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Abstract. Consider a partial linear model, where the expectation of a random vari-
able Y depends on covariates (x, z) through F(6px + mo(z)), with 6y an unknown param-
eter, and mg an unknown function. We apply the theory of empirical processes to derive
the asymptotic properties of the penalized quasi-likelihood estimator.

AMS 1991 subject classifications. Primary 62G05, secondary 62G20.
Key words and phrases. Asymptotic normality, penalized quasi-likelihood, rates of
convergence.

1. Introduction. Let (Y7,71),(Y3,T%),... be independent copies of (Y, T), where ¥
is a real-valued random variable and T' € R?. Denote the distribution of (Y,T) by Py, and
write

polt) = Eo(Y|T = 1),

for the conditional expectation of Y given T' = ¢. In this paper, we shall study the partial
linear model, where T = (X, Z), X ¢ R®, Z ¢ R%, d; +dy = d, and

(1.1) po(, 2) = F(Byx + mo(=)),
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Universitat zu Berlin and the European Union Human Capital and Mobility Programme
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with F : R — R a given function, 8y € R% an unknown parameter, 9(/) the transpose of
6o, and mo an unknown function in a given class of smooth functions. Model (1.1) offers
a flexible approach. The inclusion of the linear component 9(/):1; allows discrete covariates.
The link function F may be useful in case of a bounded variable Y (see for instance
Example 2 below, where binary observations are considered).

For simplicity, we shall restrict ourselves to the case dy = dy = 1. We shall assume
that T = (X, Z) has bounded support, say T € [0,1]?, and that mg is in the Sobolev class
{m: J(m) < oo}, where

(1.2) J*(m) = /0 (m ) (2))2d=.

Here, k > 1 is a fixed integer, and m*) denotes the k-th derivative of the function m. In
summary, the model is

Ho = F(QO)?
with
go€G={g(x,z) =0z +m(z): R, J(m) < oo}

For g € G, g(x,z) = 0 + m(z), we shall often write J(g) = J(m).
Define the quasi-(log-)likelihood function

(1.3) Qly:p) = /N b~ S)ds,

with a known function V' : (a,b) — (0,00), —o0 < a < b < oo, given. The quasi-likelihood
function was first considered by Wedderburn (1974). Properties of quasi-likelihood func-
tions are discussed in McCullagh (1983) and McCullagh and Nelder (1989). There, the
function V has been chosen as the conditional variance of the response Y, and it has been
assumed that V depends only on the conditional mean p of Y, i.e. V.=V (p). The quasi-
likelihood approach is a generalization of generalized linear models. The log-likelihood of
an exponential family is replaced by a quasi-likelihood, in which only the relation between
the conditional mean and the conditional variance has to be specified. To see the relations
of the quasi-likelihood functions with generalized linear models note for instance that the
maximum likelihood estimate J based on an i.i.d. sample Y7,...,Y, from an exponential
family with mean ¢ and variance V(9) is given by

" d
> Q) =0.
=1

In this paper we do not assume that V(pg) is the conditional variance of Y. The only
assumptions on the distribution of Y we use in this paper concern the form of the con-
ditional mean (see (1.1)) and subexponential tails (see (A0), below). In particular, our
results may be used in case of model misspecification.
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Let us now describe the estimation procedure. Let A, > 0 be a smoothing parameter.
The penalized quasi-likelihood estimator is defined by

(1.4) gn € arg I;leag[Qn(F(g)) — A2 T (g)],

where
"

Qi) = - 3 QUi p(Ty)).
=1
Throughout, we assume that indeed a solution ¢, € G of the maximization problem (1.4)
exists. Then g,(x,z) = 6, + My (2), where 6, c R, and J(m,) < oo. The estimated
conditional expectation is i, = F(gn).

Generalized linear models of the form (1.1) have first been considered by Green and
Yandell (1985) and Green (1987). The generalization to quasi-likelihood models has also
been studied in e.g. Chen (1988), Speckmann (1988) and Severini and Staniswalis (1994).
These papers however use different estimation procedures, such as polynomial approxima-
tion or kernel smoothing. Local polynomial smoothing based on quasi-likelihood functions
is discussed in Fan, Heckman and Wand (1995).

Our main aim is to obtain asymptotic normality of the penalized quasi-likelihood
estimator 6, of 6o, but first we derive a rate of convergence for §,. The asymptotic
properties of the estimators depend of course on the behaviour of the smoothing parameter
Ap as n — oo. It may be random (e.g. determined through cross-validation). We assume

Ay = OP(n_1/4), and (1/\,) = Op(nk/(2k+1)).

The following example is an important special case.

Example 1. Let F be the identity, and V = 1. Then Q(y; 1) = —(y — 1)*/2, so that
Jn 18 the penalized least squares estimator. It is called a partial smoothing spline. If A, is
non-random, 6,, and 1, are linear in Y7, ..., Y,. See e.g. Wahba (1984), Silverman (1985).

Denote the conditional expectation of X given Z = z by hy(z), z € [0,1]. If J(h1) < o0
and {\,} is of the order given above and non-random, then the bias of 8, is O(\2) =
o(n™'/?), whereas its variance is O(1/n). This is a result of Rice (1986). It indicates
that the smoothness imposed on m, (in terms of the number of derivatives k) should
not exceed the smoothness of hy. In Theorem 4.1, we shall prove y/n-consistency and
asymptotic normality of 6,, under the condition J(h1) < oo. In Remark 4.1, we show that
in case of rough functions hy, \/n-consistency of 6,, can be guaranteed by undersmoothing.
More precisely, there we allow that hy depends on n and that J(hy) — co. We show that
6, is \/n-consistent and asymptotically normal, as long as A,, is chosen small enough. Even
for the optimal choice A, ~ n~F/(2k+1) J(h1) may tend to infinity. This shows that much
less smoothness is needed for h; than for mg.

The theory for general penalized quasi-likelihood estimators essentially boils down to
that for Example 1, provided one can properly linearize in a neighbourhood of the true
parameters. For this purpose, we first need to prove consistency, which is not too difficult
if V(s) stays away from zero. Unfortunately, this is frequently not the case, as we see
in Examples 2 and 3 below. In Section 7, we shall employ an ad hoc method to handle
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Example 2. In general, one can say that given consistency, the further conditions for
asymptotic normality are relatively innocent, but proving consistency can be somewhat
involved.

Example 2. Let Y € {0,1}, Po(Y = 1|T =t) = F(go(t)), and let V(s) = s(1 — s),
s € (0,1). In this case, the quasi-likelihood is the exact likelihood, so that ¢, is the
penalized maximum likelihood estimator.

Example 3. Let Y € (0,00), and V(s) = 1/s*, s > 0. Then Q(y;u) is the log-

likelihood corresponding to the exponential distribution with parameter 1/p.

This paper can be seen as a statistical application of empirical process theory as
considered in Dudley (1984), Giné and Zinn (1984), Pollard (1984, 1990), Ossiander (1987),
and others. Some concepts and results in this field are presented in Section 2. In Section
3, rates of convergence are obtained, and Section 4 uses the rates to establish asymptotic
normality. In Section 5, we discuss bootstrapping the distribution of 6,. Examples 1-3 are
studied in Section 6, and Section 7 revisits Example 2.

2. Main assumptions, notation and technical tools.
2.1. Main assumptions. We recall the assumption (X, Z) € [0, 1]?, and

(2.1) An = op(n~Y4), 1/, = Op(n*/GFD),
We also suppose throughout that f(£) = dF({)/d¢ exists for all £ € R.
Write W =Y — uo(T) (W; =Y, — po(T3), 1 = 1,2,...). The following condition is

essential in Section 3: for some constant 0 < Cy < oo,
(A0) Eo(e[|W|/CO]|T) < Co, almost surely.

Let ¢;(z,2) = 2771 j=1,...,k, and ¢p41(7,z) = . We assume that the matrix

A= [odar,
is non-singular. Here, ¢’ denotes the transpose of ¢.
2.2. Notation. By the Sobolev-embedding Theorem, one can write
(=) = ma(2) + maz),
with
k .
ml(z) = Z ﬁ]‘Z]_l,
=1
and |ma(z)] < J(mz2) = J(m) (see e.g. Oden and Reddy (1976)). So for g(x, z) = fx+m(z),
9(z,2) = g1(z,2) + g2(x, 2),
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with
k41

gl(l',Z) = Zﬁj@bj(w,Z), 0 = Br+1,

i=1

Le. g1 = ﬁlqbv and 92(1;72) = m2(2)7 |g2(:1;,2)| < J(g2) = J(m)
For a measurable function a : R x [0,1]*> = R, Eo(a(Y,T)) = [adPy denotes the

b
expectation of a(Y,T) (whenever it exists) and

1 n
2 2 2 2
= Foa™(Y,T = — Yi, T;).
| a||"= Eoa”(Y,T), ||a |l ”i§:1a( )
With a slight abuse of notation, we also write for a : [0,1]> — R depending only on
te[0,1]%

7

1
lal*=Eoa*(T), |la = Y a*(T).
=1
Moreover,
|aloo = sup Ja(t)],
t€[0,1]2

and for 3 € R, | B HZZ 5/5

Let A be a subset of a (pseudo-)metric space (L, p) of real-valued functions.

Definition. The §-covering number N (4, A4, p) of A is the smallest value of N for
which there exist functions aq,...,an in £, such that for each a € A, p(a,a;) < ¢ for
some j € {1,...,N}. The §-covering number with bracketing Np(d, .4, p) is the smallest

value of N for which there exist pairs of functions {[a]L, ay] ;V:l C L, with ,o(a]L, ay) <4,
j =1,...,N, such that for each ¢ € A there is a j € {1,..., N} such that a]L <a<
ay. The d-entropy (d-entropy with bracketing) is defined as H(4, A4, p) = log N(4, A, p)

(HB(4, A, p) =log Ng(d, A, p)).
2.3. Technical tools.
Theorem 2.1. For each 0 < C' < oo we have
sups>06 H(6,{g € G+ |gloe < C, J(9) < C}| - |c) < oo
Proof. See Birman and Solomjak (1967). a

Theorem 2.2. Write (AAQ) for the assumption that given T, W is (uniformly)
sub-Gaussian, i.e. for some constant 0 < Cy < 00,

(AA0) Eo(e[WQ/COHT) < Cy, almost surely.

Let A be a uniformly bounded class of functions a : [0,1]> — R depending only on
t €[0,1]%. Let 0 < v < 2. Suppose that either (A0) holds and

(2.2) limsupsup d”"Hp(d, A, || - ||n) < oo, almost surely,

n—oo  6>0



or that (AA0) holds and

(2.3) limsupsup 6" H(5, A, || - ||n) < oo, almost surely.
n—oo >0
Then
1 i sa(Ts;
(24) sup ( /n) Ez:l WCL( ) — OP(TL_l/z).

eeA (|| a flo Vi 2 )1ov)2

Proof. It is shown in van de Geer (1990) that (AA0) and (2.3) imply (2.4). Similar
arguments as there, combined with e.g. a result of Birgé and Massart (1991, Theorem 4),
show that (AAQ) can be relaxed to (AQ), provided (2.3) is strengthened to (2.2) (see also
van de Geer (1995)). 0

The following theorem will be used in Section 4, only to show that consistency in
| - ||n-norm implies consistency in || - ||-norm. Nevertheless, we present it in its full
strength, so that one can verify that the rates for the || - ||,,-norm and || - ||-norm coincide.

Theorem 2.3. Suppose A is uniformly bounded and that for some 0 < v < 2,

(2.5) supd”Hp(8, A, ]| - |]) < 0.
6>0

Then for all n > 0 there exists a 0 < C' < oo such that

[alln

(2.6) limsup P sup | —1l>n]| =0.
n—co WA, ||a||>Cn_ﬁ H a H
Proof. See van de Geer (1988, Lemma 6.3.4). 0

Theorem 2.4. Suppose that for some 0 < v < 2,

(2.7) supd”Hp(8, A, ]| - |]) < 0.
6>0

Then for all n > 0 there is a § > 0 such that

(2.8) limsup P ( sup \/1% ;(G(Yi,Ti) — Py(a))| 77) <.

n—00 a€A, |lal[<é

Proof. Condition (2.7) ensures that A is a Donsker class, and (2.8) is the implied
asymptotic equicontinuity of the empirical process. See e.g. Pollard (1990) and the refer-
ences there for general theory on Donsker classes. O

3. Rates of convergence. Define



and consider the following assumptions: for some constants 0 < Cy, Cy < oo,

(A1) V(s) > 1/Cq, for all s € (a,b),

and

(A2) é < |I(&)] € Oy, for all € € R.
2

Clearly, (Al) and (A2) hold in Example 1, where f = V(F) = 1. In fact, under (Al) and
(A2), the rates problem essentially reduces to the one of Example 1. It is possible to avoid
these assumptions, as we shall illustrate in Section 7.

Lemma 3.1. Suppose (Al) and (A2) are met. Then

(3.1) | gn — g0 [[n= Op(An),
and
(3.2) J(gn) = Op(1).

Proof. For a fixed yo, we write

Flg) 1
i :/ 7d87 g € g7
! Yo V(S)

and Y, =Yg, Yo = Vg, We have

Qu(fin) = Qulyio) = S Wilda(T)) = 20(T}) -

1
n

”/“U”@—MJED%_
i=1 po (1Y) V(S)

So, by the Cauchy-Schwarz inequality and (A1),

1

. RS . .
(33) Qulin) = Qnlio) < (D WH 4w =0 ln =56 190 =0 I
1=1

Note that (1/n)> ', W? = O(1) almost surely (by (A0)). On the other hand, because
fin, = F(§n) maximizes Q,(F(g)) — \2J*(g), we have

(3.4) Qnlitn) = Qulpo) = A (S*(dn) — T*(90)) = op(1).
The combination of (3.3) and (3.4) gives
[ %n =70 IR Hn = 0 [ln O(1) + op (1),

which implies || 4, — 7o ||ln= Op(1).



In view of (A2),

(3.5) £ 1900) = 901 < F(t) = 35(2)| < Calglt) — (0

for all t € [0,1)* and all g,g € G. So also || Gn — go ||n= Op(1), so that || g, ||.= Op(1).
We shall now show that |§n|ec/(1 + J(Gn)) = Op(1). As in Section 2.2, write

gn - an + anv

with §in = 3,6, and [g2n|ec < J(gn). Then

Vot Ninle . lldon ln
3.6 - < — + - = 0Op(1).
(3.6) Lt () = 14T T 14 I~ OPW

Now, A = [ qbqb/dPo is assumed to be non-singular, and

— Z o(T, ) — A, almost surely.
Thus, (3.6) implies that || By, | /(14 J(gn)) = Op(1). Because T is in a bounded set, also
G1aloc/(1+ T(3)) = Op(1). So [guloc/(1 + J(An)) = ( )-
In view of (3.5), we now have |[9,|o/(1 + J(Gn)) = Op(1). Moreover, |v; — vVjloo <

C3l9 — Gloo, 9,9 € G. So by Theorem 2.1,

sup 8/ FH (S, T9 " o EQ,M<C,'OO<OO.
a8 g€ G e <o) )

Using Theorem 2.2, assumption (A0), and the fact that || 4, —vo0 |[n> (1/C2) || Gn — 90 ||ns
we find

3.7 () iy Wil () — 30(T) — Op(n17),
| G —go 1879 (14 T(30)) /@0 v (14 T(§a))n 22850

Invoke this in (3.4):

Nl (Gn) = T*(90)) < Qulfin) — Qu(pi0)

(3.8) < S Wia(T) = 20(T)) = 5 11 =0 I

< (| Gn—go lln ** (1 + J(30)) 2 V(1 + J(Gn))n” 2240 )Op(n~1/2)

8



RS RPN
2c,c2 N In 90 lIn -

Thus,
AT (Gn) < A% T%(g0)

1

- 1 . _ 2k—1 B
(1l Gn = g0 0> (14 T(Ga)) % V (14 J(Ga))n” 2250 )0p(n™"12),
as well as
| Gn — g0 [17< A5 T*(90)

— 25 1 . _ 2hea B
(0 Gn g0 [In~* (L4 7(§n)) 2 V (14 T(Ga))n” 2250)Op(n~!1?).
Solve these two inequalities to find that
G = go I +N5T3(@n) = Op(X; + 25150t A2 505,
Because we assumed /\;1 — Op(nk/(Zk—i—l))7 this completes the proof. -

Remark 3.1. The situation can be adjusted to the case of triangular arrays. Let
(Yin. 1)y s (Yo n, Thn) be independent copies of (Yp ,,T5 ), and suppose that the
conditional expectation of Yy, given Ty, is equal to F(gon(To,n)), with g0, € G, n =
1,2,.... Assume that (A0) holds for Wy ,, = Yo, — F(g0,n(T0.n)) and Tp », with constant

Co not depending on n. Assume moreover that for Ag, = fqbqb/dPom, Py, being the
distribution of T ,, we have

3 Ao nfB > coff B for all B € R,

where ¢g > 0 is independent of n. Then one finds under (Al) and (A2), for 1/A\, =
OP(nk/(Zk—i—l)(l_l_J(gO n))zk/(zk—i—l))7

190 — go,nlln = Or(An(1 4+ J(go,n))),
and

J(gn) = OP(l + J(go,n))'

4. Asymptotic normality. We shall use the assumptions: for some constants
0 < 19, C3,Cy < oo, and for all ¢ € [0, 1], we have for & = go(t),

(A3) 1(&0)| < C3, and |I(§) — I(&o)| < C3(€ — ol for all € — &o| < o,
and
(Ad) | (o) < Cu, and [f(£) — f(o)| < Cul€ — &o| for all [ — o < no.

Write lo = l(go) and fo = f(go), and take

h(z) = Do fo(T(D)Z = =)
e Eo(fo(T)lo(T)|Z = z) '

9



and

ho(x,z) = x — hi(z).

Also define )
hi(z) = Eo(X|Z = 2),

and

%2(:1;,2) = — ﬁl(z)

Theorem 4.1 below gives conditions for asymptotic normality of 6,,. If the conditional
distribution of Y belongs to an exponential family with mean p and variance V (), then

~

60, is asymptotically efficient. The conditional variance of Y given T is in that case
varo(Y|T) = Eo(W?|T) = V(uo(T)),

so that
Eo(W?I(T)R3(T)) =| (folo)'/*Ra |I* .

According to Theorem 4.1, the asymptotic variance of \/ﬁ(én —6p) is then || (f0l0)1/2h2 | ~2.

Theorem 4.1. Suppose (A3) and (A4) are met. Assume moreover that

(4.1) I G = g0 ln=op(n™"/"),
(4.2) J(gn) = Op(1),
(4.3) | A2 ||> 0,
(4.4) Z has density bounded away from 0 on its support,
(45) J(hl) < 00,
and
(4.6) I (folo)'/*h2 ||> 0.
Then,
. 7 2imt Wilo(Ti)ha(Th)

(b, — 8y) = +op(1).

| (folo)'/2ha ||?

Proof. We shall apply Theorem 2.3, to conclude from (4.1) that || g, — go ||= op(1).
Because Theorem 2.3 is on uniformly bounded classes, we first verify that |§,|.c = Op(1).
This follows by the same arguments as used in Lemma 3.1. Because (4.2) holds, also

10



|G2n]ec = Op(1). So || g1n ||[n= Op(1). Again, because of the assumed non-singularity of
A, this implies |G1n]co = Op(1), 50 |gn|oc = Op(1).

Now, || ho |I> 0, so || gn — go ||= op(1l) implies |én — 8o| = op(l). Hence, also
|| mn —mo ||= op(1). Assumption (4.4) ensures that
up lina(z) — mo(=)] = op(1)
zEsupport(Z)

Therefore, we may without loss of generality assume that

(47) |gn - 90|oo < No,

so that we can use (A3) and (A4).
Because of (4.5), we have that

gns(,2) = gnlx,2) + sha(x, 2)

~

= (On + 8)x + (Ma(z) — shi(2)) € G,
for all s € R. Thus,

(4'8) CZ[QH(F(QTLS)) - /\ijz(gns)Hs:O =0.

~

Clearly, for [, = gn)s fn= F(gn)

- QuF () lomo = = S Wl (Tha(T) =~ S ljnlT:) = o Tolla (Tiha(T3) = T = T1.

Use (A3) and Theorem 2.1, to find that the class
{ly = po®](g(t)h2(t) : g €G, 19— goloe <m0, J(g) < C}

satisfies (2.7) of Theorem 2.4. Since, also by (A3), || §n — go ||= op(1) implies || - |=
op(1), we obtain

7

1

(4.9) I=- > Wilo(To)ha(Ti) + op(n™'/?),
Let us write .
1= =3 [(30(T3) — g0(T) ol Tllo(Toha(T:)
+i [fin(T3) — po(Ti) — (Gn(Ti) — go(Ti)) fo (Ti))lo(Ti ) R2 (T})

=1

11



S I

=1
=1IT+1V+V.
Observe that

dul2,2) = gol.2) = (6 — B0)a +1iva(2) — mol(=) = (B — fo)a(,2) + () — ao(2),

where a,(z) — ag(z) = (én —6p)h1(z) + Mn(z) —mo(z). Hence,

7

(4.10) I1T = (6, —fo)— Zfo h3(T, )+i2[dn(zi)—%( i) fo(T)lo(Ti)ha(T5).
=1
Because |én—90| = op(1l) and || 1, —mo ||= op(1), also || @, —ap ||= op(1). Moreover, for

any measurable function a : [0,1] — R, Eg(a(Z)fo(T)lo(T)h2(T)) = 0. So, according to
Theorem 2.1, combined with Theorem 2.4, the second term in (4.10) is op(n~'/%). This,
and the law of large numbers, yields

I11 = (8 = 60)(|| (folo)'/ha || +0(1)) +op(n~/?).

Invoke (A3) and (A4) to conclude that under (4.7),

7

IV] < Com 3 (00(T3) — go(To) P lo( T (T)

=1

< C3Cy || G — go |[a=op(n™'/?),

and similarly,

VI < C5Cy || Gn — g0 2= Op(n_l/z).
Thus,
(.11 1 = (B — o) (o) b | +o(1)) + op(n~11%)
Finally, we note that (4.2), (4.5) and the condition A, = op(n™/*) give

d
(4'12) %/\ijz(gm)hzo < 2/\121‘](@71)‘](}”) = OP(n_l/Z)'

Combine (4.8), (4.9), (4.11) and (4.12) to obtain
1< )
= D Wilo(T)ha(T:) + (B — o) (|| (folo)/*ha |I* (1)) + op(n~"/2).

Apply condition (4.6) to complete the proof. O
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Remark 4.1. Theorem 4.1 can be generalized to the situation as described in Remark
3.1. Let us suppose the assumptions given there are met, and that in addition (A3) and
(A4) hold, with constants ng, Cs and C4 not depending on n. Suppose that also (4.3),
(4.4) and (4.6) hold uniformly in n. Replace (4.1) and (4.2) by the condition

Au(l+ J(go,n)) = op(n™'1),

and replace (4.5) by

(4.13) A2 (14 J(go.n)) T (1) = 0p(n~1/%),

Then the conclusion of Theorem 4.1 is valid, provided that we can apply Theorem 2.3 to
conclude that ||g, — go,n|| = op(1). For this purpose, we assume in addition to the above
that

(14 J(go.n)) = O(n¥1).
For bounded J(go,»), condition (4.13) holds if J(h ,) is bounded. This follows from

our assumption \,, = Op(n~'/*). For optimal choices A, ~ n ™%/ (Z¥+1) for (4.13) it suffices
that J(hyn) = o(n(zk_l)/(4k+2)), i.e. J(hy,,) may converge to infinity. This means that
weaker conditions on the smoothness of hy , are needed than on gy ,. Furthermore, if
J(hi,n) — 00, \/n-consistency of 6, can always be guaranteed by choosing A, small (i.e.
undersmoothing).

5. Estimating the distribution of the parametric component using Wild
Bootstrap. Inference on the parametric component 8 of the model could be based on
our asymptotic result in Theorem 4.1. There it is stated that the distribution of 6, is
not affected by the nonparametric nature of the other component of the model, at least
asymptotically. This statement may be misleading for small sample sizes. An approach
which reflects more carefully the influence of the nonparametric component is bootstrap.
We discuss here three versions of bootstrap. The first version is Wild Bootstrap which is
related to proposals of Wu (1986) (see also Beran (1986) and Mammen (1992)) and which
was first proposed by Hardle and Mammen (1993) in nonparametric set ups. Note that in
our model the conditional distribution of Y is not specified besides (1.1) and (AO0).

The Wild Bootstrap procedure works as follows.

SteP 1. Calculate residuals W; = Y; — fin(T5).

STEP 2. Generate n 1.i.d. random variables ¢},... &) with mean 0, variance 1 and
which fulfill for a constant C' that || < C (a.s.) fori=1,...,n.

STEP 3. Put Y;* = i, (T}) + Wiet for i = 1,...,n.

STEP 4. Use the (pseudo) sample ((Y{*,T1),...,(Y,),Ty)) for the calculation of the
parametric estimate 6.

StEP 5. The distribution £, of én — 6 is estimated by the (conditional) distribution
L o(given (Y1,T1),..., (Yo, Ty)), of 8 — 6,.
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Under the additional model assumption
varo (YT = ) = V{juo(1)

we propose the following modification of the resampling. In Step 3 put Y* = [i,(T3) +
V(fn(T3))e! for « = 1,...,n. In this case the condition that |¢f| is bounded can be
weakened to the assumption that £ has subexponential tails, i.e. for a constant C' it holds
that E(ells71/€1) < C for i = 1,...,n (compare (A0)).

In the special situation that Q(y; i) is the log-likelihood (a semiparametric generalized
linear model), the conditional distribution of Y; is specified by p(T;). Then we recommend
to generate n independent Y7,...,Y, with distributions defined by fi,,(T1),...,in(Th),
respectively. This is a version of parametric bootstrap. The following theorem states that
these three bootstrap procedures work (for their corresponding models).

Theorem 5.1. Assume that conditions (A0)-(A4) are met. In case of application of
the second or third version of bootstrap assume that the just mentioned additional model
assumptions hold. Then

dic (L, £5) =0

in probability. Here dx denotes the Kolmogorov distance (i.e. the sup norm of the corre-
sponding distribution functions).

Proof. We will give only a sketch of the proof for the first version of resampling (Wild
Bootstrap).The proof for the other versions is more simple and follows similarly.

We have to go again through the proofs of Lemma 3.1 and Theorem 4.1. We start
with proving

(5.1) |9 = Gnlln = Op(An)
and
(5.2) J(gn) = Op(1).

We write first for W* = Y.* — [1,(T3)
Wi =Wiei + (no(T2) — fin(Ti))e;
= W;fl + WifZ‘

In the proof of Lemma 3.1 the main ingredient from empirical process theory was formula
(2.4) (see (3.7)). We argue now that the following analogue formulas hold for j = 1 and
j=2

(5.3) sup (1/n) 325y Wita(Th)

=0Op n~1/?%),
acA al[n " e

For j = 1 equation (5.3) follows from the fact that because of the boundedness of ¢!
for 7 = 1,...,n, we have that there exists a constant C' with

Eo(el™ul/|y, .. T,) <

14



almost surely.
For j = 2 we have for every constant C"' that on the event A, = {|po(Ti) — fin(T3)| <
C":i=1,...,n} the following holds

Eo(eWial/CC Ny Ty <,

almost surely. Because the probability of A, tends to one, we arrive at (5.3).

We would like to make here the following remark for two random variables U, and
V. If U, fulfils U,, = Op(c,) for a sequence ¢, then this implies that for every 0 < < 1
there exists a set B,, and a constant C with

PV, € B,)>1-9,

P(|U| < CenlVe =v)>1—6

for v € B,,. This remark may help to understand why we can continue as in the proof of
Lemma 3.1 to show (5.1) and (5.2).
The next step is to show that

o T S W(T)ha(Ty)
n * _ NG =1

+ Op(l).

For seeing (5.4) we proceed similarly as in the proof of Theorem 4.1. In particular, we
replace gn s by g5, s = gy + sha.
Now one applies (5.4) for the proof of

dK(N(Ov n&i)vﬁz) — 07

(in probability), where

2w 2oty WE(Ti)* he(T;)?

! 1(folo)/2ha|*

Because of 62 — H(folo)l/zhg]\_4EO(Wi2l0(Ti) ho(T;)?) (in probability) we get the

"
statement of the theorem. O

o

6. Examples.
Example 1. Recall that in this case,

Y = 90X —|—m0(Z) + W,

where Eo(W|X,T) = 0, and that g,(x,z) = b, + my(z) is the penalized least squares
estimator. In van de Geer (1990), Lemma 3.1 has been proved under the condition (AA0)
that the error W in the regression model is sub-Gaussian, using the same approach as in
the proof of Lemma 3.1. Condition (AA0) can be relaxed to (A0), as a consequence of
Theorem 2.2. This is in accordance with earlier results on rates of convergence (see e.g.

Rice and Rosenblatt (1981) and Silverman (1985).
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Conditions (A1)-(A4) are clearly satisfied, because V' =1, f =1 and [ = 1. Note
further that 7y = hy and hy = hy. I W is nor{nally distributed, then according to Theorem
4.1, the partial smoothing spline estimator 6,, is an asymptotically efficient estimator of

o.
Example 2. In this case, we have
PY=1X,2)=1-P(Y =0|X,Z) = F(6 X + mo(2)),
and V(s) =s(1l —s), s € (0,1). Let us consider the common choice

eg

F(f)zma {eR.

Then ¢
(&) = (1 ef = V(F()), ¢ €R,

so that [ = 1. We cannot use Lemma 3.1, because (Al) is not satisfied. Therefore, we

present a separate proof of (3.1) and (3.2) in the next section. Since conditions (A3) and
(A4) are met, Theorem 4.1 can then be applied.

Example 3. Let us assume that the conditional density of V given T' =t is
polylt) = Ao(t)e™ ¥,y >0,
with Ao(¢) = 1/po(t), po(x,z) = F(fox + mo(z)), and with
F(¢)=¢5 £€R.

Take V(s) = 1/s%*, s > 0. Then

and

¢ € R. Observe that (A0) is met. Again, we cannot apply Lemma 3.1, because (A1) and
(A2) only hold on a bounded set. So if we show by separate means that the parameters
are in a bounded set, then the result of Lemma 3.1 follows immediately. Conditions (A3)
and (A4) hold, so asymptotic normality would also be implied by this. Note that fl =1,
so as in Example 1, hy; = iLl and hy = ;LQ.

7. Rates of convergence for Example 2. Consider the model
Po(Y =1|1X.Z) = 1- P(Y = 01X, 2) = F(6oX +mo(Z)) = F(go(T)),

16



with
6o € = {g(z,2) = bz + m(2), § € R, J(m) < oo},

and F': R — (0,1) given. Furthermore, take V(s) = s(1 — s), s € (0,1). Assume that for
some 0 < (5 < o0,

(45) O] < Ch. forall €€ R,
Lemma 7.1. Under condition (A5), we have

F(g)
SURES ) e gL ) < oo
Slip?slilg ( {1—|—J(g) g Bl la) < o

Proof. We can write for g € G,

g=10¢+ gs,

with 8 € R¥! and |g2|e < J(g2) = J(g) (see Section 2.2). Now, let § be a fixed function
and consider the class

{F(B'¢+q): pecRY

Since F' is of bounded variation, the collection of graphs

{(s,t): 0< s <F(Bo(t)+d(t)}: 8RR

is a Vapnik-Chervonenkis class, i.e. it forms a polynomial class of sets (see Pollard (1984,

Chapter II) for definitions). Therefore (Pollard (1984, Lemma I1.25)),
(7.1) NOAFB é+q): BRI |- |n) < AT, forall § > 0,

where the constants A and w depend on F and k, but not on ¢ and n. (Here, we use the
fact that the class is uniformly bounded by 1.)

Define for g = ﬁlqb + g2,
1

BN —T
1+ ()]
where [s] denotes the integer part of s > 0. Then

v(g) =

{v(g)g2t C{h: |hleo <1, J(h) < 1},

so by Theorem 2.1,

(7.2) sup 8"/ FH(8, {v(9)g2}, |- |oo) < 0.
6>0
Of course, if we replace here the |- |oo-norm by the || - ||,-norm, the result remains true

and holds uniformly in n.
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Together, (7.1) and (7.2) give the required result. To see this, let g € G, g = B¢+ go,
and let v; = v(g). Suppose that hj is such that

I v(g)g2 = Rj l|ln< 9,

and that 3; is such that

! h ! h
I F@ 6+ 1) = F(3jo+ 1) ln< 6
J J

Then ( / |
F(B ¢+ g2 / h;
I Txilg) F(B;¢+ jj)Vj [
< v | (3 o)~ (8 6 ) b1 vl (S 640y = (4 1|
— V7 Vj n 1—|—J(g) ( Vj 7 7/]‘ n
<Cs6+6+9,
since |F() — F(§)| < Csl€ — §|, by condition (A5). 5

The entropy result of Lemma 7.1 can be applied to establish a rate of convergence
in the same way as in Lemma 3.1. For this purpose, we need the assumption: for some
constant 0 < Cs < 00,

(A6) = < F(go(t)) <1-— i, for all t € [0,1]*.
CG CG

Lemma 7.2. Suppose (A5) and (AG) hold true. Then

(7.3) | F'(gn) — F(g0) ln= Opr(An),
and
(7.4) J(gn) = Op(1).

Proof. Define B
F(g)=(F(g9)+ F(9))/2, g €G.

By the concavity of the log-function, and the definition of §,,

n(F() =t = 3 )+ 20—ty
(7.5) > L Qu(F() 2 QulFlao) 2 22T () ~ T(g0)).



On the other hand, since log(s) = 2log(y/s) < 2(y/s — 1),

Qn(F(gn)) —Qn(F(go)) < iZY’( W—1)+2 Z(l—Yi)(\/l_F(W—l)

(7.6) =2 p F(gu(T3)) = V' F(g0(T3)))

2
= ‘/ 1-F
+ni 1\/1_ 90
— || A/ F(gn) — V' Flgo) Iz = || /1 = F(gn) — /1= Flgo) II1 -

The combination of (7.5) and (7.6) gives an inequality of the same form as inequality
(3.8) in the proof of Lemma 3.1. Moreover, we can invoke Lemma 7.1 in Theorem 2.2.
First of all, condition (AAQ) holds for W. Furthermore, for each ¢, ¢ € G we have

VF(g) = VF() o Flg) = F@l o GCs
F(g0) T 2V2F(g0) T 2V2

[F(g) — F(9)],
by (A6). So the entropy condition (2.3) with v = 1/k holds for the class

VF(g) = \/Flg0)

F(go)(1 + J(g))

g€ glh.

Thus,

121 Wil \/F (9n(T3) \/F (90(T /\/F (90(T, :Op(n_l/z)
I V/F(Gn) — /Flgo W e <1+J< >>1/<2k>

Similar results can be derived for (\/1 — F(gn) — \/F(go)). So, proceeding as in the proof
of Lemma 3.1, we find J(g,) = Op(1), and

(7.7) I/ F(gn) = V' F(g0) ln= Op(A

as well as

(7.8) /1= F(gn) = V1= Flgo) [la= Op(\n)

Clearly, (7.7) and (7.8) yield (7.3). 0
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It remains to show that the rate of convergence also holds for || g, — go |[n. We then
need an identifiability condition. Assume that for some constants 0 < 19, C7 < oo and for
all t € [0,1]?%, we have for & = go(t),

(47) 7O 2 2 for all |t — &l < .
7

Lemma 7.3. Suppose that

(7.9) inf || F(g) — F(go) ||> 0 for all n > 0.

llg—goll>n

Then, under conditions (A5),(A6),(A7),(4.3) and (4.4), we have

19 = go ln= Op(An).

Proof. Due to Lemma 7.1 and a result of e.g. Pollard (1984, Theorem I11.24) on
uniform laws of large numbers, we have for all 0 < C' < oo,

sup ||| F(g) = F(go) [ln = || F(g) — F(go) || | = o(1), almost surely.
Jg)<c

So || F(gn) — F(go) ||= op(1). By (7.9), this implies
(7.10) | Gn — g0 ||= op(1).

As in the proof of Theorem 4.1, we see that (4.3) and (4.4), together with (7.10), yield
|Gn — goloo = op(1). Application of (A7) and Lemma 7.2 completes the proof. 0
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