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Abstract

Kernel smoothing in nonparametric autoregressive schemes o�ers a power�

ful tool in modelling time series� In this paper it is shown that the bootstrap

can be used for estimating the distribution of kernel smoothers� This can be

done by mimicking the stochastic nature of the whole process in the bootstrap

resampling or by generating a simple regression model� Consistency of these

bootstrap procedures will be shown�

� Introduction

Nonlinear modelling of time series has appeared as a promising approach in applied
time series analysis� A lot of parametric models can be found in the books of Priestley
������ and Tong ������� In this paper we consider nonparametric models of nonlinear
autoregression� Motivated by econometric applications	 we allow for heteroschedastic
errors


Xt � m�Xt��� � � � �Xt�p� � ��Xt��� � � � �Xt�q� �t� t � �� �� � � � � ������

Here ��t� are i�i�d� random variables with mean � and variance �� Furthermore	
m and � are unknown smooth functions� Ergodicity and mixing properties of such
processes have been discussed in Diebolt and Guegan ������� For simplicity	 in this
paper we consider only the case p � q � �� In this particular case	 ����� can be
interpreted as discrete versions of the general Black�Scholes formula with arbitrary
�nonlinear� trend m and volatility function �

dSt � m�St� � ��St� dWt �

�



where Wt is a standard Wiener process� The class of processes ����� contains also as
a special case the QTARCH processes� These processes were proposed by Gourieroux
and Montfort ������ as models for �nancial time series�
Estimation of m and � can be done by kernel smoothing of Nadaraya�Watson type


�mh�x� �
�

T � �
T��X
t��

Kh�x�Xt� Xt�� � �ph�x� �����

���
h�x� �

�

T � �
T��X
t��

Kh�x�Xt� X
�
t�� � �ph�x�� �m�

h�x� ������

Here Kh��� denotes h��K���h� for a kernel K� The estimate �ph is a kernel estimate
of the univariate stationary density p of the time series fXtg

�ph�x� �
�

T � �
T��X
t��

Kh�x�Xt� ������

Asymptotic normality of �mh� ��h and �ph has been shown in Robinson ������� Uniform
consistency results have been given in Collomb and H�ardle ������	 H�ardle and Vieu
�����	 Delecroix ������ and Ango Nze and Portier ������� Asymptotic expansions
for bias and variance have been derived in Auestad and Tj�stheim ������ and Masry
and Tj�stheim ������� Tests for parametric models based on the comparison of these
estimates and parametric estimates have been proposed in Hjellvik and Tj�stheim
������	 compare also Yao and Tong �������
Recently	 so�called local polynomial estimators for m and � have attracted much
interest in the literature� For nonparametric regression these estimators have been
studied in Stone ������	 Tsybakov ������	 and Fan ����	 ����� �see also Fan and
Gijbels ����	 ������� H�ardle and Tsybakov ������ applied the idea of local poly�
nomial �tting to autoregressive models� As an example consider a r�th order local
polynomial estimator of m	 which is given as �ao	 where ��ao� � � � � �ar���

T minimizes

T��X
t��

Kh �x�Xt�

�
Xt�� �

r��X
j��

aj

�
x�Xt

h

�j
��

�

In particular for r � � a local linear estimator �mloclin
h of m can be written as a

modi�ed Nadaraya�Watson type estimator


�mloclin
h �x� � �mh�x� �

P
tXt��

�
Xt � ���x�

�
Kh �x�Xt�P

t

�
Xt � ���x�

��
Kh �x�Xt�

�
x� ���x�

�
������

where ���x� �
P

tXtKh�x � Xt��
P

tKh�x � Xt� denotes the center of the design
points around x� All bootstrap results presented in this paper also hold true for local





polynomials� It is only for the sake of simplicity that we restrict our attention in
the following to the case r � �� i�e� to kernel estimates �mh and ��h	 cf� ���� and ������

In this paper several bootstrap procedures will be considered which approximate the
laws of �mh and ���

h� The �rst resampling scheme �autoregression bootstrap� follows a
proposal of Franke and Wenzel ����� and Kreutzberger ������� This approach is
similar to residual�based resampling of linear autoregressions as discussed by Krei�
and Franke ������ It is based on generating a bootstrap process

X�
t � �m�X

�
t��� � ���X

�
t��� �

�
t �

where �m and �� are some estimates of m and � and where ���� � � � � �
�
T is an i�i�d�

resample� In our second bootstrap approach �regression bootstrap�	 a regression model
is generated with �conditionally� �xed design �X�� � � � �XT �

X�
t � �m�Xt��� � ���Xt��� �

�
t �

where	 again	 an i�i�d� resample of residuals ���� � � � � �
�
T is used� In the third bootstrap	

again a regression model is generated with �conditionally� �xed design �X�� � � � �XT �

X�
t � �m�Xt��� � ��t �

Here ���� � � � � �
�
T is an independent resample where �

�
t has �conditional� mean zero and

variance �Xt� �mh�Xt������ This procedure has been called wild bootstrap by Mammen
�����	 H�ardle and Mammen ������� Mathematics for autoregression bootstrap will
turn out as the most di�cult one� Note that in this bootstrap proposal a complicated
resampling structure has to be generated�

The paper is organized as follows� An explicit description of the three bootstrap
procedures can be found in the next section� In the third section we state our main
results on consistency of the bootstrap procedures� Simulation results will be given
in Section �� Section � contains some auxiliary results on uniform convergence of �mh

and ���
h on increasing subsets of the real line �cf� Lemma ��� and ���� which may be

of some interest of its own� The proofs are defered to Section ��

� How to Bootstrap

We consider a stationary and geometrically ergodic process of the form

Xt � m�Xt��� � ��Xt��� �t�����

The unique stationary distribution is denoted by 	� Simple su�cient conditions for
stationarity and geometric ergodicity are the following

� The distribution of the i�i�d� innovations �t possesses a Lebesgue density p��
which ful�lls infx�C p��x� 
 � for all compact sets C

�



� m�� and ��� are bounded on compact sets and
lim supjxj��

Ejm�x����x���j
jxj

� ��

This is a direct consequence of Theorems � and  in Diebolt and Guegan ������	
compare also Meyn and Tweedie ������ or Doukhan �����	 p� ��������� The as�
sumptions ensure that the stationary distribution 	 of the time series fXtg possesses
a strictly positive Lebesgue density	 which we denote by p� From ���� we obtain

p�x� �

Z
R

�

��u�
p�

�
x�m�u�

��u�

�
d	�u������

For a stationary solution of ����	 geometric ergodicity implies that the process is
strongly mixing ���mixing� with geometrically decreasing mixing coe�cients �cf�
Doukhan	 ����	 chapter �� and ����� Moreover this property carries over to pro�
cesses of the type Yt � ft�Xt��
To keep our proofs simple	 we need somewhat stronger assumptions

�A�� m is Lipschitz continuous with constant Lm�
�A�� � is Lipschitz continuous with constant L��
�A�� ��x� 
 � for all x � R�
�A�� The innovations �t are i�i�d� random variables with mean �	 variance � and a

density p� satisfying infx�C p��x� 
 � for all compact sets C�
�A�� Lm � L� Ej��j � � �

For the sake of simplicity we assume that the observed data X�� � � � �XT are realiza�
tions of the stationary version of �����

��� Autoregression Bootstrap

Let I � ��T � T � be a growing interval with T �� � for T ���� More detailed
assumptions on T will be given later� We de�ne

�mh�x� � �mh�x� � �fjxj � Tg����

��h�x� � ��h�x� � �fjxj � Tg� �fjxj 
 Tg �����

Outside of I the estimates �mh and ��h are replaced by constants� This is done because
�mh�x� and ��h�x� are no reliable estimates for jxj large� Other de�nitions of �mh and
��h outside of I would work	 too�
The bootstrap procedure requires calculation of residuals

��j �
Xj � �mg�Xj���

��g�Xj���
� j � �� � � � � T �

�



where g 
 � denotes a bandwidth possibly di�erent to the bandwidth h 
 � used
for the kernel smoother of interest� We remove those ��j corresponding to the Xj��

outside of ��T � T �� Let A � fj � �� � � � � T j jXj��j � Tg� Then	 we recenter the
remaining residuals

��j � ��j � �

jAj
X
k�A

��k�

and de�ne �FT as the empirical distribution given by ��j� j � A� Then	 we smooth
this distribution by convoluting it with some probability density Hb�u� �

�
b
H�u

b
��

where H is a probability density with mean � and variance �� Let �FT�b � �FT �Hb be

this smoothed empirical law� Let us denote the density of �FT�b by �fT�b� We draw the

bootstrap residuals ��t � t � �� � � � � T� as i�i�d� variables from �FT�b� Then	 we get the
bootstrap sample X�

� � � � � �X
�
T by

X�
t � �mg�X

�
t��� � ��g�X

�
t��� �

�
t

with	 for sake of simplicity	 X�
� � X� �

Analogously to ���� the bootstrap sample X�
� � � � � �X

�
T de�nes for each point x a

kernel estimate �m�
h�x�� The conditional distribution of

p
Thf �m�

h�x� � �mg�x�g given
X�� � � � �XT is denoted by LB�x�� This is the bootstrap estimate of L�x�� the distri�
bution of

p
Thf �mh�x��m�x�g�

The distribution of
p
Thf���

h�x�� ���x�g is denoted by L��x�� its bootstrap estimate
by L�

B�x�� Consistency of these estimates will be shown in the next section�

��� Regression Bootstrap

With an i�i�d� resample ���� � � � � �
�
T � generated as in the last subsection	 we put

X�
t � �mg�Xt��� � ��g�Xt��� �

�
t �

Here �mg and ��g are kernel smoothing estimates �cf� ����	 ������ with bandwidth g�
The original sample X�� � � � �XT acts in the resampling as a �xed design� We now
de�ne

�m�
h�x� �

�

T � �
T��X
t��

Kh�x�Xt� X
�
t�� � �ph�x� �

���
�

h �x� �
�

T � �
T��X
t��

Kh�x�Xt� X
��

t�� � �ph�x�� �m��

h �x� �

The conditional distribution of
p
Thf �m�

h�x�� �mg�x�g is denoted by LRB�x� and the

conditional distribution of
p
Thf����h �x� � ���

g�x�g is denoted by L�
RB�x�� These are

our second type of bootstrap estimates for L�x� and L��x��

�



��� Wild Bootstrap

This procedure starts by generating an i�i�d� sample ��� � � � � �T with mean � and
variance �� �Often	 for a higher order performance	 the distribution of �t is chosen
such that additionally E ��t � �� for a discussion of this point and for choices of the
distribution of �t� compare Mammen ������� Put now ��t � �Xt � �mh�Xt���� �t�
The Wild Bootstrap resample is de�ned as

X�
t � �mg�Xt��� � ��t �

As in the last subsection	 this resample can be used for calculating �m�
h�x�� The

conditional distribution of
p
Thf �m�

h�x�� �mg�x�g is denoted by LWB�x�� In particular	
Wild Bootstrap is appropriate in cases of irregular variance functions ��x�� Such
models may arise when ��x� acts only as a nuisance parameter and the main interest
lies in estimating m�

� Bootstrap Works

In this section we present our main results� We give assumptions under which the
three Bootstrap procedures of the last section are consistent� We start with the
�rst Bootstrap procedure� Here and in the following	 C denotes a positive generic
constant�

�B�� There exists �o 
 � such that ��x� 	 �o for all x � R�
�B�� m and � are twice continuously di�erentiable with bounded derivatives�

�B�� E�	� ��� p� is twice continuously di�erentiable� p�� p�� and p
��
� are bounded and

supx�Rjx p���x�j ��
�B�� g� h� �� Th
 � B� 	 � and g 
 T�� with � � � � �

�

for T ���

�B�� b� � and g�b�� � � as T �� �

�B�� T ��� infjxj�� �T ��� p��x� 	 �g log T �� and T� log T is bounded�
�B�� H is a probability density	 twice continuously di�erentiable with bounded de�

rivatives and satis�es
R
v�H�v�dv ���

R
v�jH ��v�jdv ���

�B	� K has compact support ���� ��	 say� K is symmetric	 nonnegative and three
times continuously di�erentiable with K��� � K ���� � � and

R
K�v� dv � � �

Assumption �B�� allows for the rate h 
 T���
 as well as for faster rates of conver�
gence� Bandwidths of order O�T���
� have been motivated by optimality consider�
ations� For bandwidths of order o�T���
� the variances of �mh� ��h dominate the bias
parts� By comparison with bootstrapping nonparametric statistics in other simpler

�



situations oversmoothing of the reference estimates �mg� ��g in the sense that Tg
 ��
seems to be necessary� We require a bit more due to technical reasons�

Condition �B�� is needed for purely technical reasons in the proof of Lemma ���� It
implies together with �B�� a very slow convergence of b to �� In simulations the boot�
strap seems to work even without any smoothing �corresponding to b � � for �nite T ��

We are now ready to state our �rst theorem�

Theorem �
 Assume �A�� � �A��� �B�� � �B��	 Then for all x � R 


dK�LB�x�� L�x�� �� � �in probability��

dK�L�
B�x�� L��x�� �� � �in probability� �

Here dK denotes the Kolmogorov distance� i	e	 for two distributions P and Q the
distance dK�P�Q� is de
ned as supx�RjP �X � x��Q�X � x�j�

We come now to the discussion of regression bootstrap� We assume

�RB� Assume �B��	 �B��	 and �B��� Furthermore	 suppose that � is continuously
di�erentiable and that m is twice continuously di�erentiable with bounded derivat�
ives�

Theorem �
 Assume �A�� � �A��� �RB�	 Then for all x � R 


dK�LRB�x�� L�x�� �� � �in probability�

dK�L�
RB�x�� L��x�� �� � �in probability��

We come now to the Wild Bootstrap� We assume

�WB� Assume �B��	 �B��	 �B��	 that m is twice continuously di�erentiable with
bounded derivatives and that � is continuous�

Theorem �
 Assume �A�� � �A��� �WB�	 Then for all x � R 


dK�LWB�x�� L�x�� �� � �in probability��

Remark� Note that less smoothness assumptions on � are made for wild bootstrap
compared with regression bootstrap� Furthermore	 autoregression bootstrap requires
even more smoothness assumptions as regression bootstrap�

�



� Simulations

In this section we intend to demonstrate the �nite sample size performance of the
bootstrap and wild bootstrap proposal of the paper� For this purpose we consider
the processes �t � �� � � � � T �

Xt � � � sin�Xt��� � �t�������

Xt �
q
� � ���X�

t�� � �t�������

Xt � ���Xt�� �
q
��� � ���X�

t���t������

Here �t 
 t � �� � � � � T are i�i�d� error variables with standard normal law� Equation
������ is a model of ARCH����type	 and ����� is a discrete version of the Black�
Scholes formula for stock prices� It has been modi�ed by assuming a nonconstant
volatility� In both cases	 ��x� grows proportional to x�

Figure �a and �b show typical realizations of size T � �� of the models ������ and
�������

At �rst we consider the local linear estimator �mloclin
h for m in the �rst model with

bandwidth h � ��� � Based on a Monte Carlo simulation of size M � ���� Figure
a and b show the simulated density of

p
Th� �mloclin

h �x� � m�x�� for x � � and
x � �	� �thick lines� together with three bootstrap estimates of this quantity �thin
lines� based upon di�erent original time series� Here we make use of the bootstrap
proposal of Section ��� The pilot bandwidth g is chosen to be equal to �	 and the
size of the resample is ����

�



Figures �a and �b are devoted to the behaviour of the usual kernel estimator ��h of
the volatility function ��x� �

p
� � ���x� in model ������� In this case all bootstrap

estimates are again obtained by using the �rst bootstrap proposal �cf� Section ����
The plots show again three di�erent bootstrap approximations together with the
simulated true distribution of

p
Th���h�x�� ��x�� for x � � and x � �	 respectively�

In both cases	 the bootstrap provides a reasonable approximation of the densities of
the estimators of interest�
Finally Figure �a �for model ������� and Figure �b �for model ������� give us an im�
pression of the density of the stationary distribution 	 of the corresponding processes
�Xt��

�



Considering model �����	 we illustrate how the bootstrap can be used to get approx�
imative con�dence intervals and to select an appropriate bandwidth� Figure � shows
the data	 i�e� a sample of size T � ��� from ������ Figure �a�c show the kernel
estimates with bandwidth h � ��� of the trend function m�x� � ���x 	 the volatility
function ��x� �

p
��� � ���x� and the stationary density of ������ As our sample

is essentially contained in the interval ���� ��� the estimates are of course quite poor
outside of this interval�

��



Figure �a shows a pointwise �� �con�dence band for m�x� based on a Monte Carlo
simulation of sizeM � ���	 whereas Figure �b provides the bootstrap approximation
of this con�dence band based on the sample of Figure � and using g � �� Here	 as
in the above cases too	 we use the unsmoothed law of the sample residuals for the
resample	 i�e� b � �� This case is not covered by our theoretical results	 but it works
in practice quite well� The two con�dence bands are quite close in the central part
around � where we have enough data in the sample of Figure ��

Analogously	 Figure �a�b and �a�b show pointwise �� �con�dence bands for ��x�
and for the stationary density p�x�� In the interval ����� ����� the bootstrap provides
a good approximation of the con�dence band for p�x� apart from a slight shift to
the left near � � for p���� e�g�	 the �� �bootstrap con�dence interval is ������ �����
compared to the Monte Carlo result of ����� ������ The bootstrap con�dence band
for ��x� has a similar shape as the Monte Carlo band	 but it is considerably shifted to
the right for x around �� This is not surprising because variance function estimates
are not very reliable even for sample sizes of T of order ���� From Figure �b we see
that for our particular sample the estimate ��h�x� lies by chance considerably above
��x�� This cannot be caused by smoothing bias alone	 as can be seen by looking at
other kernel estimates with smaller h�

��



Finally	 Figure ��a�b for m�x� and Figure ��a�b for ��x� show Monte Carlo estimates
and the corresponding bootstrap approximations for the root mean�square �rms� error
of �mh�x� and ��h�x� as function of x� Between �� and � the bootstrap approximation
comes very close to the !true! rms�curves �only for ��h�x� near � the bootstrap�rms is
a bit too small�� It is also possible to consider the rms as function of h for �xed x�
Then its bootstrap approximation can be used for local bandwidth selection�

�



� Auxiliary results� Uniform Convergence of the

Kernel Smoothers

In this section we collect some results on uniform convergence of our estimates �mh

and ��h on slowly growing intervals of the form ��T � T �	 T �� as T �� �
These results are essential for our proof of consistency of the bootstrap proposals of
Section � For all bootstrap procedures it is not su�cient to consider behaviour of
�mh and ��h only on �xed compact sets�

Lemma ���
 Assume �A����A��� �B����B��� �B�� and �B��	 Then we have

sup
jxj��T

j �mg�x��m�x�j � oP
�
g��	

	
�

Proof
 We use the decomposition

�mg�x��m�x�

�

P
tKg �x�Xt�� �Xt� �t��P

tKg �x�Xt�
�

P
tKg �x�Xt� �m�Xt��m�x��P

tKg �x�Xt�
�

By our assumption on g	 it su�ces to show

sup
jxj��T






 �T
X
t

Kg �x�Xt�� �Xt� �t��






 � OP

�
�Tg�����

�
�������

sup
jxj��T






 �T
X
t

Kg �x�Xt�� p�x�






 � OP

�
g�
	
�������

inf
jxj��T

p�x� 	 Cg� log T������

and

sup
jxj��T






P

tKg �x�Xt� �m �Xt��m�x��P
tKg �x�Xt�





 � OP �g� �������

Claim ������ is an easy consequence of the di�erentiability of m� Note that the
lefthand side of ������ is bounded by

sup
x

P
tKg �x�Xt� jx�XtjP

tKg �x�Xt�
� sup

x




m�

�x�



 �

��



This is of order O�g� due to the compactness of the support of K� A proof of ������
is a bit more involved� Since we will make repeatedly use of the following argument
we present it here in detail� In a �rst step we divide the interval ��T � T � into
equidistant subintervals of length � � �g
�T �

���
� We get

�

T
sup
jxj��T







X
t

Kg �x�Xt�� �Xt� �t��






 � maxi sup
x

�

T







X
t

Kg �x�Xt�� �Xt� �t��







where the suprema on the right hand side are taken over all x � ��T��i������T�
i�� and where the maximum is taken over all i � f�� ���� �T��� � �g � Let us denote
xi � �T � �i� ��� � By the mean value theorem we get the following upper bound
for the right hand side of the last inequality
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where C is some upper bound of jK �j� Since Pt ��Xt�j�t��j � OP �T � we get with
our choice of � that the second term is of order OP ��Tg������� It remains to show
that the �rst term is of order OP ��Tg������� For this purpose	 we consider
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by Burkholder"s inequality �cf� Hall and Heyde ������	 Theorem ����� We ob�
tain that the last expression is of order O ��log T ����Tg�����	 � which is o��� by the
assumption on g	 since

EK	
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������ is an immediate consequence of
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 � arbitrary	 and
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x
jEKg �x�X��� p�x�j � O�g�� �������

To see ������ observe that EKg �x�X�� �
R
K�v�p�x� gv� dv � A Taylor expansion

for p together with the fact that
R
vK�v� dv � � �K is symmetric#� yields the desired

result�
In order to prove ������ we make use of an exponential inequality for strong mixing
processes �cf� Doukhan ������	 Proposition �	 p� ���� Before doing so we apply the
splitting device for the supremum over x	jxj � T 	 discussed above� It turns out that
it su�ces to consider
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For the choice ��g� � �log T �� �
p
Tg���witharbitrary� 
 � the second term is of the

desired order� For the �rst rerm	 the above mentioned exponential inequality gives
us that
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for some constant b 
 �� This is of the order � o��� for M large enough�
It remains to verify ������� With ���� we obtain
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since	 for T large enough	 j�x�m�u�����u�j � �T � LmT � jm���j� ��o � T��o
for all x� u � ��T � T � � Assumption �B�� together with 	��T � T � � � yields the
desired result�

Lemma ���
 Under the assumptions of Lemma �	� we have on every compact in�
terval B
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j �mg�x��m�x�j � OP
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Proof
 As B is a �xed interval	 p is bounded away from � by a �xed constant on B�
Therefore	 by the same type of argument used in the proof of Lemma ���P
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tKg�x�Xt�
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uniformly on C under the assumption on g� Therefore	 it remains to show
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A Taylor expansion ofm�Xt��m�x� up to second order terms yields for the numerator
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The second term divided by ��T
P

tKg �x�Xt� is obviously of order g� �recall that
m

��

is bounded�� For the �rst term	 application of the exponential inequality �cited
in the proof of Lemma ���� and of the same splitting device for the supremum over
x as above concludes the proof�

Remark� Under stronger assumptions �including the assumption that the Laplace
transform

R
exp��u�p��u� du of p� exists for j�j small enough� we are able to show

that the following stronger result holds�
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Together with Lemma ��	 this implies a known uniform convergence result for m on
compact sets	 cf� Masry and Tj�stheim ������� Since we don"t need better rates	 we
don"t give more details here�

Additionally	 we need uniform convergence of ��g on the growing interval ��T � T ��
This is the content of the following lemma�

Lemma ���
 Under the assumptions of Lemma �	�� we have
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the assertion of Lemma ��� follows from ������ � ���� together with ������ and
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Claims ����� and ���� follow from the equalities supjxj��T jm�x�m��x�j � O�T �
and supjxj��T j��x����x�j � O�T �	 see �B�� Equations ������ and ����� can be
shown analogously to ������� In the proof ��Xt��t�� is replaced by ���Xt����t�� � ��
or m�Xt���Xt��t��	 respectively�

The next lemma describes performance of �� on �xed compact sets B�

��



Lemma ���
 Under the assumptions of Lemma �	� we have on every compact in�
terval B

sup
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Remark� As for the conditional mean function m	 we can achieve better rates for
the uniform convergence in Lemma ��� under stricter conditions�

We conclude this chapter with some weak consistency results concerning the deriv�
atives of �mg�
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Furthermore	 we get
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Di�erentiability of m and p� together with the facts that
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The ergodic theorem concludes the proof of �i��
For the proof of �ii� one can proceed as in �i� to show that
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Here we make use of
R
K ���v� dv � ��

R
v K ���v� dv � � and

R
v�K ���v� dv � �

which are easy consequences of �B��� It remains to show that this convergence holds
uniformly for u � �x�h� x� h�� This can be done e�g� by calculation of higher order
moments of �m��

g�u��m���u��

� Auxiliary Results and Proofs

Before proving the validity of all three bootstrap procedures we show some prelimin�
ary results on the performance of the �rst bootstrap procedure which tries to capture
the time series structure of the process fXtg� In particular	 we show that the boot�
strap innovations ��t approximate the true residuals �t in Mallows distance de�ned
as

d���X�Y � � d���L�X��L�Y �� � inf
n
E�U � V ��




 L�U� � L�X��L�V � � L�Y �o �

Corresponding to the de�nition of �FT and �FT�b� let FT denote the empirical distribu�
tion of the �j� j � A� and let FT�b � FT � Hb denote the smoothed version of this
empirical law� Let F� denote the law of the innovations �t�
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 For T ��� we have
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Proof
 By the triangular inequality
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For the second term	 let J be Laplace distributed on A� i�e� J � j with probability
�
jAj
for each j � A�We consider the random variables �J and ��J which have marginals

FT or �FT 	 respectively� Let � be a random variable with density Hb� Then �J � �
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and ��J � � have marginals FT�b or �FT�b	 respectively� Therefore	
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The �rst term on the right�hand side is bounded by
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as jXj��j � T for all j � A� By the de�nition of A and by the law of large numbers
for stationary processes we have for a suitable constant � 
 � that P�jAj 	 �T � �� �
for T ��� i�e� jAj grows at the same rate as T � Therefore	

�

jAj
X
j�A

j�jj ��a�s� Ej�tj �
�

jAj�
�X

j�A

�j

��

� OP

�
�

T

�
�

which implies the rest of the assertion�

Corollary ���
 Under the assumptions of Lemma �	�

d���t� �
�
t � �� � if b� � for T �� �

Proof
 By Lemma �� and ��� the second and third term in Proposition ��� vanish
for T ��� For the �rst term	 we have

d��F�� FT�b� � d��F�� FT � � d��FT � FT�b� �

As jAj � � for T �� 	 the �rst term converges to � by Lemma ��� in Bickel and
Freedman ������� Let �J � � be as in the proof of Proposition ���� Then	

d���FT � FT�b� � E���J � �J � ��� � E��� � O�b�� � o����
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As next step	 we show that Xt and X�
t are not too far apart in a distributional sense�

For this purpose	 we consider samples of conditionally independent error variables
���� � � � � ��T with the following properties
 �i� ���� � � � � ��T are condtionally i�i�d� �given
the original data X�� � � � �XT �� �ii� ��t has a conditional distribution �given the original
data X�� � � � �XT � which is identical with the unconditional distribution of f�tg and
�iii� E ����t � ��t �

� � d�����t� �
�
t � � �d

�
���t� �

�
t ��� We de�ne now a process �Xt by �X� � X�

and
�Xt � m� �Xt��� � �� �Xt�����t�

The process f �Xtg starts with the same value �X� � X� at time � as fXtg and we
suppose that the bootstrap process fX�

t g starts also with X�
� � X�� We will show

that j �Xt � X�
t j � � in mean for T � � �given the original data X�� � � � �XT �� We

use the common initial value for all � processes for convenience only� Note that for
T �� the in$uence of this initial value vanishes exponentially fast� First	 we show
that under our assumptions jX�

t j � T with high probability�

Lemma ���
 Under the assumptions of Lemma �	� and assuming b� � for T ���

P � �jX�
t j 	 T �� � in probability�

Proof
 As a �rst step	 we show that E�jX�
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using Lemma ���	 ��� and the boundedness of E�j��sj which follows from Corollary
���� Let L � � be an upper bound for Lm � L�E�j��sj and C be an upper bound for
E�j��sj � jm���j � ���� � E�j��sj� Then	 by Lipschitz continuity of m and �	 we have	
iterating with respect to t	
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Now	 we consider P �fX�
t 
 Tg since the arguments for P �fX�

t � �Tg are com�
pletely similar� We use the abbreviations

qT �x� � �T �m�x�����x� and �qT �x� � �T � �mg�x�����g�x��

Remark that �qT �x� � T for jxj 
 T and	 by Lemma ��� and ���	

�qT �x� � qT �x� � oP ��� uniformly in jxj � T �
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The �rst summand is bounded by P �f��t 
 Tg which converges to � for T � ��
using Corollary ���� Denoting by p� the probability density of X�
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For the inequality	 we have used Markov"s inequality and the fact that qT �x� is
positive and bounded away from � uniformly in jxj � T for all T large enough�
Now	 by Lipschitz continuity of m and �� T � m�x� 	 T � Lm � jxj � jm���j 	
��� Lm�T � jm���j for jxj � T � ��x� � L� � jxj� �����
Therefore	 for a suitable constant C�	 the last integral is bounded by
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for T �� as	 by the �rst part of the proof	 E�jX�
t��j remains bounded�
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Lemma �	� hold	 Then

sup
��t�T

E�



X�

t � �Xt




 � oP ����

Proof
 Let �m��� � m����fj � j � Tg and ����� � �����fj � j � Tg� �fj � j 
 Tg �

E �



X�

t � �Xt




 � E �



 �mg�X

�
t����m� �Xt��� � ���g�X

�
t���� �� �Xt���� �

�
t

��� �Xt�����
�
t � ��t�





� E �j �mg�X

�
t���� �m�X�

t���j� E �j �m�X�
t����m� �Xt���j

� E �
�
j��g�X�

t��� � ���X�
t���j� j���X�

t���� �� �Xt���j
�
j��t j

�E � �� �Xt���j��t � ��tj �
As	 by Lemma ��� and ���	 �mg � �m and ��g � �� converge to zero uniformly on R	 we
have that the �rst and third term converge to zero in probability� For the second
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term we have from the de�nition of �m and from Lipschitz continuity of m
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� Lm E �jX�
t�� � �Xt��j� oP ���� by Lemma ���

Exactly along the same lines we obtain
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Finally	 by Proposition ���	
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as we have chosen X�
� � X� �

The result follows from �A��� Observe that E �j���j � E �j���� ���j�E �j���j � oP ������
since E ����� � �� to obtain the assertion�

Corollary ���
 Under the assumptions of Proposition �	� we have
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Proof
 Let ���t� ��t �� t � �� � � � � T� be chosen such that E � ���t���t �� � d�� ��t� �
�
t � for all

t� Looking at the proof of Proposition ��	 the oP ����term converges to � uniformly
in t � T� Therefore	 the Corollary follows immediately from the Proposition as	 in
particular	 L � Lm � L�E j�tj � � by �A���

Proof of Theorems ���
 In all three cases we split the terms which have to be
investigated into a variance and bias part� For the bootstrap of Theorem �	 e�g�	 this
separation is as follows
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and	 correspondingly	
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For the regression like and the wild bootstrap we obtain similar expressions	 where
X�

t has to be replaced by the original observations Xt in the appropriate places�

Now	 we show that

i� the numerators of the variance parts of the original estimator �mh�x� and its
three bootstrap versions have the same asymptotic behaviour �formulated pre�
cisely as Lemma ���	

ii� the rescaled numerators of the bias parts of the original estimator and its three
bootstrap versions converge to the same limit �compare Lemma ���	 where the
bias components of the regression�like and the wild bootstrap are identical�	

iii� and	 for the bootstrap of section ��	 the denominators of variance and bias
parts coincide asymptotically for the original estimator and its bootstrap ver�
sion �compare Lemma �����

Lemmas �� � ��� together prove the assertions of Theorems ��� concerning the es�
timate �mh�x�� The validity of the three bootstrap procedures for approximating the
law of ���

h�x� can be shown in a completely analogous manner�
We deal with the variance parts �rst�
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�iii� Assume �A�� � �A�� and �RB�	 Then� for the bootstrap of section 	� for all
x � R in probabilityr
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Proof
 �i� It su�ces to verify the assumptions of a version of the central limit
theorem for martingale di�erence arrays �Brown	 �����	 namely
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Here Ft � ��X�� � � � �Xt� � ��X�� ��� � � � � �t� � Since K and � are bounded in a
neighborhood of x assertion ����� can be concluded from
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It is easy to see	 that the expectation of the square of the �rst summand isO����Th��� �
o��� � The second summand equals	 using the symmetry of K	
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Di�erentiability of � and p� and boundedness of the derivatives of p� and ��� imply
that this term is equal toZ
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by the ergodic theorem� Observe that ��X����p� ��� �m�X��� ���X��� is the trans�
ition density of the underlying process	 i�e� by ����
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In order to verify �ii� we will verify conditions quite similar to ����� and ������
Since the Lindeberg condition can be obtained quite easily	 we focus on �F�
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Observe that E ������
� � E ��� � �� by Corollary ���	 and that the �rst summand is

of order OP ����Th���� by the same arguments as above� It su�ces to deal with the
integral	 which is equal to

�

T

X
t

Z
�����

K��v����
g�x� hv� �fT�b

�
x� �mg�X�

t���

��g�X�
t���

�
hv

��g�X�
t���

�
�

��g�X�
t���

dv�

The argument of �fT�b is bounded in absolute value by CT � This will be shown in

the proof of Lemma ��� below� Therefore	 using Lemma ��� to replace �fT�b by p� and
Corollary ��� for the uniform convergence of ��g to � on compact sets	 we obtain that
the last expression equals�
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using again the di�erentiability of � and p� as in proving �i�� Finally	 we have to
verify that this term converges in probability towards � ��x�� i�e�
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where 
 denotes asymptotic equivalence and where we know already from proving
�i� that the r�h�s� converges to p�x�� Such a result	 which means that the Bootstrap
process has in some sense an ergodic behaviour	 will be needed at several places later
on� We present the arguments in some detail here� The proof can be splitted up into
the following steps�
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With ����� � ������ the desired result follows from Corollary ��� This completes
the proof of �ii�� To see ����� observe that �mg�X�

t��� � � and ��g�X
�
t��� � � on

fjX�
t��j 
 Tg� thus the lefthand side of ����� equals �
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which is oP ��� by Lemma ���� Similarly	 ����� follows from Lemma ��� together
with boundedness of p� and ����
Recall that �mg � �mg and ��g � ��g on ��T � T � such that �mg and ��g converge
uniformly on this growing interval by Lemma ��� and Lemma ���� Together with
boundedness of p� and p��� this implies ������

By boundedness of p�� and
�
�
and by the last part of assumption �B��	 the derivative

of �
����p�

�
x�m���
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�
is bounded� This implies �������

For a proof of �iii� and �iv� we make use of a central limit theorem for triangular
arrays of independent observations� The Lindeberg condition can be veri�ed in both
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cases by routine arguments and also for the variance the argument is quite simple�
In case �iii� we have
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For replacing ���
g�Xt� by ���Xt�� oP ��� we have used the fact that	 by �B��	 the sum

extends only over those t with jXt � xj � h and that ���
g�z� �� ���z� uniformly on

�x� h� x� h�� The latter can be easily shown quite similar to Lemma ����
For case �iv� we similarily obtain	 using in particular E ��t � ��

E �

�r
h

T

X
t

Kh�x�Xt��
�
t��

��

�
�

Th

X
t

K�

�
x�Xt

h

�
�Xt�� � �mg�Xt��

�

�
�

Th

X
t

K�

�
x�Xt

h

�
�Xt�� �m�Xt� � oP ����

�

�
�

Th

X
t

K�

�
x�Xt

h

�
���Xt��

�
t�� � oP ���

�
�

Th

X
t

K�

�
x�Xt

h

�
���Xt� �

�

Th

X
t

K�

�
x�Xt

h

�
���Xt���

�
t�� � �� � oP ���

� ���x�p�x�

Z
K��v� dv � as T �� �

as the expected square of the second term of the previous line is of order OP �
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due to boundedness of K and the compactness of its support�

In a next step we have to deal with the kernel estimates for the stationary density�
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Lemma ���
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We dealt with such an expression already in the proof of Lemma �� �ii�� This
concludes the proof of Lemma ��� �

Finally	 it remains to deal with the various bias parts�
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Proof
 A Taylor expansion for the left hand side of �i� yields
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The second summand of ������ can be dealt with quite similar� It converges towards
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�B � R v�K�v� dv � p�x�m���x� � but we omit the details�
Let us proceed with a proof of �ii�� Di�erentiability of �mg around x	 a similar
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 � � Since �f �T�b converges uniformly to p�� �cf� Lemma ���� on this
growing interval and since p��� is bounded	 the term under investigation is equal to
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Similar arguments as in the proof of Lemma �� �ii� �cf� ����� � ������� and Corollary
��� yield �������
������ can be obtained along the same lines� We omit the details�
Finally	 a proof of �iii� can be obtained analogously since we have that �m�

g and �m
��
g

estimate m� and m�� consistently	 by Lemma ����

Lemma ���
 Assume �A�� � �A��� �B��� �B�� � �B��	 Then for all c 
 � and
j � �� �

sup
jxj�c�T

j �f �j�T�b�x�� p�j�� �x�j � oP ��� �

Proof
 Let A � ft� jXt��j � Tg as in section ��� In a �rst step we compare �fT�b
with fT�b de�ned as
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�

jAj
X
t�A

Hb��t � x��

We have uniformly in x � R for some constant C�j � �� ���
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by the same type of argument as in the proof of Proposition ���� Together with
Lemma ���	 ��� and �B�� we conclude

sup
x�R

j �fT�b�x�� fT�b�x�j � oP

�
g��	T
b�

�
�OP �

�p
Tb�
� � oP ���

by our assumptions on b�

In the second step we compare fT�b�x� with its expectation� We divide the interval
��cT � cT � into subintervals of length � 
 �� The number of this subintervals is of the
same magnitude as cT ��� The supremum over all x belonging to such a subinterval
can be bounded using the mean value theorem� If we denote the intersection points
by xi we obtain
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where H �

b�u � x� � � �
b�
H ��u�x

b
� denotes the derivative of Hb�u � x� with respect to

x�
Choose � � bj��� log T and obtain for the second summand �� 
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Finally	 since E Hb��� � x� �
R
H�v�p��x� bv�dv
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using �B��� As H is a probability density we have	 using �B��	
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