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Optional decompositions under constraints

H� F�ollmer �

Humboldt�Universit�at zu Berlin� Institut f�ur Mathematik�

Unter den Linden �� D����		 Berlin

D� Kramkov �

Steklov Mathematical Institute� ul� Vavilova� 
�� GSP���

���	��� Moscow� Russia

Abstract

Motivated by a hedging problem in mathematical �nance� El Karoui and Quenez
��� and Kramkov ���� have developed optional versions of the Doob	Meyer decomposi	

tion which hold simultaneously for all equivalent martingale measures
 We investigate
the general structure of such optional decompositions� both in additive and in multi	

plicative form� and under constraints corresponding to di�erent classes of equivalent
measures
 As an application� we extend results of Karatzas and Cvitani�c �
� on hedging

problems with constrained portfolios


� Introduction

Let V be a non�negative supermartingale on some �ltered probability space ���F � �F t�t��� P ��
The Doob�Meyer decomposition implies that V can be represented in the form

V � V� 	M � C�

where M is a local martingale and C is an increasing optional process� Such an optional
decomposition is in general not unique� In fact
 the Doob�Meyer decomposition asserts
existence and uniqueness under the additional requirement that C is predictable�

Now suppose that the supermartingale property of V holds simultaneously for all prob�
ability measures Q � P such that a given semimartingale X is a local martingale under Q�
Denote by P�X� the class of these measures� In this case and under the assumption that X
is locally bounded
 Kramkov ��
� has shown that an optional decomposition of the form

V � V� 	
Z
HdX � C�����
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holds where C is an increasing optional process� The stochastic integral is a local martingale
for any Q � P�X�� Thus
 we have an optional decomposition which is valid simultaneously
for all measures in the class P�X�� The local boundedness assumption has been removed
in F�ollmer and Kabanov ����� see also Delbaen and Schachermayer �
�
 Kramkov ����� An
optional decomposition was �rst proved by El Karoui and Quenez ��� in the special case
where X is a di�usion process
 and where the process V is of the form

Vt � ess sup
Q�P�X�

EQ�fT jFt�� � � t � T�

for some FT �measurable random variable fT � In terms of mathematical �nance
 V is the
value process associated to the problem of hedging a contingent claim fT with complete safety
in an incomplete situation where the equivalent martingale measure is not unique� From
this point of view
 an optional decomposition of the form ����� provides a hedging strategy
H which covers perfectly the given claim
 and at the same time yields cumulative side
payments described by the increasing process C� This interpretation suggests to investigate
the structure of optional decompositions under additional constraints on the integrand H�

In this paper we derive optional decompositions in the following general setting� We
prescribe a convex class S of semimartingales
 for example a class of stochastic integrals
whose integrands satisfy certain convex constraints� We look for a decomposition of the
form

V � V� 	 S � C�

where S � S and C is an increasing optional process� Our criterion for the existence of such
an optional decomposition takes the following form� The process

V �AS�Q�

is a supermartingale under any measure Q in a certain class P�S�
 where AS�Q� is an
increasing predictable process depending only on Q and S� If S is a linear space then P�S�
is the class of all equivalent local martingale measures for S� If S is a cone then P�S� is the
class of all equivalent local supermartingale measures� In both cases
 the process AS�Q� is
equal to �� If S is a class of stochastic integrals of X where the integrands satisfy certain
convex constraints then these constraints are incorporated in the process AS�Q��

If constraints are formulated not in terms of the integrands H but in terms of the
proportions H iX i�V 
 one is led to an analogous multiplicative decomposition�

V � V�E�S � C��

where S � S
 C is an increasing optional process
 and E denotes the Dol�eans�Dade expo�
nential� Here our criterion says that the process

V�E�AS �Q��

is a supermartingale under any Q � P�S�� This leads to extensions of various results on
hedging under convex constraints� see
 e�g�
 Karatzas and Cvitani�c ����

For the theory of stochastic integration we refer to Dellacherie and Meyer ���
 Protter
����
 and Jacod and Shiryaev ����� The stochastic integral of a predictable process H with
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respect to a semimartingale X will be denoted as
R
HdX or H �X� Let L�X� denote the

space of all predictable processes integrable with respect to X� A process H � L�X� will be
called �locally� admissible if H�X is �locally� bounded from below� The classes of admissible
and locally admissible integrands are denoted as La�X� and La

loc
�X�� The �Emery distance

between two semimartingales X and Y is de�ned as

D�X�Y � � sup
jHj��

��X
n��

��nE �min�j �H � �X � Y �n j� ���

�A �

where the supremum is taken over the set of all predictable processes H bounded by ��
For this metric the space of semimartingales is complete
 see �Emery ���� The corresponding
topology is called the semimartingale or �Emery topology� If X is a semimartingale then the
space L�X� is complete with respect to the metric

dX�H�G� � D�H �X�G �X�������

see M�emin �����
Let ���F � �Ft�t��� P � denote a �ltered probability space which satis�es the �usual� con�

ditions� Except for processes which appear as integrands of stochastic integrals
 all processes
considered in the sequel are assumed to be real�valued
 to have right�continuous paths with
left limits
 and to be adapted with respect to the given �ltration� in particular they are all
optional� For two such processes X and Y 
 the relation X � Y means that Y � X is an
increasing process�

� The upper variation process for a family of semi�

martingales

Let S be a family of semimartingales which are locally bounded from below with initial
value S� � �� We assume that S contains the constant process S � ��

Let us introduce the class P�S� of all probability measures Q � P such that any S � S
is a special semimartingale under Q
 and such that there is an upper bound for all the
increasing predictable processes arising in the Doob�Meyer decomposition of the special
semimartingales S � S under Q� In other words�

De�nition ��� We denote by P�S� the class of all probability measures Q � P with the
following property� There exists an increasing predictable process A �depending on Q and
S� such that S �A is a local supermartingale under Q for any S � S
 i�e�


AS�Q� � A 	S � S������

where AS�Q� denotes the compensator of S under Q� An increasing predictable process
AS�Q� will be called an upper variation process of S under Q if it satis�es condition �����
and is minimal with respect to this property
 i�e�


AS�Q� � A

for any predictable increasing process A which satis�es ������
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Example ��� Let S be a linear family of locally bounded processes� Then a measure Q � P
belongs to P�S� if and only if each S � S is a local martingale under Q
 i�e�


P�S� � fQ � P j Q is a local martingale measure for S g �

In this case
 the upper variation process is given by AS�Q� � ��

Example ��� Let S be a cone of processes which are locally bounded from below� Then a
measure Q � P belongs to P�S� if and only if each S � S is a local supermartingale under
Q
 i�e�


P�S� � fQ � P j Q is a local supermartingale measure for S g �

Here again
 the upper variation process is given by AS�Q� � ��

De�nition ��� The family S will be called predictably convex if for Si � S �i � �� �� and for
any predictable process h such that � � h � � we have

h � S� 	 ��� h� � S� � S�

�From now on we assume that S is predictably convex� Under this assumption
 we show
that the upper variation process exists for any Q � P�S� 
 and that it can be constructed
as the essential supremum of the family of compensators under Q�

Lemma ��� A probability measure Q � P belongs to P�S� i� any S � S is a special
semimartingale under Q and

ess sup
S�S

AS�Q�t � 	
�����

a�s� for all t � �� In this case the upper variation process exists and is uniquely determined
by the equations

AS�Q�� � ess sup
S�S

AS�Q�� �

E�AS�Q�� � � sup
S�S

E�AS�Q�� �

for any stopping time � � Moreover� there exists a sequence Sn � S such that the compensators
An � ASn�Q� satisfy An � An�� and

lim
n��

sup
��t��

�
AS�Q�t �An

t

�
� � a�s�

for any stopping time � such that AS�Q�� � 	
 a�s��

Proof The necessity of ����� is obvious� To prove su�ciency we assume �rst that S consists
of predictable processes of bounded variation� In this case
 the set P�S� is either empty or
it contains all Q � P � For A and B in S consider the process

C �
�

�
�A	B 	Var�A�B�� �






where
Var�A�B� � �A�B�� 	 �A�B��

is de�ned in terms of the Hahn decomposition of A� B� We have A � C and B � C
 and
C belongs to S since S is predictably convex� Thus S is upwards directed� By this property
and standard diagonalization arguments
 one can construct a sequence �Cn�n�� in S such
that Cn � Cn�� and

lim
n��

Cn
t � ess sup

S�S
St

for all rational t � �� Moreover
 this convergence is uniform on any interval ��� � � such that
ess supS�S S� � 	
� The resulting limit process
 denoted by ess supS�S S
 is increasing and
predictable
 and it dominates any A � S� Thus
 ess supS�S S is the upper variation process
with respect to any Q � P �

The general case follows if we apply the same argument to the space of compensators of
S � S with respect to Q � P�S�� �

Example ��	 Let X be a semimartingale
 and let G � � and G � � belong to the space
La

loc
�X� of locally admissible integrands for X� In other words
 the stochastic integrals

G �X and G �X are well de�ned and are locally bounded from below� We denote by

H �
n
H � G � H � G

o
the family of predictable processes bounded from above by G and from below by G� All
stochastic integrals H �X for H � H are locally bounded from below
 the class

S � fH �X � H � Hg

is predictably convex
 and so S satis�es our assumptions above� Let Q � P be such that X
is a special semimartingale with respect to Q
 and denote by

X � M 	A

the canonical decomposition
 where M is a local martingale under Q and A is a predictable
process of bounded variation� The compensator of any process S � H �X � S has the form
H �A with H � H
 and we have the estimate

H �A � H �A� �H �A� � G �A� �G �A��

On the other hand
 the equality is achieved for H � hG 	 �� � h�G
 where h � dA��dA�
Thus
 Lemma ��� implies that the upper variation process AS�Q� of S under Q is given by

AS�Q�t �
Z t

�
GsdA

�
s �

Z t

�
GsdA

�
s � t � ��

In particular we have shown that the set P�S� contains all probability measures Q � P such
that X is a special semimartingale under Q�
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� A decomposition theorem

As in the previous section we consider a family S of semimartingales which is predictably
convex and contains the process �
 and such that all processes S � S are locally bounded
from below with initial value S� � �� Moreover we assume that P�S� �� 
 and that the set
S has the following closure property�

Assumption 	�� If �Sn� is a sequence in S which is uniformly bounded from below and
converges in the semimartingale topology to S then we have S � S�

If S is a set of stochastic integrals as in Example ��� then this closure property will follow
from a theorem of M�emin ����� We consider this case in more detail in the next section�

Theorem ��� Let V be a process which is locally bounded from below� Then the following
statements are equivalent


�i� V admits a decomposition
V � V� 	 S � C�

where S � S� and C is an increasing process�

�ii� for all Q � P�S� the process V �AS�Q� is a local supermartingale under Q�

Remarks 	�� �� The theorem can also be stated without Assumption ��� and without the
assumption that S is predictably convex� In this case the equivalence holds if the process S
in decomposition �i� is assumed to be in the minimal class  S � S of semimartingales such
that  S is predictably convex and satis�es Assumption ����

�� Condition �ii� means that the process AV �Q� in the canonical decomposition V �
M 	AV �Q� of the special semimartingale V under Q is dominated by AS�Q�
 i�e�
 AV �Q� �
AS�Q��

The proof of Theorem ��� will be given in Section �� We conclude this section with
a multiplicative version of Theorem ��� which will be useful in the next section devoted
to the application to portfolio strategies under convex constraints� Let E�X� denote the
Dol�ean�Dade exponential of a semimartingale X�

E�X� � eX�X��hXci
Y
s��

�� 	 !XS� e
��Xs�

where hXci denotes the quadratic variation of the continuous martingale part of X� Recall
that E�X� is a solution of the following stochastic di�erential equation�

Z � � 	 Z� �X� Z� � ��

Moreover any solution of this equation coincides with E�X� on the set f��� t� � E�X�� �� �g�

Corollary ��� Let V be a nonnegative process� Under the assumptions of Theorem 	�� the
following statements are equivalent
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�i� V admits a decomposition
V � V�E�S � C��

where S � S� and C is an increasing process�

�ii� for all Q � P�S� the process V�E�AS �Q�� is a supermartingale under Q�

Proof Hereafter we assume that V� � �� Let us recall the following formula�

E�X�E�A� � E�X 	A	 �X�A�� � E�A 	 �� 	 !A� �X��������

which holds for any semimartingale X with initial value X� � � and for any predictable
process A of bounded variation�

�i�� �ii� Let Q � P�S�� De�ne a semimartingale X by the following formula�

X �
�

� 	!AS�Q�
�
�
S � C �AS�Q�

�
�

Accounting for ����� we get

E�X�E�AS �Q�� � E�S �C� � V�

�From the de�nition of AS�Q� we deduce that X is a local supermartingale under Q� More�
over E�X� � �
 because V � �� It follows that

E�X� � V�AS �Q�

is a supermartingale under Q�
�ii� � �i� It is su�cient to prove the existence of a decomposition �i� on any interval

��� �n�
 n � �
 where

�n � inf
�
t � � � Vt �

�

n

�
�

Hereafter we assume that all processes are de�ned on the set " � �n����� �n� � f��� t� � V� � �g�
De�ne

Rt �
Z t

�

dVs
Vs�

�

We have V � E�R� and according to Theorem ��� the proof will follow if R � AS�Q� is a
local supermartingale under any Q � P�S��

Let us �x Q � P�S� and de�ne

X �
�

� 	!AS�Q�
�
�
R �AS�Q�

�
�

�From ����� we deduce that

E�X�E�AS �Q�� � E�R� � V�

By assumption E�X� is a local supermartingale under Q and
 since E�X�� � � on " we get
that X is also a local supermartingale under Q� This implies the desired supermartingale
property for

R�AS�Q� �
�
� 	 !AS�Q�

�
�X�

�

�



� Constrained portfolios

Let us consider a model of a security market which consists of d 	 � assets� one bond
and d stocks� Hereafter we suppose that the bond is chosen as a numeraire and denote by
X � �X i���i�d the discounted price process of the stocks�

A portfolio # is de�ned as a triple �v�H�C�
 where the constant v is the initial value of
the portfolio
 H � �H i���i�d is a predictable X�integrable process specifying the amount of
each asset held in the portfolio
 and C � �Ct�t�� is an increasing process of accumulated
consumption� The value process V � �Vt�t�� of such a portfolio # is given by

Vt � v 	
Z t

�
HsdXs � Ct� t � ���
���

The condition C � � means that the portfolio # is self��nancing�
Let now H � La

loc
�X� be a family of locally admissible integrands for X� We assume

that H contains H � �
 is closed in La

loc
�X� with respect to the distance dX de�ned in �����


and is convex in the following sense� for any H and G in H and any predictable process
� � h � � the process hH 	 �� � h�G belongs to H� A portfolio # � �v�H�C� is called
H�constrained if H � H�

Example 
�� The role of H is to model various constraints on the choice of a portfolio� One
may
 for instance
 consider the following cases�

�� H � La

loc
�X�� no constraints�

�� H � fH � La

loc
�X� � H i � �� � � i � mg� no short selling of the �rst m assets�

�� H �
n
H � La

loc
�X� � Gi � H i � G

i
� Gi � �� G

i
� �� � � i � d

o
where Gi and

G
i
belong to La

loc
�X�� upper and lower bounds on the number of assets held in the

portfolio�

The next theorem gives a �dual� characterization of H�constrained portfolios� In the
unconstrained caseH � La

loc
�X�
 the theorem reduces to the optional decomposition theorem

of Kramkov ��
� and
 in the case of a di�usion process X
 of El Karoui and Quenez ���� see
also ����
 �
�
 ����� Consider the family of semimartingales

S � fH �X � H � Hg ��
���

Theorem ��� Let P�S� �� 
� and consider a process V which is locally bounded from below�
Then the following statements are equivalent


�i� V is the value process of an H�constrained portfolio� i�e�

V � V� 	H �X � C

with H � H and an increasing process C

�ii� for all Q � P�S� the process V �AS�Q� is a local supermartingale under Q�

�



Proof In view of Theorem ��� the only delicate point in the proof is to check that the family
S given by �
��� satis�es Assumption ���� This follows from M�emin$s theorem ����
 which
states that the space of stochastic integrals is closed in the semimartingale topology� �

Following Cvitani�c and Karatzas ��� and ��� let us also consider the case when constraints
are imposed on the proportions of portfolio capital invested in the di�erent stocks� To avoid
technicalities we assume hereafter that X is a strictly positive process� Let

Ri
t �

Z t

�

dX i
s

X i
s�

� t � ��

denote the return process of the ith stock�
A portfolio # is called admissible if it has a nonnegative value at any time instant� The

value process of such a portfolio given by the additive representation �
��� can also be written
in the following multiplicative form�

V � V�E �K �R �D� �

where K i
t � H i

tX
i
t��Vt�IfVt���g is the proportion of the portfolio capital invested in the ith

stock at time t and

Dt �
Z t

�

dCs

Vs�
IfVs���g� t � ��

is the accumulated proportion consumed up to time t�
Let now K be a family of integrands for R� As before we suppose that K contains the

constant process K � �
 is closed in La

loc
with respect to the distance dX 
 and is convex

in the following sense� for any K and L in K and any predictable process � � h � � the
process hK 	 �� � h�L belongs to K�

The next theorem gives a �dual� characterization of admissible portfolios whose propor�
tions take values in the set K� Consider the family of semimartingales

S � fK �R � K � Kg ��
���

and recall that E�X� denotes the Dol�ean�Dade exponential of the semimartingale X�

Theorem ��� Let P�S� �� 
� and let V be a nonnegative process� Then the following
statements are equivalent


�i� V is the value process of an admissible portfolio whose proportions belongs to K� i�e��

V � V�E �K �R �D�

with K � K and an increasing process D

�ii� for all Q � P�S� the process V�E�AS �Q�� is a supermartingale under Q�

Proof The proof follows from Corollary ��� with the same arguments as in the proof of
Theorem 
��� �

�



As an application let us consider the problem of �super�� replication of contingent claims
with constrained portfolios� A contingent claim of European type is de�ned as a positive
random variable fT on ���FT � interpreted as the value of the claim at time T � A strategy
# with value process V is called a hedging portfolio for the claim fT if # is admissible
and VT � fT � An H�constrained strategy b# with value process bV is called a minimal
H�constrained hedging portfolio if

Vt � bVt � fTIft�Tg� t � T�

for any H�constrained hedging portfolio # with value process V �

Proposition ��� Let the set S be de�ned by �
���� Assume that

sup
Q�P�S�

EQ�fT �AS�Q�T � � 	
�

Then a minimal H�constrained hedging strategy b# � �bv�cH� bC� exists� and its value at time
t � T equals

bVt � bv 	 �cH �X�t � bCt � ess sup
Q�P�S�

�
EQ

h
fT �AS�Q�T j Ft

i
	AS�Q�t

��
�

where a� � max�a� ���

Proposition 
�� follows from Proposition 
�� below which characterizes the value process
of a minimal H�constrained hedging portfolio for a contingent claim of American type�

Let f � �ft�t�� be a nonnegative process� We interpret f as the reward process of an
American option� Note that if ft � fT Ift�Tg then we have a contingent claim of European
type� A portfolio # with value process V � �Vt�t�� is called a hedging strategy for f if

Vt � ft� t � ��

An H�constrained portfolio e# with value process eV � � eVt�t�� is called a minimal H�
constrained hedging portfolio if

Vt � eVt � ft� t � �

for any H�constrained hedging portfolio # with value process V �
The following theorem can be considered as a generalization of results of Bensoussan ���

and Karatzas ���� to the setting of markets with constraints�
For Q � P�S� and t � � we denote by Mt�Q� the set of stopping times � with values in

�t�	
� such that the process
�
AS
u�t�Q��AS

t �Q�
�
u��

is bounded on ��� � ��

Proposition ��� Let the set S be de�ned by �
���� Assume that

sup
Q�P�S�

sup
��M��Q�

EQ�f� �AS�Q��� � 	
�

Then a minimal H�constrained hedging portfolio e# � �ev�fH� eC� exists� and its value at time
t � � equalseVt � ev 	 �fH �X�t � eCt � ess sup

Q�P�S�� ��Mt�Q�

�
EQ�f� �AS�Q�� jFt� 	AS�Q�t

�
�

��



Proof De�ne eVt � ess sup
Q�P�S�� ��Mt�Q�

�
EQ�f� �AS�Q�� jFt� 	AS�Q�t

�
�

Let Q � P�S� and �Vt�t�� be the value process of an H�constrained hedging strategy� Let

��n�n�� be a localizing sequence such that EQA
S�Q��n � n� Since V � f � � we deduce

from Theorem 
�� that V � AS�Q� is a supermartingale under Q on ��� �n�� Therefore for
any t � � and stopping time � � Mt�Q� we have

Vt	�n � EQ�V�	�n �AS�Q��	�njFt	�n� 	AS�Q�t	�n

� f�nIft��ng 	 EQ

h�
f�	�n �AS�Q��	�n 	AS�Q�t

�
Ift��ngjFt

i
�

�From the de�nition of Mt�Q� we deduce that the sequence�
f�	�n �AS�Q��	�n 	AS�Q�t

�
Ift��ng� n � ��

is uniformly bounded from below� It follows from Fatou$s lemma that

Vt � EQ�f� �AS�Q�� jFt� 	AS�Q�t�

hence
Vt � eVt� t � ��

Note that eVt � ft� t � �� Therefore we only have to show that eV is the value process
of an H�constrained portfolio� This fact follows from Theorem 
�� and Lemma A�� in the
Appendix� �

Similarly one may describe the value process of a minimal hedging portfolio whose pro�
portions belong to the set K�

Proposition ��� Consider a contingent claim of European type given by fT � �� and let
the set S be de�ned by �
�	�� Assume that

sup
Q�P�S�

EQ

h
fT�E�A

S �Q��T
i
� 	
�

Then there exists a hedging strategy b# with proportions belonging to the set K such that its
value at time t equals

bVt � ess sup
Q�P�S�

�
E�AS�Q��tEQ

h
fT�E�A

S �Q��T j Ft

i�
�

Moreover� if V is the value of a hedging strategy with proportions in K then Vt � bVt� t � ��

Denote by Mt the set of stopping times � with values in �t�	
��

��



Proposition ��� Let �ft�t�� be a nonnegative process� and let the set S be de�ned by �
�	��
Assume that

sup
��M�

sup
Q�P�S�

EQ

h
f��E�A

S �Q���
i
� 	
�

Then there exists a hedging strategy e# with proportions belonging to the set K such that its
value at time t equals

eVt � ess sup
Q�P�S�� ��Mt

h
E�AS �Q��tEQ�f��E�A

S �Q��� jFt�
i
�

Moreover� if V is the value of a hedging strategy with proportions in K then Vt � eVt� t � ��

The proofs are similar to the proof of Proposition 
�� and are omitted here�

� Fatou convergence

Let �fn�n�� be a sequence of measurable functions on ���F � P �� We use the standard
notation L� �resp� L�
 L�� for the space of all �resp� P �integrable
 P �essentially bounded�
real�valued random variables on ���F � P �� If C is a subset in a linear space
 then conv C will
denote the minimal convex set containing C�

The work of McBeth ����
 Schachermayer ���� and Delbaen and Schachermayer ��� has
shown the usefulness of the following concept�

De�nition ��� The sequence �fn�n�� is Fatou convergent to f if �fn�n�� is uniformly bounded
from below and fn � f almost surely� A subset C in L� which is closed with respect to
Fatou convergence will be called Fatou closed�

The following lemma on Fatou convergence is taken from ���
 see also �����

Lemma ��� Let �fn�n�� be a sequence of nonnegative measurable functions�
�� There is a sequence gn � conv�fn� fn��� � � ��� n � �� which converges almost surely to

a function g with values in ���
��
�� If conv�f�� f�� � � �� is bounded in L� then g is �nite almost surely�
	� If there are 	 � � and 
 � � such that P �fn � 	� � 
 for all n� then P �g � �� � ��

We will also need the following fact from functional analysis�

Theorem ��� A convex set C in L� is ��L��L���closed if and only if for each sequence
�fn�n�� in C� which is uniformly bounded and converges in probability to a function f � we
have f � C�

Let C be a convex set in L� of functions which are bounded from below
 and assume that C
contains all bounded negative functions� We use the notation

aC�Q� � sup
h�C

EQh�

P�C� �
n
Q � P � aC�Q� � 	


o
�

��



Proposition ��� Assume that the set C is Fatou closed� and that P�C� �� �� Then
�� the set C � L� is ��L��L���closed�
�� a function g � L� which is bounded from below belongs to C i� for all Q � P�C�

EQg � aC�Q�������

Proof Let us de�ne C� � C � L�� Note that

aC�Q� � sup
h�C�

EQh�

since C is Fatou closed�
The assertion �� follows immediately from Theorem ��� while the �only if� statement in

�� is trivial� To prove su�ciency in �� let us �rst assume that g belongs to L� and satis�es
������ Suppose that g �� C�� Since C� is convex and ��L��L���closed
 we can apply the
separation theorem to obtain a signed measure R with density in L� such that

sup
h�C�

ERh � ERg������

Since the set C� contains all bounded negative random variables
 R is a positive measure

which can be normalized to be a probability measure� If
 in addition
 R � P then �����
implies that R � P�C� and

aC�R� � ERg�

in contradiction to ������
In the general case where R� P 
 we de�ne

R� � �Q	 �� � ��R

for Q � P�C� and � � � � �� It is clear that R� � P�C�
 and that

sup
h�C�

ER�h � aC�R�� � ER�g

if � is small enough� So we only have to apply the preceding argument to R� instead of R in
order to get a contradiction�

If g is only bounded from below then
 as we have proved
 the function gn � g�n belongs
to C�� This implies g � C since the sequence �gn�n�� is Fatou convergent to g � �

Now we introduce a concept of Fatou convergence in the setting of stochastic processes�

De�nition ��� Let T be a dense subset of R�� A sequence of processes �Xn�n�� is Fatou
convergent on T to a process X if �Xn�n�� is uniformly bounded from below
 and if for any
t � � we have

Xt � lim sup
s
t� s�T

lim sup
n��

Xn
s

� lim inf
s
t� s�T

lim inf
n��

Xn
s

almost surely� If T � R� the sequence �Xn�n�� is called simply Fatou convergent�

��



In analogy to Lemma ��� we have the following result�

Lemma ��� �� Let �Xn�n�� be a sequence of supermartingales which are uniformly bounded
from below such that Xn

� � �� n � �� Let T be a dense countable subset of R�� Then there
is a sequence Y n � conv�Xn�Xn��� � � ��� n � �� and a supermartingale Y such that Y� � �
and �Y n�n�� is Fatou convergent on T to Y �

�� Let �An�n�� be a sequence of increasing processes such that An
� � �� n � �� There is

a sequence Bn � conv�An� An��� � � ��� n � �� and an increasing process B with values in R�

such that �Bn�n�� is Fatou convergent to B� If there are T � �� 	 � � and 
 � � such that
P �An

T � 	� � 
 for all n � �� then P �BT � �� � ��

Proof Assertion �� was proved in ��
�� To prove �� we construct a sequence

Y n � conv�Xn�Xn��� � � ��� n � ��

such that �Y n
t �n�� converges almost surely to a variable Y �

t for all t � T � This can be done by
Lemma ��� and the diagonal procedure of extracting a subsequence� Using Fatou$s lemma
we see that for s � t
 s � T 
 t � T

E�Y �
t jFs� � lim inf

n��
E�Y n

t jFs� � lim inf
n��

Y n
s � Y �

s �

The standard construction based on Doob$s Upcrossing lemma shows that the process Y
de�ned as

Yt � lim
s
t� s�T

Y �
s

is a right�continuous supermartingale with left limits� It is easy to see that �Y n�n�� is Fatou
convergent to Y 
 and that

Y� � lim inf
s
�� s�T

lim inf
n��

E�Y n
s jF�� � ��

�

Let now X be a predictably convex family of semimartingales which are locally bounded
from below� We assume that X contains all locally bounded decreasing processes
 in par�
ticular the process X � �� The following proposition will play a crucial role in the proof of
Theorem ����

Proposition ��� Assume that P�X � �� 
� and that the set X is closed under Fatou con�
vergence on some dense countable set T � R�� Consider a stochastic process V which is
locally bounded from below� Then V belongs to X if and only if for all Q � P�X � the process
V �AX �Q� is a local supermartingale under Q�

Proof The necessity follows from the de�nition of the upper variation process� The proof
of su�ciency consists of two parts� First
 we approximate V at a �nite number of points by
a process X � X � Then we pass to the limit and use the assumption that X is closed under

�




Fatou convergence in order to show that V belongs to X � For simplicity we assume that
P � P�X �
 and that the upper variation process AX � AX �P � and the process V satisfy

AX � N� Vt � Vs � �N� V� � �������

for any s � t and some N � �� The general case will follow by a localization argument�
�� Let T � be a �nite partition of R�� We are going to show the existence of X � X

which is bounded from below and such that

Xt � Vt t � T ��

Note that one may choose X to be constant after the maximal point t � T �
 in which
case ����� and the supermartingale property of X �AX imply that X � ��N � Since X is
predictably convex
 it is enough to show that

Vt � Vs � Xt �Xs���
�

for any s � t and some X � X which is bounded from below� Hereafter we �x s � t and
denote g � Vt � Vs�

Let Y be the family of processes Y � X which are bounded from below
 equal to � on
��� s�
 and constant on �t�	
�� Using the notation

C � fhj h � Yt� Y � Yg �

our claim ���
� means that g � C
 and this will be deduced from Proposition ����
First we show that C is Fatou closed� Let �hn�n�� be a sequence in C which is Fatou

convergent to a function h
 and let �Y n�n�� be a sequence in Y such that Y n
t � hn� Since

Y n � AX is a supermartingale and the sequence �Y n
t � AX

t �n�� is uniformly bounded from
below
 the processes �Y n � AX �n�� are uniformly bounded from below� �From Lemma ���
we deduce the existence of a sequence Y n � conv�Xn�Xn��� � � ��
 n � �
 and of a process Y
such that �Y n�n�� is Fatou convergent to Y on the set T � By assumption we have Y � Y

and this implies h � C since

Yt � lim
n��

Y n
t � lim

n��
hn � h�

To �nish the proof of ���
� we have to show that

EQg � sup
h�C

EQh�����

for any Q � P such that the right�hand side of ����� is �nite� Let Q be such a measure�
Since

sup
h�C

EQh � sup
Y �Y

EQYt � sup
Y �Y

EQA
Y
t

we deduce from Lemma ��� that

sup
h�C

EQh � EQA
Y�Q�t������

where AY�Q� is the upper variation process of Y under Q� Note that AY�Q� is equal to �
on ��� s� and constant on �t�	
��

Now let R � P be a probability measure de�ned by the following properties�

��



�� R � P on Fs


�� ER��jFs� � EQ��jFs� on Ft


�� ER��jFt� � EP ��jFt� on F �

We have R � P�X � and

AX �R�u � AX
u	s 	AX

u�t �AX
t 	AY�Q�u� u � ��

The supermartingale property of V �AX �R� under R implies

ER�gjFs� � ER�Vt � VsjFs� � ER�A
X �R�t �AX �R�sjFs� � ER�A

Y
t �Q�jFs�

and therefore
EQ�gjFs� � EQ�A

Y
t �Q�jFs��

which together with ����� implies ������
�� Let �Tn�n�� be an increasing sequence of �nite partitions such that T �

S
n�� Tn� As

we have shown
 there is a sequence �Xn�n�� in X such that Xn � ��N and Xn
t � Vt for

t � Tn� It follows that �Xn�n�� is Fatou convergent on T to V � Since X is closed under
Fatou convergence on T 
 we conclude that V � X � �

� Proof of Theorem ���

Condition �ii� of the theorem is clearly necessary for a decomposition of the form �i�� To
prove su�ciency we denote byX the set of processesX which are locally bounded from below
and are of the form X � S � C
 where S � S and C is an increasing process with C� � ��
Obviously
 P�S� � P �X �� Thus
 the proof follows from Proposition ��� and Proposition ���
below
 which asserts that X is closed under Fatou convergence on dense subsets of R��

Proposition ��� Let T be a dense subset of R�� If a sequence �Xn�n�� in X is Fatou
convergent on T to X then X � X �

Proof Clearly it is enough to show that X is dominated by some element cX � X with
respect to the ordering �� Thus
 the proposition follows from Lemma ��� and Lemma ���
below� �

For a negative number a we denote Y � Y�T � a� the set of random processes Y such
that there is a sequence �Y n�n�� in X which is Fatou convergent on T to Y and is bounded
from below by the constant a� On Y we use the ordering � de�ned by X � Y i� Y �X
is an increasing process� To simplify the notation let us assume that P � P�S�
 and let us
write AS � AS�P �� In addition
 we assume hereafter that all processes X � X are constant
after time � and that

AS � N

for some N � �� The general case follows by a localization argument�

��



Lemma ��� Let X be an element of Y� There is a maximal element cX on the ordered set
Y such that X � cX�

Proof For Y � Y we de�ne

b�Y � � sup
Z�Y� Z�Y

E �Z� � Y�� �

It is clear that Y is maximal if and only if b�Y � � ��
�� Let us show that
 for any Y � Y such that b�Y � � �
 there is U � X such that U � a

and

P
	
�U � Y �
� � �

q
b�Y �



� �

q
b�Y �������

where we use the notation
�U � Y �
� � sup

��t��
jUt � Ytj�

If this assertion fails
 and if �Kn�n�� is a sequence in X which is Fatou convergent on T
to Y and such that Kn � a
 n � �
 then

lim inf
n��

P ��Kn � Y �
� � 
�� � 
�������

where � � �
q
b�Y �� In this case there are two increasing sequences �ik� jk�k�� such that

P �sup
t��

�K ik
t �Kjk

t � � �� � �� k � ��

De�ne the stopping time

�k � inf
n
t � � � K ik

t �Kjk
t � �

o
�

and the processes

Lk
t � K ik

t	�k 	 �Kjk
t �Kjk

t	�k��

Ak
t � �K ik

�k
�Kjk

�k
�Ift��kg�

It follows that Lk � X and Ak is an increasing process such that P �Ak
� � �� � �� Moreover


Lk
t �Ak

t � K ik
t Ift��kg 	Kjk

t Ift��kg�

Hence
 the sequence �Lk�Ak�k�� is Fatou convergent on T to Y and is bounded from below
by the constant a�

Lemma ��� implies the existence of Bk � conv�Ak� Ak��� � � ��
 k � �
 and of an increasing
process B such that �Bn�n�� is Fatou convergent on T to B� Since P �Ak

� � �� � �
 we have

that EB� � ��� Denote by Mk the convex combination of �Lk� Lk��� � � �� obtained with the
same weights as Bk� The sequence �Mn�n�� is Fatou convergent on T to Y 	B andMn � a

n � �� Therefore
 Z � Y 	B belongs to Y� It is clear that Y � Z� However

E �Z� � Y�� � EB� � �� � 
b�Y �

��



and we come to a contradiction�
�� Let �Y n�n�� be a sequence in Y such that Y � � X
 Y n � Y n�� and b�Y n� � ����n���


and let cX be the limit of �Y n�n��� �From �� we deduce the existence of a sequence �Un�n��
in X such that P ��Un � Y n�
� � ��n� � ��n and Un � a� It follows that cX � Y� Finally

since Y n � cX we have X � cX and b�cX� � infn�� b�Y n� � �� �

Lemma ��� Let bY be a maximal element of Y�T � a�� Let �An�n�� be a sequence of increas�
ing processes and �Kn�n�� be a sequence in S such that Kn � a� n � �� Assume that the
convergence

bYt � lim sup
s
t� s�T

lim sup
n��

�Kn
s �An

s �

� lim inf
s
t� s�T

lim inf
n��

�Kn
s �An

s �

holds almost surely� for any t � �� Then the variables An
� and the maximal functions

�Kn � bY �
� tend to � in probability as n tends to 
�

Proof If there are an increasing sequence �nk�k�� and a number � � � such that P �Ank
� �

�� � �
 then Lemma ��� implies the existence of Bk � conv�Ank � Ank�� � � � ��
 k � �
 and of
an increasing process B such that �Bn�n�� is Fatou convergent to B and P �B� � �� � ��

Denote by Nk the convex combination of �Knk �Knk�� � � � �� obtained with the same weights
as Bk� The sequence �Nn�n�� is Fatou convergent on T to bY 	 B
 and Nn � a� This

contradicts the maximality of bY �
To �nish the proof we have to show that the maximal functions �Km �Kn�
� tend to �

in probability as m and n tend to 
� This follows as in part �� of the proof of Lemma ����
�

The next lemma is the very assertion we need to �nish the proof of Proposition ����

Lemma ��� Let bY be a maximal element of Y�T � a�� Then bY � S�

Proof The basic idea is to construct a sequence �Mn�n�� in S which is convergent to bY in
the semimartingale topology and is uniformly bounded from below�

�� From Lemma ��� we deduce the existence of a sequence �Hn�n�� in S such that

Hn � a and the maximal functions �Hn � bY �
� tend to � in probability� In particular

supn���H

n�
� � 	
� We are going to construct a sequence �Ln�n�� of convex combinations
of �Hn�n�� which satis�es in addition the condition supn���L

n� Ln�� � 	
�

The process Hn �AS is a supermartingale and therefore can be decomposed as

Hn �AS � Rn �An�

where Rn is a local martingale and An is an increasing predictable process with An
� � ��

Since Hn � a and AS � N 
 we have Rn � a�N and An � Rn 	N � a� It follows that Rn

is a supermartingale and EAn
� � N � a�

��



�From Lemma ��� we deduce the existence of a sequenceBn � conv�An� An��� � � ��
 n � �

and of an increasing process B such that �Bn�n�� is Fatou convergent to B� Fatou$s lemma
implies that EB� � N � a� It follows that

sup
n��

Bn
� � 	
 and sup

n��
�Bn� Bn�� � sup

n��

X
t��

�!Bn
t �

� � sup
n��

�Bn
� �

� � 	
�

Let Kn � conv�Hn�Hn��� � � �� and Sn � conv�Rn� Rn��� � � �� be the convex combinations
obtained with the same weights as Bn � conv�An� An��� � � ��� Since

Kn �AS � Sn �Bn�

we have

sup
n��

�Sn�
� � sup
n��

�Kn�
� 	 sup
n��

Bn
� 	AS

� � sup
n��

�Hn�
� 	 sup
n��

Bn
� 	AS

� � 	
�

where
�S�
� � sup

t��
jStj�

It follows that the stopping time

�m � inf
n��

inf f� � t � � � jSn
t j � mg

is less then � with vanishing probability as m tends to 
� In view of the supermartingale
property of Sn and the inequality Sn � a�N 
 we obtain

E�Sn�
�m � m	 EjSn
�m j � m	 �N � �a	 ESn

�m � m	 �N � �a�

Now the Davis inequality implies the existence of a constant cm � 	
 such that

E�Sn� Sn�����m � cm�

�From Lemma ��� we deduce the existence of a sequence

Cn � conv
	
�Sn� Sn���� �

h
Sn��� Sn��

i���
� � � �



� n � ��

which is Fatou convergent to an increasing process C� An application of Fatou$s lemma
gives

EC�If�m	�g � lim inf
n��

ECn
� If�m	�g � cm�

Since P ��m � �� tends to � as m tends to 

 we have C� � 	
 almost surely� It follows
that supn�� C

n
� � 	
�

Let Ln � conv�Kn�Kn��� � � �� and T n � conv�Sn� Sn��� � � �� andDn � conv�Bn� Bn��� � � ��
be the convex combinations obtained with the same weights as Cn� We have

Ln � T n 	AS �Dn

��



and
�T n� T n����� � Cn

� � �Dn�Dn�
���
� � sup

k�n
�Bk� Bk�

���
� �

see the �Minkowski inequality���
��� in ���
 Chapter VII� Hence

sup
n��

�Ln� Ln�� � � sup
n��

�T n� T n�� 	 � sup
n��

�Dn�Dn�� 	 ��AS � AS�� � 	
�

�� Let us de�ne the probability measure R � P on ���F� with density

dR

dP
�

e�	

Ee�	
�

where 
 � supn�� �L
n� Ln��� Since

ER sup
n��

�Ln� Ln�� � 	
�

Ln is a special semimartingale with respect to R
 and so it can be decomposed as

Ln � F n 	An�

where F n is an local martingale underR and An is a predictable process of bounded variation�
Note that

ER �F n� F n�� � ER �Ln� Ln�� �

see ���
 VII Theorem ��� This implies supn��ER �F n� F n�� � 	

 i�e�
 the sequence �F n�n��
is bounded in the spaceM��R� ��� ��� of square integrable martingales with respect to R and
with parameter set ��� ��� Thus there is a sequence Gn � conv�F n� F n��� � � ��
 n � �
 which
is convergent in M��R� ��� ���
 hence also in the semimartingale topology�

�� Let �Mn�n�� be the sequence of convex combinations of �Ln�n�� with the canonical
decomposition

Mn � Gn 	Bn�

whereGn is the convergent sequence of martingales constructed in �� andBn � conv�An� An��� � � ���
In order to establish convergence of �Mn�n�� in the semimartingale topology we only have
to show that the sequence �Bn�n�� is convergent in the semimartingale topology� The proof
proceeds along the lines of the proof of Lemma 
��� in ���� It is su�cient to show thatR �
� jdB

n
t � dBm

t j tends to � as n and m tend to 
� If this were not the case
 we could �nd
two increasing sequences �in� jn�n�� and a number � � � such that P �Cn

� � �� � �
 where

Cn
t �

�

�

Z t

�
jdBin

s � dBjn
s j� t � ��

Let us show that this contradicts the maximal property of bY �
Hahn$s decomposition implies the existence of a predictable process hn with values in

f��� �g such that

Cn
t �

�

�

Z t

�
hn�dBin � dBjn�� t � ��

��



Let us denote

Nn
t �

�

�

Z t

�
�� 	 hn�dM in 	

�

�

Z t

�
��� hn�dM jn

and let Nn � Hn 	Dn be the canonical decomposition of Nn under R
 where

Hn
t �

�

�

Z t

�
�� 	 hn�dGin 	

�

�

Z t

�
��� hn�dGjn

is a martingale under R and

Dn
t �

�

�

Z t

�
�� 	 hn�dBin 	

�

�

Z t

�
�� � hn�dBjn

is a predictable process of bounded variation� Since Mn � S and the set S is predictably
convex we have Nn � S�

By the construction of hn we deduce that the processes Dn � Bin and Dn � Bjn are
increasing� Moreover
 since

Hn
t �Gin

t �
�

�

Z t

�
�hn � ��

�
dGin � dGjn

�
and the processes Gin �Gjn tend to � in M��R� ��� ���
 the maximal functions �Hn �Gin�



�

tend to � in probability� The same holds for �Hn �Gjn�


�� Taking if necessary a subsequence

we can suppose that convergence holds almost surely and that the stopping times

�n � inf
k�n

inf
n
� � t � � � Hk � max

�
Gik � Gjk

�
� ��n

o
are equal to � with probability tending to � as n tends to 
� Since �M in � bY �
� � � in
probability and

Nn �Cn � Hn 	
�

�
�Bin 	Bjn� � Hn �

�

�
�Gin 	Gjn� 	

�

�
�M in 	M jn�

we deduce that the maximal functions �Nn � Cn � bY �
� tend to � in probability�
For t � �n and k � n we have

Nk
t � Hk

t 	Dk
t � max�Gik

t � G
jk
t � 	 max�Bik

t � B
jk
t �� ��n

� max�M ik
t �M

jk
t �� ��n�

At time �n a jump !Nk is either !M ik or !M jk and hence the equality

Nk
t � min�M ik

t �M
jk
t �� ��n

holds for t � �n� Since Mn � a we get

Nk
t � a� ��n� � � t � �n� k � n�

If we de�ne cNn
t � na

na��
Nn
t	�n
 t � �
 then cNn � S
 cNn � a and maximal functions �cNn �

Cn � bY �
� tend to � in probability�
Now Lemma ��� implies that the variables Cn

� tend to � in probability� This contradiction
proves the convergence of �Bn�n�� in the semimartingale topology� �

��



Appendix	 A stochastic control lemma

Here we prove a stochastic control lemma which was used in the proof of Proposition 
���
Let S be a family of semimartingales which are locally bounded from below� We suppose
that P �S� �� 
 and denote by AS�Q� the upper variation process of S with respect to
Q � P �S�� Recall that Mt�Q� denotes the set of stopping times � with values in �t�	
�

and such that the process
�
AS�Q�u�t �AS�Q�t

�
u��

is bounded on ��� � �� As before
 all

processes are assumed to be real�valued
 to have right�continuous paths with left limits
 and
to be adapted with respect to the given �ltration �Ft�t��� For simplicity we assume hereafter
that the initial ���eld F� is trivial�

Lemma A�� Let �ft�t�� be a nonnegative process such that

sup
Q�P�S�

sup
��M��Q�

EQ�f� �AS�Q��� � 	
�

There exists a process �Ut�t�� such that for t � �

Ut � ess sup
Q�P�S�� ��Mt�Q�

�
EQ�f� �AS�Q�� jFt� 	AS�Q�t

�

almost surely� Moreover� for any Q � P �S� the process U�AS�Q� is a local supermartingale
under Q�

Proof Without loss of generality we can suppose that P � P �S�� For simplicity we assume
that the upper variation process of S with respect to P is uniformly bounded
 i�e�


AS �� AS�P � � N�A���

for some N �
� The general case follows by localization arguments�
We need to show that U is a supermartingale with respect to P � To any Q � P�S� we

can associate the corresponding density process z with respect to P � For t � � we denote
by Zt the set of density processes z corresponding to some Q � P�S� which are equal to �
on the interval ��� t�� Throughout we will use the notation

AS�z� � AS�Q�� Mt�z� �Mt�Q�

if z � Zt corresponds to Q � P�S�� Due to the fact that AS�z� � AS on ��� t� for z � Zt
 we
get

Ut � ess sup
z�Zt� ��Mt�z�

E�z��f� �AS�z�� 	AS
t �jFt��

For n � � we denote by Mt�z� n� the set of stopping times � with values in �t�	
� and

such that the process
�
AS�Q�u�t �AS�Q�t

�
u��

is bounded by n on ��� � �� We also de�ne the
process

Un
t � ess sup

z�Zt� ��Mt�z�n�
E�z��f� �AS�z�� 	AS

t �jFt��

��



Since for any z � Zt

Mt�z� �
�
n��

Mt�z� n���A���

we deduce that
Ut � sup

n��
Un
t ��A���

Let z� and z� belong to Zt
 �� � Mt�z�� n� and �� � Mt�z�� n�
 where n is a �xed positive
number� De�ne the set

K �
n
� � E�z����f�� �AS�z����jFt� � E�z����f�� �AS�z����jFt�

o
�

Since K � Ft
 we conclude that the process

z � z�IK 	 z��� � IK�

belongs to Zt and the stopping time

� � ��IK 	 ����� IK�

is an element of M�z� n�� Moreover
 we have

AS�z� � AS�z��IK 	AS�z����� IK��

E�z��f� �AS�z���jFt� � max
n
E�z����f�� �AS�z�����jFt�� E�z����f�� �AS�z�����jFt�

o
�

Note that for any z � Zt and � � Mt�z� n� we have

z��f� �AS�z�� 	AS
t 	 n� � ��

Now the results of Striebel ���� �see ���
 Lemma ���A��� imply that for s � t�

E�Un
t jFs� � ess sup

z�Zt� ��Mt�z�n�
E�z��f� �AS�z�� 	AS

t �jFs��

Taking the supremum over n and using �A��� and �A��� we get

E�UtjFs� � ess sup
z�Zt� ��Mt�z�

E�z��f� �AS�z�� 	AS
t �jFs���A�
�

Evidently
 Zt � Zs� Moreover
 we have Mt�Q� � Ms�Q� for Q � P�S� due to �A��� � It
follows that

E�Ut �AS
t jFs� � ess sup

z�Zs� ��Ms�z�
E�z��f� �AS�z�� �jFs�

� Us �AS
s �

Hence U �AS is a supermartingale�
To �nish the proof we have to show that U admits a right�continuous modi�cation with

limits from the left� This is equivalent to the existence of such a modi�cation for V � U�AS �

��



According to Theorem ��� in ����
 this is the case if and only if the function �EVt�t�� is right�
continuous�

When s � � the equality �A�
� takes the form

EVt � sup
z�Zt� ��Mt�z�

E�z��f� �AS�z������A���

Let t
 �tn�n�� be positive numbers such that tn � t
 n � 	

 and tn � t 	 �
 n � ��
Since V is a supermartingale
 we have

EVt � lim
n��

EVtn �

To prove the reverse inequality we �x � � � and choose a process z � z��� from Zt and
a stopping time � � ���� from Mt�z� such that

EVt � E�z��f� �AS�z���� 	 � and P �� � t� � ���A���

This is possible by �A��� and the right�continuity of the processes under consideration� For
n � � we de�ne the stopping time �n and the process zn as follows

�n �

�
�� � � tn
t	 �� � � tn

� znu �

�
zu�ztn� � � tn and u � tn
�� � � tn or u � tn

�

We have that zn � Ztn 
 �n � Mtn�z
n� and

AS�zn�u �

�
�AS�z�u �AS�z�tn 	AS

tn�� � � tn and u � tn
AS
u � � � tn or u � tn

�

Since
AS�zn��n � AS

�n 	AS�z�� �AS�z�t�

it follows from �A��� and the de�nition of the set Mt�z� that the sequence
�
AS�zn��n

�
n��

is uniformly bounded� Now we use Fatou$s lemma and �A��� to conclude that

EVt � lim inf
n��

E�zn�n�f�n �AS�zn��n�� 	 � � lim
n��

EVtn 	 ��

Hence
 �EVt�t�� is a right�continuous function� This completes the proof of the lemma�
�
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