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Abstract

Semiparametric single	index regression involves an unknown �nite dimensional
parameter and an unknown 
link� function
 We consider estimation of the param	

eter via the pseudo maximum likelihood method
 For this purpose we estimate

the conditional density of the response given a candidate index and maximize the

obtained likelihood
 We show that this technique of adaptation yields an asymp	

totically e�cient estimator � it has minimal variance among all estimators
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� Introduction

A single�index response model has the form

E�Y j X � x� � E�Y j X� � x�� �����

where Y is a scalar dependent variable� X is a d�dimensional vector of explanatory vari�
ables� x� is the index� the scalar product of x with �� a vector of parameters whose values
are unknown� Many widely used parametric models have this form� Examples are linear
regression� binary logit and probit� and tobit models�

These models assume in ����� a �link� between the index x� and the response� In
the linear regression� for example� this link is the identity� In the logit model case it is
the conditional distribution function of a logistic distribution� In this paper we consider
estimation of the parameter � in ����� without supposing further restrictions on this link�
Moreover� we derive the asymptotic normal distribution of this estimator and show that
it is e	cient in the sense of achieving minimal variance among all estimators for ��

Adaptation in the linear regression model has been considered by Carroll ��
����
Robinson ��
�
�� They consider the case of unknown heteroskedasticity of the error
variables� They show that a nonparametric estimate of the unknown heteroskedasticity
function gives full adaptation in the sense of yielding the same variance as the Aitken�
estimator with known heteroskedasticity function� The model ����� is more general since
it allows arbitrary relations between the index X� and Y �

Several estimators of � that do not require a fully parametric speci�cation of �����
already exist� Ichimura ��

�� developed a semiparametric least squares estimator of ��
This estimator is closely related to projection pursuit regression �Friedman and Stuetzle
��
���� since it minimizes a least squares criterion based on nonparametric estimation of
the link� Han ��
�
� and Sherman ��

�� describe a maximum rank correlation estimator�
Klein and Spady ��

�� developed a quasi�maximum likelihood estimator for the case in
which Y is a binary response� This estimator achieves the asymptotic e	ciency bound
of Cosslett ��
�
� if the link is a conditional distribution function� Horowitz and H�ardle
��

�� considered fast non�iterative methods for single�index models in the case of discrete
covariates� The estimators of Ichimura� Han� Klein and Spady� Sherman� and Horowitz
and H�ardle are n����consistent� and asymptotically normal under regularity conditions�

The foregoing estimators were designed for speci�c data situations like e�g� discrete
covariates or binary response or computational e	ciency� The focus on such a particular
aspect make them not necessarily e	cient� The variance of the direct �computationally
e	cient� estimator of Horowitz and H�ardle ��

�� for example is not the best possible
one computed in Klein and Spady ��

��� The object of this paper is to construct an
asymptotically e	cient estimator for general single�index response models� It deviates
from the ideas of projection pursuit since we use a pseudo maximum likelihood criterion�

Our method will be based on nonparametric estimation of the semiparametric condi�
tional density f� �y� x�� of the distribution L �Y jX��� We do not assume a speci�c struc�
ture� like for example a binary response as in Klein and Spady ��

��� for this conditional
density� Our approach thus covers e	cient estimation in linear regression �Bickel ��
����
with unknown error distribution as well as nonlinear response models with single�index
structure �see Huet� Jolivet� Mess�ean ��
�
���
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Suppose we are given i�i�d� observations Zi � �Xi� Yi� � IRd � IR� with

E�Yi j Xi � x� � E�Yi j Xi�� � x���� i � �� � � � � n� �����

where �� � � � IRd is the true value of the parameter in the model� Assume that for all
x � suppX the conditional density f �yjx� of Y given X � x with respect to a ���nite
measure exists� This density is supposed to depend upon x through x���

Thus a positive function f de�ned on suppY �M� �M� IR�� is given satisfying �

f �yjx� � f �y� x��� ��x� y� � suppZ� � �����

The main idea of our estimator is to estimate the function f in ����� and then to
optimize the �estimated� pseudo�likelihood over the parameter vector �� The technique
is called pseudo maximum likelihood estimation �PMLE�� We use the kernel estimation
method here since it is easy to compute in practice and auxiliary asymptotic results are
available in the literature� In order to present our estimator we need some more notation�

Let S be a �xed subset of the support of Z � �X� Y � and let SX � fx � �y s�t� �x� y� � Sg�
We assume that for all x in SX and all � in �� one can de�ne the conditional density
f� �y� x�� of Y given X� � x� and Z � S� We will then de�ne n estimators bf i� of f� at
the point �y� x��� for �x� y� in the �xed subset S� by

bf i��y� x�� � Ni�n�y� x���Di�n�x��� �����

with

Ni�n�y� t� �
�

n� �

nX
j��
j ��i

Khn �y � Yj� �Khn �t�Xj�� � IfZj�Sg�

Di�n�t� �
�

�n� ��

nX
j��
j ��i

Khn �t�Xj�� � IfZj�Sg�
�����

where hn is the bandwidth� K is a �xed kernel density� Kh ��� � K ���h� �h�
We de�ne ��n to be the solution of

bLn���n� � max
���

bLn��� �����

with bLn��� �
�

n

nX
i��

log bf i��Yi� Xi�� � IfZi�Sg� ���
�

Let Ln be the log�likelihood function de�ned by

Ln��� �
�

n

nX
i��

log f��Yi� Xi�� � IfZi�Sg� �����

De�ne also
L��� � Eflog f��Yi� Xi��� � IfZi�Sgg� ���
�

The idea is to maximize the proxy bLn��� for Ln ��� which itself is a proxy for L ����
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� Consistency of the semiparametric estimator

First� we show that the estimate ��n de�ned in ����� converges almost surely to �� as n
tends to �� We shall prove the following �

sup
���

��� bLn���� Ln���
��� a�s��	
n�� �� �����

and
sup
���

jLn���� L���j a�s��	
n�� �� �����

Then� if L��� has a unique maximum at ��� the PMLE estimate ��n converges almost
surely towards this maximum� The precise assumptions are as follows �

�A�� �Xi� Yi� are i�i�d� random vectors�

�A�� � is a compact subset of IRd�

�A�� The random vectors �Yi� Xi�� have a continuous distribution�

�A�� The compact subset S of the support of Zi � �Yi� Xi� is such that�

i� for all � in �� the conditional density h� of Xi� given that Zi � S veri�es
inf

�x����SX��
h� �x�� � ��

ii� inf
�z����S��

f� �y� x�� � �� where z � �x� y� �

�A�� i� h� and f� are uniformly continuous�

ii� h� �t� and f� �y� t� are three times di�erentiable with respect to t and the third
derivatives satisfy Lipschitz conditions for t � T� �S�� uniformly in � � � and
y � SY �

iii� R �x� ��
def�
� f� �y� x�� and D �x� ��

def�
� h� �x�� are twice continuously di�eren�

tiable with respect to � on S ���

�A�� There exists an unique �� � � such that relation ����� holds�

�A	� i� For all �� �� � � and x � SX � the distributions P� and P�� de�ned by the
densities f���� x�� and f����� x��� are equivalent�

ii� There exists a subset A � SX of positive Lebesgue measure such that Xi is
continuous on A�

�A
� The matrix M � E

�
� ��

����T
log f� �Yi� Xi��

�����
����

IfZi�Sg

�
is positive�de�nite�

�C�	�� K is a real symmetric fourth order kernel and hn � c n��� with c� 	 � ��

The following preliminary results are shown in the appendix�
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Lemma ��� Under the assumptions �A����A�� and �C �	�� with 	 �
�
�� �

�

�
� we have

sup
z�S

sup
���

���log bf� �y� x��� log f� �y� x��
��� a�s��	
n�� ��

Lemma ��� Under the assumptions �A�� through �A�� and �C �	�� with 	 �
�
�� �

�

�
� we

have 	
sup
���

��� bLn���� Ln���
��� � jLn���� L���j a�s��	

n�� ��

From Lemma ��� it follows that sup
���

��� bLn���� L���
��� a�s��	
n�� ��

Remark 	 Inspection of the proofs of Lemma ��� and ��� show that we do not need
�A�� in its full strength� Lipschitz continuity is su	cient� For better exposition we use
this stronger smoothing throughout�

Lemma ��� Under assumptions �A��� �A
� and �A����A�� the function L��� has a
unique maximum at ���

The proof relies on the properties of Kullback information and can be found in Bonneu�
Delecroix and Hristache ��

��� Application of Gouri�eroux� Monfort ��
�
� page ���� and
Lemmas ��� and ���� yields the following �

Theorem ��� Under assumptions �A����A�� and �C �	�� with 	 �
�
�� �

�

�
� the estimator

��n de
ned in ����� satis
es	
��n

a�s��	
n�� ���

� Asymptotic distribution of the semiparametric es�

timator

In order to obtain the asymptotic normality of b�n we show uniform convergence of the
�rst and second derivatives of bf��
Lemma ��� Under assumptions �A����A�� and �C �	�� with 	 �

�
�
	
� �



�
�

n��� sup
�Z����S��

��� bf� �Y�X��� f� �Y�X��
��� P	
n�� �� �����

n��� sup
�Z����S��

������ bf� �Y�X��

��
� �f� �Y�X��

��

����� P	
n�� �� �����

sup
�Z����S��

������� bf� �Y�X��

����T
� ��f� �Y�X��

����T

����� P	
n�� �� �����
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We�ll show that �bLn ��� veri�es the assumptions of Lemma ��� of Ichimura ��

���
This is a consequence of Lemma ��� and of the following �

Lemma ��� Under the assumptions �A����A���

�p
n

nX
i��

�
�

��
log bf� �Yi� Xi��

�����
����

� �

��
log f� �Yi� Xi��

�����
����

�
IfZi�Sg

P�	
n�� ��

The asymptotic distribution of b�n is then given by the following �

Theorem ��� Under assumptions �A����A�� and �C �	��� 	 �
�
�
	
� �



�
and if �� �

�
�� then

p
n
�b�n � ��

�
L	 N ����� � �����

with � � M��VM��� where

V � E

�
�

��
log f� �Yi� Xi��

�����
����

�

��T
log f� �Yi� Xi��

�����
����

IfZi�Sg

�
�

and M was de
ned in �A���

Proof of Theorem 
�� 	 It is su	cient to show that

� �

n

nX
i��

log bf� �Yi� Xi�� IfZi�Sg

veri�es the conditions �i���iv� of Lemma ��� of Ichimura ��

���

�i� b�n converges almost surely to ��� by Theorem ����

�ii� � �p
n

nX
i��

�

��
log f� �Yi� Xi��

�����
����

� IfZi�Sg L�	
n�� N ��� V � � since

�� � arg max
���

E
h
log f� �Yi� Xi�� IfZi�Sg

i

�
 E

�
�

��
log f� �Yi� Xi��

�����
����

IfZi�Sg

�
� ��

and ����� �p
n

nX
i��

�
�

��
log bf� �Yi� Xi��

�����
����

� �

��
log f� �Yi� Xi��

�����
����

������ IfZi�Sg
converges to � in probability by Lemma ����

�iii� � �

n

nX
i��

��

�����
bf� �Yi� Xi�� IfZi�Sg

P�	
n�� E

�
� ��

����T
f� �Yi� Xi�� IfZi�Sg

�
uniformly in

� � � �Lemma ��� and assumption �A��iii����

�iv� M ���� � E

�
� ��

����T
f� �Yi� Xi��

�����
����

IfZi�Sg

�
is a positive�de�nite matrix by �A���

�



� E�ciency of the semiparametric estimator

Let 
� �y� x� be the density of Zi � �Yi� Xi� given that Zi � S� where S is a subset of the
support of Zi �we assume that �Yi� Xi� is absolutely continuous with respect to a ���nite
measure ��� Here we do not suppose that S satis�es assumption �A��� so that S may
coincide with the support of Zi� even in the case where Zi is not compactly supported�
According to ����� �with f replaced by f��� for each z � S we have a decomposition of
the form �


� �y� x� � f� �y� x��� � g� �x� � �����

where g� �x� is the marginal density of Xi given that Zi � S� Hence� our semiparametric
model is de�ned by the family of distributions

P �

�
P �

dP

d�
� 
 �y� x� �� f� g� � � � �� f � F � g � G

�
�����

with the densities 
 satisfying �

i� 
 �y� x� �� f� g� � f �y� x�� � g �x� �

ii� 
 �y� x� ��� f�� g�� � 
� �y� x� �

Following Bickel� Klaassen� Ritov and Wellner ��

��� in order to determine the bound
of the asymptotic variance of an estimator of ��� we need to calculate the e	cient score�

For this purpose� we �rst need to determine the tangent space
	P� corresponding to the

nonparametric part

P� �

�
P �

dP

d�
� 
 �y� x� ��� f� g� � f � F � g � G

�
�����

of the model� This is the closed linear span of the union of tangent spaces corresponding
to �one�dimensional� regular parametric submodels Q � P�� Let

Q �

�
P �

dP

d�
� 
� �y� x� ��� � 
 �y� x� ��� f ��� �� �� � g ��� ��� � � � H � IR

�
�����

be such a submodel� Thus ff ��� �� ��g��H � F � fg ��� ��g��H � G and there exists an

element �� � H such that 
�� �y� x� ��� � 
� �y� x�� The tangent space
	Q of Q �at 
�� is

simply the linear subspace of L� �P�� � L� �
� � �� spanned by the score function S� �
� ln 
� �Yi� Xi� ���

��

�����
����

� We have �

S� �
� ln f �Yi� Xi��� ��

��

�����
����

�
� ln g �Xi� ��

��

�����
����

�����

so that

S� � S � fs� �Yi� Xi��� � s� �Xi� �
E�  s� �Yi� Xi��� jXi��� � �� E�  s� �Xi�� � �g �






where E� means that the expectation is taken with respect to the probability measure

P� � 
� � �� This means that the tangent space
	P� is a subspace of S�

Let

S� �
� ln 
 �Yi� Xi� �� f�� g��

��

�����
����

�
� ln f� �Yi� Xi��

��

�����
����

� �� ln f� �Yi� Xi��� �Xi�

�����

According to Bickel� Klaassen� Ritov and Wellner ��

��� Corollary ������ the information

bound on �� is given by I� � E�

�
S
�S


T
�

�
� where S
� � the e	cient score� is the residual of the

projection of S� on
	P�� Since S � 	P�� we have I� � E�

�
S�S

T
�

�
� were S� � S��proj �S�jS�

�see Lemma 
 of Bonneu� Delecroix and Hristache ��

����
On the other hand� if

Q �

�
P �

dP

d�
� 
 �y� x� �� f ��� �� �� � g ��� ��� � � � �

�
���
�

is a regular parametric submodel of P containing P�� then the information bound I ����Q�
on �� in Q is such that I ����Q� � I�� This means that if we can �nd a parametric

submodel Q such that I ����Q� � E�

�
S�S

T
�

�
� we have an explicit formula for I� �

I� � E�

�
S�S

T
�

�
� E�

n
 �� ln f� �Yi� Xi����

�

�  Xi � E� �XijXi����  Xi � E� �XijXi����
T
o
�

since the projection of a vector s �Yi� Xi� � L� �P�� such that E�  s �Yi� Xi� jXi� � � on S
is simply E�  s �Yi� Xi� jYi� Xi��� � It is not di	cult to see that the submodel �

Q �

�
P �

dP

d�
� 
 �y� x� �� f�� g�� � � � �

�
�����

has the desired property � I ����Q� � E�

�
S�S

T
�

�
� since

d

d�
f� �Yi� Xi��

�����
����

�
�

�t
f�� �Yi� t�

�����
t�Xi��

 Xi � E �XijXi���� � ���
�

If we compare I� with the asymptotic variance�covariance matrix of our estimator� we
can see that� for the given set S satisfying assumption �A��� we obtain the same thing�
This means that the estimator we proposed is e	cient� in the model built on the data set
�X�

i � Y
�
i �� i � �� where �X�

i � Y
�
i � is the ith among those �Xj� Yj� � S� If S is the support

of Zi� our estimator is e	cient in the initial model�

� Simulation study

The asymptotic e	ciency of an estimator is not always the most important argument for
a practician to use it instead of one which is easy to compute� even if it is not optimal from

�



a theoretical point of view� This is why methods like those proposed by Powell� Stock
and Stoker ��
�
� or Horowitz and H�ardle ��

�� are and will be preferred in practice to
an estimator which needs optimization procedures� like the one de�ned by equations �����
and ���
�� A possible solution to this problem� would be to use a one�step estimator� as
a compromise between asymptotical and computational e	ciencies� whenever we dispose
of an estimate easy to compute�

This can be done in the following way � if b�n is de�ned by ����� and ���
�� then
� bLn

��

�b�n� � �� If e�n is a preliminary
p
n�consistent estimator of �� �we can take� for

example� e�n as the weighted average derivative estimator of Powell� Stock and Stoker
��
�
��� then we have

� bLn

��

�b�n� �
� bLn

��

�e�n��
�� bLn

�� ��T

�e�n� �b�n � e�n� � oP
�			b�n � e�n			� �

By the assumption �A�� and the fact that b�n and e�n are root�n�consistent estimators
of ��� we obtain �

b�n � e�n �



�� bLn

�� ��T

�e�n�
���

� eLn

��

�e�n� � oP



�p
n

�
�

If we de�ne

�n � e�n �



�� bLn

�� ��T

�e�n�
���

� bLn

��

�e�n� � �����

we then obtain an asymptotically e	cient estimator� since this one�step estimator has the
same asymptotic distribution as b�n�

In order to evaluate the performances of the one�step estimator� which is asymptot�
ically equivalent to b�n but easier to compute� for small sample sizes� we give here the
results of a simulation study� We considered the model

Yi � Xi�� � 
i� i � �� ���� n�

where Yi � IR� Xi �
�
X

���
i � X

���
i

�
� IR�� �� � ���� �� � X

���
i and X

���
i are independent and

of the same law� a mixture of two normal laws�

X
���
i � X

���
i � ��� N ��� �� � ��� N ������ �� �

and the errors are normal of mean zero and variance equal to �Xi���
� �

�
X

���
i �X

���
i

��
�


i � N ��� jXi��j� �

As the initial estimator we used the weighted average derivative estimator de�ned by �

e�n � � �

n �n� ��

nX
i��

nX
j��
j ��i

�

h�n
K �

�
Xi �Xj

hn



Yi�

�As suggested by practical experience of J
 Horowitz






where K �
�
Xi �Xj

hn



is a notation for the vector

�BBBBBBBB�

K �
��X���

i �X
���
j

hn

�A K

��X���
i �X

���
j

hn

�A
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the real valued kernel function is de�ned by
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�u� � �� � �
�

 juj 
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and the bandwidth hn is of the form hn � � n�����
For the one�step estimator �n given by ������ we used the same kernel K in the de��

nition of bLn ��� and a bandwidth of the form hn � ��� n���
���
As only the direction of �� can be identi�ed and not �� itself� we used for the esti�

mators the same constraint as for ��� that the last component equals �� The results for
the estimation of �

���
� � �� using the weighted average derivative estimator e�n and the

one�step estimator �n with samples sizes n � f��� ���� ���� ���g are summarized in the
following table� containing the empirical mean and the empirical mean squared error for
each case �

n � �� n � ��� n � ��� n � ���e�n ������� ������
� �����
� �������� ������
 �������� ������� �
���� � �����
�n ���
�

 �������� ���
��
 ������
� ���
��� �������� ���
��� �

��� � �����

As a general conclusion� we can say that the one�step estimator works better than
the initial one� However� the rate of improvement of the squared error decreases with
the sample size ������!� �����!� 
���! and ����! respectively�� but this may be only
a consequence of our bandwidth choice� which is for no reason optimal� Moreover� if we
change the constant in the bandwidth used to obtain �n from ��� to ���� taking hn �
��� n���
��� this phenomenon disappears but the general conclusion remains the same�
namely that �n provides better estimates of �� than e�n �except for a small �accident� in
the case n � ���� �

n � �� n � ��� n � ��� n � ���e�n ������� ������
� �����
� �������� ������
 �������� ������� �
���� � �����
�n ���
��� ����
��� ���

�� ������
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��� �������� ���
��
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���
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� Appendix

Proof of Lemma ���
We �rst show that

sup
z�S

sup
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jDi�n�x��� h��x���Sj a�s��	
n�� �� �����

sup
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jNi�n�y� x��� f��y� x��h��x���Sj a�s��	
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where �S � P ��Xi� Yi� � S��
From ����� and ����� we conclude �
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jlog  �Ni�n�y� x���Di�n�x���� log f��y� x��j
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since inf
z�S

inf
���

Di�n�x�� can be asymptotically bounded below almost surely by �
�

inf
x�SX
���

 h��x���S��

which is positive by �A��i�� and similarly Ni�n�y� x�� is bounded below almost surely by
�
�

inf
z�S
���

 f��y� x��h��x���S� � ��

It remains to show ����� and ������ We show only ������ The argument for ����� is
similar in character�

Since� for z � �x� y� � S� we have

Di�n�x�� �
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n� �

nX
j��
j ��i

Kh �x� �Xj�� � IfZj�Sg�

adapting results of Klein and Spady ��

�� or Ichimura ��

�� it su	ces to �nd a function
h� �y� x� �� such that �

sup
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���

���E n
Kh �x� �Xj�� � IfZj�Sg

o
� h� �y� x� ��

��� �	
n�� ��

We have� with a big enough constants C �� C � ��
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and then ����� is checked�

The proof of Lemma ��� is similar and hence omitted� The only di�erence is that we
use a Taylor expansion in probability�

Proof of Lemma ��� � We can write

�p
n

nX
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�� log bf�� �Yi� Xi��� IfZi�Sg �
�p
n

nX
i��

�� bf��ibf��i Ii�

Recalling the de�nition bf� �Yi� Xi�� �
Ni�n �Yi� Xi��
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� we have
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A decomposition similar to the one used by Ichimura ��
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Writing U�n� � � � � U�n as second order U �statistics and applying Lemma ��� of Powell�

Stock and Stoker ��
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