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Benchmarking Spatial Joins �A La Carte

Oliver G�unther� Vincent Oriay Philippe Picouetz

Jean�Marc Saglioz Michel Schollx

Abstract

Spatial joins are join operations that involve spatial data types and operators�
Spatial access methods are often used to speed up the computation of spatial joins�
This paper addresses the issue of benchmarking spatial join operations� For this
purpose� we �rst present a WWW�based tool to produce sets of rectangles� Exper�
imentators can use a standard Web browser to specify the number of rectangles�
as well as the statistical distributions of their sizes� shapes� and locations� Second�
using the rectangle generator and a well�de�ned set of statistical models we de�ned
several test suites to compare the performance of three spatial join algorithms�
nested loop� scan�and�index� and synchronized tree traversal� We also added a real�
life data set from the Sequoia ���� storage benchmark� Our results con�rm that
the use of spatial indices leads to performance gains of several orders of magnitude�
The tests also show that highly selective join predicates enjoy greater performance
gains 	and vice versa
� All of the statistical models and algorithms are available on
the Web� which allows for easy veri�cation and modi�cation of our experiments�

� Introduction

Spatial joins are join operations that involve spatial data types and operators� Examples
include queries such as

� Find all houses that are located within �� kilometers from a lake� or

� Find all �elds that grow wheat and that belong to the Smith or the Jones property�
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Houses� lakes� �elds� and properties are collections of objects that are each associated
with a spatial location and a spatial extension� In a relational or object�oriented database
system� each of these collections would typically be represented by a relation or a class�
respectively� Within �� kilometers from and belong to are spatial predicates�

G�unther �G�un�	
 gives the following de�nition of spatial join in a relational context�

The spatial join of two relations R and S� denoted by R �i�j S� is the set of tuples from
R�S where the i�th column of R and the j�th column of S are of some spatial data type�
� is a binary spatial predicate� and R�i stands in relation � to S�j�

Typically� one dedicated column in each relation R and S is of some spatial data type�
representing the spatial extension of the corresponding data object� We can then just
write R �� S as a shorthand for the spatial join R �i�j S� where i and j refer to those
dedicated columns in R and S� respectively� For the spatial predicate �� there are a wide
variety of possibilities� including

� intersects
��

� contains
��

� enclosed by
��

� distance
���q� with � � f���� ���� �g and q � ��
�

� northwest
��

� adjacent
��

For the computation of spatial joins� one usually employs a two�step approach� In the
�lter step one works with approximations of the actual data objects in order to reduce the
number of object pairs to be investigated in detail� Minimum bounding boxes 
MBBs��
also called minimum bounding rectangles 
MBRs�� are a common method of approxima�
tion� For each object pair that passes the �lter step� in the following re�nement step
we retrieve the exact spatial extensions of the data objects from disk and check the join
predicate in detail� In this paper we are exclusively concerned with the �lter step of the
join computation� The cost of the re�nement step is nearly identical for most common
computation strategies� certainly for the ones we study here� One possible exception is
the PBSM technique by Patel and DeWitt �PD��
 who optimized the re�nement step
using a common computational geometry technique called plane sweep�

For most ��predicates� the intersection join R �intersects S plays an important role
during the �lter step �GR��
� Nevertheless� the intersection join is just one type of spatial
join� albeit an important one� Unfortunately� many papers use the terms intersection join
and spatial join as synonyms� which can lead to misunderstandings� In particular� many
algorithms have been presented only in the context of intersection joins� a generalization
to other ��predicates is not immediately obvious �BKS�	� PD��� LR��� LR��� LR��
�

This paper addresses the issue of benchmarking spatial join operations� For this pur�
pose� we �rst present a WWW�based tool to produce sets of rectangles �a la carte� Exper�
imentators can use a standard Web browser to specify the number of rectangles� as well



as their distributions with regard to size� shape� and location� Various common statistical
distributions are supported for that purpose� Second� using the rectangle generator and
a well�de�ned set of statistical models we de�ned several test suites to compare the per�
formance of three spatial join algorithms� nested loop� scan�and�index� and synchronized
tree traversal� We also added a real�life data set� the Sequoia ���� storage benchmark
�SFGM�	
�

One of the critical issues in benchmarking is to make the results of an experiment
both veri�able and robust� Veri�able means that other researchers should be able to
repeat the experiments easily and come to similar conclusions� Robust means that the
results should hold not only in the particular environment of the original experiment
but in a more general setting as well� Moreover� it should be easy to integrate the
algorithms and data sets of the experiments into other benchmark experiments by other
researchers� Both criteria are rarely met in experimental computer science �TLPH��
� Our
Web interface� which provides access to the complete set of algorithms and experiments�
is an important step in this direction� Section � describes the rectangle generator we
built for the purpose of this study� We also specify the statistical models we used for
the subsequent performance analysis� In Section 	 we survey a variety of approaches to
compute a spatial join and discuss results of previous performance comparisons� Section
� presents the setup and the results of our experiments� Section � concludes with an
outlook on future work�

� The Benchmark

��� The Rectangle Generator

At the �Ecole Nationale Sup�erieure des T�el�ecommunications 
ENST� we have implemented
a tool to generate sets of rectangles with edges parallel to the axes� Users can specify the
parameters listed in Table �� For the �rst �ve parameters� the user has to specify some
statistical distribution with the usual parameters� We currently support the uniform dis�
tribution U
min�max�� the normal distribution N 
�� �� and the exponential distribution
E
��min�max��

Dependencies between variables are taken into account by the interface� If one has
speci�ed� for example� the coverage C� the size of the universe U � and the sample size N �
the mean area of the rectangles in the sample 
�a� will be automatically instantiated as
CU	N �

If a generated rectangle does not �t into the universe� it is discarded and a new
rectangle is generated in its place� Given a sensible choice of parameters� in particular
�a � U � the e�ect of these heuristics on the distribution is marginal�

The rectangle generator is available on the World Wide Web at URL http���www�
inf�enst�fr� �bdtest�sigbench�menu�html� Anybody with Web access can transmit its pa�
rameters to the generator and obtain a corresponding random sample� Figures � and � in



Parameter Meaning
C coverage� the ratio between the total area of all rectangles and the

area of the universe
x x�coordinate of the rectangle�s lower left hand corner
y y�coordinate of the rectangle�s lower left hand corner
t angle of the rectangle�s main diagonal 
to control its shape�
a area of the rectangle
N number of rectangles 
sample size�
xmin smallest possible x�coordinate
ymin smallest possible y�coordinate
xmax largest possible x�coordinate
ymax largest possible y�coordinate
U size of the universe� 
xmax 	 xmin�
ymax 	 ymin�

Table �� Parameters for the rectangle generator

the appendix show the current Web interface� Each model that a user speci�ed 
i�e�� the
choice of distributions and parameter values� is saved on the ENST server under a name
that is sent back to the user� together with the sample� This way users can later refer to
their models and use them in their benchmarks� Note that we do not store the samples
but only the underlying statistical models�

��� A typical workload

Instead of combining di�erent parameter constellations at random� we have de�ned three
statistical models that simulate some typical cartographic applications�

The �rst model� called Biotopes� simulates a geological or biotope map� It contains
relatively few large rectangles that are uniformly distributed in the universe� The coverage
is ����� which symbolizes that di�erent formations may overlap but not to a large degree�
The shape of the rectangles is uniformly distributed� i�e�� the probability for a rectangle
to be close to a square is equal to it being long and thin� This situation can be modeled
by the parameter con�guration given in Fig� �� which also pictures a sample for N � ���
Di�erent values of N basically lead to a change of scale� Biotopes����� for example�
contains �� times as many objects as Biotopes���� Their average area� however� is ��
times smaller�

The second model� called Cities� simulates the distribution of cities on a road map�
The map contains many polygons of relatively small size� The polygons are uniformly
distributed on the map� Coverage is ��� which means that there is virtually no overlap�
The shape is normally distributed around the square shape� Long and thin rectangles are
rare� The parameters for this model� as well as a random sample for N � ��� are given
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Figure �� Biotopes model� N���

in Fig� ��

The third model simulates a world map� It is obtained by the nesting of two sub�
models� In a �rst step� NI relatively large rectangles are generated using the parameter
constellation I given in Fig� 	� Coverage is 	��� which is comparable to the percentage of
land on the earth surface� Overlap may occur but will be small� To keep things simple�
we have decided not to forbid overlap altogether� Each of those NI Continents is �lled
with NII objects each� generated according to parameter constellation II and scaled down
to �t the size of the particular continent� Coverage is ����� and the shape of the objects
is normally distributed around the square� As a result� there are NI � NII rectangles
in this model� equally divided among NI rectangular clusters� Fig� 	 gives a sample for
NI � �� and NII � ��� 
in the �gure� in each continent� only �� out of the ��� objects
have been visualized��

To complement these three statistical models� we added two real�life samples of rect�
angles borrowed from the Sequoia ���� storage benchmark �SFGM�	
� Fig� � displays one
of these samples and shows the skewed distribution of the objects in the plane�

� Computation of Spatial Joins

To compute a classical 
i�e�� non�spatial� relational join R � S e�ciently� there are several
well�known strategies� most notably nested loop� sort�merge� scan�and�index� hash join�
and join indices �ME��
� The application of these techniques to spatial joins is not always
straightforward� We discuss the various approaches in turn�
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Figure �� Cities model� N����

��� Nested Loop

The simple nested loop approach checks each tuple in R against each tuple in S whether
there is a match� Its performance is proportional to the product of the sizes of R and
S� jRj � jSj� Of course� this basic strategy also works for spatial joins� However� its lack
of e�ciency with larger data sets becomes even more obvious in the case of spatial data�
where predicates are usually much harder to compute than simple comparison predicates
on real numbers�

��� Sort�Merge

If the relations R and S can be sorted according to the tuple values in columns i and j�
respectively� and if � is a simple comparison predicate� such as �� �� or �� then there are
more e�cient ways to compute a join� The sort�merge strategy �rst sorts R on column
i and S on column j� Then R and S are merged and checked for matching tuples� The
running time of this algorithm is proportional to jRj log jRj � jSj log jSj� jJ j� where jJ j
is the cardinality of the result of the join�

In the case of spatial joins� however� sort�merge often does not work because there
is no total ordering among spatial objects that preserves spatial proximity� As a result�
for many ��predicates there is no sort that makes sure that one catches all matching
tuples during the following merge� For an example� consider Fig� �� where the space is
divided into square cells by means of a grid� The cells are sorted in Peano order 
also
called locational codes or z�ordering �Ore��
�� a common way of spatial sorting� Let � be
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Figure 	� Continents model� NI���� NII����

adjacent� let the relation R contain the cells �� 	� and �� and let S contain the cells ��
�� �� and �� With sort�merge� one �rst sorts R into the sequence 
�� 	� �� and S into the
sequence 
�� �� �� ��� During the merge� one obtains in sequence the matching pairs 
�� ���

�� �� and 
�� ��� The matching pair 
	� �� remains undetected� Similar examples can be
constructed for any other spatial ordering�

One notable exception from this e�ect is the ��predicate intersects� for which sort�
merge strategies can be used rather e�ciently� One possible implementation based on
Peano ordering has been described by Orenstein �Ore��
� Abel et al� �AOT���
 later
extended this work to support spatial join processing in a distributed environment� Becker
et al� store the bounding boxes of the spatial objects as points in a higher dimension and
use a grid �le to �nd matching pairs �BHF�	
� Another approach is to take advantage of
the plane�sweep technique known from computational geometry �PS��
� Rotem �Rot��

uses this technique to build a spatial join index from existing grid �les� Patel and DeWitt
�PD��
 partition the universe into tiles and use plane�sweep to �nd matching tuples in
each tile�

��� Scan�and�Index

Another approach that takes advantage of the sortability of the columns involved is the
scan�and�index strategy 
also called index�supported joins�� This approach can be applied
if at least one of the relations involved 
say R� has an index de�ned on the relevant column
i that supports the join operator �� i�e�� the retrieval of matching tuples� A typical example
would be a relation with a B��tree on column i and � being a simple comparison predicate



            

Figure �� Sequoia��	� a real�life model
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Figure �� A spatial grid with the corresponding Peano sequence


�� �� �� �� ��� In that case one may scan the other relation 
say S� and use the index
on R to �nd the matching tuples for each tuple in S� If an index search takes time log jRj�
this algorithm results in a performance proportional to jSj log jRj� jJ j� This strategy can
easily be adapted to spatial joins� provided there exists a suitable spatial index on one or
more of the relations involved�

��� Hash Joins

For equality joins� an e�cient approach is to hash both input relations with the same
hash function on the join attribute 
partition phase�� and then to join the buckets in a
pairwise manner 
join phase�� This hash join technique has some problems when applied
to spatial joins because there are no equivalence classes as in the case of equality� Lo and
Ravishankar �LR��
 provide an interesting solution to this problem� There are two crucial



di�erences in comparison to the relational case� On the one hand� a data item may be
 hashed! into multiple buckets� On the other hand� the hash 
or partition� function for
the two input relations may di�er� Their experiments show that the spatial hash�join is
highly competitive�

��� Join Indices

If the database does not encounter too many updates� it is usually worthwhile to precom�
pute the result of frequent joins and store it in a join index �Val��
� A join index is a
two�column relation that stores the tuple IDs of matching tuples� Each join then corre�
sponds to a simple look�up in the join index relation followed by a retrieval of the tuples
involved from the disk� If one only counts join computation time� this strategy is highly
e�ective and beats all other strategies in most cases� On the other hand� it is often hard
to forecast which joins are the most frequent� Furthermore� updates are not cheap� and
in highly dynamic environments other strategies will catch up because their lower update
costs outweigh the higher costs for join computation� Join indices can also be used for
spatial joins although they lose some of their e�ciency in that case �Rot��� LH��� LZ��
�
First� updates become even more expensive because the computations involved are more
complicated� Second� the e�cient implementation of join indices� as described by Val�
duriez �Val��
� relies on an ordering along the join attributes� which cannot be maintained
in the spatial case�

��� Synchronized Tree Traversal

If hierarchical indices are available on both input relations� the scan�and�index technique
can be extended in such a way that both indices are searched depth��rst in a synchronized
manner� with the two depth��rst searches being guided by hints from each other� This
technique has no immediate equivalent in traditional join processing�

G�unther �G�un�	
 proposed an algorithm based on the fact that many indices organize
the data objects and bucket regions into a PART�OF hierarchy� Typical examples for this
class of indices 
also called generalization trees� are the R�tree �Gut��
 and the R��tree
�BKSS��
� Except for the root� each node�s corresponding bucket region is completely
contained in the bucket region corresponding to its parent node� While overlaps between
bucket regions at the same tree level are forbidden in some of those index structures 
such
as the R��tree�� they do not pose a problem for the following join algorithm�

The idea of the algorithm is to examine higher levels of the tree �rst to see which
branches may contain data objects that are of interest to the join to be computed� For
that purpose� it is useful to de�ne a predicate �� such that for two bucket regions o��
and o��� o

�

��o
�

� is true if the corresponding subtrees may contain data objects o� and
o�� respectively� such that o��o�� In that case it is necessary to go down the subtrees
and investigate the situation at a �ner granularity� In order to be an e�cient �lter�



o��o� o���o
�

�

o� within distance d from o� o�� within distance d from o��

measured between centerpoints� 
measured between closest points�

o� intersects o� o�� intersects o��
o� includes o� o�� intersects o��

o� contained in o� o�� intersects o��
o� northwest of o� o�� intersects the NW quadrant formed


measured between centerpoints� by the right vertical and the lower
horizontal tangent of o��

o� reachable from o� in x minutes o�� intersects the x�minute bu�er of o��

Table �� �� and corresponding ��predicates�

��predicates should be both selective and relatively easy to compute� Table � gives
several examples� note that the chosen ��predicates are often similar or identical to the
corresponding ��predicates�

Now let GTR�A and GTS�B denote the generalization trees de�ned on the relevant
spatial columns A and B of relations R and S� respectively� In order to compute
the spatial join R �

A�B

S� one �rst checks whether the two roots match� i�e�� whether

root
GTS�A��root
GTR�B�� If no� the search terminates� there are no matching tuples� If
yes� we continue by checking for which children a� of root
GTR�A� the condition a��root
GTS�B�
is true� and for which children b� of root
GTS�B� the condition root
GTS�A��b� is true�
For each qualifying a� and each qualifying b� one appends an entry 
a�� b�� to the list
QualPairs��
� For each tuple in QualPairs��
� one proceeds recursively until all match�
ing tuples have been found�

For the special case of the tree structure being an R�tree and � meaning intersects�
Brinkho� et al� have independently proposed and implemented an e�cient version of this
algorithm �BKS�	
� When one of the input relations to the intersection join does not
have an R�tree already available� Lo and Ravishankar �LR��
 propose building a tree
index on the "y� The index� called seeded tree� is similar to an R�tree but is allowed to be
unbalanced� In �LR��
 the authors extend this technique to the case where none of the
two input relations has a tree index available� The application of R�trees to predicates
other than intersects has been discussed by Papadias et al� �PTSE��
�

� Results of the Comparative Study

In our practical experiments we tested the following three algorithms to perform a spatial
join�



� Nested Loop 
NL��

� Scan�and�Index 
SI��

� Synchronized Tree Traversal 
STT��

As a testing environment� we chose the object�oriented database system O� �Deu��
� All
algorithms were implemented under O� version ��� and run under Sun OS ����	 on a Sparc
station Sun System ���

For SI and STT� we used an e�cient secondary�memory implementation of a special
quadtree data structure �SGR��
� The approach relies on z�ordered quadtree�indexed
relations� Each z�ordered index is mapped onto the system�s B��tree in order to take
advantage of its clustering mechanism� This technique provides more "exibility and a
simpler design than an index implemented in the system�s kernel� without compromising
too much on performance�

We concentrated on the two ��predicates intersects and northwest� While for inter�
sects the matching probability for two rectangles chosen at random is directly related to
their distance� this does not matter for northwest� In fact� the matching probability that
a randomly chosen rectangle r� is northwest of another randomly chosen rectangle r� is
���� no matter where these rectangles are located� This means that for this predicate
the expected result size is very large� in the average� ��� of the tuples in R � S qual�
ify� An e�cient query optimizer would therefore relegate this operation towards the end
of the processing� where the number of tuples involved is already relatively small� We
consequently dropped the large Continents model from the measurements regarding this
predicate�

Our current benchmark consists of three test suites� Each test suite consists of several
tests� which are de�ned by the ��predicate and the models underlying the two input
relations� Moreover� we distinguish between the case where the two input samples are
mapped onto the same universe� or shifted against each other by a random vector� In the
former case� the grids used for indexing the two samples are identical� which simpli�es
processing considerably� In the latter case� the grids are di�erent 
unless one reorganizes
one of the two samples��

��Predicate Model � Model � Grid
intersects Biotopes���� Cities������ same

Biotopes������ Cities������� same
northwest Biotopes���� Cities������ same

Table 	� Test suite �

Test suite � 
Table 	� compares two Cities and two Biotopes models of di�erent
sample sizes� All samples are projected onto the same universe� i�e�� the indexing grids
are identical�



In test suite � 
Table ��� we investigate two samples from the Sequoia ���� stor�
age benchmark� The �rst sample 
Sequoia���� contains ���� rectangles� the second one

Sequoia��	� ��� rectangles� Both samples are mapped onto the same universe� i�e�� the
underlying grids are identical�

��Predicate Sample � Sample � Grid
intersects Sequoia��� Sequoia��� same
northwest Sequoia��� Sequoia��� same

Table �� Test suite �

Test suite 	 
Table �� compares two randomly generated samples of the same model�
but shifted against each other by a random vector V 
 U

xmin� ymin�� 
xmax� ymax��� This
idea is applied to all three synthetic models and a variety of sample sizes� Because we do
not apply northwest to the Continents samples� we obtain �ve di�erent tests�

��Predicate Sample � Sample � Grid
intersects Biotopes���� Biotopes���� di�erent

Cities������ Cities������ di�erent
Continents��������� Continents��������� di�erent

northwest Biotopes���� Biotopes���� di�erent
Cities������ Cities������ di�erent

Table �� Test suite 	

For the experiments� we �rst generated three random drawings for each test 
i�e�� for
each line of the tables above�� We then ran each of the three algorithms against the
three random drawings� resulting in nine runs per test� The numbers reported below are
averages taken over the three runs corresponding to a given test�algorithm combination�

Figure � plots the performance gains of SI and STT� where gain is de�ned as the ratio
of NL elapsed time over SI�STT elapsed time� Gain is plotted versus combined sample
size� measured by the numbers of tuples in the Cartesian product� jSample �j�jSample �j�
each point of the curve corresponds to a test� i�e� to a distinct combined sample size�

For the intersects operator� both SI and STT provided signi�cant performance im�
provements compared to the nested loop strategy NL� with gains between � and ����
Di�erences between SI and STT are inconclusive� Gain seems to increase with larger
sample sizes�

For northwest we obtain quite a di�erent picture� In all of our tests� NL was the
most e�cient strategy 
gain � ��� The overhead associated with the use of indices
apparently outweighed any performance improvement gained from them� This is because



the northwest join usually returns a large number of tuples� Once again� there are no
signi�cant di�erences between SI and STT� Moreover� relative performance does not seem
to depend on sample size anymore�
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Figure �� Relative performance NL�SI and NL�STT vs� combined sample size

The use of real�world data versus arti�cial data does not seem to make much of a
di�erence� There is a slight increase in the gain of SI versus NL in the case of the Sequoia
data 
note the peak at x�coordinate �e���� but it seems hardly signi�cant� In any case�
it does not have an impact on the main insights obtained from our experiments�

The connections between performance gain� sample sizes� and ��operators become
clearer once one considers the performance behavior as a function of the matching proba�
bility� Matching probability is de�ned as the ratio between the number of tuples retrieved
and the combined sample size jSample �j�jSample �j� Not surprisingly� our tests revealed
a much larger matching probability for northwest than for intersect� The use of di�erent
grids increased matching probabilities for northwest even further� simply because the shift
increases the probability for two given data objects to be in a northwest relationship� For
intersect� matching probabilities tend to decrease for larger sample sizes� No such e�ect
was observed for northwest�



As Figure � shows� matching probability is an excellent indicator of the observed vari�
ations in relative performance� Larger matching probabilities generally tend to lower the
performance advantage expected from using an index� For large matching probabilities�
the use of indices is no longer worthwhile because the associated overhead outweighs any
potential performance gain� As northwest joins usually correspond to a large matching
probability� NL is preferable for those cases�

For a given matching probability� there may still be up to one order of magnitude of
di�erence in relative performance� As noted previously� these di�erences can be explained
in terms of sample size� Larger sample sizes lead to larger performance advantages for both
index�based strategies SI and STT� This is not surprising if one looks at the complexities
of the various algorithms� NL�s complexity is linear in the combined sample size jRj �
jSj� In contrast� the complexity of SI is jSj log jRj � jJ j� where S is the relation to be
scanned 
usually the smaller one�� and J is the set of qualifying tuples� STT� �nally�
has a complexity of only log jSj log jRj � jJ j� due to the logarithmic complexity of the
corresponding tree searches�

Other than for the two parameters mentioned above 
matching probability and sample
size�� the choice of model did not have a major impact on the results� Other aspects like
the spatial distribution and overlap of the data objects did not really matter� This should
be regarded as a positive result� it means that query optimizers can concentrate on those
two simple parameters without getting involved with any speci�cs of the given data sets�

Our tests may be validated through the World Wide Web� All of our algorithm im�
plementations are available through http���www�inf�enst�fr��bdtest�sigbench�menu�html�
The form�based interface shown in Fig� �� allows users to create samples of the three mod�
els described above and to use them as inputs to these programs� Moreover� users can
refer to models they speci�ed previously with our rectangle generator 
see Section ���

� Conclusions

In this paper we investigated the issue of benchmarking spatial join operations� Our �rst
contribution is a WWW�based tool to produce random benchmarks for a given sample
size and distribution� Experimentators can use a standard Web browser to specify the
number of rectangles they want in a sample� as well as their distribution with regard to
size� shape� and location� Various standard statistical distributions are supported for that
purpose�

Our second contribution is a performance evaluation of several common algorithms
to compute a spatial join� With the help of the rectangle generator� we de�ned several
test suites and ran experiments to compare the nested loop strategy and two index�based
strategies� scan�and�index� and synchronized tree traversal� Our results showed that
the relative performance of the two index�based strategies depends on two parameters�
matching probability and sample size� As expected� smaller matching probabilities clearly
favor the index�based strategies� Large matching probabilities� on the other hand� render
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Figure �� Relative performance SI�NL and STT�NL vs� matching probability

these strategies virtually worthless compared to the simple nested loop strategy� because
the associated overhead outweighs any potential performance advantages� As for sample
size� larger samples are more advantageous for the index�based strategies� simply because
of their lower time complexities� In comparison to matching probability� however� the
impact of sample size is generally much smaller� The di�erence between the two index�
based strategies was negligible in comparison�

A later implementation will also include an evaluation of other join strategies� Sort�
merge and hash joins are currently being implemented� We also plan to enhance the rect�
angle generator to support a greater variety of distributions� such as skewed distributions
or correlative x�y�distributions� Our long�term objective is to bring to the community
statistically well founded workloads su�cient for a variety of benchmarking applications�

Our Web interface� which provides access to the complete set of algorithms and ex�
periments� is an important step to make the results of our evaluation both veri�able and
robust� Other researchers should be able to repeat our experiments easily and come to
similar conclusions� Our results should hold not only in the particular environment of the
original experiment but also in a more general setting� Moreover� it should be easy to inte�



grate the algorithms and data sets of the experiments into other benchmark experiments
by other researchers� We invite the reader to access our Web site and do so�
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Figure ��� The Web interface to running experiments


