bounded by the above bounds�
In what follows we also assume



��

�A�� supex supc�d fjP �Xt � �c� d� jXt � ex�jg � CP �Xt � �c� d���

Proposition ���� Suppose that �A�� and �A�� are ful�lled� Then

supex sup
c�d

��� jP ��X�
t � �c� d� j X�

t � ex� � P �Xt � �c� d� j Xt � U�ex�NT�T ��jq
P �Xt � �c� d�� log T�

p
NT � �log T ���NT

��� � eO ��� T��
�
�

To keep the technicalities as simple as possible� we impose for the original process
the following conditions�

�A	� There exists some interval �c� d� such that the joint density of Xt�r� � � � � �Xt�r�
ful�lls

pXt�r� ���� �Xt�r�
�ex� � C � 
 for all ex � �c� d�
�

Moreover� there exists a constant � � 
 such that for all ex� ey � R
Z d

c

�
pXtjXt�ex�x� � pXt jXt�ey�x�

�
dx � ������

holds�

In order to have a property similar to ����� for the bootstrap process� we impose the
following condition on the bandwidths fi�

�A
� Tf� � � � f
 miniffig��log T �� �
 ��

It will be shown in the proof of the next proposition that the bootstrap process
satis�es

sup
A��A����X

�

t������ �
sup
B

n���P ��X�
t�r�

� � � � �X�
t��r���

� � B j A�

�
� P

�
�X�

t�r�
� � � � �X�

t��r���
� � B j A�

����o
� � � ���

where �� � 
 � for an appropriate set of events �X��ld� � � � �XT � � #T with
P �#c

T � � O�T��� � This will imply uniform mixing ���mixing� for the bootstrap
process�
The ��mixing coe�cients of a process Z�� Z�� � � � are de�ned as

��n� � sup
t

sup
U���Z����� �Zt�� P �U���

V ���Zt�n���� �

fjP �V � � P �V j U�jg �

The next proposition states the announced mixing property of the bootstrap process�
which in particular implies absolute regularity�

Proposition ���� Suppose that �A�� and �A�� to �A�� are ful�lled� Then there
exists a constant � � � such that the �
mixing coe
cients of the bootstrap process
satisfy

��n� � C�n for all n�



��

provided �X��ld � � � � �XT � � #T for some appropriate set #T with P �#c
T � � O�T��� �

Proposition ��� provides information about the size of the �uctuations of P ��X�
t �

�c� d� j X�
t � ex� about a smoothed version of the original transition probabilities� To

get signi�cant results for the smoothing bias� we have to impose certain conditions
on the smoothness of the transition probabilities as functions in the lagged variables�
The necessary strength of such conditions depends on the size of the neighborhoods
U�ex�NT�T �� If� for example� the density of Xt is bounded away from 
 on a set K�
then

supex�K fdiam�U�ex�NT�T ��g � O
	

max
i
ffig

�
�

Hence� we obtain under Lipschitz continuity of the transition densities in the lagged
variables that

supex�K fjP �Xt � �c� d� j Xt � ex� � P �Xt � �c� d� j Xt � U�ex�NT�T ��jg � O
	

�d� c� max
i
ffig

�
�

�����

Rajarshi ����
� states the consistency of the estimated transition probabilities just
under the condition that the stationary density of Xt is bounded away from zero on
a certain set K� Without this somewhat restrictive condition� one may develop an
analogous asymptotics on growing sets KT � where the stationary density is supposed
to ful�ll

infex�KT

n
pXt�r� ���� �Xt�r�

�ex�
o
� T���

see Remark 
�� in Rajarshi ����
� and Remark 
�� in Paparoditis and Politis �������
In order to avoid some nasty technicalities� we adapt the smoothness condition for
the transition probabilities directly to the size of U�ex�NT�T �� For the sake of further
simpli�cation� we focus on the special case of f� � � � � � f
 � We will assume

�A��

supex sup
c�d
fjP �Xt � �c� d� jXt � ex� � P �Xt � �c� d� j Xt � U�ex� p��jg � CP �Xt � �c� d��p�	
�

Notice that the exponent ��! on the right�hand side re�ects the fact that U�x� p� is
a hypercube rather than merely a hyperrectangle�

Proposition ���� Suppose that �A�� and �A�� to �A�� are ful�lled� Then�����r����� �r����a�� b��� � � � � �a
� b
�� � ���r����� �r����a�� b��� � � � � �a
� b
��
���

� O

�
��NT�T ��	
 � �log T�

q
NT ��		�


Y
i��

�P �Xt � �ai� bi�� � �log T ���NT �

�

X
i��

�q
F �bi�� F �ai�

log Tp
NT

�
�log T ��

NT

�Y
j ��i

�
P �Xt � �aj� bj�� �

�log T ��

NT

��A



��

holds uniformly in �X��ld� � � � �XT � � #T for some appropriate set #T with P �#c
T � �

O�T��� �

The proof of this proposition runs as follows� First� we consider a Markov chain of
order r
� fX �

tg� with transition probabilities

P
�
X �

t � A j �X �
t�r�

� � � � �X �
t�r�

� � B
�

� ����r����� �r���A�B����r����� �r���B��

It is easy to see that the stationary distribution of �Xt�r� � � � � �Xt�r��� ��r����� �r���
is equal to the stationary distribution of �X �

t�r�
� � � � �X �

t�r�
�� To prove the close�

ness of ��r����� �r�� to ���r����� �r��� we start both chains with the same random sequence

according to the stationary distribution of �X �
�� � � � �X

�
r�

�� Then we study the �de�
coupling� of the two Markov chains fX �

tg and fX�
t g� Since �X�

t�r�
� � � � �X�

t�r�
�

reaches its own stationary distribution with an exponential rate� the distribution of
�X�

t��r�
� � � � �X�

t��r�
� is su�ciently close to ���r����� �r��� for some t� � log T � On the

other hand� since by Proposition ��� the transition probabilities of fX �
tg and fX�

t g are
quite similar� we can �nd a pairing of both chains such that P ��X �

t��r�
� � � � �X �

t��r�
� ��

�X�
t��r�

� � � � �X�
t��r�

�� is still small� This gives �nally the desired upper bound for
the di�erence between ��r����� �r�� and ���r����� �r���

���� Application to nonparametric supremum�type tests� Theorem 
�� and
Propositions ��� to ��� imply that the Markov chain bootstrap consistently estimates
the pointwise distribution as well as those of supremum�type functionals of nonpara�
metric estimators of the conditional mean function� Whereas the pointwise case can
be tackled in a straightforward manner� one may develop theory for simultaneous con�
�dence bands and supremum�type tests analogously to Neumann and Kreiss ������
and Neumann �������
We allow a composite hypothesis� that is

H� � m � M�

where the only requirement is that the function class M allows a faster rate of con�
vergence than the nonparametric model� We will assume that

�A
� There exists an estimator ccm of m such that

sup
x�R

d

������
TX
t��

w�x�X t�
hccm�X t��m�X t�

i�����
�

� oP

	q
Th� � � � hd�log T ���	�

�
�

�����

where� as in Section 
� w�x� y� � K��x� � y���h�� � � �K��xd � yd��hd� �

A su�cient condition for �A�� is obviously that ccm itself converges in the supremum
norm to m with a faster rate than �Th� � � � hd���	��log T ���	�� which can be expected
to hold in certain parametric models� M � fm
 j � � $g� For the particular purpose
of testing� there is no reason to use an explicit nonparametric estimator of m� Rather�



��

one may choose the test statistic under the aspect of convenience� for example�

WT � sup
x�R

d

������
TX
t��

w�x�X t�
h
Xt �ccm�X t�

i�����
�
������

This roughly corresponds to a contrast function which weights the di�erence between
m and M with a factor proportional to the stationary density ��l����� �ld��
Let t� be the �� � ���quantile of the �random� distribution of

W �
T � sup

x�R
d

������
TX
t��

w�x�X�
t � �X�

t � E�X�
t j X�

t ��

�����
�
�

Suppose now that �A�� to �A�� are ful�lled� It can be shown that� for arbitrary
m � M�

Pm �WT � t�� � � � � � o����

The Markov chain bootstrap can also be used for the construction of simultaneous
con�dence bands� There are several options to deal with the usual bias problem� To
get an asymptotically bias�free situation like under the null hypothesis in testing� one
may establish a con�dence band for a smoothed version of m�

P
w�x�X t�m�X t��

P
w�x�X t� �

To get con�dence bands directly for m� one may use an undersmoothed estimator
for m or apply a subsequent explicit bias correction� A more detailed discussion of
these issues can be found� for example� in Neumann and Kreiss ������ and Neumann
�������

Appendix

Proof of Theorem ���� First we describe the necessary modi�cations of the con�
struction explained in Subsection 
�
� Then we turn to the analytical part of the
proof and develop estimates for the error terms that occur in our construction�

�i� Modi�cations of the construction

In order to avoid problems with an in�nite number of hyperrectangles Ik� we focus
our primary attention to points x from the set

X� �
n
x
���P �X t � supp�w�x� ���� � T��

o
��A���

It is easy to see that X� can be covered by a �nite number of hyperrectangles� fIk j
k � k�� � � � � kcT g with cT � O�T �� for some constant �� The indices of the
remaining intervals are combined to disjoint sets K�� � � � �KdT such that

T�� � P


�X t �
�
k�Ki

Ik

�A � 
T���

We set

�I�� � � � � IKT
� � �Ik� � � � � � IkcT

�
�

k�K�

Ik� � � � �
�

k�KdT

Ik���A�
�



��

Another modi�cation concerns the time point at which an appropriate approximation
to vt � �I�Xt � I���Xt � m�X t��� � � � � I�X t � IKT

��Xt � m�X t��� is embedded in
�Wk�k������ �KT

� This is just done when the most lagged variable de�ning vt� Xt�ld� has
to be determined� that is with the transition from Gt�ld�� to Gt�ld� According to the
description in Subsection 
�
� we embed vt�k�E�vt�k j Gt�ld���Xt�ld �� I�
 � � �
Ik���
in the remaining part of Wk� This has to be done for the �rst time at the transition
from GT�ld�� to GT�ld� Before that we generate �XT�ld��� � � � �XT � according to the
ld�dimensional stationary distribution� Again as in Subsection 
�
� we introduce an
additional bin IKT�� and generate X �

T�ld��
�X �

T�ld��
� � � � with

P
�
X �

T�ld�i
� A j GT�ld��

�
� P �XT�ld � A j GT�ld��� �
�

and P �X �
T�ld �i

� IKT��� � ��
 � If X �
T�ld��

falls into I� 
 � � � 
 IKT
� then we

set XT�ld � X �
T�ld��

� Otherwise we repeat this procedure until X �
T�ld�i

� I� 

� � � 
 IKT

is achieved� Then we apply the same method to embed successively
XT�ld��� � � � �X��ld �

Let rt be the number of trials needed to get the event Xt�ld�i � I� 
 � � �
 IKT
� Then

Xt�ld � X �
t�ld�rt

and �
�t�
k �

Prt
i�� �

�t�
k�i � where �

�t�
k�i is the stopping time connected with

X �
t�ld�i

�

�ii� Embedding of the �Y t� �t�

In principle� this embedding could be performed in the same manner as above� How�
ever� since the vectors �Y t� �t� are independent� we can proceed in a much simpler
way� Assume that �Y �� ���� � � � � �Y t��� �t��� are already embedded� Given Y t falls

into Ikt� then we represent �t by the remaining part of Wkt� fWkt�s�
P

u�u�t�� e� �u�kt � �
Wkt�

P
u�u�t�� e� �u�kt �� s � 
g � with the aid of a stopping time e� �t�kt � If Y t �� Ik � we sete� �t�k � 
 � As a result� we get eZk � Wk�e�k� � where e�k �

P e� �t�k �

�iii� Di�erence of �k and e�k
Our estimate of the di�erence between Zk and eZk will be based on upper estimates
of the di�erence between �k and e�k�
Remember that we have to generate successively independent copies of X �

t�ld
� say

X �
t�ld�i

� until the �rst of these copies falls into the target set I� 
 � � � 
 IKT
� Let

Gt�� � Gt and Gt�i � 

�
Xt� � � � �XT �X

�
t����� � � � �X

�
t���i��

�
� Then

vt�k�
rtX
i��

E �vt�k j Gt�ld���i� � Wk

�
�
�t�
k � �

�t���
k � � � � � �

�T �
k

�
�Wk

�
�
�t���
k � � � � � �

�T �
k

�
�



�	

Since the event f� j rt � ig is Gt�ld���i�measurable� we obtain

E�
�t�
k �

�X
i��

E
h
E
�
I�rt � i��

�t�
k�i j Gt�ld���i

�i

�
�X
i��

E
h
I�rt � i�E

�
�
�t�
k�i j Gt�ld���i

�i

�
�X
i��


��i���E
�
�
�t�
k�� j Gt�ld��

�
� 
EE

�
�
�t�
k�� j Gt�ld��

�
� 
EE

	n
�Xt �m�X t��I�Xt�l� � Ik�� � � � I�Xt�ld�� � Ikd���I�X �

t�ld��
� Ikd�

o�����Gt�ld��

�
� 
E

n
E
�

�Xt �m�X t��I�Xt�l� � Ik�� � � � I�Xt�ld�� � Ikd���I�X �
t�ld��

� Ikd�
��� Gt�ld��

�o�
� Ev�t�k � 
Rt�k�

�A���

Furthermore� we have

Rt�k � E
n
I�Xt�l� � Ik�� � � � I�Xt�ld�� � Ikd���E

�
�Xt �m�X t��I�X �

t�ld
� Ikd�

���Gt�ld��

�o�
� EI�Xt�l� � Ik�� � � � I�Xt�ld�� � Ikd���

n
E
�

�Xt �m�X t��I�X �
t�ld

� Ikd�
���Gt�ld��

�o�
� 
E

n
I�Xt�l� � Ik�� � � � I�Xt�ld�� � Ikd����Xt � E�Xt j Xt�l�� � � � �Xt�ld����

��
� �P �X �

t�ld
� Ikd j Gt�ld����

�
o

� 
E
n
I�Xt�l� � Ik�� � � � I�Xt�ld�� � Ikd��� �
�
h
E
�
�E�Xt j Xt�l� � � � � �Xt�ld����m�X t��I�X �

t�ld
� Ikd� j Gt�ld��

�i��
� O

�
g� � � � gd��g�d

�
�

�A���

Since
Ee� �t�k � Ev�t�k

is obviously ful�lled� we obtain from �A��� and �A��� that

E�k � Ee�k � O
�
Tg� � � � gd��g�d

�
��A���

To derive an upper estimate for the deviation of �k from its mean� we intend to
use Bernstein s inequality� The necessary reduction to sums of independent random
variables is achieved by a well�known blocking technique� We consider overlapping
blocks of indices�

Ji � f�i� ���T � ld � �� � � � � i�Tg� i � �� � � � � ��T � ����T � ���

where �T � �C� log T � � Now we split the sum over t into sums of blocks with odd
numbers and sums of blocks with even numbers�



�


Without loss of generality� we consider the blocks with odd numbers� By Proposition 

in Doukhan� Massart and Rio ������� we can successively replace the blocks fXt� t �
Jig� i odd� by independent blocks fX �

t� t � Jig� i odd� with the property

P ��X �
t� t � Ji� �� �Xt� t � Ji� for any odd i � ��T � ����T � ��� � O�T����

�A���

where the value of � may be chosen arbitrarily large� in dependence on C��
After this reduction to the independent case� we will obtain the assertion from Bern�
stein s inequality� which we quote for reader s convenience from Shorack and Wellner
������ p� �����
Let U�� � � � � Un be independent random variables with EUi � 
 and jUij � Kn

almost surely� Then� for U �
P
Ui �

P �U � c� � exp

�
� c��


var�U� � �Knc���

�

� exp

�
� c�

� var�U�

�
� exp

	
� �c

�Kn

�
holds for arbitrary c � 
 �
Setting

c� �
q

var�U�
q

�� log�n� � �����Kn� log�n�

we get
P �jU j � c�� � � exp��� log�n���

In other words� we have that

U � eO	qvar�U�
q

log�n� � Kn log�n�� n��
�
��A���

Instead of ��
�t�
k � E�

�t�
k � we consider the truncated random variables

�k�t � �� �t�k � E�
�t�
k �I�j� �t�k � E�

�t�
k j � T ���

Since all moments of ��
�t�
k � E�

�t�
k � are bounded� it follows from Markov s inequality

that

P
�
�t�k �� ��

�t�
k �E�

�t�
k �

�
� O�T�����A���

Moreover� we have

var


�X
t�Ji

�t�k

�A � �T
X
t�Ji

var��t�k�

� �T
X
t�Ji

E��
�t�
k �E�

�t�
k �� � O���T g� � � � gd���A���

We obtain from �A��� to �A���

X
i odd

X
t�Ji

�� �t�k � E�
�t�
k � � O

	q
Tg� � � � gd log T � T �� T��

�
�

�A��
�



��

and� analogously�

X
i even

X
t�Ji

�� �t�k � E�
�t�
k � � O

	q
Tg� � � � gd log T � T �� T��

�
�

�A����

Again by �A��� and �A���� we getX
t

�e� �t�k � Ee� �t�k � � O
	q

Tg� � � � gd
q

log T � T �� T��
�
��A��
�

�iv� Conclusion for the di�erence of the weighted sums

Let x � X� � Recall that� according to �A�
�� supp�w�x� ��� � ScT
k�� Ik � De�ne wk �

jIkj�� RIk w�x� y�dy � We consider the following decomposition of the approximation
error� X

t

w�x�X t��Xt �m�X t�� �
X
t

w�x� Y t��t

�
X
k

X
t�Xt�Ik

fw�x�X t�� wk�x�g�Xt �m�X t��

�
X
k

wk�x�

��� X
t�Xt�Ik

�Xt �m�X t��

��� � Wk��k�

�
X
k

wk�x� fWk��k��Wk�E�k�g

�
X
k

wk�x� fWk�E�k��Wk�Ee�k�g�A����

�
X
k

wk�x� fWk�Ee�k��Wk�e�k�g
�
X
k

X
t�Y t�Ik

fwk�x��w�x� Y t�g�t

� T��x� � � � � � T��x��

Since the kernel is Lipschitz continuous� we have
���w�x� y�� w�x� z�

��� � C
P jyi �

zij�hi � which implies� for �xed x � X� �

T��x� � T��x� � eO 	max
i
fgi�hig

q
Th� � � �hd log T � T �� T��

�
�

�A����

Again for �xed x � X� � we obtain� by making use of the blocking technique

T��x� �
X
k

wk�x�
rtX
i��

E�vt�k j Gt�ld���i�

� eO 	qTh� � � � hd��hd log T � T �� T��
�
��A����



��

By Lemma ��
�� in Cs�org%o and R&ev&esz ������ p� 
�� we get� in conjunction with
�A��
� to �A��
�����Wk��k��Wk�E�k�

��� �
���Wk�e�k��Wk�Ee�k���� � eO ��Tg� � � � gd��	� log T � T �� T��

�
�

which yields that

sup
x
fjT	�x�j � jT
�x�jg � eO �h� � � �hd

g� � � � gd
h
�Tg� � � � gd��	� log T � T �

i
� T��

�
�

�A����

Finally� we obtain by �A���� for �xed x � X� �

T��x� � eO 	qTh� � � �hdpgdqlog T � T �� T��
�
��A����

By proving �A����� �A���� and �A���� on a su�ciently �ne grid� we obtain that these
results remain true uniformly over x � X� � Moreover� we can choose the gi in such
a way that

sup
x�X�

fjT��x�j � � � � � jT��x�jg

� eO �qTh� � � �hd
�
maxfgi�hig �

h� � � � hd
g� � � � gd

�Tg� � � � gd��	� � T �

�Th� � � � hd��	� �
q
hd

�
log T� T��

�

� eO 	qTh� � � � hd 
qhd log T � T��
�
� T��

�
�

�A����

Finally� since "ft j X t � Kig� "ft j Y t � Kig � O�log T� T��� � we get

sup
x�R

d
nX�

n���Xw�x�X t��Xt �m�X t�� �
X

w�x� Y t��t
���o � eO �T �� T��

�
�

�A����

which completes the proof�

Proof of Lemma ���� �i� Reduction to the case of independent rv�s

To handle the dependence� we consider instead of the whole set of rv s fZ�� � � � � ZTg
�T subsets� fZt� t � Jig � where Ji � fi� �T � i� 
�T � i� � � �g � f�� � � � � Tg �
According to Proposition 
 in Doukhan et al� ������� there exist sequences of inde�
pendent random vectors� fZ �

t� t � Jig � such that

L�Z �
t� � L�Zt�

and

P �Zt �� Z �
t for any t � Ji� � O�T���



��

if �T � C� log T and C� is appropriately chosen� Hence� we have with a probability
exceeding ��O�T��� that

j"�fZtg � C� � TP �Z� � C�j �
�TX
i��

j"�fZt� t � Jig � C� � "JiP �Z� � C�j

�
�TX
i��

j"�fZ �
t� t � Jig � C� � "JiP �Z �

� � C�j�A�

�

is satis�ed for all C � Cm �

�ii� An upper bound for the �uctuations of the empirical process

Let Fk be the cumulative distribution function of the kth component of Z�� We
consider the following hyperrectangles�

Ii�j � �F��
� �i��T �� F��

� �j��T ��� � � �� �F��
m �im�T �� F��

m �jm�T ���

where 
 � ik � jk � T and F��
k �
� � �� � F��

k ��� � � � �W�l�o�g�� we prove the
assertion for the case that F is continuous� The result in the general case follows by
simple modi�cations of the arguments��
Since the number of the above hyperrectangles is of algebraic order� we obtain from
�A��� that

P


� max
��ik�jk�T

��� j
P

t�Ji I�Z �
t � Ii�j� � "JiP �Z� � Ii�j�jq

"JiP �Z� � Ii�j�
p

log T � log T

��� � C �
�

�A � O�T����

�A�
��

Let

I
�k�
i � ������k�� � �F��

k ��i� ���T �� F��
k �i�T ��� ������m�k�

From �A�
�� we obtain

P


� max
��i�T���k�m

���X
t�Ji

I�Z �
t � I

�k�
i �

��� � C ��
� log T

�A � O�T����

�A�

�

Let now C � Cm be arbitrary� Then there exist i�� � � � � im� j�� � � � � jm such that

Ii�j � C � Ii�j 

�

m�
k��

I
�k�
ik

 I�k�jk��

�
�

Hence� we obtain from �A�
�� and �A�

� that

P


� sup
C�Cm

��� j"ft � Ji j Zt � Cg � "JiP �Z� � C�jq
"JiP �Z� � C�

p
log T � log T

��� � C�

�A � O�T����

�A�
��

which implies� in conjunction with �A�

�� the assertion�



��

Proof of Proposition ���� We split up

P � �X�
t � �c� d� j X�

t � ex� � P �Xt � �c� d� j Xt � U�ex�NT�T ��

� N��
T �"fXt � �c� d��Xt � U�ex�NT�T �g � T P �Xt � �c� d��Xt � U�ex�NT�T ���

� N��
T

h
"fXt � �c� d��Xt � bUT �ex�NT�T �g � "fXt � �c� d��Xt � U�ex�NT�T �g

i
� R��ex� � R��ex��

�A�
��

We obtain from Lemma ��� and �A�� that

supex fjR��ex�jg � eO 	qP �Xt � �c� d�� log T�
q
NT � �log T ���NT � T

��
�
�

�A�
��

To bound R��ex�� we use the estimate

jR��ex�j � N��
T " ft � �Xt�Xt� � !Tg ��A�
��

where !T � � bUT �ex�NT�T �!U�ex�NT�T ����c� d� � Notice that !T can be decomposed
into a bounded number of hyperrectangles� which will allow for the application of
Lemma ����
According to Lemma ���� we obtain

" bUT �ex�NT�T � � T P �Xt � S�j
S�bUT �ex�NT 	T �

� eO �qT P �Xt � S�j
S�bUT �ex�NT 	T �

log T � �log T ��� T��
�
�

which implies j
q

" bUT �ex�NT�T ��
q
T P �Xt � S�j

S�bUT �ex�NT 	T �
j � eO�log T� T��� � and

therefore

T P �Xt � S�j
S�bUT �ex�NT 	T �

� NT � eO 	qNT log T � �log T ��� T��
�
�

�A�
��

Since either bUT �ex�NT�T � � U�ex�NT�T � or U�ex�NT�T � � bUT �ex�NT�T � � we get

T P �Xt � S!U�ex�NT�T ��j
S�bUT �ex�NT 	T �

� eO 	qNT log T � �log T ��� T��
�

and� by �A���

T P ��Xt�Xt� � �S!U�ex�NT�T ��� �c� d��j
S�bUT �ex�NT 	T �

� eO 	P �Xt � �c� d��
q
NT log T � �log T ��� T��

�
�

Using again Lemma ���� we obtain

" ft � �Xt�Xt� � !Tg � eO	P �Xt � �c� d��
q
NT log T � �log T ��� T��

�
�

�A�
��

The assertion follows now from �A�
��� �A�
�� and �A�
���



��

Proof of Proposition ���� Let fX �
tg and fX ��

t g be two Markov chains of order
r � r
 with the same transition probabilities as fX�

t g� Furthermore� let x�r� �
�x�� � � � � xr� and y�r� � �y�� � � � � yr� be arbitrary� We show that there exists a
pairing of fX �

tg with fX ��
t g� and a constant 
� � 
 such that

P
�
�X �

t�r� � � � �X
�
t��r��� � �X ��

t�r� � � � �X
��
t��r���

����X �
t�r� � � � �X

�
t��� � x�r�� �X ��

t�r� � � � �X
��
t��� � y�r�

�
� 
���A�
��

According to Theorem 
����� of Iosifescu and Theodorescu ������ p� ���� this will
immediately imply the assertion of the proposition�
The pairing of the two versions of fX�

t g� fX �
tg and fX ��

t g� leading to �A�
�� will be
constructed in two steps� First� we exploit �A�� and �A�� to get� with a prob�
ability bounded away from 
� an approximate pairing of �X �

t� � � � �X
�
t�r��� and

�X ��
t � � � � �X

��
t�r��� � Given �X �

t� � � � �X
�
t�r��� and �X ��

t � � � � �X
��
t�r��� are su��

ciently close to each other� we obtain that bUT ��X �
t�r�r�

� � � � �X �
t�r�r�

�� NT�T � �bUT ��X ��
t�r�r�

� � � � �X ��
t�r�r�

�� NT�T � contains at least NT�
 elements� This is the
basis for getting an exact pairing of �X �

t�r� � � � �X
�
t��r��� with �X ��

t�r� � � � �X
��
t��r����

�i� Approximate pairing

The �rst step proceeds as follows� Let f � K miniffig � where K will be speci�ed
later� We divide the interval �c� d� into subintervals Il � �c � �l � ��f� c � lf� � l �
�� 
� � � � � Now we construct the paring of �X �

t� � � � �X
�
t�r��� with �X ��

t � � � � �X
��
t�r���

recursively�
According to Proposition ���� there exists a set of events #T with P �#c

T � � O�T���
such that� for �X��ld� � � � �XT � � #T �X

l

min
n
P �

�
X�

t � Il j �X�
t�r� � � � �X

�
t��� � x�r�

�
�

P �
�
X�

t � Il j �X�
t�r� � � � �X

�
t��� � y�r�

�o
� X

l

minfP �Xt � Il j X t � U��xr�� � � � � xr��� NT�T �� �

P �Xt � Il j X t � U��yr�� � � � � yr��� NT�T ��g
� C

�

f


q
f log T�

q
NT � �log T ���NT

�
��A��
�

By �A�� and �A��� this can be further estimated byX
l

min
n
P �

�
X�

t � Il j �X�
t�r� � � � �X

�
t��� � x�r�

�
� P �

�
X�

t � Il j �X�
t�r� � � � �X

�
t��� � y�r�

�o
� ���


if T is su�ciently large� Hence� provided �X��ld� � � � �XT � � #T � there exists a
pairing of X �

t with X ��
t such that

P
�
X �

t�X
��
t � �c� d� and jX �

t �X ��
t j � f

����X �
t�r� � � � �X

�
t��� � x�r�� �X ��

t�r� � � � �X
��
t��� � y�r�

�
� ���
�

�A����



��

Now we can pair �X �
t���X

��
t���� � � � ��X �

t�r���X
��
t�r��� in the same manner such that

P
�
X �

t�i�X
��
t�i � �c� d� and jX �

t�i �X ��
t�ij � f for all i � 
� � � � � r � �

���
�X �

t�r� � � � �X
�
t��� � x�r�� �X ��

t�r� � � � �X
��
t��� � y�r�

�
� ����
�r��A��
�

�ii� Exact pairing

Provided we chose K small enough� then there exists a set of events #�
T with P �#�

T � �
��O�T��� such that bUT �x�NT�T � � bUT �y�NT�T � � NT�
�A����

for all x� y � �c� d�
 with jxi � yij � f � We suppose for the rest of this proof
that �X��ld� � � � �XT � � #T � #�

T � According to �A����� there exists a pairing of
�X �

t�r� � � � �X
�
t��r��� with �X ��

t�r� � � � �X
��
t��r��� such that

P
�
�X �

t�r� � � � �X
�
t��r��� � �X ��

t�r� � � � �X
��
t��r���

���X �
t�i�X

��
t�i � �c� d�

and jX �
t�i �X ��

t�ij � f for all i � 
� � � � � r � �
�
�
	

�




�r
��A����

�A��
� and �A���� imply the desired relation �A�
��� which completes the proof�

Proof of Proposition ���� To prove the closeness of ��r����� �r�� and ���r����� �r��� we

set fX�
t g in relation to another Markov chain of order r
� fX �

tg with transition
probabilities

P
�
X �

t � A j �X �
t�r�

� � � � �X �
t�r�

� � B
�

� ����r����� �r���A�B����r����� �r���B��

�A����

We start both chains with the same random sequence� �X �
��ld

� � � � �X �
r��ld

� � �X�
��ld

� � � � �X�
r��ld

� �
being distributed according to the r
�dimensional stationary distribution of fXtg�
It is easy to see that �X �

t�r�
� � � � �X �

t�r�
� has the same stationary distribution as

�Xt�r� � � � � �Xt�r�� � Whereas �X �
t�r�

� � � � �X �
t�r�

� � ��r����� �r�� for all t� the Markov
chain fX�

t g reaches its own stationary distribution ���r����� �r�� to a su�ciently good

approximation after O�log T � steps� Hence� the proof is reduced to a comparison of
��r����� �r�� with P ��X�

t��r�
� � � � �X�

t��r�
� � ��� for some t� � log T � This comparison

is made by observing the �decoupling� of the Markov chains fX �
tg and fX�

t g� Since
their transition probabilities are quite similar� we can pair both chains in such a way
that P �X �

t �� X�
t for any t � t�� r�� is small� which proves the assertion� In what

follows we describe this approach in detail�
As indicated above� we have�����r����� �r����ea� eb�� � ���r����� �r����ea� eb�����

�
���P ��X �

t��r�
� � � � �X �

t��r�
� � �ea� eb�� � P

�
�X�

t��r�
� � � � �X�

t��r�
� � �ea� eb�����

�
���P ��X�

t��r�
� � � � �X�

t��r�
� � �ea� eb�� � ���r����� �r����ea� eb�����

� T� � T��

�A����



��

According to Theorem 
����� of Iosifescu and Theodorescu ������� we obtain from
Proposition ��
 that

T� � �t� � O�T�����A����

if t� � �C� log T � �
Now we turn to the decoupling approach leading to an estimate for T�� Let !T �
�log T�

p
NT ��		 and let Ik � �F����k � ��!T �� F���k!T � ��� � �It will turn out

below that this choice of !T is optimal� see �A������

�i� Pairing of X �
t and X�

t for t � r
 � ld � �� � � � � r
 � ld � r�

Since X �
t�ri

� X�
t�ri

�i � �� � � � �!�� we obtain by Proposition ��� and �A�� that

���P �X �
r��ld�i

� Ik
�
� P

�
X�

r��ld�i
� Ik

���� � eO 	q!T log T�
q
NT � T

��
�

� O
�
!T �NT�T ��	


�
�

�A����

Accordingly� we pair both Markov chains in such a way that

P
�
jF �X �

r��ld�i
�� F �X�

r��ld�i
�j � !T for any i � �� � � � � r�

�
� eO � log Tp

!T

p
NT

� T��

�
� O

�
�NT�T ��	


�
��A����

�ii� Pairing of X �
t and X�

t for t � r
 � ld � r�

For t � r
 � ld � r� � the situation is slightly di�erent to the previous case since we
can only guarantee that jF �X �

t�ri
�� F �X�

t�ri
�j � !T holds with a high probability�

Assume that jF �X �
t�ri

� � F �X�
t�ri

�j � !T is actually satis�ed for i � �� � � � �! �
Then we obtain by Proposition ��� and �A�� that���P �X �

t � Ik j X �
t�r�

� � � � �X �
t�r�

�
� P

�
X�

t � Ik j X�
t�r�

� � � � �X�
t�r�

����
� eO 	q!T log T�

q
NT � T

��
�

� O
�
!�

T

�
� O

�
!T �NT�T ��	


�
��A��
�

Hence� we can pair X �
t and X�

t in such a way that

P �jF �X �
t�� F �X�

t �j � !T for any i � �� � � � � r��

� eO � log Tp
!T

p
NT

� T��

�
� O �!T � � O

�
�NT�T ��	


�
��A����

This construction will be successively applied for r
 � ld � r� � t � t� � r� with
t �� t�� ri � Note that the sum of the �rst two terms on the right�hand side of �A����
is minimized by the above choice of !T �

�iii� Pairing of X �
t��ri

and X�
t��ri

�i � �� � � � �!�



��

Whereas we were so far concerned with such a pairing of X �
t and X�

t that jF �X �
t� �

F �X�
t �j � !T with an as large as possible probability� we focus now on the events

f� j X �
t��ri

� �ai� bi�g and f� j X�
t��ri

� �ai� bi�g � Provided that jF �X �
t��ri�rj

� �
F �X�

t��ri�rj
�j � !T �j � �� � � � �!�� we can �nd a pairing of X �

t��ri
and X�

t��ri
such

that

P
�
X �

t��ri
� �ai� bi��X

�
t��ri

�� �ai� bi� or X �
t��ri

�� �ai� bi��X
�
t��ri

� �ai� bi�
���

X �
t��ri�r�

� � � � �X �
t��ri�r�

�X�
t��ri�r�

� � � � �X�
t��ri�r�

�
� eO �qF �bi�� F �ai�

log Tp
NT

�
�log T ��

NT
� T��

�
� O ��F �bi�� F �ai��!T ��A��
�

and

P
�
jF �X �

t��ri
�� F �X�

t��ri
�j � !T for any i � �� � � � � r�

�
� eO � log Tp

!T

p
NT

� T��

�
� O �!T ��A����

are simultaneously ful�lled�
Moreover� we have by �A��

P
�
X �

t��ri
� �ai� bi� j X �

t��ri�r�
� � � � �X �

t��ri�r�

�
� O �F �bi�� F �ai��

�A����

and

P
�
X�

t��ri
� �ai� bi� j X�

t��ri�r�
� � � � �X�

t��ri�r�

�
� O

�
�F �bi�� F �ai�� �

�log T ��

NT

�
�

�A����

To complete the proof� we de�ne the following events�

#�� � f� j jX �
t �X�

t j � !T for any t � t� � r�g �
�
n
� j �X �

t��r�
� � � � �X �

t��r�
� � �a� b�

o
�

#�� � f� j jX �
t �X�

t j � !T for any t � t� � r�g �
�
n
� j �X�

t��r�
� � � � �X�

t��r�
� � �a� b�

o
�

#i� � f� j jX �
t �X�

t j � !T for all t � t� � r�g �
�
n
� j �X �

t��r�
� � � � �X �

t��r�
� � �a� b�

o
�
n
� j X�

t��ri
�� �ai� bi�

o
�

and

#i� � f� j jX �
t �X�

t j � !T for all t � t� � r�g �
�
n
� j �X�

t��r�
� � � � �X�

t��r�
� � �a� b�

o
�
n
� j X �

t��ri
�� �ai� bi�

o
�
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Then� by �A����� �A���� and �A���� to �A�����

T� � P �#��� � P �#��� �

X
i��

P �#i�� � P �#i��

� O

�
��NT�T ��	
 � �log T�

q
NT ��		�


Y
i��

�P �Xt � �ai� bi�� � �log T ���NT �

�

X
i��

�q
F �bi�� F �ai�

log Tp
NT

�
�log T ��

NT

�Y
j ��i

�
P �Xt � �aj� bj�� �

�log T ��

NT

��A �
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