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LARGE SAMPLE THEORY OF THE ESTIMATION

OF THE ERROR DISTRIBUTION FOR A

SEMIPARAMETRIC MODEL
�

Hua Lianga Wolfgang H�ardleb

Institut f�ur Statistik und �Okonometrie

Humboldt�Universit�at zu Berlin

D������ Berlin� Germany a�b

Institute of Systems Science� Beijing ������� China a

Abstract

The paper studies large sample theory of estimators of the error distribution for the semipara�
metric model Y � X� � � g�T � � �� Under appropriate conditions� we prove that the estimators
converge in probability� almost surely converge and uniformly almost surely converge� Asymp�
totic normality and the rates of convergence of the estimators are also investigated� Finally we
establish the law of the iterated logarithm for the estimators�

Key Words and Phrases� Weak� strong consistency� uniformly strong consistency� rates of

convergence� asymptotic normality� law of the iterated logarithm� semiparametric model�

� INTRODUCTION

Consider the model given by

Yi � X�
i � � g�Ti� � �i� i � �� � � � � ���

whereXi � �xi�� � � � � xip���p � �� and Ti�Ti � ��� �	� are known 
xed design points� � � ���� � � � � �p��

is an unknown parameter vector and g is an unknown function� and ��� � � � � �n are i�i�d� ran


dom variables with a common unknown density function f�u�� and mean � and 
nite variance

��� The model was introduced by Engle� et al� ������ to study the e�ect of weather or elec


tricity demand� More recent work dealt with the estimation of � at a parametric rate� Chen

�The research for both authors was supported by Sonderforschungsbereich ��� �Quanti�kation und Simulation
�Okonomischer Prozesse�� The �rst author was also supported by Alexander von Humboldt Foundation �

�



������� Chen and Shiau ������� Heckman ������ ������ Robinson ������� Schick ������ and Speck


man ������ constructed
p
n�consistent estimates of � under the nonsingularity of the matrix

E�fX� � E�X�jT��gfX� � E�X�jT��g� 	 which guarantees the identi
ability of the parameter ��

under various conditions on E�X�jT�� and g��� when �Xi� Ti� are random design points� Cuzick

�����a� constructed e�cient estimates of � when the error density is known and has 
nite Fisher

information� The same problem was solved by Cuzick �����b� and Schick ������ when the error

distribution is unknown�

In this paper� the estimators of f�u�� bfn�u�� are obtained by using nonparametric regression

to approximate g�t�� Under appropriate conditions� we prove that bfn�u� converges in probability�

almost surely converges and uniformly almost surely converges� Then we consider asymptotic

normality and the convergence rates of bfn�u�� Finally we establish the law of the iterated logarithm

for bfn�u��
The paper is organized as follows� In the following we give the assumptions on the Xi and Ti�

Section � lists some lemmas� Section � proves that bfn�u� converges in probability� almost surely

converges and uniformly almost surely converges� Section � gives the convergence rates of bfn�u��
Section � obtains asymptotic normality and the law of the iterated logarithm� For the convenience

and simplicity� we shall employ C�� � C � �� to denote some constant not depending on n but

may assume di�erent values at each appearance�

Assume fXi � �xi�� � � � � xip�
� � Ti� Yi� i � �� � � � � n�g satisfy model ���� LetWni�t� � Wni�t�T�� � � � � Tn�

be probability weight functions depending only on the design points T�� � � � � Tn� Denote eX� �

� eX�� � � � � eXn�� eXi � Xi �
Pn

j��Wnj�Ti�Xj � and eY � � eY�� � � � � eYn�� � eYi � Yi �
Pn

j��Wnj�Ti�Yj �

If � were known� we could take gn�t� �
Pn

j��Wnj�t��Yj � X�
j �� as the estimator of g�t��

Generally we can take Wnj�t� as Nadaraya
Watson kernel� Surveys of nonparametric methods can

be found in H�ardle ������� which gives extensive discussions of various statistical estimation� Based

on the modi
ed model fYi � X�
i � � gn�Ti� � �i� i � �� � � � � ng with gn�t�� we get the estimator b�n

of �

b�n � � eX� eX��� eX� eY
and �true� estimator bgn�t� of g�t�

bgn�t� � nX
i��

Wnj�t��Yi �X�
i
b�n��

�



Set b�i � Yi �X�
i
b�n � bgn�Ti� for i � �� � � � � n� De
ne the estimators of f�u� as follows�

bfn�u� � �

�nan

nX
i��

I�u�an�b�i�u�an�� u � R� ���

where an�� �� is a bandwidth� and IA denotes the indicator function of the set A�

In the following we list the su�cient conditions for our main result�

Condition �� There exist functions hj��� de�ned on ��� �	 such that

xij � hj�Ti� � uij � � i � n� � � j � p

where uij is a sequence of real numbers such that

B � lim
n��

�

n

nX
i��

uiu
�
i

is a positive matrix� and

lim
n��

n���� log�� n

�����
nX
i��

uij

����� �� holds for all � � j � p�

for ui � �ui�� � � � � uip�
� �

Condition �� g��� and hj��� are Lipschitz continuous of order ��

Condition �� Weight functions Wni��� satisfy�

�i� max
��i�n

nX
j��

Wni�Tj� � O����

�ii� sup
t

max
��i�n

Wni�t� � O�hn�� hn � n�����

�iii sup
t

nX
j��

Wnj�t�I�jTj�tj�cn� � O�cn�� cn � n�����

�iv� max
��i�n

jWni�t��Wni�s�j �M�js� tj for s� t � ��� �	

and some positive number M� � ��

Remark� Here we give two weight functions that satisfy Condition � to demonstrate the

reasonability of Condition ��

W
���
ni �t� �

�

hn

Z si

si��

K
� t� s

hn

�
ds� or W

���
ni �t� � K

�t � Ti
hn

�� nX
j��

K
�t � Tj

hn

�
�

where si �
�
��Ti�Ti���� i � �� � � � � n��� s� � �� sn � �� K��� is a Parzen
Rosenblatt kernel function�

hn is a bandwidth parameter�

�



� SOME LEMMAS

In this section� we list some lemmas proved which are used in the following for proving the main

results� First we give an exponential inequality for bounded independent random variables�

Lemma � �Bernstein inequality�� Let Z�� � � � � Zn be independent r�v�s satisfying PfjZij � mg �
�� each i� where m ��� Then� for 	 � ��

P
n��� nX

i��

Zi

��� � n	
o
� � exp

n
�n�	����

X
var�Zi� �

�

�
mn		

o
for all n � �� � � � �

Lemma � �Gao� et al� �������� Suppose Conditions �	
 hold� If Ej��j� �� and maxi
Pp

j�� u
�
ij �

C� ��� Then

sup
t
jbgn�t�� g�t�j � Op�n

���� logn��

and

lim sup
n��

� n

log logn

����kb�n � �k �� a�s�

Here and below we denote Euclidean norm by k � k�
Lemma � �See Devroye� et al� ������� Let 
n and 
 be �	dimensional empirical distribution

and theoretical distribution� respectively� a � � and Ia be an interval with length a� Then for any

� � �� � � b � ��� and n � maxf��b� �b���g�

P
�
supfj
n�Ia�� 
�Ia�j � � � 
�Ia� � bg � �

�
� ��n� expf�n������b� ���g

��n expf�nb���g�

� CONSISTENCY

In this section we shall prove that bfn�u� converges in probability� almost surely converges and

uniformly almost surely converges� Below we always denote

fn�u� �
�

�nan

nX
i��

I�u�a��i�u�an��

for 
xed u � C�f�� where C�f� in the set of continuous points of f�

Theorem ���� There exists aM � � such that kXik �M for i � � � n� Under the assumptions

of lemma �� If

� � an 	 �� n���an log
�� n	��

�



Then bfn�u�	 f�u� in probability as n	��

Proof� Simply calculation shows that the mean of fn�u� converges to f�u�� and its variance

does to �� This implies that fn�u�	 f�u� in probability as n	��

Now� we prove bfn�u�� fn�u�	 � in probability�

If �i � u� an� then b�i � �u� an� u� an� implies that u� an �X�
i �
b�n � �� � �bgn�Ti�� g�Ti�� �

�i � u� an� If �i � u� an� then b�i � �u� an� u� an� implies that u� an � �i � u� an �X�
i �
b�n �

�� � �bgn�Ti�� g�Ti��� Write

Cni � X�
i �
b�n � �� � �bgn�Ti�� g�Ti�� for i � �� � � � � n�

It follows from lemma � that� for any � � �� there exists a 	� � � such that

Pfn��� log�� n sup
i
jCnij � 	�g � �

The above arguments yield that

j bfn�u�� fn�u�j � �

�nan
I�u�an�jCnij��i�u�an� �

�

�nan
I�u�an��i�u�an�jCnij�

def
� I�n � I�n�

where

I�u�an�jCnij��i�u�an� � I�u�an�jCnij��i�u�an���u�an�jCnij��i�u�an��

We complete the proof of the theorem by dealing with I�n and I�n� For any �
� � � and large enough

n�

PfI�n � ��g � � � PfI�n � � �� sup
i
jCnij � 	�g

� � � P
� nX
i��

I�u�an�C��n���� logn��i�u�an�
� �nan�

�
�

According to the continuity of f on u� using Chebyshev�s inequality we know the second term above

is less than

�

�an��
P
�
u
 an � C	�n

���� logn � �i � u
 an
�
� C	� logn

�
����n���an��f�u� � o�����

It follows from ann
��� log�� n	� that

lim sup
n��

PfI�n � ��g � ��

�



Since � is arbitrary� we obtain I�n 	 � in probability as n 	 �� We can similarly prove that I�n

tends to zero in probability as n	�� Thus� we complete the proof of Theorem ����

Theorem ��� Under the assumptions of Theorem 
��� If

� � an 	 �� n���an log
�� n	�� ���

Then bfn�u�	 f�u� for u � C�f� a�s� as n	��

Proof� Set fEn �u� � Efn�u�� for u � C�f�� Using the continuity of f on u and an 	 � we can

show that

fEn �u�	 f�u� as n	� ���

Now let us consider fn�u�� fEn �u��

fn�u�� fEn �u� �
�

�nan

nX
i��

n
I�u�an��i�u�an� � EI�u�an��i�u�an�

o
def
�

�

�nan

nX
i��

Uni�

Then Un�� � � � � Unn are independent with EUni � �� and jUnij � �� moreover

var�Uni� � P �u � an � �i � u� an� � �anf�u��� � o���� � �anf�u��

for large enough n� It follows from lemma � that� for any � � ��

Pfjfn�u�� fEn �u�j � �g � Pfj
nX
i��

Unij � �nan�g

� � expf��n�a�n��
�
��nanf�u� � ���nan�	g

� � expf��nan��
�
��f�u� � �	g� ���

Condition ��� and Borel
Cantelli lemma imply

fn�u�� fEn �u�	 � a�s� ���

In the following� we shall prove

bfn�u�� fn�u�	 � a�s� ���

According to lemma �� we have with probability one that

j bfn�u�� fn�u�j � �

�nan
I�u�an�Cn���� logn��i�u�an� �

�

�nan
I�u�an��i�u�an�Cn���� logn�

def
� J�n � J�n� ���

�



Denote

fn��u� �
�

�an
P �u
 an � Cn���� logn � �i � u
 an�� ���

Then fn��u� � Cf�u��n���an�
�� logn� for large enough n� By the condition ���� we obtain

fn��u�	 �� as n	�� ����

Now let us deal with Jn� � fn��u�� Set

Qni � I�u�an�Cn���� logn��i�u�an�
� P �u
 an � Cn���� logn � �i � u
 an��

for i � �� � � � � n� Then Qn�� � � � � Qnn are independent� and jQnij � �� EQni � �� and

Var�Qni� � �Cn�����logn�f�u�

By lemma �� we have

PfjJn� � fn��u�j � �g � Pfj
nX
i��

Qnij � �g

� � expf�Cnan��
�
�n����a��n f�u� log�� n� ��g

� � expf�Cnan�g� ����

Employing Borel
Cantelli lemma we conclude that

Jn� � fn��u�	 � a�s�

Combining ���� with the above conclusion� we obtain Jn� 	 � a�s� Similar argument yields Jn� 	 �

a�s� Moreover� ��� implies ���� From ���� ��� and ���� we complete the proof of Theorem ����

Theorem ���� Under the assumptions of Theorem 
��� If f is uniformly continuous on R�

and

� � an 	 �� n���an log
�� n	�� ����

Then supu j bfn�u�� f�u�j 	 � a�s�

Proof� We still use the notations in the proof of Theorem ��� to denote the empirical distri


bution of ��� � � � � �n by 
n and the distribution of �� by 
� Since f is uniformly continuous� thus

supu f�u� � f� ��� It is easy to show

sup
u
jf�u�� fEn �u�j 	 � as n	� ����

�



Write

fn�u�� fEn �u� �
�

�an
f
n��u� an� u� an	�� 
��u� an� u� an	�g

and denote b�n � �f�an� �n � �an� for any � � �� Then for large enough n� � � b�n � ��� and

supu 
��u� an� u� an	� � b�n for all n� From lemma �� we have� for large enough n�

Pfsup
u
jfn�u�� fEn �u�j � �g � Pfsup

u
j
n��u� an� u� an	�� 
��u� an� u� an	�j � �an�g

� ��n� expf�na�n��
�
���f�an � �an��g� �n expf�na�nf���g�

From ���� and Borel
Cantelli lemma� it follows that

sup
u
jfn�u�� fEn �u�j 	 � a�s� ����

Combining ���� with ����� we obtain

sup
u
jfn�u�� f�u�j 	 � a�s� ����

In the following we shall prove that

sup
u
j bfn�u�� fn�u�j 	 � a�s� ����

It is obvious that supu jfn��u�j 	 �� as n 	 �� Set dn � f�n
���� logn� For large enough n� we

have � � dn � ��� and

sup
u

f�u
 an � Cn���� logn� u
 an�g � Cdn for all n�

It follows from lemma � that

P �sup
u
jJn� � fn��u�j � �� � P �j
nf�u
 an � Cn���� logn� u
 an�g

�
f�u
 an � Cn���� logn� u
 an�gj � �an�	

� ��n� exp
�
� �na�n�

�

��f�n���� logn � �an�

�
� �n exp��n��� logn�����

By ���� and the above arguments� it follows that supu jJn��fn��u�j 	 � a�s�� and hence supu jJn�j 	
� a�s� We have supu jJn�j 	 � similarly� In the proof of Theorem ���� it can be shown that� with

probability one and for large enough n�

sup
u
j bfn�u�� fn�u�j � sup

u
jJn�j� sup

u
jJn�j�

This implies ����� and so does the conclusion of Theorem ����

�



� CONVERGENCE RATE

Theorem ����Under the assumptions of Theorem 
��� If f is locally Lipschitz continuous of order

� on u� Then for an � n���	 log���n�

bfn�u�� f�u� � O�n���	 log���n�� a�s ����

Proof� The proof is completely analogous to Theorem ���� By the assumption of Theorem ����

there exist c� � � and 
� � 
��u� � � such that u� � �u�
�� u�
�� implying jf�u���f�u�j � c�ju��uj�
Hence for large enough n�

jfEn �u�� f�u�j � �

�an

Z u�an

u�an
jf�u�� f�u��jdu�

� c�an�� � O�n���	 log���n�� ����

Since f is bounded on �u� 
�� u� 
��� we have� for large enough n� that

fn��u� �
�

�an
P �u
 an � Cn���� logn � �i � u
 an�

� Cn����a��n logn sup
u�	�u����u����

f�u��

� O�n���	 log��� n��

Replacing � by �n � �n���	 log��� n in ���� then for large enough n�

P �jfn�u�� fEn �u�j � ��n���	 log��� n� � � expf��n��� log���n�
�
��f� � ��g�

here f� � supu�	�u����u���� f�u
��� Instead of ����� we have

fn�u�� fEn �u� � O�n���	 log��� n�� a�s� ����

The similar argument as ���� yields

PfjJn� � fn��u�j � �n���	 log���ng � � exp��Cn��� log��� n��

Hence� Jn� � fn��u� � O�n���	 log���n� a�s� ���� and ���� imply that we have proved

fn�u�� f�u� � O�n���	 log��� n�� a�s�

Using the arguments below ��� in the proof of Theorem ���� the proof is completed�

�



� ASYMPTOTIC NORMALITY AND LAW OF THE ITER�

ATED LOGARITHM

Theorem ���� Under the assumptions of Theorem 
��� If f is locally Lipschitz continuous of order

� on u and

� � na�n 	 �� n
���an log
�� n	��

Then q
�nan�f�u�f bfn�u�� f�u�g 	 N��� �� in distribution as n	��

Theorem ���� Under the assumptions of Theorem 
��� If f is locally Lipschitz continuous of

order � on u and

lim
n��

�na�n�log logn� � �� lim
n��

�n���an log log n log
�� n� ���

Then

lim sup
n��



n nan
f�u� log logn

o���f bfn�u�� f�u�g � �� a�s�

The proofs of the above two theorems can be completed by slightly modifying the proofs of

theorems � and � of Chai and Li������� we omitted the details�
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