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tic are considered� In particular� a rank counterpart of the score statistic is
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� Introduction

Unit root tests play an important role in the analysis of economic time series�

The performance of such tests depends on a number of assumptions� which

are often questionable in empirical applications� As argued by Granger �

Hallman ������� the assumption that the generating process is linear seems

too restrictive in many circumstances� In fact� the time series to be tested

are often transformed to logarithms before the unit root test is applied� As

another example� Franses and McAleer ������ consider the Box�Cox class

of transformations for unit root testing� Nevertheless� such transforms are

often chosen for convenience and alternative transforms may be considered

plausible as well� Therefore� a test which is una�ected by the choice of the

initial transformation is highly desirable�

Most unit root tests are based on the assumption of normally distributed

errors� Although the asymptotic theory applies also for a wide class of alter�

nate assumptions provided that the second moment exists� the critical values

for small samples are computed using normally distributed data� However�

it is well known that in particular the distributions of �nancial data exhibit

much fatter tails than is expected by assuming normality and in some cases

not even the second moments seem to exist�

Another reason to question the use of parametric unit root tests is that

in many cases the economic development reveals evidence for a structural

change� In a random walk model the shocks have a persistent e�ect so that

structural breaks can be modeled allowing for outlying observations �Perron

������ Since rank tests reduce the in�uence of outlying observations� they

are expected to perform better than parametric tests in such situations�

To overcome these di�culties it is interesting to consider robust versions

of standard unit root tests� such as tests based on the ranks of the observa�
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tions� Using ranks instead of the original observations has two major advan�

tages over parametric procedures� First� ranks are maximal invariants under

monotonic transformations of the data and� thus� their distribution does not

change if a monotonic transformation is applied to the original data� Sec�

ond� ranks are invariant with respect to the distribution if they are applied

to a sequence of exchangeable observations� As a consequence� rank tests are

robust against a wide class of �outliers�� In this paper both advantages are

exploited by two di�erent rank procedures�

The �rst test is the natural rank counterpart of the conventional Dickey�

Fuller test �Dickey and Fuller ��
��� The observations of the series are re�

placed by their ranks and the �rst di�erences of the ranks are regressed on

the sequence of ranks and a constant� This test was suggested by Granger

and Hallman ������ and its asymptotic properties are considered in Section

�� Clearly� the test is invariant with respect to a monotonic transforma�

tion of the data� However� since under the null the observations are not

exchangeable� the null distribution depends on the distribution of the errors�

Moreover� it is not clear how to generalise such a test to a random walk

model with drift and correlated errors�

Campbell and Dufour ������ suggest a di�erent approach� Let fytgt�f������Tg
denote the observed time series of sample size T � Instead of the original se�

ries the products �t � �yt � yt���yt�� are ranked and it is shown that for

series generated by the simple random walk model yt � yt�� � �t� where

�t is a strong white noise series symmetrically distributed around zero� the

Wilcoxon test for a zero median can be applied to �t� In contrast to the

ranked Dickey�Fuller test this test is invariant with respect to the error dis�

tribution whereas a monotonic transformation of the time series will a�ect

the null distribution� in general� Again� such a test has no straightforward
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generalisation to random walk models with drift and correlated errors�

In section � a version of a rank test for a unit root is suggested which

can also be applied for a random walk with drift and correlated errors� In

the former case the exact �nite sample distribution can be computed while

in the latter case an asymptotic correction similar to the one suggested by

Phillips and Perron ������ can be used� This test is invariant with respect

to the error distribution but is a�ected by a monotonic transformation of the

data� in general� Moreover� the test can be seen to be robust against outliers

and a structural break in the intercept of the trend function�

To assess the small sample properties of the test� several Monte Carlo

experiments are performed� The results� which are presented in section ��

suggest that the ranked score test performs well in some situations but lacks

power in others� Section � concludes�

� The ranked Dickey�Fuller test

First we consider the ranked Dickey�Fuller �rDF� test as suggested by Granger

and Hallman ������� We assume the existence of a monotonic function� such

that zt � h�yt� is generated by a �rst order autoregressive model

zt � �zt�� � �t� t � �� � � � � � T�

where �t is an i�i�d� white noise sequence �i�e� �strong white noise�� with

p�d�f� f � It is important to consider the identi�cation of the two functional

parameters �h� f� and the scalar parameter �� Assume that there exist two

representations h�yt� � �h�yt��� � �t and h��yt� � ��h��yt��� � ��t � where h�

h� are two monotonic functions and �t� ��t are strong white noise sequences�

If h and h� are di�entiable we deduce that

f �h�yt�� �h�yt���� �
�����h�yt�

�y

����
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� f��h��yt�� ��h��yt���� �
�����h��yt��y

���� � �yt� yt��

by considering the form of the conditional p�d�f� of yt given its past� It follows

that h and h� are in a one to one a�ne relationship and �� � ���

Under the null hypothesis it is assumed that the transformed time series

zt is generated by a random walk process with � � �� i�e�

H� � f �h monotonic� �t i�i�d�  h�yt� � h�yt��� � �t g

while the alternative is

H� � f �h monotonic� j�j � �� �t i�i�d�  h�yt� � �h�yt��� � �t g

From the previous considerations it is seen that � is an identi�ed parameter

and� consequently� H� is an identi�able hypothesis on ��

A testing procedure invariant with respect to monotonic transformations

is necessarily based on the ranks of h�yt� or� equivalently� on the ranks of yt 

rt�T � Rank� of yt among y�� � � � � yT �� T � �

�
�

An ordinary Dickey�Fuller t�test can be applied to the sequence of ranks with

t� � 
���� �c� � c��	
p
c��

where cj �
T��P
t��

rt�j�T rt�T and 
��
� � �T � ����

TP
t��

�rt�T � �c�	c��rt���T ��� This

version is slightly di�erent from the test used by Granger and Hallman �������

who include a constant in the regression in order to correct for the mean of

the ranks� The di�erence is� however� negligible even in fairly small samples�

Since the ranks of �yt� are the same as the ranks of �zt� the distributional

properties of the test statistic may be deduced from the ones of the strong

�A possible way to show this result is to make use of the fact that for a function
f�y � �x	 the partial derivatives with respect to x and y are proportional� To retain
proportional derivatives of an alternative functional representation g�h�y	 � ��h�x	
� it
follows that the derivative of h must be constant and � � ���
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random walk� The asymptotic theory for the distribution of the parametric

Dickey�Fuller �DF� test is based on the well known fact that

T����z�aT � � �W �a� ���

where �� � limT��
P

E���t �� 	 � a � �� ��� represents the integer part� ���

means weak convergence of the associated probability measure and W �a�

stands for the Brownian motion de�ned on �	� ���

Unfortunately� this asymptotic result does not carry over to the sequence

of ranks� From ��� we deduce that

T��r�aT ��T � T��
X
t

�I�zt � z�aT ��

� T��
X
t

�I

�
�p
T
zt �

�p
T
z�aT �

�

�
X
t

�I

�
�p
T
z� t

T
T � �

�p
T
z�aT �

��
t

T
� t� �

T

�

� R�a� �

Z �

�

�I��W �u� � �W �a��du �

Z �

�

�I�W �u� � W �a��du


Therefore the limit ranks de�ne a stochastic process indexed by a � �	� ���

such that R�a� is the occupation time of the set ��	�W �a�� by the Brownian

motion�

We may now easily deduce some distributional properties of this process�

The �rst property is well known and may be found for instance in Revuz and

Yor �������

Property �� The distribution of R�	� �
R �

�
�I�W �u� � 	�du is the arc�

sine distribution with c�d�f� �
�
arcsin�

p
R�	��� and p�d�f� �

�
�p

R	�

p

��R	�

�

This distribution equals the beta distribution with parameters �	
�� 	
��

and its p�d�f� is depicted in �gure �� Note that as R�	� tends to zero or one

the density goes to in�nity�
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insert Fig� � about here

With this result we can deduce the marginal distribution of R�a�� which

is stated in the following property�

Property �� The distribution of R�a� is the same as the distribution of

aR��	� � �� � a�R��	�� where R��	� and R��	� are two independent random

variables with an arcsine distribution�

Proof� We have 

R�a� �

Z �

�

�I�W �u� � W �a��du

�

Z a

�

�I�W �u� � W �a��du �

Z �

a

�I�W �u� � W �a��du


fW �u� � W �a� � u � ag and fW �u� � W �a� � u � ag are independent

events since the Brownian motion is with independent increments� Then we

have with obvious notation R�a� � R��a� � R��a�� where R��a� and R��a�

are independent random variables� Now

R��a� �

Z a

�

�I�W �u� � W �a��du

�

Z a

�

�I�W �a��W �u� � 	�du

d
�

Z a

�

�I�W �a� u� � 	�du

d
�

Z a

�

�I�W �u� � 	�du

d
� a

Z �

�

�I�W �u� � 	�du

d
� aR�	��

where
d
� stands for the equality in distribution� �

insert Fig� � about here






TABLE � Empirical sizes for the DF and the rDF test

T � �	 T � �		 T � �		
f DF rDF DF rDF DF rDF

N �	� �� 	�	�� 	�	�� 	�	�� 	�	�� 	�	�� 	�	
�
����� 	�	�� 	�	�� 	�	�� 	�	�� 	�	�� 	�	��
t��� 	�	�� 	�	�� 	�	�� 	�	�� 	�	�� 	�	��

Note� Rejection frequencies computed from ������ replications of
the random walk model without drift� DF indicates the paramet�
ric Dickey�Fuller t� test including a constant term and rDF sig�
ni
es the ranked Dickey�Fuller test for the mean adjusted ranks�
����	 and t��	 denote �� and t distributed errors with one and
two degrees of freedom� respectively�

In Appendix � some properties of the distribution of R�a� are considered

and Fig� � presents the p�d�f� for selected values of a� In order to assess

the impact of these properties on the null distribution of the ranked Dickey�

Fuller test� a Monte Carlo simulation was conducted� For the sample sizes

T � �	� T � �		 and T � �		 we generate �	�			 arti�cial random walk

paths with di�erent error distributions and zt � yt� To represent skewed and

heavy�tailed distributions we generate errors having a �centered� �� distri�

bution with one degree of freedom and a t distribution with two degrees of

freedom� The critical values of a Dickey�Fuller test with a constant term and

a signi�cance level of 	�	� as tabulated in Fuller ���
�� were used for both

the parametric and the ranked test�

From the results presented in Table � it emerges that the actual size

of the ranked Dickey�Fuller test depends on the error distribution in �nite

samples� while the asymptotic distribution of the ranks is independent of the

distribution of the errors� It is seen that the large sample distribution appears

to be �slightly� di�erent from the one derived by Dickey and Fuller ���
���

Even for T � �		� the application of Fuller!s ���
�� critical values yields a

signi�cant over�rejection of the null hypothesis� when the errors are normally

�



distributed� This was also observed by Granger and Hallman �������

It is important to note that in our simulations we have assumed h to

be known� As was shown by Granger and Hallman ������� the parametric

Dickey�Fuller test applied to the raw series may perform poorly if the series is

generated by a nonlinear unit root process� In particular� a misspeci�cation of

h a�ects the rate of divergence of the parametric Dickey�Fuller test statistic�

so that the test may fail to be consistent�

To conclude� the analysis shows that the sequence of ranks on a ran�

dom walk behave asymptotically as a weighted average of two independent

random variables with arcsine distribution� Since this distribution does not

depend on nuisance parameters� an asymptotic test can be constructed using

the rank version of the Dickey�Fuller test� However� such a test possesses

some undesirable properties� First� the results of the Monte Carlo simu�

lations suggest that the limiting behaviour of the test may provide a poor

approximation to the small sample properties� Second� there is no simple

way to extend the test procedure to random walk models with drift and cor�

related errors� In the next section we therefore consider an alternative test

procedure�

� The ranked score test

In this section we consider a rank counterpart of the score statistic suggested

by Schmidt and Phillips ������� This test can be used to test the �di�erence

stationary model� given by

yt � b � �yt�� � �t� with � � �� ���

against the �trend stationary model�

yt � c � bt� �yt�� � �t� with j�j � �
 ���

�



In what follows we assume that the errors are independent and identically

distributed with E��t� � 	 and c�d�f� F � As will be discussed below� it

is possible to relax this assumption in order to allow for heteroskedastic or

serially correlated errors� In these cases� however� it is no longer possible to

obtain the exact null distribution�

As shown by Schmidt and Phillips ������ the score �or Lagrange Multi�

plier� principle gives rise to the following statistic�

"
T �

TP
t��

xtSt��

TP
t��

S�
t��

� ���

where

xt � #yt � 
b


b � T��
TX
t��

#yt � �yT � y��	T

St �

tX
i��

xi


Under the null hypothesis of a random walk with drift� ���T "
T��� is asymp�

totically distributed as
R �

�
W �a��da� where W �a� � W �a��aW ��� represents

the standard Brownian bridge �cf Schmidt and Lee ������

Letting

"rt�T � Rank� of #yt among #y�� � � � �#yT �� T � �

�

SR
t�T �

tX
s��

"rs�T �

�There are two possible forms of the score statistic� Here we use the form ���B	 of
Schmidt and Phillips �����	� The form ���A	 which they prefer is not appropriate to
construct a rank statistic� The properties of the test according to ��	 is also considered in
Schmidt and Lee �����	�

�	



a rank counterpart of the score statistic is

"
RT �

TP
t��

"rt�TSR
t���T

TP
t��

�SR
t���T ��


 ���

Note that the ranks of the observations are not a�ected by subtracting the

mean of the series so that the mean of the di�erences 
b can be neglected�

The numerator of ��� does not depend on the data but is merely a function

of T � Indeed
TX
t��

"rt�TS
R
t���T �

TX
i��

i��X
j��

"ri�T "rj�T

so that the expression is the sum of the products given by all non�redundant

combinations of the ranks� This quantity does not change by permutation of

the ranks "r��T � � � � � "rT�T and� thus�

TX
t��

"rt�TS
R
t���T �

TX
i��

i��X
j��

ij�

which is a function of T only� As a consequence� it is su�cient to consider

the statistic

"�T �
TX
t��

�SR
t�T ���

where we add �SR
T�T �� in order to symmetrise the expression� As in the

previous subsection� the ranked score statistic is de�ned by analogy with

some standard statistic based on the yt!s themselves� The test statistic only

depends on the ranks of the observed di�erences and� thus� it is invariant with

respect to monotonic transformations of #yt� Similarly� the null hypothesis

can be shown to have such an invariance property� Let us consider the strong

random walk hypothesis corresponding to ��� 

H�
� � f � strong white noise � such that #yt � �t g�
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where �t is not necessarily centered� It is immediately seen that H�
� satis�es

the invariance property and� as a consequence� the ranked score statistic has

a null distribution independent of F � even in �nite samples�

It should be noted that the hypothesis H�
� is strictly included in the

hypothesis H� considered in the previous section� Therefore the two rank

tests are associated with di�erent implicit null hypotheses� In the following

theorem� the limiting distribution of the test statistic is presented and several

remarks are made which may be useful for practical applications�

Theorem� Let f��� � � � � �Tg be a sequence of independently and identically

distributed random variables� Then� under H�
� and T 
	�

�

T �
"�T � �

��

Z �

�

W �a��da

where W �a� denotes the standard Brownian bridge on �	� ���

Proof� Let the normalized ranks be de�ned as �t�T � T��"rt�T � We have

"�T �
TP
t��

�SR
t�T �� �

TP
t��

�
TP
s��

"rs�T �� � T �
TP
t��

�
TP
s��

�s�T ��� Furthermore� let �t�T be a

sequence of independent random variables with

P
n
�t�T � T���j � �T � ��	��

o
� T�� for j � �� � � � � T and t � �� � � � � T


Then� the distribution of the normalized ranks ����T � � � � � �T�T� is asymptoti�

cally equivalent to the distribution of ����T � � � � � �T�T � conditional on
TP
t��

�t�T �

	� since the probability of equality of two variables �t�T and �s�T �t �� s� be�

comes asymptotically negligible� Asymptotically� �t�T � � � � � �T�T tend to inde�

pendently uniformly U ��	
�� 	
�� distributed random variables variables and�

thus� T����
�aT �P
t��

�t�T � ��������W �a�� Since the distribution of T����
�aT �P
t��

�t�T

is asymptotically the same as the distribution of T����
�aT �P
t��

�t�T conditioned

by T����
TP
t��

�t�T � 	� we have T����
�aT �P
t��

�t�T � ���������W �a� � aW ���� �

��



��������W �a�� Finally� it follows that T��
TP
t��

�
TP
s��

�s�T �� � ������
R �

� W �a��da�

�

Remark A� This result suggests to use the test statistic

�T �uni� � T��
TX
t��

tX
s��

�p
���s�T

��

� ���

where �t�T � T��"rt�T is the normalized rank� Under the null hypothesis �T

converges to
R �

�
W �a��da� In Appendix � critical values for �T are given�

Remark B� From the literature on nonparametric tests it is known that

the test might be improved by using nonlinear transformations of the ranks

such as the �inverse normal scores� �INS� transformation 

"r�t � $�� ��t�T � 	
�� � �
�

where $��� is the c�d�f� of the standard normal distribution �cf van der

Waerden ������ Let us assume that we know a priori that ��� is satis�ed

with a Gaussian white noise� i�e� that we know that F �z� is the standard

normal c�d�f�� Then� the idea behind the INS transformation is that

�t�T � bFT �#yt�� T � �

�T
� bFT �#yt�� 	
��

where bFT �z� denotes the empirical distribution function of #yt given by

bFT ��� � T��
TP
t��

�I�#yt � ��� Since bFT converges pointwise to the distribution

of the errors� F �z�� the transformation F����t�T � 	
�� renders a series with

similar distributional properties as #yt� Therefore� for normally distributed

errors the INS transformation renders a test which behaves similar to the

parametric test� Critical values for the modi�ed statistic can be found in

Appendix �� Of course� this procedure may be extended by introducing

any other transformation in order to approximate the inverse of the error

��



distribution as closely as possible� However� since in most applications the

error distribution is unknown such a transformation is di�cult to choose�

Remark C� As usual in the literature on rank tests� the i�i�d� assumption

on the errors may be relaxed by allowing for �exchangeable� errors� i�e��

F ���� � � � � �T � � F ��d�� � � � � �dT � for all permutations d�� � � � � dT � where F ���
is the joint distribution function of ��� � � � � �T �e�g� McCabe ������ This

assumption would allow for the inclusion of a stochastic drift term� However�

since the distribution is not a�ected by the way the drift term is speci�ed�

such a generalisation is of no practical use here�

Remark D� It is easy to see that the test is robust against a structural

break in the intercept of the trend function� For the parametric version

of the test this property was noted by Amsler and Lee ������� Assume

that the value of the parameter c in model ��� changes to c � � at time

� � T� � T � Then� under the null hypothesis we have #yt � b� �t for t �� T�

and #yT� � b� �� �T�� If � �	 it is not di�cult to verify that the limiting

distribution given in the theorem is the same for all �	 � � � �	� Hence

the test may allow for a structural break in c�

Similarly it can be seen that the limiting distribution of the test does not

change in the presence of the �additive� and the �innovative� outliers �see�

e�g�� Tsay ������ for a discussion of this outlier classi�cation��

Remark E� It is possible to relax the assumption of i�i�d� errors in or�

der to allow for a wide class of heteroskedastic and serially correlated errors�

However� in such cases only asymptotic results are available� Since the se�

quence �t�T � 	
� converges to F �#yt� as T 
	� the normalized ranks can

be seen as a monotonic mapping of the di�erences of the original series onto

�	� ��� Under the assumptions given in Phillips ����
� it can be shown that

��



�T � ��
�

R �

�
W �a��da� where ��

� � lim
T��

E�T���SR
T�T ���� A valid estimate for

��
� can be obtained by using sample autocovariances and applying a Newey�

West weighting scheme� for example�

� Small sample properties

In this section the results of several Monte Carlo simulations are presented in

order to compare the small sample properties of the rank statistics with their

parametric counterparts� The �rst test of the comparison is the �parametric�

Dickey�Fuller t�statistic �DF� computed from a �rst order autoregression with

a linear time trend as given in ���� Second� the score type statistic suggested

by Schmidt and Phillips �SP� is computed as given in ���� For the DF

statistic� the critical values of Fuller ���
�� are used and for the SP test� we

apply the critical values for the INS transformation given in table A of the

appendix to ���T "
T ����

Two versions of the score type rank statistic are considered� First� we

compute �T �uni� as in ���� Second� the ranks are transformed using the INS

transformation and are used instead of the normalized ranks� The resulting

test statistic is denoted by �T �INS�� For these statistics � the critical values

presented in Appendix � are used�

For all experiments the rejection frequencies are computed from �			

Monte Carlo replications and the nominal signi�cance level for the tests is

	�	��

��� Small sample properties for di�erent error distri�
butions

In the �rst Monte Carlo experiment we compute the rejection frequencies

for the case that zt � yt is a random walk with drift letting � � � �the

��



TABLE � Rejection frequencies �T��	�

� DF SP �T �uni� �T �INS�

N�	� ��
��		 	�	�� 	�	�	 	�	�� 	�	��
	��	 	�	�� 	�	�
 	�	�
 	�	��
	��	 	���	 	���	 	��		 	���	

�����
��		 	�	�� 	�	�� 	�	�� 	�	��
	��	 	�	

 	�	�	 	�	
� 	�	
�
	��	 	���� 	���� 	���	 	���


t���
��		 	�	�� 	�	�� 	�	�� 	�	�

	��	 	�	
� 	�	�� 	�	�� 	�	
�
	��	 	��
� 	���	 	��	� 	���


ADD�T	�� ���
��		 	���� 	���
 	�	�� 	�	��
	��	 	���� 	���	 	���� 	����
	��	 	���� 	��	� 	���
 	���	

INNO�T	�� ���
��		 	�	�� 	�	�� 	�	�� 	�	��
	��	 	�	�� 	��	� 	�	�� 	�	�

	��	 	���� 	���
 	���� 	����

Note� Rejection frequencies for the random walk with drift under di�er�
ent error distributions� ����	 denotes the central �� distribution with two
degrees of freedom and t��	 indicates the t distribution with two degrees
of freedom� �DF� denotes the Dickey�Fuller t�statistic and �SP� is the
Schmidt�Phillips statistic given in ��	�

null hypothesis�� as well as for the trend stationary model with � � 	
� and

� � 	
� �the alternative�� Three di�erent error distributions are considered�

First the normal distribution for which the parametric tests are asymptot�

ically optimal� As an example for a skewed distribution we compute errors

generated by a �centered� �� distribution with two degrees of freedom� and t

distributed errors with two degrees of freedom are used to represent a heavy

tailed distribution�

To investigate the relative performance in the presence of outliers we

��



TABLE � Rejection frequencies �T��		�

� DF SP �T �uni� �T �INS�

N�	� ��
��		 	�	�
 	�	�� 	�	�� 	�	��
	��	 	���� 	���
 	���� 	����
	��	 	���� 	���� 	���	 	����

�����
��		 	�	�	 	�	�� 	�	�� 	�	�	
	��	 	���� 	���� 	�	�� 	�	��
	��	 	���	 	���� 	��	� 	����

t���
��		 	�	�� 	�	�� 	�	�� 	�	��
	��	 	��

 	���� 	�	
� 	���	
	��	 	���� 	�
�� 	���� 	����

ADD�T	�� ���
��		 	��
� 	���� 	�	�
 	�	��
	��	 	��	� 	���� 	���� 	����
	��	 	���
 	���	 	���� 	�
��

INNO�T	�� ���
��		 	�	�� 	�	�
 	�	�
 	�	��
	��	 	���	 	���� 	���� 	����
	��	 	���� 	��
� 	���� 	����

Note� See Table ��

contaminate the data with normally distributed errors by an additive and an

innovative outlier at T� � T	� of size ��� The experiment with an additive

outlier is indicated by ADD�T	�� ��� and an innovative outlier in the data

is indicated by INNO�T	�� ����

Tables � and � present the results for T � �	 and T � �		� respectively�

It turns out that the score type test of Schmidt and Phillips ������ is more

powerful than the Dickey�Fuller test in small samples� Under normality� the

power of the rank tests is similar to their parametric counterpart� For alter�

nate distributions a di�erent picture emerges� While the Dickey�Fuller test

turns out to be quite robust against violations of the normality assumption�

�




TABLE � Empirical sizes for some nonlinear transformations

h�yt� DF SP �T �uni� �T �INS�

zt � �yt�� 	��	� 	���� 	�	�� 	�	��
zt � �yt���� 	���� 	���� 	�	�� 	�	��
zt � ln�yt� 	���� 	�
�� 	�	�� 	�	��
zt � tan�yt� 	���� 	��
� 	�	�
 	�	�


Note� The series are generated by zt � h���yt	 and yt � yt�� � �t� where
�t � N ��� �	� The nominal size is ���� and the sample size is T � ���� The
rejection frequencies are based on ���� replications each� The test statistics
are labeled as in Table ��

the parametric Schmidt�Phillips statistic tends to be conservative�

In case of additive outliers the parametric tests possess a substantial size

bias while the rank tests turn out to be much more robust� By contrast� in

case of innovative outliers all tests have empirical sizes close to the nominal

ones� The reason for this �nding is that a random walk with an additive

outlier can be seen as a random walk with two consecutive innovative outliers

of the same size but di�erent sign� Accordingly� the errors at these time

periods are negatively correlated and imply a negative bias in the estimation

of the autoregressive coe�cient�

With respect to the performance under the alternative� the rank statistic

reveals a substantial loss of power� in particular under heavy tailed distribu�

tions� The �T �INS� statistic performs better than �T �uni� but a considerable

loss of power remains�

��� Small sample properties for some nonlinear trans�
formations

The data are generated such that zt � h�yt� is a random walk without a

drift� We apply the �monotonic� transformations zt � �yt��� zt � �yt�����

zt � ln�yt�� and zt � tan�yt�� The increments of zt are normally distributed�

��



From the results in Table � it appears that the parametric tests su�er

substantially from the misspeci�cation of the process as a linear random walk�

while the rank tests perform much better� As an extreme case� the parametric

tests reject the unit root hypothesis for the logarithmic transformation in

more than 
	% of the cases while the actual sizes of the rank tests are close

to the nominal ones�

On a less rigorous level the performance of the tests can be understood

using a linear approximation for yt � h���zt� around zt�� 

yt � yt�� � �dh�zt���	dzt������t

and� thus� the approximation suggests that the �rst di�erences of the ob�

served series behave approximately like conditionally heteroskedastic white

noise� For the rank tests to be valid it is required that the di�erences behave

like a strong white noise process� Although� in general this assumption is not

satis�ed here� it appears that for a wide range of possible transformations

the sizes of the rank tests are a�ected only marginally�

��� The case of correlated errors

It is well known that parametric unit root tests run into serious problems� if

the errors are generated by a MA process with a root close to one �Schwert

����� Agiakloglou and Newbold ������ In particular the Phillips�Perron test

has been shown to su�er from a tremendous size bias in this case� Thus� it

is interesting to consider the performance of the rank test in a model with

MA��� errors�

In order to correct for nuisance parameters both the parametric and the

rank test employ the Newey�West weighting scheme to the covariances as

suggested by Phillips ����
� and Phillips and Perron ������� In analogy

to the parametric tests the �long run variance� ��
� is estimated using the

��



TABLE � Rejection frequencies for MA��� errors

� DF�PP SP �T �uni� �T �INS�

� � �
	 �size�
�	��	 	�	�� 	�		
 	�		� 	�		�
	�		 	�	�� 	�	�
 	�	�� 	�	��
	��	 	���� 	��	� 	��	
 	����
	��	 	���� 	���� 	���� 	����
	��	 	���� 	���� 	���� 	����
	��	 ��			 	���� 	���� 	����

� � 	
� �power�
�	��	 	���� 	���� 	��
� 	����
	�		 	���� 	��
� 	���� 	����
	��	 	��
� 	�

� 	���	 	�
��
	��	 ��			 	���� 	�
�� 	����
	��	 ��			 	��
	 	���� 	����
	��	 ��			 	���� 	��		 	����

Note� Rejection frequencies from ���� replication of model ��	 with MA��	
errors generated by �t � ut��ut��� where ut is generated by a Gaussian white
noice process� The sample size is T���� and the nominal signi
cance level is
�����

residuals from a regression of the ranks "rt�T on SR
t���T � Table � presents the

rejection frequencies of the ranked score statistic for � � � �i�e� the actual

size� and � � 	
� �i�e� the empirical power� and using normally distributed

errors� The truncation lag for the Phillips�Perron type of correction is eight�

It turns out that the Phillips�Perron test �DF�PP� is seriously biased even for

moderate values of the moving average parameter �� The Schmidt�Phillips

test performs slightly better although it still has a severe size distortion for

� 
 	
�� With respect to the size� the rank versions of the Schmidt�Phillips

test perform similar to the parametric counterpart�

For trend stationary alternatives with � � 	
�� the power of the rank

statistic �T �INS� is somewhat smaller than the parametric counterpart� but

the di�erences are not very large for moderate values of �� In summary� even

�	



in the case of a known transform h� the rank tests appear to perform roughly

similar to the parametric tests so that theses tests should be used with care

whenever the errors have a substantial negative correlation�

� Concluding remarks

In this paper several aspects of rank tests are addressed� First� we consider

a rank version of the Dickey�Fuller test suggested by Granger and Hallman

������ to test the hypothesis that the series is a monotonic transformation of

a random walk� It is shown� that the sequence of ranks built from the levels

of the time series does not converge to a Brownian motion� Consequently�

the asymptotic properties of the ranked Dickey�Fuller test are di�erent from

its parametric counterpart�

Second� for testing the null hypothesis of a strong random walk with drift

a new rank test is suggested which can be seen as a ranked counterpart of

the score test suggested by Schmidt and Phillips ������� An asymptotic

correction is suggested in order to account for serially correlated errors� We

also consider a modi�cation of the rank statistic by transforming the ranks

using the inverse of the normal c�d�f�� This approach� known as �inverse

normal scores� transformation� seems to improve the power of the test in

many cases�

Concluding the results of the Monte Carlo experiments it turns out that if

the transform h is known and the errors are i�i�d� there may be a substantial

loss in power when using ranks instead of the original observations� While

the size of the rank test is robust against departures from the normality as�

sumption� the power of the test may deteriorate considerably when the error

distribution is skewed or heavy tailed� In order to improve the robustness

with respect to the power� alternative transformations of the ranks may be

��



useful� For example� applying the inverse of a heavy tailed distribution� such

as the t�distribution with a small number of degrees of freedom� may help to

improve the power of the rank test�

On the other hand� when the monotonic transform h is unknown or the

errors are correlated� the parametric tests may perform poorly and the ranked

score tests are attractive competitors to standard testing procedures� Accord�

ingly� rank tests may serve as a useful tool for specifying nonlinear time series

processes� Once the unit root hypothesis is accepted for the transformed pro�

cess zt � h�yt�� it is interesting to estimate the function h from the data� For

a Markov process of order one we have E�h�yt� � h�yt���jyt��� yt��� � � �� � 	

and� thus� the function h is an eigenfunction of the transition operator

h��� �
 E�h�yt�jyt��� yt��� � � �� associated with a unit eigenvalue �see Conley�

Hansen� Luttmer� Scheinkman ������ for a related problem arising in the

estimation of stochastic di�ential equations�� Such problems� however� are

beyond the scope of this paper and are left for research�

��



Appendix �� The distribution of R�a�

�i	 Symmetry with respect to �
�

By the symmetry of the arcsine distribution we have 

R�a�
d
� aR��	� � ��� a�R��	�

d
� a���R��	�� � ��� a����R��	��

d
� �� �aR��	� � �� � a�R��	��

d
� ��R��a��

which is the required result�

�ii	 Form of the p�d�f� of R�a	

We get 

f�y� � �

dy
PfR�a� � �y� y � dy�g

�
�

dy
PfaR��	� � ��� a�R��	� � �y� y � dy�g

�
�

dy
P

�
R��	� �

hy � ��� a�R��	�

a
�
y � �� � a�R��	�

a
�

dy

a

i	

�

Z min���y�	��a
�

max���	y�a
�	��a
�

�

��

�p
z
p

� � z

�q
y�	��a
z

a

�q
� � y�	��a
z

a

dz

a



The plots of f�y� presented in Fig� � are computed by numerical integration�

Let us assume a � �	�� The p�d�f� takes di�erent forms depending on

the position of the argument y� Three cases have to be considered y � a�

a � y � ��a� and y � ��a� where the third one is the symmetric counterpart

of the �rst one from �i��

��



Case� y � a

We get 

f�y� �

Z y�	��a


�

�

a��

�p
z
p

� � z

�q
y�	��a
z

a

�q
� � y�	��a
z

a

dz


Let us introduce the change of variable u � ��� a�z	y� We obtain 

f�y� �
�

��y

Z �

�

�p
u
p

� � u

�q
��a
y
� u

�q
a�y
y

� u
du

Case� a � y � � � a

We get 

f�y� �

Z y�	��a


	y�a
�	��a


�

a��

�p
z
p

�� z

�q
y�	��a
z

a

�q
�� y�	��a
z

a

dz

Let us introduce the change of variable z � y�a
��a � u a

��a� Then�

f�y� �
�

a��

Z �

�

�p
u
p

�� u

�p
u � �y � a�	a

�p
�� � y�	a� u

du

�iii	 Behaviour of the p�d�f� in a neighbourhood of y � a

It is directly seen that if y is close to a we get 

f�y� � �

a��

Z �

�

�

u

�p
�� u

�p
�� � a�	a� u

du�

which is equal to �	�

��



�iv	 Behaviour of the p�d�f� for y � �

For this case we get 

f�y� �
�

��

Z �

�

�p
u
p

�� u

�p
a
p

� � a
du

�
�

�

�p
a
p

�� a



��



Appendix �� Computation of critical values

The critical values for the statistic using uniform ranks� "�T �uni� and the

�inverse normal scores transformation� "�T �INS� are computed from �	�			

Monte Carlo replications of the random walk model ��� with �t �IN�	��� for

a grid of ��� sample sizes letting T � ��� ��� �
� 


� �		� �	�� ��	� 


� ��	�

For the estimated critical values the following regression model was �tted

by OLS 

c�T � b� � b�
�p
T

� b�
�

T
� eT �

where c�T denotes the critical value for the signi�cance values � �	�	�� 	�	��

	��	 observed at sample size T � Table A presents the �tted values 
c�T �


b� � 
b�
�p
T

� 
b�
�
T

for selected sample sizes�

��



TABLE A Critical values

��uni�
T 	�	� 	�	� 	��	 T 	�	� 	�	� 	��	
�	 	�	��� 	�	�	� 		��� 
	 	�	��� 	�	�
� 	�	���
�� 	�	��� 	�	��
 	�	��� �	 	�	��	 	�	�
� 	�	���
�	 	�	�
� 	�	��� 	�	��� �	 	�	��� 	�	�
� 	�	��

�� 	�	�
� 	�	��� 	�	�
� �		 	�	��
 	�	�
� 	�	���
�	 	�	�
� 	�	��� 	�	�

 ��	 	�	��� 	�	�
	 	�	���
�� 	�	��� 	�	��� 	�	�
� �		 	�	��� 	�	��� 	�	���
�	 	�	��� 	�	��� 	�	�
� ��	 	�	��� 	�	��
 	�	���
�	 	�	��� 	�	�
� 	�	�
� 	 	�	��	 	�	��� 	�	���

��INS�
T 	�	� 	�	� 	��	 T 	�	� 	�	� 	��	
�	 	�	��� 	�	��� 		��� 
	 	�	��� 	�	��� 	�	�
�
�� 	�	��� 	�	��� 	�	�	� �	 	�	��� 	�	�
� 	�	�
�
�	 	�	��� 	�	�	� 	�	��� �	 	�	��	 	�	�

 	�	�
�
�� 	�	��� 	�	�		 	�	��	 �		 	�	��� 	�	�
� 	�	�
	
�	 	�	�
� 	�	��� 	�	��� ��	 	�	��� 	�	�
� 	�	��

�� 	�	�
� 	�	��	 	�	��� �		 	�	��� 	�	�
� 	�	���
�	 	�	�
� 	�	��� 	�	��� ��	 	�	��� 	�	�
	 	�	���
�	 	�	��
 	�	��� 	�	�

 	 	�	��	 	�	��� 	�	���

Note� Entries report estimated critical values for the signi
cance levels ����� �����
���� resulting from the response surface analysis� ��uni	 and ��INS	 denote the rank
statistic based on the original ranks and the �inverse normal scores� transformation
given in ��	� The estimated standard deviations are roughly �������

�
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