
Günther, Oliver; Oria, Vincent; Picouet, Philippe; Saglio, Jean-Marc; Scholl, Michel

Working Paper

Benchmarking spatial joins à la carte

SFB 373 Discussion Paper, No. 1997,50

Provided in Cooperation with:
Collaborative Research Center 373: Quantification and Simulation of Economic Processes,
Humboldt University Berlin

Suggested Citation: Günther, Oliver; Oria, Vincent; Picouet, Philippe; Saglio, Jean-Marc; Scholl, Michel
(1997) : Benchmarking spatial joins à la carte, SFB 373 Discussion Paper, No. 1997,50, Humboldt
University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of
Economic Processes, Berlin,
https://nbn-resolving.de/urn:nbn:de:kobv:11-10064291

This Version is available at:
https://hdl.handle.net/10419/66293

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://nbn-resolving.de/urn:nbn:de:kobv:11-10064291%0A
https://hdl.handle.net/10419/66293
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Benchmarking Spatial Joins �A La Carte

Oliver G�unther� Vincent Oriay Philippe Picouetz

Jean�Marc Saglioz Michel Schollx

Abstract

Spatial joins are join operations that involve spatial data types and operators�
Spatial access methods are often used to speed up the computation of spatial joins�
This paper addresses the issue of benchmarking spatial join operations� For this
purpose� we �rst present a WWW�based tool to produce sets of rectangles� Exper�
imentators can use a standard Web browser to specify the number of rectangles�
as well as the statistical distributions of their sizes� shapes� and locations� Second�
using the rectangle generator and a well�de�ned set of statistical models we de�ned
several test suites to compare the performance of three spatial join algorithms�
nested loop� scan�and�index� and synchronized tree traversal� We also added a real�
life data set from the Sequoia ���� storage benchmark� Our results con�rm that
the use of spatial indices leads to performance gains of several orders of magnitude�
The tests also show that highly selective join predicates enjoy greater performance
gains 	and vice versa
� All of the statistical models and algorithms are available on
the Web� which allows for easy veri�cation and modi�cation of our experiments�

� Introduction

Spatial joins are join operations that involve spatial data types and operators� Examples
include queries such as

� Find all houses that are located within �� kilometers from a lake� or

� Find all �elds that grow wheat and that belong to the Smith or the Jones property�

�Institut f�ur Wirtschaftsinformatik� Humboldt�Universit�at zu Berlin� Spandauer Str� �� ����	 Berlin�

Germany� guenther�wiwi�hu�berlin�de
yDepartment of Computing Science� University of Alberta� Edmonton� T
G �H�� Canada�

oria�cs�ualberta�ca
z�Ecole Nationale Sup�erieure des T�el�ecommunications�

� Rue Barrault� ��
�
 Paris Cedex ��� France�

fpicouet�sagliog�inf�enst�fr
xCNAM and INRIA� Domaine de Voluceau� Rocquencourt� France� Michel�Scholl�inria�fr

�

Houses� lakes� �elds� and properties are collections of objects that are each associated
with a spatial location and a spatial extension� In a relational or object�oriented database
system� each of these collections would typically be represented by a relation or a class�
respectively� Within �� kilometers from and belong to are spatial predicates�

G�unther �G�un�	
 gives the following de�nition of spatial join in a relational context�

The spatial join of two relations R and S� denoted by R �i�j S� is the set of tuples from
R�S where the i�th column of R and the j�th column of S are of some spatial data type�
� is a binary spatial predicate� and R�i stands in relation � to S�j�

Typically� one dedicated column in each relation R and S is of some spatial data type�
representing the spatial extension of the corresponding data object� We can then just
write R �� S as a shorthand for the spatial join R �i�j S� where i and j refer to those
dedicated columns in R and S� respectively� For the spatial predicate �� there are a wide
variety of possibilities� including

� intersects
��

� contains
��

� enclosed by
��

� distance
���q� with � � f���� ���� �g and q � ��
�

� northwest
��

� adjacent
��

For the computation of spatial joins� one usually employs a two�step approach� In the
�lter step one works with approximations of the actual data objects in order to reduce the
number of object pairs to be investigated in detail� Minimum bounding boxes
MBBs��
also called minimum bounding rectangles
MBRs�� are a common method of approxima�
tion� For each object pair that passes the �lter step� in the following re�nement step
we retrieve the exact spatial extensions of the data objects from disk and check the join
predicate in detail� In this paper we are exclusively concerned with the �lter step of the
join computation� The cost of the re�nement step is nearly identical for most common
computation strategies� certainly for the ones we study here� One possible exception is
the PBSM technique by Patel and DeWitt �PD��
 who optimized the re�nement step
using a common computational geometry technique called plane sweep�

For most ��predicates� the intersection join R �intersects S plays an important role
during the �lter step �GR��
� Nevertheless� the intersection join is just one type of spatial
join� albeit an important one� Unfortunately� many papers use the terms intersection join
and spatial join as synonyms� which can lead to misunderstandings� In particular� many
algorithms have been presented only in the context of intersection joins� a generalization
to other ��predicates is not immediately obvious �BKS�	� PD��� LR��� LR��� LR��
�

This paper addresses the issue of benchmarking spatial join operations� For this pur�
pose� we �rst present a WWW�based tool to produce sets of rectangles �a la carte� Exper�
imentators can use a standard Web browser to specify the number of rectangles� as well

as their distributions with regard to size� shape� and location� Various common statistical
distributions are supported for that purpose� Second� using the rectangle generator and
a well�de�ned set of statistical models we de�ned several test suites to compare the per�
formance of three spatial join algorithms� nested loop� scan�and�index� and synchronized
tree traversal� We also added a real�life data set� the Sequoia ���� storage benchmark
�SFGM�	
�

One of the critical issues in benchmarking is to make the results of an experiment
both veri�able and robust� Veri�able means that other researchers should be able to
repeat the experiments easily and come to similar conclusions� Robust means that the
results should hold not only in the particular environment of the original experiment
but in a more general setting as well� Moreover� it should be easy to integrate the
algorithms and data sets of the experiments into other benchmark experiments by other
researchers� Both criteria are rarely met in experimental computer science �TLPH��
� Our
Web interface� which provides access to the complete set of algorithms and experiments�
is an important step in this direction� Section � describes the rectangle generator we
built for the purpose of this study� We also specify the statistical models we used for
the subsequent performance analysis� In Section 	 we survey a variety of approaches to
compute a spatial join and discuss results of previous performance comparisons� Section
� presents the setup and the results of our experiments� Section � concludes with an
outlook on future work�

� The Benchmark

��� The Rectangle Generator

At the �Ecole Nationale Sup�erieure des T�el�ecommunications
ENST� we have implemented
a tool to generate sets of rectangles with edges parallel to the axes� Users can specify the
parameters listed in Table �� For the �rst �ve parameters� the user has to specify some
statistical distribution with the usual parameters� We currently support the uniform dis�
tribution U
min�max�� the normal distribution N
�� �� and the exponential distribution
E
��min�max��

Dependencies between variables are taken into account by the interface� If one has
speci�ed� for example� the coverage C� the size of the universe U � and the sample size N �
the mean area of the rectangles in the sample
�a� will be automatically instantiated as
CU	N �

If a generated rectangle does not �t into the universe� it is discarded and a new
rectangle is generated in its place� Given a sensible choice of parameters� in particular
�a � U � the e�ect of these heuristics on the distribution is marginal�

The rectangle generator is available on the World Wide Web at URL http���www�
inf�enst�fr� �bdtest�sigbench�menu�html� Anybody with Web access can transmit its pa�
rameters to the generator and obtain a corresponding random sample� Figures � and � in

Parameter Meaning
C coverage� the ratio between the total area of all rectangles and the

area of the universe
x x�coordinate of the rectangle�s lower left hand corner
y y�coordinate of the rectangle�s lower left hand corner
t angle of the rectangle�s main diagonal
to control its shape�
a area of the rectangle
N number of rectangles
sample size�
xmin smallest possible x�coordinate
ymin smallest possible y�coordinate
xmax largest possible x�coordinate
ymax largest possible y�coordinate
U size of the universe�
xmax 	 xmin�
ymax 	 ymin�

Table �� Parameters for the rectangle generator

the appendix show the current Web interface� Each model that a user speci�ed
i�e�� the
choice of distributions and parameter values� is saved on the ENST server under a name
that is sent back to the user� together with the sample� This way users can later refer to
their models and use them in their benchmarks� Note that we do not store the samples
but only the underlying statistical models�

��� A typical workload

Instead of combining di�erent parameter constellations at random� we have de�ned three
statistical models that simulate some typical cartographic applications�

The �rst model� called Biotopes� simulates a geological or biotope map� It contains
relatively few large rectangles that are uniformly distributed in the universe� The coverage
is ����� which symbolizes that di�erent formations may overlap but not to a large degree�
The shape of the rectangles is uniformly distributed� i�e�� the probability for a rectangle
to be close to a square is equal to it being long and thin� This situation can be modeled
by the parameter con�guration given in Fig� �� which also pictures a sample for N � ���
Di�erent values of N basically lead to a change of scale� Biotopes����� for example�
contains �� times as many objects as Biotopes���� Their average area� however� is ��
times smaller�

The second model� called Cities� simulates the distribution of cities on a road map�
The map contains many polygons of relatively small size� The polygons are uniformly
distributed on the map� Coverage is ��� which means that there is virtually no overlap�
The shape is normally distributed around the square shape� Long and thin rectangles are
rare� The parameters for this model� as well as a random sample for N � ��� are given

x� y
 U
�� ��
t
 U
��
	��
a
 N
�	N� ��

Biotopes�N

Figure �� Biotopes model� N���

in Fig� ��

The third model simulates a world map� It is obtained by the nesting of two sub�
models� In a �rst step� NI relatively large rectangles are generated using the parameter
constellation I given in Fig� 	� Coverage is 	��� which is comparable to the percentage of
land on the earth surface� Overlap may occur but will be small� To keep things simple�
we have decided not to forbid overlap altogether� Each of those NI Continents is �lled
with NII objects each� generated according to parameter constellation II and scaled down
to �t the size of the particular continent� Coverage is ����� and the shape of the objects
is normally distributed around the square� As a result� there are NI � NII rectangles
in this model� equally divided among NI rectangular clusters� Fig� 	 gives a sample for
NI � �� and NII � ���
in the �gure� in each continent� only �� out of the ��� objects
have been visualized��

To complement these three statistical models� we added two real�life samples of rect�
angles borrowed from the Sequoia ���� storage benchmark �SFGM�	
� Fig� � displays one
of these samples and shows the skewed distribution of the objects in the plane�

� Computation of Spatial Joins

To compute a classical
i�e�� non�spatial� relational join R � S e�ciently� there are several
well�known strategies� most notably nested loop� sort�merge� scan�and�index� hash join�
and join indices �ME��
� The application of these techniques to spatial joins is not always
straightforward� We discuss the various approaches in turn�

x� y
 U
�� ��
t
 N

	�� ��
a
 E
� � ����	N� � � ����	N� ��	N�

Cities�N

Figure �� Cities model� N����

��� Nested Loop

The simple nested loop approach checks each tuple in R against each tuple in S whether
there is a match� Its performance is proportional to the product of the sizes of R and
S� jRj � jSj� Of course� this basic strategy also works for spatial joins� However� its lack
of e�ciency with larger data sets becomes even more obvious in the case of spatial data�
where predicates are usually much harder to compute than simple comparison predicates
on real numbers�

��� Sort�Merge

If the relations R and S can be sorted according to the tuple values in columns i and j�
respectively� and if � is a simple comparison predicate� such as �� �� or �� then there are
more e�cient ways to compute a join� The sort�merge strategy �rst sorts R on column
i and S on column j� Then R and S are merged and checked for matching tuples� The
running time of this algorithm is proportional to jRj log jRj � jSj log jSj� jJ j� where jJ j
is the cardinality of the result of the join�

In the case of spatial joins� however� sort�merge often does not work because there
is no total ordering among spatial objects that preserves spatial proximity� As a result�
for many ��predicates there is no sort that makes sure that one catches all matching
tuples during the following merge� For an example� consider Fig� �� where the space is
divided into square cells by means of a grid� The cells are sorted in Peano order
also
called locational codes or z�ordering �Ore��
�� a common way of spatial sorting� Let � be

xI� yI
 U
�� ��
tI
 N

	�� ��
aI
 N
��		NI � ��
xII� yII
 U
�� ��
tII
 N

	�� ��
aII
 N
�	NII � ��

Figure 	� Continents model� NI���� NII����

adjacent� let the relation R contain the cells �� 	� and �� and let S contain the cells ��
�� �� and �� With sort�merge� one �rst sorts R into the sequence
�� 	� �� and S into the
sequence
�� �� �� ��� During the merge� one obtains in sequence the matching pairs
�� ���

�� �� and
�� ��� The matching pair
	� �� remains undetected� Similar examples can be
constructed for any other spatial ordering�

One notable exception from this e�ect is the ��predicate intersects� for which sort�
merge strategies can be used rather e�ciently� One possible implementation based on
Peano ordering has been described by Orenstein �Ore��
� Abel et al� �AOT���
 later
extended this work to support spatial join processing in a distributed environment� Becker
et al� store the bounding boxes of the spatial objects as points in a higher dimension and
use a grid �le to �nd matching pairs �BHF�	
� Another approach is to take advantage of
the plane�sweep technique known from computational geometry �PS��
� Rotem �Rot��

uses this technique to build a spatial join index from existing grid �les� Patel and DeWitt
�PD��
 partition the universe into tiles and use plane�sweep to �nd matching tuples in
each tile�

��� Scan�and�Index

Another approach that takes advantage of the sortability of the columns involved is the
scan�and�index strategy
also called index�supported joins�� This approach can be applied
if at least one of the relations involved
say R� has an index de�ned on the relevant column
i that supports the join operator �� i�e�� the retrieval of matching tuples� A typical example
would be a relation with a B��tree on column i and � being a simple comparison predicate

Figure �� Sequoia��	� a real�life model

1 3 9

42

7

8

Figure �� A spatial grid with the corresponding Peano sequence

�� �� �� �� ��� In that case one may scan the other relation
say S� and use the index
on R to �nd the matching tuples for each tuple in S� If an index search takes time log jRj�
this algorithm results in a performance proportional to jSj log jRj� jJ j� This strategy can
easily be adapted to spatial joins� provided there exists a suitable spatial index on one or
more of the relations involved�

��� Hash Joins

For equality joins� an e�cient approach is to hash both input relations with the same
hash function on the join attribute
partition phase�� and then to join the buckets in a
pairwise manner
join phase�� This hash join technique has some problems when applied
to spatial joins because there are no equivalence classes as in the case of equality� Lo and
Ravishankar �LR��
 provide an interesting solution to this problem� There are two crucial

di�erences in comparison to the relational case� On the one hand� a data item may be
 hashed! into multiple buckets� On the other hand� the hash
or partition� function for
the two input relations may di�er� Their experiments show that the spatial hash�join is
highly competitive�

��� Join Indices

If the database does not encounter too many updates� it is usually worthwhile to precom�
pute the result of frequent joins and store it in a join index �Val��
� A join index is a
two�column relation that stores the tuple IDs of matching tuples� Each join then corre�
sponds to a simple look�up in the join index relation followed by a retrieval of the tuples
involved from the disk� If one only counts join computation time� this strategy is highly
e�ective and beats all other strategies in most cases� On the other hand� it is often hard
to forecast which joins are the most frequent� Furthermore� updates are not cheap� and
in highly dynamic environments other strategies will catch up because their lower update
costs outweigh the higher costs for join computation� Join indices can also be used for
spatial joins although they lose some of their e�ciency in that case �Rot��� LH��� LZ��
�
First� updates become even more expensive because the computations involved are more
complicated� Second� the e�cient implementation of join indices� as described by Val�
duriez �Val��
� relies on an ordering along the join attributes� which cannot be maintained
in the spatial case�

��� Synchronized Tree Traversal

If hierarchical indices are available on both input relations� the scan�and�index technique
can be extended in such a way that both indices are searched depth��rst in a synchronized
manner� with the two depth��rst searches being guided by hints from each other� This
technique has no immediate equivalent in traditional join processing�

G�unther �G�un�	
 proposed an algorithm based on the fact that many indices organize
the data objects and bucket regions into a PART�OF hierarchy� Typical examples for this
class of indices
also called generalization trees� are the R�tree �Gut��
 and the R��tree
�BKSS��
� Except for the root� each node�s corresponding bucket region is completely
contained in the bucket region corresponding to its parent node� While overlaps between
bucket regions at the same tree level are forbidden in some of those index structures
such
as the R��tree�� they do not pose a problem for the following join algorithm�

The idea of the algorithm is to examine higher levels of the tree �rst to see which
branches may contain data objects that are of interest to the join to be computed� For
that purpose� it is useful to de�ne a predicate �� such that for two bucket regions o��
and o��� o

�

��o
�

� is true if the corresponding subtrees may contain data objects o� and
o�� respectively� such that o��o�� In that case it is necessary to go down the subtrees
and investigate the situation at a �ner granularity� In order to be an e�cient �lter�

o��o� o���o
�

�

o� within distance d from o� o�� within distance d from o��

measured between centerpoints�
measured between closest points�

o� intersects o� o�� intersects o��
o� includes o� o�� intersects o��

o� contained in o� o�� intersects o��
o� northwest of o� o�� intersects the NW quadrant formed

measured between centerpoints� by the right vertical and the lower
horizontal tangent of o��

o� reachable from o� in x minutes o�� intersects the x�minute bu�er of o��

Table �� �� and corresponding ��predicates�

��predicates should be both selective and relatively easy to compute� Table � gives
several examples� note that the chosen ��predicates are often similar or identical to the
corresponding ��predicates�

Now let GTR�A and GTS�B denote the generalization trees de�ned on the relevant
spatial columns A and B of relations R and S� respectively� In order to compute
the spatial join R �

A�B

S� one �rst checks whether the two roots match� i�e�� whether

root
GTS�A��root
GTR�B�� If no� the search terminates� there are no matching tuples� If
yes� we continue by checking for which children a� of root
GTR�A� the condition a��root
GTS�B�
is true� and for which children b� of root
GTS�B� the condition root
GTS�A��b� is true�
For each qualifying a� and each qualifying b� one appends an entry
a�� b�� to the list
QualPairs��
� For each tuple in QualPairs��
� one proceeds recursively until all match�
ing tuples have been found�

For the special case of the tree structure being an R�tree and � meaning intersects�
Brinkho� et al� have independently proposed and implemented an e�cient version of this
algorithm �BKS�	
� When one of the input relations to the intersection join does not
have an R�tree already available� Lo and Ravishankar �LR��
 propose building a tree
index on the "y� The index� called seeded tree� is similar to an R�tree but is allowed to be
unbalanced� In �LR��
 the authors extend this technique to the case where none of the
two input relations has a tree index available� The application of R�trees to predicates
other than intersects has been discussed by Papadias et al� �PTSE��
�

� Results of the Comparative Study

In our practical experiments we tested the following three algorithms to perform a spatial
join�

� Nested Loop
NL��

� Scan�and�Index
SI��

� Synchronized Tree Traversal
STT��

As a testing environment� we chose the object�oriented database system O� �Deu��
� All
algorithms were implemented under O� version ��� and run under Sun OS ����	 on a Sparc
station Sun System ���

For SI and STT� we used an e�cient secondary�memory implementation of a special
quadtree data structure �SGR��
� The approach relies on z�ordered quadtree�indexed
relations� Each z�ordered index is mapped onto the system�s B��tree in order to take
advantage of its clustering mechanism� This technique provides more "exibility and a
simpler design than an index implemented in the system�s kernel� without compromising
too much on performance�

We concentrated on the two ��predicates intersects and northwest� While for inter�
sects the matching probability for two rectangles chosen at random is directly related to
their distance� this does not matter for northwest� In fact� the matching probability that
a randomly chosen rectangle r� is northwest of another randomly chosen rectangle r� is
���� no matter where these rectangles are located� This means that for this predicate
the expected result size is very large� in the average� ��� of the tuples in R � S qual�
ify� An e�cient query optimizer would therefore relegate this operation towards the end
of the processing� where the number of tuples involved is already relatively small� We
consequently dropped the large Continents model from the measurements regarding this
predicate�

Our current benchmark consists of three test suites� Each test suite consists of several
tests� which are de�ned by the ��predicate and the models underlying the two input
relations� Moreover� we distinguish between the case where the two input samples are
mapped onto the same universe� or shifted against each other by a random vector� In the
former case� the grids used for indexing the two samples are identical� which simpli�es
processing considerably� In the latter case� the grids are di�erent
unless one reorganizes
one of the two samples��

��Predicate Model � Model � Grid
intersects Biotopes���� Cities������ same

Biotopes������ Cities������� same
northwest Biotopes���� Cities������ same

Table 	� Test suite �

Test suite �
Table 	� compares two Cities and two Biotopes models of di�erent
sample sizes� All samples are projected onto the same universe� i�e�� the indexing grids
are identical�

In test suite �
Table ��� we investigate two samples from the Sequoia ���� stor�
age benchmark� The �rst sample
Sequoia���� contains ���� rectangles� the second one

Sequoia��	� ��� rectangles� Both samples are mapped onto the same universe� i�e�� the
underlying grids are identical�

��Predicate Sample � Sample � Grid
intersects Sequoia��� Sequoia��� same
northwest Sequoia��� Sequoia��� same

Table �� Test suite �

Test suite 	
Table �� compares two randomly generated samples of the same model�
but shifted against each other by a random vector V
 U

xmin� ymin��
xmax� ymax��� This
idea is applied to all three synthetic models and a variety of sample sizes� Because we do
not apply northwest to the Continents samples� we obtain �ve di�erent tests�

��Predicate Sample � Sample � Grid
intersects Biotopes���� Biotopes���� di�erent

Cities������ Cities������ di�erent
Continents��������� Continents��������� di�erent

northwest Biotopes���� Biotopes���� di�erent
Cities������ Cities������ di�erent

Table �� Test suite 	

For the experiments� we �rst generated three random drawings for each test
i�e�� for
each line of the tables above�� We then ran each of the three algorithms against the
three random drawings� resulting in nine runs per test� The numbers reported below are
averages taken over the three runs corresponding to a given test�algorithm combination�

Figure � plots the performance gains of SI and STT� where gain is de�ned as the ratio
of NL elapsed time over SI�STT elapsed time� Gain is plotted versus combined sample
size� measured by the numbers of tuples in the Cartesian product� jSample �j�jSample �j�
each point of the curve corresponds to a test� i�e� to a distinct combined sample size�

For the intersects operator� both SI and STT provided signi�cant performance im�
provements compared to the nested loop strategy NL� with gains between � and ����
Di�erences between SI and STT are inconclusive� Gain seems to increase with larger
sample sizes�

For northwest we obtain quite a di�erent picture� In all of our tests� NL was the
most e�cient strategy
gain � ��� The overhead associated with the use of indices
apparently outweighed any performance improvement gained from them� This is because

the northwest join usually returns a large number of tuples� Once again� there are no
signi�cant di�erences between SI and STT� Moreover� relative performance does not seem
to depend on sample size anymore�

0.1

1

10

100

10000 100000 1e+06 1e+07

ga
in

combined sample size

intersect

northwest

SI
STT

Figure �� Relative performance NL�SI and NL�STT vs� combined sample size

The use of real�world data versus arti�cial data does not seem to make much of a
di�erence� There is a slight increase in the gain of SI versus NL in the case of the Sequoia
data
note the peak at x�coordinate �e���� but it seems hardly signi�cant� In any case�
it does not have an impact on the main insights obtained from our experiments�

The connections between performance gain� sample sizes� and ��operators become
clearer once one considers the performance behavior as a function of the matching proba�
bility� Matching probability is de�ned as the ratio between the number of tuples retrieved
and the combined sample size jSample �j�jSample �j� Not surprisingly� our tests revealed
a much larger matching probability for northwest than for intersect� The use of di�erent
grids increased matching probabilities for northwest even further� simply because the shift
increases the probability for two given data objects to be in a northwest relationship� For
intersect� matching probabilities tend to decrease for larger sample sizes� No such e�ect
was observed for northwest�

As Figure � shows� matching probability is an excellent indicator of the observed vari�
ations in relative performance� Larger matching probabilities generally tend to lower the
performance advantage expected from using an index� For large matching probabilities�
the use of indices is no longer worthwhile because the associated overhead outweighs any
potential performance gain� As northwest joins usually correspond to a large matching
probability� NL is preferable for those cases�

For a given matching probability� there may still be up to one order of magnitude of
di�erence in relative performance� As noted previously� these di�erences can be explained
in terms of sample size� Larger sample sizes lead to larger performance advantages for both
index�based strategies SI and STT� This is not surprising if one looks at the complexities
of the various algorithms� NL�s complexity is linear in the combined sample size jRj �
jSj� In contrast� the complexity of SI is jSj log jRj � jJ j� where S is the relation to be
scanned
usually the smaller one�� and J is the set of qualifying tuples� STT� �nally�
has a complexity of only log jSj log jRj � jJ j� due to the logarithmic complexity of the
corresponding tree searches�

Other than for the two parameters mentioned above
matching probability and sample
size�� the choice of model did not have a major impact on the results� Other aspects like
the spatial distribution and overlap of the data objects did not really matter� This should
be regarded as a positive result� it means that query optimizers can concentrate on those
two simple parameters without getting involved with any speci�cs of the given data sets�

Our tests may be validated through the World Wide Web� All of our algorithm im�
plementations are available through http���www�inf�enst�fr��bdtest�sigbench�menu�html�
The form�based interface shown in Fig� �� allows users to create samples of the three mod�
els described above and to use them as inputs to these programs� Moreover� users can
refer to models they speci�ed previously with our rectangle generator
see Section ���

� Conclusions

In this paper we investigated the issue of benchmarking spatial join operations� Our �rst
contribution is a WWW�based tool to produce random benchmarks for a given sample
size and distribution� Experimentators can use a standard Web browser to specify the
number of rectangles they want in a sample� as well as their distribution with regard to
size� shape� and location� Various standard statistical distributions are supported for that
purpose�

Our second contribution is a performance evaluation of several common algorithms
to compute a spatial join� With the help of the rectangle generator� we de�ned several
test suites and ran experiments to compare the nested loop strategy and two index�based
strategies� scan�and�index� and synchronized tree traversal� Our results showed that
the relative performance of the two index�based strategies depends on two parameters�
matching probability and sample size� As expected� smaller matching probabilities clearly
favor the index�based strategies� Large matching probabilities� on the other hand� render

0.1

1

10

100

0.01 0.1 1 10 100

ga
in

matching probability (x100): includes < contains < intersect < northwest

SI

SI

SI

SI
SI

STT

STT

STT STT

STT

Biotopes-100 - Biotopes-100
Biotopes-100 - Cities-1000

Cities-1000 - Cities-1000
Biotopes-1000 - Cities-10000

Sequoia-16 - Sequoia-11

Figure �� Relative performance SI�NL and STT�NL vs� matching probability

these strategies virtually worthless compared to the simple nested loop strategy� because
the associated overhead outweighs any potential performance advantages� As for sample
size� larger samples are more advantageous for the index�based strategies� simply because
of their lower time complexities� In comparison to matching probability� however� the
impact of sample size is generally much smaller� The di�erence between the two index�
based strategies was negligible in comparison�

A later implementation will also include an evaluation of other join strategies� Sort�
merge and hash joins are currently being implemented� We also plan to enhance the rect�
angle generator to support a greater variety of distributions� such as skewed distributions
or correlative x�y�distributions� Our long�term objective is to bring to the community
statistically well founded workloads su�cient for a variety of benchmarking applications�

Our Web interface� which provides access to the complete set of algorithms and ex�
periments� is an important step to make the results of our evaluation both veri�able and
robust� Other researchers should be able to repeat our experiments easily and come to
similar conclusions� Our results should hold not only in the particular environment of the
original experiment but also in a more general setting� Moreover� it should be easy to inte�

grate the algorithms and data sets of the experiments into other benchmark experiments
by other researchers� We invite the reader to access our Web site and do so�

References

�AOT���
 D� J� Abel� B� C� Ooi� K��L� Tan� R� Power� and J� X� Yu� Spatial joins in
distributed spatial query processing� In Advances in Spatial Databases� number
��� in LNCS� Springer�Verlag� �����

�BHF�	
 L� Becker� K� Hinrichs� and U� Finke� A new algorithm for computing joins
with grid �les� In Proc� IEEE �th Int� Conference on Data Engineering� ���	�

�BKS�	
 T� Brinkho�� H��P� Kriegel� and B� Seeger� E�cient processing of spatial joins
using R�trees� In Proc� ACM SIGMOD Conference on the Management of
Data� pages �	�#���� ���	�

�BKSS��
 N� Beckmann� H��P� Kriegel� R� Schneider� and B� Seeger� The R��tree� An
e�cient and robust access method for points and rectangles� In Proc� ACM
SIGMOD Conference on Management of Data� pages 	��#		�� �����

�Deu��
 O� Deux� The Story of O�� IEEE Transactions on Knowledge and Data Engi�
neering� �
�����#���� March �����

�GR��
 V� Gaede and W��F� Riekert� Spatial access methods and query processing in
the object�oriented GIS GODOT� In Proc� of the AGDM
�� Workshop� pages
��#��� Delft� The Netherlands� ����� Netherlands Geodetic Commission�

�G�un�	
 O� G�unther� E�cient computation of spatial joins� In Proc� IEEE �th Int�
Conference on Data Engineering� ���	�

�Gut��
 A� Guttman� R�trees� A dynamic index structure for spatial searching� In
Proc� ACM SIGMOD Conference on Management of Data� pages ��#��� �����

�LH��
 W� Lu and J� Han� Distance�associated join indices for spatial range search�
In Proc� IEEE �th Int� Conference on Data Engineering� �����

�LR��
 M��L� Lo and C� V� Ravishankar� Spatial joins using seeded trees� In Proc�
ACM SIGMOD Conference on Management of Data� pages ���#���� �����

�LR��
 M��L� Lo and C� V� Ravishankar� Generating seeded trees from data sets� In
Advances in Spatial Databases� number ��� in LNCS� Springer�Verlag� �����

�LR��
 M��L� Lo and C� V� Ravishankar� Spatial hash�joins� In Proc� ACM SIGMOD
Conference on Management of Data� pages ���#���� �����

�LZ��
 W� S� Luk and W� Zhou� How spatial data models and DBMS platforms a�ect
the performance of spatial join� In Proc� 	th Int� Symposium on Spatial Data
Handling� �����

�ME��
 P� Mishra and M� H� Eich� Join processing in relational databases� ACM
Computing Surveys� ��
����	#��	� March �����

�Ore��
 J� A� Orenstein� Spatial query processing in an object�oriented database sys�
tem� In Proc� ACM SIGMOD Conference on Management of Data� pages
	��#			� �����

�PD��
 J� M� Patel and D� J� DeWitt� Partition based spatial�merge joins� In Proc�
ACM SIGMOD Conference on Management of Data� pages ���#���� �����

�PS��
 F� P� Preparata and M� I� Shamos� Computational geometry� Springer�Verlag�
New York� NY� �����

�PTSE��
 D� Papadias� Y� Theodoridis� T� Sellis� and M� J� Egenhofer� Topological
relations in the world of minimum bounding rectangles� A study with R�trees�
In Proc� ACM SIGMOD Int� Conf� on Management of Data� pages ��#��	�
�����

�Rot��
 D� Rotem� Spatial join indices� In Proc� IEEE �th Int� Conference on Data
Engineering� pages ��#��� �����

�SFGM�	
 M� Stonebraker� J� Frew� K� Gardels� and J� Meredith� The Sequoia ����
storage benchmark� In Proc� ACM SIGMOD Conference on Management of
Data� ���	�

�SGR��
 M� Scholl� G� Grangeret� and X� Rehse� Point and window queries with linear
spatial indices� An evalu�
ation with O�� Technical Report RRC������� Cedric Group� CNAM� Paris�
����� ftp���ftp�cnam�fr�pub�CNAM�cedric�tech reports�RRC�������ps�Z�

�TLPH��
 W� Tichy� P� Lukowicz� L� Prechelt� and E� A� Heinz� Experimental evaluation
in computer science� A quantitative study� Journal of Systems and Software�
��
����#��� �����

�Val��
 P� Valduriez� Join indices� ACM Trans� on Database Systems� ��
��� �����

Appendix A� Related Web Pages

Figure �� The Web interface to the rectangle generator
page ��

Figure �� The Web interface to the rectangle generator
page ��

Figure ��� The Web interface to running experiments

