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Abstract� We consider the component analysis problem for a regression model with

an additive structure� The problem is to check the hypothesis of linearity for each

component without specifying the structure of the remaining components� In this paper

we show that under mild conditions on the design and smoothness of the regression

function� each component can be tested with the rate corresponding to the case if all

the remaining components were known� The proposed procedure is based on the Haar

transform and it is computationally straightforward�

�� Introduction

In multivariate regression problems we study the structural relationship between the

response variable Y and the vector of covariates X � �X�� � � � � Xd�T via the regression

curve

F �x� � E�Y jX � x�

with x � �x�� � � � � xd�
T � Purely nonparametric models do not make any assumption

about the form of the d �variate function F �x� � The problem is then to �t a d �

dimensional surface to the observed data f�Xi� Yi� � i � �� � � � � ng � The obvious ap�

proach is to generalize the univariate smoothing techniques based on local �averaging	

to this multivariate situation� A serious problem arising here is that we need much

more data material in higher dimensions in order to have enough data points in a local

neighbourhood of each point� Several approaches for dimensionality reduction have been

proposed to deal with this so�called curse of dimensionality� A promising one is additive

���� Mathematics Subject Classi�cation� ��H��� Secondary ��G�	�
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nonparametric alternative� regression �

This work was supported by the Deutsche Forschungsgemeinschaft� Sonderforschungsbereich 
�


�Quantikation und Simulation �okonomischer Prozesse�� Berlin� Germany �

�



� H�ARDLE� W�� SPERLICH� S� AND SPOKOINY� V�

modelling which has been used in many applications and for which software is easily

accessible�

A nonparametric additive regression model has the form

y � F �x� 
 �� x � �x�� � � � � xd� � Rd� �����

F �x� � f��x�� 
 � � �
 fd�xd�� �����

where y is a scalar variable� ffmgdm�� is a set of unknown component functions and �

is a random error�

This class of models has been shown to be useful in practice� additive models naturally

generalize the linear regression models and allow interpretation of marginal changes i�e�

the eect of one variable on the mean function F holding all else constant� They are

interesting from a theoretical point of view since they combine �exible nonparametric

modelling of many variables with statistical precision that is typical for just one explana�

tory variable� To our knowledge model ����� has been �rst considered in the context of

input�output analysis by Leontief ������ who called it additive separable� In the statisti�

cal literature the additive regression model has been introduced in the eighties� see Buja�

Hastie and Tibshirani ������ and Hastie and Tibshirani ������� Stone ������ �����

proved that model ����� can be estimated with a one�dimensional rate of convergence

typical for estimating a single function f of one regressor only�

Algorithmic aspects of additive modelling by e�g� the back�tting or the Gauss�Seidel

algorithm are discussed in Venables and Ripley ������� Linton and Nielsen ������ pro�

posed a method of analysis of additive models based on marginal integration� Linton and

H�ardle ������ extended this approach to generalized additive models�

It is of basic interest in additive modelling to analyze the components further� H�ardle

and Tsybakov ������ proposed a selection procedure to determine which covariates should

be included in an additive regression model� The general problem of �nding all the sig�

ni�cant components can be regarded as a family of testing problems� for each component

fm � we test the null hypothesis fm � � or� in the other words� fm is not signi�cant�

H�ardle and Korostelev ������ considered a similar problem of testing a single component

fm of the regression function F with a criteria based on large deviation asymptotics for

probabilities of errors�

In this paper we concentrate on the more general problem of testing linearity for each

single component� say f� � Therefore we test the null hypothesis H� � f� �is linear	 versus

the nonparametric alternative H� � f� �is not linear	�

The nonparametric theory of hypothesis testing is now well developed� The problem of

testing a simple null hypothesis versus a univariate nonparametric alternative is studied in

details� see Ingster ������ or Lepski and Spokoiny ������ for a historical background and

further references� H�ardle and Mammen ������ and H�ardle� Spokoiny and Sperlich ������
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considered the problem of testing a parametric null hypothesis versus nonparametric or

semiparametric alternative in the case of a multivariate regression function�

These ealier results show that the optimal quality or rate of testing and the structure

of rate�optimal tests essentially depend on the smoothness properties of the underlying

function� An adaptive testing procedure which does not require knowledge of smoothness

properties of the tested function� has been proposed in Spokoiny �����a�� This adaptive

method achieves a �near optimal rate� of testing which is worse than optimal only by

some log log�factor� The latter can be viewed as the price for adaptation�

In this paper we develop further this approach and apply it to multidimensional sit�

uation with an additive model function� A direct application of the original procedure

from Spokoiny �����a� is impossible for several reasons� First� we consider now a special

testing problem� The additional di�culty comes from the fact that the function f� �

even being completely speci�ed� does not specify the whole model since nothing is saying

about the other components� f�� � � � � fd � These functions can be viewed as an in�nite�

dimensional nuisance parameter� Therefore� we aim to develop a procedure� which is

adaptive both to unknown smoothness properties of the �rst components f� and to the

presence of the nuisance parameters�

Second� the original procedure was developed for the so called �signal 
 white noise	

model which is an idealization of the regression model with the equispaced design� In

view of real applications which we address in Section � we try to relax these assumptions

and to deal with an arbitrary �xed design�

Third� the above mentioned testing procedure from Spokoiny �����a� applies a wavelet

transform with a regular wavelet basis� Here we apply a Haar decomposition which is a

particular �and non�regular� case of the wavelet transform� This choice of basis allows to

relax and to simplify the conditions on the design and also to reduce the computational

di�culties� As we will see� the loss of regularity of the basis does not necessarily result

in a loss of sensitivity of testing�

Our approach is based on the simultaneous approximation of all components f�� � � � � fd

by Haar sums� we �rst estimate the Haar coe�cients for all components and then analyze

the coe�cients corresponding to the �rst one�

The testing problem is formulated in the next section� Our testing procedure is de�

scribed in Section �� The asymptotic properties of this procedure are discussed in Section

�� We compare the sensitivity of our procedure with the optimal one designed for the

ideal situation when the other components and smoothness properties of the tested com�

ponent were known� The results show that our procedure achieves a nearly optimal rate

by some log�factor� The results are stated under very mild conditions on the design which

can be instructively checked in practical applications� In our results we suppose Gaussian

homoskedastic noise with known dispersion �� � This assumption allows to simplify the

calculations and highlight the main ideas skipping a lot of technical details which appear
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when considering heteroskedastic non�Gaussian noise� We indicate where necessary how

the procedure can be applied in this situation too by plugging in a pilot estimate of the

noise variance in place of the �� �

Some simulation results and applications are shown in Section �� The proofs are

postponed until Section ��

�� Model and testing problem

We are given data �Xi� Yi�� i � �� � � � � n � with Xi � Rd � Yi � R� � obeying the regression

equation

Yi � F �Xi� 
 �i �����

where F is an unknown regression function with the additive structure

F �x� � f��x�� 
 � � �
 fd�xd�� �����

and �i are normal random errors with zero mean and known variance �� � The design

X�� � � � � Xn is not assumed random or regular �for example� equidistant� because we

want to keep things as general as possible�

Our aim is to analyze each component fm � m � �� � � � � d � For simplicity of presen�

tation we concentrate on the �rst component f� � More speci�cally� we wish to test the

hypothesis of linearity H� � f� �is linear	 that means that f��t� � a� 
 b�t for some

constants a�� b� �

Let � be a test i�e� a measurable function of observations with values � �accept� and

� �reject�� Denote by P F the distribution of the data Y�� � � � � Yn for a �xed model

function F � see ����� and ������ Let now F� be a function with a linear �rst component�

The error probability of the �rst kind is the probability under F� to reject the hypothesis�

�F���� � P F��� � ���

Similarly one de�nes the error probability �F ��� of the second kind� If the �rst compo�

nent f� of a function F is not linear� then

�F ��� � P F �� � ���

Given �� � � � we wish to construct such a test � that �F���� � �� for all F� with a

linear �rst component and� in addition� it is sensitive against a large class of alternatives

F � Obviously no test can be sensitive against all alternatives� Following Ingster ������

����� we consider therefore the class of alternatives with the �rst component f� which

is separated from the set of linear functions with distance at least � �

inf
a�b
kf����� a� b � k � � �����
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where k � k means the usual L� �norm� and in addition we assume that f� is smooth

in the sense that f� belongs to some class of functions F � The reason for introducing

smoothness assumptions is that if the underlying function is very irregular� then it is

impossible to distinguish between the noise and the systematic component� Burnashev

������� Ingster ������ established his results assuming that the underlying function be�

longs to a H�older or L� �Sobolev ball F � Lepski and Spokoiny ������� Spokoiny �����b�

studied the case of a Lp �Sobolev ball with p 	 � which corresponds to alternatives

with heterogeneous smoothness properties� We use a slightly dierent form of smooth�

ness assumptions supposing that f� is approximated with a certain rate by piecewise

polynomials� see Section ��

In general� the testing problem can be formulated as follows� Let some class F of

univariate functions be �xed� We test the null hypothesis H� � f��x�� � a
 bx� against

the alternative H���� � f� � F and f� obeys ������ Given positive numbers �� 	 � and

�� 	 � � we consider tests � such that

PF��� � �� � ��

PF �� � �� � ��

for all F� with a linear �rst component and for all F from the alternative set H���� �

We characterize the sensitivity of each test � by the minimal distance � for which the

above constraints on the probabilities of errors are satis�ed� A test �� which leads to

the minimal distance �� among all feasible tests is called optimal�

Further we consider the asymptotic set�up assuming that the number of observations

tends to in�nity� Increasing the number n of observations results in higher sensitivity�

We let therefore the value �� depend on n � �� � ���n� � This sequence ���n� determines

�the optimal rate� of testing as n increases to in�nity�

Our �nal goal is to construct tests ��n� with a �near optimal� sensitivity ��n� in the

sense that the ratio ��n�
���n� grows at most logarithmically�

�� Testing procedure

In order to illustrate the main ideas� we begin with the univariate case i�e� d � � �

���� The case of d � �

Consider the univariate regression model

Yi � f�Xi� 
 �i� i � �� � � � � n� �����

We write here f instead of f� to minimize the notation� The problem consists in testing

the hypothesis that the function f is linear versus a nonparametric alternative�
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The proposed procedure makes use of the Haar decomposition of the function f �

������ The Haar transform

Let us recall the construction and the main properties of the Haar transform� By I we

denote the multi�index I � �j� k� with j � �� �� �� � � � and k � �� �� � � � � �j � � � and by

I � the set of all such multi�indices�

Let now the function ��t� �the mother wavelet� be de�ned by

��t� �

�����
����

�� t 	 �� t � ��

�� � � t 	 �
��

��� �
� � t 	 ��

�����

For every I � �j� k� � set

�I�t� � �j�����jt� k�� �����

Clearly the function �I is supported by the interval ���jk� ��j�k
��� � Each measurable

function f can be decomposed in the following way� see e�g� Alexits ������ p�����

f�t� � c� 

X
I�I

cI�I�t�� �����

Hence the problem of recovering the function f in ����� can be reformulated as the prob�

lem of estimating the coe�cients cI from given data� Since we have only n observations�

we restrict the total number of considered levels� Fix the level j� such that

�j��� � n

and set

Ij � f�j� k�� k � �� �� � � � � �j � �g

for the index set corresponding to j �th level� Now we approximate the in�nite decom�

position ����� by the �nite sum
P

I�I�j�� cI�I�t� where the index set I�j�� contains all

level sets Ij with j � j� � Taking into account the structure of the null hypothesis� we

complement the set of functions ��I � I � Ij�� j � j� � with two functions �� � � and

���t� � t � and set

I�j�� � f�� �g


j��
j��

Ij � �����

The idea of the proposed procedure is �rst to estimate all the coe�cients fcI � I �
I�j��g from the data and then to test that all the coe�cients cI for I �� �� � are zero�

Before we begin with our procedure� let us note that the functions �� and �I � I � I �

form an ortonormal basis in L���� �� with respect to Lebesgue measure on ��� �� � When

dealing with real data� it may occur that the functions �I are no more orthonormal and
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are not orthogonal to each other in L���n� � where �n is the empirical design measure�

�n�A� �
Pn

i�� ��Xi � A� � To cope with this� we replace the functions �I by its

standardized versions ��I � for I � �j� k� �

��I�t� � ��I ���jt � k�� �����

where � is de�ned in ����� and the normalizer I satis�es

�I �
nX
i��

j���jXi � k�j�� �����

�Recall that d � � and hence Xi takes values in the interval ��� �� �� Particularly�

�� � n � �� � �X�
� 
 � � �
 X�

n� � and

�I � MI � �fi � Xi � ���jk� ��j�k 
 ���g� I � I�
In the sequel� we approximate the function f by linear combinations of the functions

��I � I � I�j�� � Let g be a function observed at point X�� � � � � Xn � De�ne kgkn by

kgk�n �
nX
i��

g��Xi��

Determine a column�vector ���j�� � ���I � I � I�j��� as a minimizer of the error of

approximation�

���j�� � arginf
��j��

kf �
X

I�I�j��
�I�

�
Ikn� �����

Such a vector always exists but may not be unique�

To get an explicit representation of ���j�� � we introduce matrix notation� First

of all� we make an agreement to identify every function g on R
d with the vector

�g�Xi�� i � �� � � � � n� in R
n � Particularly� the model function f is identi�ed with the

vector �f�Xi�� i � �� � � � � n� � De�ne also Y as the column vector �Y�� � � � � Yn�T � where

the sign T means transposition�

Denote by Nj the number of elements in each level j �

Nj � ��Ij� � �j

and let N�j�� be the total number of elements in the set I�j�� �

N�j�� � � 


j�X
j��

Nj � � 
 �j���� �����

Introduce n�N�j�� �matrix ��j�� � ��i�I � i � �� � � � � n� I � I�j��� with elements

�i�I � ��I�Xi� � ��I ���jXi � k�� I � I�j��� i � �� � � � � n� ������

Now the approximation problem ����� can be rewritten in the form

���j�� � arginf
��j��

kf ���j����j��k�n�
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The solution to this quadratic problem can be represented as

���j�� �
�

�T �j����j��
���

�T �j��f� ������

Strictly speaking� this representation is valid only if the matrix �T �j����j�� is not degen�

erate� More generally one may use the same expression for ���j�� when understanding�
�T �j����j��

���
as a pseudo�inverse matrix�

We begin our testing procedure by estimating the coe�cients ���I � I � I�j��� by the

least square method�

������ Estimating the Haar coe�cients

The least squares estimator ���j�� of the vector ���j�� is de�ned by minimization of the

residual sum of squares�

���j�� � arginf
��j��

kY ���j����j��k�n � arginf
f�I�I�j��g

nX
i��

�
�Yi � X

I�I�j��
�I�

�
I�Xi�

	
A

�

� ������

Let V �j�� be the pseudo�inverse of �T �j����j�� �

V �j�� �
�

�T �j����j��
��

�

Then

���j�� � V �j���
T �j��Y� ������

Since the errors �i are normal N ��� ��� � we obtain via ����� that ���j�� is a Gaussian

vector with the mean ���j�� and the covariance matrix ��V �j�� �

���j�� � N ����j��� ��V �j��
�
� ������

������ Tests

The proposed testing procedure is based on the fact that for a linear function f � all

the coe�cients ��I � I �� �� � � are zero and therefore� the corresponding estimates ��I are

Gaussian zero mean random variables�

We execute the procedure recursively starting from j� � � until the �nest resolution

level j�n� de�ned as

j�n� � blog��n�� �c� ������

For each j� � j�n� � let ���j�� be de�ned by ������� Denote by ��j� the part of the vector

���j�� corresponding to the level j� �

��j� � ���I � I � Ij���

At the step j� � we analyze the subvector ��j� only�
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Following Spokoiny �����a�� we introduce two kinds of tests� the �rst one� so called a

�local test	� analyses each term ��I � I � Ij� � separately the second one is levelwise� i�e�

all the estimates ��I � I � Ij� � are used for calculating the corresponding test statistic�

Let vI�I � � I� I � � I�j�� � be the elements of the matrix V �j�� �
�
�T �j����j��

��
� Due

to ������� we have under the null hypothesis ��I � N ��� vI�I� and hence each variable

v
����
I�I

��I is standard normal �if vI�I � � �� The local test rejects the null hypothesis if at

least one such value exceeds a certain logarithmic level�

�loc�j�� � �



max
I�Ij�

���v����I�I j��I j � n

�
������

where

n � � 
 �
p

logn� ������

In the de�nition ������ we use the fact that vI�I � � implies ��I � � � see ������� and we

assume �
� � � � Note that both vI�I and �I depend on j� � The local test �loc is very

sensitive to functions f containing local �uctuations like jumps or jumps of derivatives�

The next test� which was called a �� �test in Ingster ������ and a L� �test in Spokoiny

�����b�� allows us to detect very small but systematic components� It is based on the

standardized sum of squares of ��I � I � Ij� � Let Vj� be the submatrix of the matrix

V �j�� corresponding to the level j� � i�e� Vj� � �vI�I � � I� I � � Ij�� � In view of �������

under the null hypothesis� the vector ��j� is Gaussian zero mean with covariance matrix

��Vj� � First consider the case when Vj� is non�degenerate� necessary corrections of the

procedure for the degenerate case will be discussed later� If detVj� �� � � then under the

null� the vector �j� � ��I � I � Ij�� � de�ned as the standardization of ��j� �

�j� � ���V ����
j�

��j� � ������

is standard normal� De�ne �� �type statistics

Sj� � k�j�k� �
X
I�Ij�

��I � ������

For each f � F� �i�e� for a linear f �� the distribution of Sj� does not depend on f and

we denote by E� and D� the corresponding expectation and variance� Clearly

E�Sj� � Nj� �

D�Sj� � E��Sj� �E�Sj��� � �Nj� �

This leads �nally to the test statistic Tj�

Tj� �
Sj� �E�Sj�p

D�Sj�
� ��Nj��

�����Sj� �Nj��� ������

Each Tj� has under the null the normalized �� �distribution with Nj� degrees of freedom

which is for large Nj� approximated by the standard normal distribution� We de�ne
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therefore

����j�� � � �jTj�j � n� ������

with the same n as above�

In the case when detVj� � � � denote by V �
j�

the pseudo�inverse of Vj� and set

Sj� � �����
T

j�V
�
j�

��j� � ������

N �
j�

� tr�V �
j�
Vj��� ������

Then Sj� is again a �� �statistic� but now with N �
j�

degrees of freedom� We take therefore

the test statistic again of the form ������ with N �
j�

in place of Nj� �

Tj� � ��N �
j�

������Sj� �N �
j�

�� ������

The representation ������ for the test ����j�� remains valid with such de�ned Tj� �

Finally we reject the linear hypothesis H� if one of �loc�j�� or ����j�� does�

�� � max
��j��j�n�

maxf�loc�j��� ����j��g� ������

���� Test procedure for d � �

The method of testing is essentially the same as in the univariate case and it is based on

the decomposition of each component fm from ����� by the Haar basis�

fm�t� �
X
I�I

cI�m�I�t�� m � �� � � � � d�

For the additive model ����� this gives for x � �x�� � � � � xd� � Rd

F �x� �
dX

m��

X
I�I

cI�m�I�xm��

We proceed as above for the univariate case by replacing the in�nite decomposition by

a �nite approximation� Let us �x a level j� for the �rst component and a level j�n�

for the remaining ones� and let I�j�� be due to ������ I�j�� � f�� �g

S

j�j� Ij � We

approximate F �x� by

X
I�I�j��

cI���I�x�� 

dX

m��

j�n�X
j��

X
I�Ij

cI�m�I�xm��

We use here N � �j�n����� coe�cients for each component fm � m � � � and� assuming

that j� � j�n� � the total number N�d� j�� of coe�cients is at most Nd 
 � � Modify

now the de�nition of j�n� from the one�dimensional case to provide N�d� j�� � n that

leads to the choice

j�n� � blog��n
d�� �c� ������
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Let now some j� � j�n� be �xed� Denote by I�d� j�� the index set

I�d� j�� � f�I� ��� I � I�j��� �I�m�� I � Ij � � � j � j�n�� m � �� � � � � dg

and let

N�d� j�� � N�j�� 
 �d� ��N � �j��� 
 �d� ���j�n��� � d
 �

be the number of elements in I�d� j�� �

The next step is to renormalize the basis functions �I � De�ne I�m by

�I�m �
nX
i��

j�I�Xi�m�j�� I � I� m � �� � � � � d� ������

where �Xi��� � � � � Xi�d� is the coordinate representation of Xi �

Set ��d� j�� for the n�N�d� j�� matrix with elements ��i��I�m� � ��I�m�I�Xi�m� � i �

�� � � � � n� �I�m� � I�d� j�� � and de�ne the vector ���d� j�� with elements ��I�m � �I�m� �
I�d��j�� as a solution to the quadratic problem

���d� j�� � arginf
��d�j��

kF � ��d� j����d� j��k�n� ������

This leads to the same representation for ���d� j�� as in the univariate case� ���d� j�� �

V �d� j���
T �d� j��F � Again the matrix V �d� j�� is to be understood as the pseudo�inverse

of �T �d� j����d� j�� � V �d� j�� �
�

�T �d� j����d� j��
��

�

Given data Y � �Y�� � � � � Yn� � we estimate ���d� j�� by the least squares method�

���d� j�� � V �d� j���
T �d� j��Y� ������

Next� for testing the �rst component f� � we proceed in the same line as for the uni�

variate case making use of the estimates ��j� � ���I��� I � Ij�� and the submatrix

Vj� � �v�I�����I ����� I� I
� � Ij�� of the covariance matrix V �d� j�� � For the level j� �

the local test �loc�j�� is de�ned by

�loc�j�� � �



max
I�Ij�

���v�����I�����I���j��I��j � n

�

and the �� �test ����j�� has the form �������

����j�� � � �jTj� j � n�

with Tj� due to ������ through ������� The test �� is again the combination of all local

and �� �tests for j� � �� �� � � � � j�n� �

�� � max
��j��j�n�

maxf�loc�j��� ����j��g� ������
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���� Level dependent thresholds

The above described procedure is essencially levelwise� However we apply for each level

j and for both subtests �loc�j� and ����j� the same test threshold n � This was done

for the sake of simplicity of presentation� In general it is possible to apply dierent

thresholds for dierent subtests� Moreover� the simulation studies show �see Section ��

that the proposed test with the universal threshold is too conservative and an application

of dierent thresholds is reasonable�

The following threshold values can be used�

loc�j� � � 

q

� log�Nj� 
 aloc log log�n��

���j� � ����� 

q
Nj
�n


q
a�� log log�n�

with arbitrary constants aloc � � and a�� � � � Hence we set

�loc�j�� � �



max
I�Ij�

���v�����I�����I���j��I��j � loc�j��

�
�

����j�� � �
�jTj� j � ���j��


with the above de�ned test statistics �� and Tj� and then apply the combined test �������

It can be seen by inspecting the proofs that all the results formulated for the original

test procedure remain valid for this modi�ed test�

���� The case of unknown variance of errors

In the above procedure we assumed that the variance �� of errors �i is unknown� Here

we shortly indicate the necessary modi�cation of the procedure when �� is unknown�

We apply the standard approach by making use of a pilot estimator of �� �

Let j�n� be de�ned in ������� Due to this de�nition we have n
� � d�j�n��� � n � We

suppose that n� d�j�n��� � n
� � otherwise the value j�n� can be reduced to j�n�� � �

Let ��n be the least square estimator from ������ of the vector ��n � ���d� j�� with

j� � j�n� � Denote also Vn � V �d� j�n�� and �n � ��d� j�n�� � Then Vn �
�
�T
n�n

�
and

��n � Vn�T
nY�

We know that the vector ��n has the mean ��n and the covariance matrix ��Vn � More�

over� the vector ��n is the solution of the optimization problem ������ and hence �n�
�
n

corresponds to the best approximation of the regression function F by the Haar sum

with the highest level j�n� � Under usual regularity condition on this function F the

accuracy of approximation tends to zero as j�n� tends to in�nity in the sense that

n��kF � �n�
�
nk 	 �� n	 
�
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This consideration prompts to use the value

!n � kY ��n
��nk�n

for estimating �� � We have

E!n � EkY � �nVn�T
nY k�n

� Ek�In ��nVn�T
n �F 
 �In � �nVn�T

n ��k�n
� kF � �n�

�
nk�n 
 Ek�In ��nVn�T

n ��k�n
where In denotes the identity n�n �matrix� Next� since the errors �i are independent

zero mean random variables with E��i � �� � we obtain by straightforward calculation

Ek�In � �nVn�T
n ��k�n � ���n� trVnV

�
n ��

The rank of the matrix Vn is at most d�j�n��� and due to our assumption it holds

n� d�j�n��� � n
� that gives n� trVnV
�
n � n
� � We set

��� � !n
�n� trVnV
�
n ��

It can be shown that ��� is a consistent and even root�n consistent estimator of �� �

Using this estimator� we de�ne the test procedure in the same line as before replacing

� by its estimate �� �

�� Main results

In this section we study asymptotic properties of our testing procedure� We state the

results on the error probabilities of the �rst and of the second kind separately since

we evaluate them under dierent assumptions on the design variables� The result on

the error probabilities �F���
�� of the �rst kind is valid under mild assumptions on the

design� For high sensitivity of the test� we need slightly stronger regularity conditions on

the design variables�

When testing the �rst component of the function F from ������ the remaining com�

ponents f�� � � � � fd can be viewed as a nonparametrically speci�ed nuisance parameter

which are to be estimated by a pilot estimator� In order to ensure the required accuracy

of estimation� we need some conditions on the rate of approximation of each function

fm with � � m � d by the Haar series� We formulate these conditions exactly in the

required form� Later we show that these conditions are met� for instance� under mild

conditions on smoothness of fm and on the design X�� � � � � Xn �

Recall that we identify every function g on R
d with the vector �g�Xi�� i � �� � � � � n�

in R
n � In particular� each fm is identi�ed with �fm�Xi�m�� i � �� � � � � n� and ��I�m

is understood as the vector with the elements ��I�m�I�Xi�m� � Recall also the notation

kgk�n �
Pn

i�� g
��Xi� �
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Denote by Lm�j� the linear subspace in R
n generated by the functions f��I�mg �

I � Ij� � � � j� 	 j �

Lm�j� �

��
�

j��X
j���

X
I�Ij�

�I�m�
�
I�m

��
� �

Clearly all the functions �or vectors� from Lm�j� depend only on m �th coordinates Xi�m

of design points Xi � i � �� � � � � n � By "m�j 
 ��fm we denote the projection of fm

onto Lm�j� w�r�t� the distance k � kn �

"m�j 
 ��fm � arginf
g�Lm�j�

kfm � gkn � arginf
g�Lm�j�

nX
i��

jfm�Xi�m�� g�Xi�m�j��

We write also "m�n for "m�j�n� 
 �� �

In our results we suppose the following condition to be ful�lled�

Condition �D� � For n su�ciently large

dX
m��

kfm � "m�nfmkn � �n�����

The following lemma shows that condition �D� is satis�ed under mild smoothness con�

ditions on each component fm �

Lemma ���� Let �n�m be the m �th marginal of the empirical design measure �n �

�n�m�A� � n��
nX
i��

��Xi�m � A�� m � �� � � � � d�

Let also there be a constant C� such that for every � � a 	 b � � with b� a � �
n � it

holds

�n�m�a� b�� C��b� a��

If each fm � m � �� � � � � d � is a Lipschitz function i�e�

jfm�x�� fm�x��j � C�jx� x�j� �x� x� � ��� ���

then

kfm � "m�nfmkn � Cn����

with C depending on C� and C� only and condition �D� is ful�lled for n large enough�

Another situation when the dierence kfm �"m�nfmkn can be easily estimated� is in

the case of a discrete m �th component �i�e� when all Xi�m belong to some �nite set��

Let �� be the test introduced above in �������
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Theorem ���� Suppose that the observations �Xi� Yi� � i � �� � � � � n� obey the regression

model ���� and ����� and let condition �D� hold� If the �rst component f� of the

function F is linear� then

�F ���� � P F ��� � �� � ���n��

where ���n� depends on n only and ���n� 	 � as n	
 �

The proof of the theorem is given in Section ��

Now we state the results concerning the sensitivity of the proposed test �� � The �rst

assertion shows under which conditions we detect an alternative with a high probability�

Then we discuss how these conditions can be transferred into precise statement about

the rate of testing�

Proposition ���� Let the function F in model ���� be of the form ����� Let also

��j � ���I��� I � Ij� be the subvector of the vector ���d� j� from 	���� corresponding to

j �th resolution level of the �rst component and let Vj � �v�I�����I ����� I� I
� � Ij� be the

corresponding covariance submatrix� If� for some j � j�n� � it holds

T �j � ���j����������j
TV ��

j ��j � �n�

with n � � 
 �
p

logn � then

P F f����j� � �g � ��n� 	 �� n	 
�

where ��n� depends on n only�

If� for some j � j�n� � it holds

T �j�� � max
I�Ij

���v�����I�����I ����j��I��j � �n�

then

P F f�loc�j� � �g � ��n� 	 ��

with the same ��n� �

This proposition says that the test �� detects with a probability close to one any

alternative for which at least one from the corresponding values T �j and T �j�� exceeds

the level �n � Therefore� we may suppose that the error of the second kind may occur

only if

T �j � �n� � � j � j�n�� �����

T �j�� � �n� � � j � j�n�� �����

It remains to understand what follows for the �rst component f� of the function F from

these inequalities� To this end we impose some regularity conditions on the design and

smoothness conditions on the �rst component f� of the function F �
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The reason why we need stronger conditions on the design can be explained by the

fact that a degenerate design leads to an identi�cation problem� the components cannot

be separated and therefore it is impossible to make any inference about one of them�

Smoothness �or regularity� conditions on a function f can be formulated in a dierent

forms� We �nd it convenient to de�ne them in terms of accuracy of approximation of

this function by piecewise polynomials of certain degree� Given j � j�n� � denote by

fAI � I � Ijg the partition of the interval ��� �� into intervals of the length ��j � if

I � �j� k� then AI � �k��j � �k
 ����j� � Next� for an integer s � de�ne Ps�j� as the set

of piecewise polynomials of degree s � � on the partition fAIg i�e� every function g

from Ps�j� coincides on each AI with a polynomial a� 
 a�x 
 � � �
 as��xs�� where

the coe�cients a�� � � � � as�� may depend on I � Now the condition that a function f

has regularity s can be understood in the sense that this function is approximated by

functions from Ps�j� with the rate ��js � or� in other words� the distance from the

function f� to the linear space Ps�j� can be bounded by C��js with some positive

constant C depending on s only�

Let now a function F with the structure from ����� be �xed and let f� be the �rst

component� Let also j� be such that �j��� � s � Set for j � j�

rs�j� � inf
g�Ps�j�j��

kf� � gkn � inf
g�Ps�j�j��

�
nX
i��

jf��Xi���� g�Xi���j�
����

� �����

The quantity rs�j� characterizes the accuracy of approximation of f� by piecewise poly�

nomials� In our procedure� we use the Haar approximation which corresponds to the case

of a locally constant approximation with s � � �

In order to state our next results we need to de�ne regularity characteristics of the

design X�� � � � � Xn � Set

u��j� � inf
I�Ij

�jMI
n� �����

u��j� � sup
I�Ij

�jMI
n� �����

with MI � �fi � Xi�� � AIg � Design regularity means in particular that u��j� is

bounded away from zero i�e� each interval AI contains enough design points Xi�� and

this satis�es the condition in Lemma ����

Let also Vj be the submatrix of V �d� j� � f�T �d� j���d� j�g� corresponding to the

�rst component� see Subsection ���� Vj �
�
v�I�����I ���� � I� I

� � Ij


� Clearly Vj is a Nj�
Nj �matrix� Nj � �j � Set

v��j� � kVjk� �����

Here the norm kAk of a matrix A is understood as the maximal eigenvalue of this

matrix or equivalently� kAk � sup�
k�k�� kA�k where the sup is taken over � � RNj

and k�k� � ��� 
 � � �
 ��N�j� � We may therefore de�ne v��j� as the maximal eigenvalues
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of Vj � We shall understand design regularity in the sense that Vj is non�degenerate and

v��j� are bounded for su�ciently large j � Note that the values v��j� � u��j� and u��j�
are related to each other� the regularity conditions in terms of v��j� are stronger than in

terms of u��j� and u��j� � Indeed� u��j� and u��j� characterize only the properties of

the �rst marginal of the design� whereas v��j� tells us additionally about identi�ability

of the �rst component�

Theorem ���� Let condition �D� hold� Suppose there exists an integer s and for some

j � j�n� � the �rst component f� of the model function F satis�es the following inequality

inf
a�b
kf� � a� b����k�n � C�r

�
s�j� 
 C�

u��j�
u��j�

v��j��j����n �����

with �����x� � x� and some constants C� and C� depending on s only� then

P F ��� � �� � ��n� 	 �� n	
�

where ��n� is from Proposition ����

Remark ���� It is of interest to compare this Theorem with other results on the rate

of hypothesis testing� It was shown in Ingster ������ that if f belongs to a Sobolev ball

Ws��� with

Ws��� �

�
f �

Z �

�
jf �s��x�j�dx � �

�
�

f �s� being s �th derivative of f � then the optimal rate of testing is n��s���s��� and it is

achieved by a testing procedure which makes explicit use of knowledge of s �

Our procedure is adaptive i�e� we do not need to know s � Next� the condition

f� � Ws��� yields n����rs�j� � C��js and� if the design is regular �that means that all

v��j� are bounded�� then the optimization over j in the right hand�side of ����� gives

the rate
�

np
logn

���s���s���
for the deviation of the function f� from the space of linear

functions� Therefore� our procedure provides the near optimal rate of testing by the

logarithmic factor �logn�s���s��� � It was shown in Spokoiny �����a� that the optimal

adaptive rate diers from the non�adaptive one by the factor �log log n�s���s��� �

Remark ���� The result of Theorem ��� helps to understand what happens in the case

when our design is not regular and� for instance� u��j� � � for all large j � It was already

mentioned that the procedure can be applied in this situation too and the probability of

the error of the �rst kind is very small� Concerning the error probability of the second

kind� the inspection of the proof shows that design irregularity decreases the sensitivity

of our procedure in the following sense� there exist smooth alternatives with probably

large L� �norm which are not detected� Such an alternative f� deviates from the best

linear approximation only in the domain where there are very few design points or where

an identi�cation problem between f� and the remaining components is met�
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Remark ���� It is also worth speaking about the relation between smoothness condi�

tions on the additive model components f�� � � � � fd and regularity conditions on the

design� Namely� the �rst term in the right hand side of ����� depends only on smooth�

ness properties of the function f� and the second one depends only on design regularity�

Therefore� if we would like to keep the same sensitivity for a less regular component

function we need more regular design and vice versa�

The result of Theorem ��� is formulated for the case when smoothness properties of

the function f� are measured in the L� �norm� An inspection of the proof shows that in

this situation it su�ces to apply only the test ��� which exactly corresponds to testing

in L� �norm� Lepski and Spokoiny ������ and Spokoiny �����b� have shown that if

smoothness properties of the tested function are measured in some norm Lp with p 	 � �

then the testing procedure has to be modi�ed to attain the optimal rate of testing which

is n���sp���p������sp���p� in this situation� The latter case of p 	 � corresponds to a

function f with heterogeneous smoothness properties� in particular� when this function

has jumps or jumps of derivatives� We conclude by stating one more result related to

this situation�

Given j � j�n� � let ���d� j� � ���I�m� �I�m� � I�d� j�� be due to ������ and let

��j � ���I��� I � Ij� be the subvector tested at j �th step� The test ����j� is sensitive

when k��jk� � Cn�j � see Proposition ��� and Lemma ��� below� At the same time�

the test �loc�j� is sensitive in the situation when at least one coe�cient ��I�� is greater

than C �n � This means that it is reasonable to apply the test �loc when the majority of

coe�cients from level j are small and a few of them are of order n � This corresponds

exactly to the case of a function with nonhomogeneous smoothness properties� e�g� to a

function with jumps�

Set

r�j� t� �
X
I�Ij

j��I��j���j��I��j � t�� �����

We exploit the fact that under some regularity conditions on the �rst component f� of

F � the value r�j� t� is small for j large enough�

Theorem ���� Let condition �D� be satis�ed� If� for some integer s and some j� �
j� � j�n� � the �rst component f� of the model function F satis�es the following in�

equality

inf
a�b
kf� � a � b����k�n � C�r

�
s�j�� 


v��j��u��j��
u��j��

��
�C��

j�����n 
 C�

j�X
j�j�

r�j� tj�

��
�

with tj � ��n
p
v��j� and some positive constants C�� C� and C� depending on s

only� then

P F ��� � �� � ��n� 	 �� n	
�
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with the same ��n� as in Proposition ����

As a corollary of the last result� we show that our testing procedure provides a near

optimal rate of testing over Sobolev balls Ws�p��� with p 	 � and s � � �

Ws�p��� �

�
f �

Z �

�
jf �s��x�jpdx � �

�
�

Indeed� it is well known� see Triebel ������� that if f � Ws�p��� for s � � and if the

design is regular� then

n��
nX
i��

jfj�Xi�jp � C��jsp�

This gives for a regular design

r�j� tj� � Cn��jsp
�
n���j����n

��p��
� C�np����pn ��j�sp���p����

Since sp � � 
 p
� � � for every integer s and p � � � we obtain

j�X
j�j�

r�j� tj� � C��np����pn ��j��sp���p����

Now we select j� to minimize the sum C��
j���n
C��np����pn ��j��sp���p��� that leads to

the rate n���sp���p������sp���p���p������sp���p�n which is near optimal by the logarithmic

factor 
��p������sp���p�
n �

�� Simulation studies and applications

The behaviour of the suggested test procedure for �nite samples has been examined in a

small simulation study and then the test was applied for analysis of econometric data�

���� A simulated example

We considered ��dimensional regression problems having additive components of the

following form�

fa�x� � � sin���x��

fb�x� � � sin���x��

fc�x� � x 
 � ��fx � ������� ��g� � ��fx � ��� �����g�
fd�x� � x� �E�x���

The models we chose were

� Model � � F��x� � fa�x�� 
 fc�x�� 
 fd�x��

� Model � � F��x� � fb�x�� 
 fc�x�� 
 fd�x��

� Model � � F��x� � fc�x�� 
 fa�x�� 
 fd�x���
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see also Figure �� Here fa and fd are fairly smooth functions that could also be approx�

imated by a polynomial approach� whereas for fb and fc application of wavelets seems

to be reasonable�

In our simulations we assumed the uniform random design on the cube ���� ��� and

standard normal errors� We do not assume to know the standard deviation of the error

terms and therefore estimate � as suggested in section �� ��

We apply the modi�ed test procedure from Section ��� with the level�dependent thresh�

olds loc�j� � � 

p

� log�Nj� 
 aloc log log�n� and ���j � �p
�



q

Nj

�n 

p
a�� log log�n��

where we took aloc � � and a�� � � �

First we compared the performance of the test for dierent numbers of observations

n � ��� and n � ���� Second� we investigated the relative e�ciency of our test by

calculating the power functions of the competing optimal parametric Likelihood Ratio

Test �LR#test� and our nonparametric test procedure� In practice the parametric LR#test

can only be applied if we already knew the functional forms of the additive components�

We further observed at what level j� the test rejects the hypothesis H�� Finally we

compared the partial tests �loc and ��� �

In Figure � we have displayed the functions fa through fd� the responses �an example

with n � ��� � and estimates� The solid lines are the data generating functions� the

points are the Y 	s and the dashed lines are wavelet estimates� using the Haar basis

and the highest possible level j�n� � �� This value was calculated due to the rule

j�n� � �log��n
d��� � under the constraint n � d�j�n��� � n
� which leads for d � �

and n � ��� exact to j�n� � � �
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Figure �� The functions and the estimates�
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Note that these wavelet estimates are not to be seen as smoothers in this context� But

our goal is in the structural analysis of the components rather than their estimation�

To get power functions for our test procedure we considered the following data gener�

ating process� For Model �

Y � ��� v�x� 
 vfa�x�� 
 fc�x�� 
 fd�x�� 
 �� v � ��� �� �����

where � means a standard normal error� We compare the sensitivity of our test proce�

dure with the LR#test designed for this speci�c form of the alternative� the paramet�

ric hypothesis H� � v � � is tested versus the parametric alternative H� � v �� � �

For the case of Gaussian errors this test is based on the statistics Tn of the form

Tn � n����
P

i

n
jYi �Xi�� � fc�Xi���� f�Xi���j� � �

o
� we reject the null hypothesis if

Tn exceeds the proper quantile of the standard normal law� For each v we pick the

threshold value for LR�test to provide the same value of the error probability of the �rst

kind and compare the error probabilities of the second kind� Similarly we proceeded for

Models � and ��

In Figure � we see the power functions for Model � and Model � for a sample size of

n � ���� The solid lines are for the LR#test� the dashed ones for the nonparametric

procedure� For n � ��� we have j�n� � ��
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Figure �� The power functions for n � ��� observations�

In Figure � we display the corresponding power functions for a sample size n � ����

Looking at the scale of v we recognize that for n � ��� the power functions are steeper

than for n � ���� This fact is not surprising but it can also be seen that the relative

e�ciency of the nonparametric procedure stays almost the same� As we expected the

e�ciency in Model � is very high whereas in Model �� where we consider a sin function

with high frequency� the distance between parametric and nonparametric power �ts is

even for n � ��� rather spread� This fact is in agreement with the general results on

nonparametric hypothesis testing� see e�g� Ingster ������ ����� where it has been shown

that optimal nonparametric rate of testing is n��s���s��� is worse than the parametric

rate n���� �
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Power Function, Model 1, n=400
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Figure �� The power functions for n � ��� observations�

Our test procedure is levelwise and it is natural to expect that dierent levels play

dierent roles for dierent model functions� The next two tables show at which level

our test detects �rstly the alternative for the Models � and � and dierent values of v

in ������ We see in Table � that the very smooth but nonlinear function fa is detected

typically at lowest level with j � � � Similar simulation results for the case f� � fb are

presented in Table �� Here we recognize that higher levels become more important� The

simulation were carried our for n � ��� observations� The last column of each table is

displayed in Figure ��

level j

� � � � � � sum

��� ���� ���� ���� ���� ���� ���� ���

��� ���� ���� ���� ���� ���� ���� 	��

��� ����� ���� ���� ���� ���� ���� ����

v ��� 
���� ���� ���� ���� ���� ���� 
���

��� ������ ���� ���� ���� ���� ���� �����

��� ������ ���� ���� ���� ���� ���� �����

��� ������ ���� ���� ���� ���� ���� �����

Table �� Percentage of rejection in Model �
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level j

� � � � � � sum

��� ���� ���� ���� ���� ���� ���� ���

��� ���� ���� ���� ���� ���� ���� ���

��� ���� ���� ���� ���� ���� ���� ����

��� ���� ���� �	��� ���� ���� ���� ����

v ��� ����� ����� ����� ���� ���� ���� 
���

��� ����� ����� �	��� ���� ���� ���� 

��

��� ����� �	��� ����� ���� ���� ���� �����

��� ����� �	��� ����� ���� ���� ���� �����

��	 ����� ����� ����� ���� ���� ���� �����

Table �� Percentage of rejection in Model �

Finally we have done the same simulation study for the Model � whose �rst component

has jumps� But now we investigate separately the tests �loc and ��� � The results are

given in Table ��

�loc ���

level � � � � � � sum � � � � � � sum

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

��� ���� ��� ��� ��� ��� ��� ���� 	�� ��� ��� ��� ��� ��� 
��

��� ���� ��� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� �
��

v ��� ���� ��� ��� ��� ��� ��� �	�� �	�� ��� ��� ��� ��� ��� ����

��� 
��� ��� ��� ��� ��� ��� 
��� 		�� ��� ��� ��� ��� ��� 
���

��� 
��� ��� ��� ��� ��� ��� 
	�� 
��� ��� ��� ��� ��� ��� 
���

��� 
	�� ��� ��� ��� ��� ��� ��� 
��� ��� ��� ��� ��� ��� 
	��

��	 ��� ��� ��� ��� ��� ��� ��� 

�� ��� ��� ��� ��� ��� ���

Table �� Percentage of rejection in Model � for �loc and ��� separately

Here we can see that the local test has better performance than the test ��� � The

special role of the fourth level for the test �loc is due to the fact that the length of

support of the corresponding wavelet function is of the same order as the length of the

bump�

���� Applications

We now turn to an application to demonstrate the performace of our procedure on real

data� The data set is a subsample of the Socio Economic Panel of Germany from �����

To study the female labour supply in East Germany� ��� women with job and living

together with a partner in East Gemany have been asked for their weekly number of

working hours� The following observations have been chosen as explanatory variables�

the age of the woman X�� her earnings per hour X�� the prestige index of her kind
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of profession X� �called �Treimann Prestige Index� � see Treimann� ������ the rent or

redemption X� for their �at or house� the monthly net income of her partner �in most

cases her husband� X�� her education X� measured in years� the unemployment rate X

of the particular country of the Federal Republic of Germany where the woman is living

in and the number of children younger than �� years X	�

Since the realizations of these explanatory variables took very dierent numbers of

values� e� g� they have maximal � children but there are more than ��� dierent wages

in this sample� it made no sense to take one j�n� equal for all components� We chose

j��n� � � for X�� j�n� � � for X and j�n� � � for X�� X�� X�� X� and X�� For X	

�number of children� we tried j	�n� � � ��rst run� as well as j	�n� � � �second run� to

avoid overparametrization in that direction�

We apply again the modi�ed tets procedure from Section ��� with the parameters

aloc � a�� � � � This choice is the smallest possible one and it leads to the least

conservative test�

In Figure � we have displayed the functional forms for the additive components except

for X and X	 as we had estimated them by using wavelets� These plots indicate that

the in�uences of X� �age�� X� �hourly earnings� and X� �prestige� may be not linear

whereas X�� X� and X� look rather linear� Step by step we tested each component

against linearity�

In the �rst run linearity was rejected for X� and X�� For the �rst component X� the

linearity was not rejected but the values of the test statistics have been very close to the

rejection boundary at almost all levels� For instance� for j� � � we have T� � ����� and

����� � ������

In the second run the test procedure rejected linearity for X� and X� but this time not

for X�� Looking at the values of the test statistics and rejection boundaries we notice

that they are pretty close at almost all levels� E� g� for j� � � we have T� � ����� and

���� � ������

Though there is a dierence between the �rst and second run� the related results are

very close and the performance of the proposed test is quite satisfactory�

In Figure � we have displayed the wavelet estimates of the components� Again we see

that the quality of estimation is not good because of undersmoothing but some qualitative

analysis of each component �in our case it is testing of linearity� is still possible� From

this pictures we can recognize that the dependence from the age is rather parabolic then

linear� and that the Hourly�Earnings component is not considered as a linear function

because of the �at part between � and ���
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Figure �� The estimated functions with a part of the response variables�

�� Proofs

In this section we prove Theorems ��� through ����

���� Proof of Theorem ���

In a �rst step� we reduce the multidimensional problem with a �rst linear component f� �

to a univariate problem with a regression function f � satisfying the condition

kf �kn � �n����� �����
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Let j�n� be due to ������� let some j� � j�n� be �xed and let ���d� j�� be introduced

in ������� Due to condition �D� �

dX
m��

kfm � "m�nfmkn � �n����

and each "m�nfm � m � �� � � � � d � can be represented in the form

"m�nfm �

j�n�X
j��

X
I�Ij

�I�m�
�
I�m� m � �� � � � � d�

with some coe�cients �I�m � I � I �

Next� under the null hypothesis� the �rst component f� of F is linear� f� � ���� 


�������� � This and the above bound yield

kF � f� � "��nf� � � � ��"d�nfdkn � �n����� �����

Denote by ��d� j�� � ��I�m� �I�m� � I�d��j��� the vector with �I�� � � for I � Ij �

� � j � j� � and with the above de�ned �I�m for m � � � Then the inequality in �����

can be rewritten in the form kF � ��d� j����d� j��kn � �n���� � the vector �g�Xi�� i �

�� � � � � n� �� Set

F � � F � f� �"��nf� � � � ��"d�nfd� �����

���d� j�� � ���d� j��� ��d� j��� �����

Then obviously ���d� j�� � V �d� j����d� j��F
� and kF � ��d� j���

��d� j��kn � kF � �
��d� j���

��d� j��kn � At the same time� the vectors ���d� j�� and ���d� j�� have the same

subvector ��j� � Taking into account the model equation ����� we conclude that when

considering test statistics based on ��j� � the regression function F can be changed by

F � without any in�uence on their behavior� although kF �kn � �n���� due to ������

Moreover� in further calculations� we operate only with the subvector ��j� and the cor�

responding covariance matrix Vj� and therefore the multi�dimensional structure of the

model is not important� We will use only the latter bound� This allows to reduce the

original problem to the univariate case with the model function f � satisfying ������

At the next step� we evaluate the error probabilities of the �rst kind for the tests �loc

and ��� � We use the following technical assertion�

Lemma ���� Let numbers a�� � � � � an be such that the sum a���
 � � �
an�n is standard

normal� where ��� � � � � �n are independent normal N ��� ��� random variables� Then�����
nX
i��

aif
��Xi�

�����
�

�
nX
i��

jf ��Xi�j� � ���kf �k�n�

Proof� It su�ces to note that the standard normality of a��� 
 � � �
 an�n implies � �

E�a��� 
 � � �
 an�n�� � ���a�� 
 � � �
 a�n� and the assertion follows by application of the

Cauchy�Schwarz inequality�
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Given j � j�n� � let ��I � I � Ij � be the elements of the vector ��j and let Vj �

�vI�I � � I� I � � Ij� be the corresponding covariance matrix� The local test �loc�j� is based

on the statistics TI � ���v����I�I
��I � and

P f�loc�j� � �g �
X
I�Ij

P �jTI j � n��

Obviously TI can be represented in the form TI � a�Y�
� � �
anYn with some coe�cients

ai depending on I and on the design X�� � � � � Xn � Using the model equation ����� with

f � in place of F � we get

TI �
nX
i��

aif
��Xi� 


nX
i��

ai�i � bI 
 �I �

Recall that the choice of normalizer ���v����I�I for ��I was made to provide standard

normality of the stochastic term �I � a��� 
 � � � 
 an�n � Now we obtain by ����� and

Lemma ��� for the deterministic term bI � a�f
��X�� 
 � � �
 anf

��Xn�

jbI j � ���kf �kn � n�����

Since �I is standard normal� we get

P �jTI j � n� � P �jbI 
 �I j � n� � P �j�I j � n � jbI j�
� � expf�

�
n � n����

��

�g�

This yields

P f�loc�j� � �g � P



max
I�Ij

jTI j � n

�
�
X
I�Ij

P �jTI j � n�

� �j�� expf�
�
n � n����

��

�g

and

P f�loc � �g �
j�n�X
j��

P ��loc�j� � �� � �j�n��� expf�
�
n � n����

��

�g�

Recall that the de�nition of j�n� implies �j�n��� � n � If now n � � � then n���� � � �

and P ��loc � �� � �n expf�� logng � on��� �

Next we consider the test ��� � Let us �x again some level j � j�n� � We suppose for

simplicity that the matrix Vj is of the full rank� The general case can be studied in the

similar way�

The subtest ����j� is based on the statistic Sj � k�jk� � ���kV ����
j

��jk� � Again we

can represent �j � ���V ����
j

��j in the form

�j � A�Y � � A�f �� 
 A��� � bj 
 �j
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where A is a linear operator from R
n into R

Nj � bj is a constant vector in R
Nj and

�j is a standard normal vector in R
Nj � Applying Lemma ��� to each component bI of

the vector bj � I � Ij � we get b�I � ���kf �k�n and hence by �����

kbjk� � Nj�
��kf �k�n � Njn

����� �����

Denote

�j � kbjk��
X
I�Ij

bI�I �

Clearly �j is a standard Gaussian random variable and we can decompose Sj � kbj 


�jk� � kbjk� 
 k�jk� 
 �kbjk�j � Now by �����

P f����j� � �g � P
n
jSj �Nj j �

p
�Njn

o
� P

���k�jk� �Nj

�� �p�Nj�n � ������� kbjk�
�


 P
�

�kbjk j�jj �
p
Nj

�
� P

���k�jk� �Nj

�� �p�Nj



n � ����� �

q
Nj
��n�

��

 P �j�jj � n���
���

Notice that Nj � n
� for all j � j�n� and we have for all n � � that n � ����� �p
Nj
��n� � p

� logn � Next� see Petrov �������

P

���k�jk� �Nj

��p
�Nj

�
p

� logn

�
� expf� logng � n���

and P �j�jj � n���
�� � expf�n���
�g � Therefore�

P �����j� � �� � n�� 
 expf�n���
�g�

Summing up over all j from zero to j�n� we conclude that

P ���� � �� �
j�n�X
j��

P �����j� � �� �
n
n�� 
 exp��n���
��

o
logn	 ��

as n	
 � This completes the proof of Theorem ����

���� Proof of Proposition ���

For nonational simplicity we write ��I resp� vI�I instead of ��I�� resp� v�I�����I��� � We

suppose also that the matrix Vj is non�degenerate�

Let� for some j � j�n� and some I � Ij �

���jv����I�I ��I j � �n�
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We use the decomposition ���v����I�I
��I � ���v����I�I ��I 
 �I where �I is standard normal�

Clearly

P F f�loc�j� � �g � P F

�
���jv����I�I

��I j 	 n

�
� P F

�
���jv����I�I ��I 
 �I j 	 n

�
� P F �j�I j � n� � e��

�
n�� 	 �� n	
�

as required�

Next we consider the situation when

T �j � ���j����������j
TV ��

j ��j � �n� �����

We will show that under the above assumption�

P F �Tj 	 n� � ��n� 	 n� n	 
� �����

that obviously implies the assertion�

Recall that in the case when detVj �� � � one has Tj � ���j������Sj � �j� where

Sj � ���kV ����
j

��jk� � By construction� we can represent the vector ���V ����
j

��j in the

form

���V ����
j

��j � bj 
 �j

where bj � ���V ����
j ��j and �j is a standard Gaussian vector� Notice that

kbjk� � �����j
TV ��

j ��j � ��j�����T �j �

Denote

�j � kbjk��
X
I�Ij

bI�I �

Clearly �j is a standard Gaussian random variable and we can decompose

Sj � kbj 
 �jk� � kbjk� 
 k�jk� 
 �kbjk�j �

Now we have

P F �jTjj 	 n� � P
���kbjk� 
 k�jk� � �j 
 �kbjk�j

�� 	 n��j�����
�

� P
�

���j�����jk�jk� � �j j � �
�T

�
j � n

�

 P �j�jj � �

�T
�
j
�����

It remains to note that �
�T

�
j � n � n
� in view of ����� and we end up using the

arguments from the proof of Theorem ����
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���� Proof of Theorem ���

We begin again by reduction of the multi�dimensional problem to a univariate one� Let

the functions "m�nfm for m � �� � � � � d be de�ned as above� see condition �D� � and let

F �� � F � "��nf� � � � �� "d�nfn � De�ne coe�cients ����� ���� by

������ ����� � arginf
�a�b�

kF �� � a� b����kn � arginf
�a�b�

nX
i��

fF ���Xi���� a� bXi��g��

We set

F � � F �� � ���� � �������� � F � ���� � �������� � "��nf� � � � �� "d�nfn�

Similarly to the proof of Theorem ���� we change F by F � � With this change� the vectors

���d� j� will be transformed into ���d� j� � having the same subvectors ��j � j � � � At

the same time� by the triangle inequality and condition �D� � for all a� b �

kF � � a� b����kn � kf� � �a� ������ �b� ���������kn �
dX

m��

kfm �"m�nfmkn

� ��n�� n�����

Here we have set

��n� � inf
a�b
kf� � a� b����kn�

Similarly we transform smoothness properties of the �rst component f� into the accuracy

of approximation of F � by piecewise�polynomial functions of x� �

inf
g�Ps�j�

kF � � gkn � r�s�j� � rs�j� 
 n�����

From this point on� we may treat the multi�dimensional structure of our model as if we

are given univariate data corresponding to a univariate function f in place of F � � We

omit therefore the second subindex m in our notation� About this function f we know

that

kfkn � inf
a�b
kf � a� b��kn � ���n� � ��n�� n����� �����

inf
g�Ps�j�

kf � gkn � r�s�j� � rs�j� 
 n����� �����

���j� � arginf
��j�

kf � ��j���j�kn� ������

for all j from zero to j�n� �

Now we turn directly to the proof of the theorem using the result of Proposition ����

We show that condition ����� of the theorem with su�ciently large C� and C� along

with ����� and ����� contradict to the constraints from ������

First we rewrite the latter constraints in term of k��jk � Recall that ��j is the subvector

of ���j� corresponding to j �th level� and Vj is the corresponding covariance submatrix

of V �j� �
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Lemma ���� If T �j � ���j����������j
TV ��

j ��j � �n � then

k��jk� � ��j�������nv
��j�� ������

Similarly� the inequality T �j�� � maxI�Ij ���v
����
I�I j��I j � �n implies

max
I�Ij

j��I j � ��n
p
v��j�� ������

Proof� Both statements are a direct consequence of the de�nition of the norm of a matrix�

Indeed� let �j � ���V ����
j ��j � Then T �j � k�jk� and ��j � �V

���
j �j � Next� obviously

kV ���
j k �

pkVjk �
p
v��j� � Particularly this yields that

k��jk� � ��kV ���
j �jk� � ��

�
kV ���

j k k�jk
�� � ��v��j�T �j �

and ����� implies �������

Similarly vI�I � kVjk for all I � Ij and hence

j��I j � v
���
I�I jv����I�I ��I j �

p
v��j��T �j���

Recall the notation L�j� for the linear space generated by functions �I � I � Ij� � with

� � j� 	 j and "�j�f for the projection of f onto the space L�j� with respect to the

norm k � kn �

"�j�f � arginf
h�L�j�

kf � hkn�

Particularly� "���f denotes the projection of f on the space of linear functions and by

����� "���f � � �

Lemma ���� For each j � j�n� �

k"�j 
 ��fkn � k"�j�fkn 
 k��jk�

Proof� Since L�j � ��  L�j� � then

"�j�f � "�j�"�j 
 ��f�

If f�j 
 �� � "�j 
 ��f � then "�j�f � "�j�f�j 
 �� and we have to show that

k"�j�f�j 
 ��kn � kf�j 
 ��kn � k��jk�

In view of ������

f�j 
 �� �
X

I�I�j�
��I�

�
I �

Denote by fj the part of this sum corresponding to the last level Ij in I�j� �

fj �
X
I�Ij

��I�
�
I �
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By construction� the functions ��I � I � Ij � are orthonormal w�r�t� to the inner product

k � kn and in particular

kfjk�n �
X
I�Ij

j��I j� � k��jk��

Next� obviously f�j 
 ��� fj � L�j� � and by de�nition of "�j� �

kf�j 
 ��� "�j�f�j 
 ��kn � kf�j 
 ��� ff�j 
 ��� fjgkn � kfjkn � k��jk�
Now the assertion follows from the triangle inequality�

Lemma ���� Given j� � j�n� � let ���� hold true for all j � j� � Then

k"�j��fk�n � ���j�����nv��j�� ������

with �� � ���������� ���� �

Proof� Recursive application of Lemma ��� gives

k"�j��fkn �
j���X
j��

k��jk�

Here we have used that "���f � � � Since the norm v��j� obviously increases with j �

then this result along with the bound ������ yields

k"�j��fkn �
j���X
�

n
��j�������nv

��j��
o���

�
n

������nv
��j��

o��� j���X
j��

�j��

and the assertion follows by straightforward calculation�

Lemma ���� There is a constant �� � � depending on s only such that for each j �
j�n�

k"�j�fkn � ��u��j�
u��j�
�kfkn � r�s�j�


�

Proof� Let g � Ps�j � j�� be such that kf � gkn � r�s�j� � Then

k"�j�fkn � k"�j�g 
 "�j��f � g�kn � k"�j�gkn� k"�j��f � g�kn
� k"�j�gkn� r�s�j��

Recall that g is a piecewise polynomial function on the partition AI � I � Ij�j� and the

projection "�j�g means the approximation of each polynomial on interval AI of length

���j�j�� by piecewise constant functions with piece length ��j � Therefore� it su�ces to

prove that for each piece AI and every polynomial P �x� � a� 
 a�x 
 � � �
 as��xs�� �

it holds X
AI

f"�j�P �Xi�g� � �u��j�
u��j�
X
AI

P ��Xi�

where the constant � depends on s only� This fact is a consequence of the next general

statement�
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Lemma ���� Let u� � � � u� � � and let � be a measure on ��� �� such that

u���j� � ��Ak� � u���j� ������

for all intervals Ak � �k��j� � �k
����j�� � k � �� �� � � � � �j� � Then there exists a constant

� depending on s only and such that for every polynomial P �x� � a� 
 a�x 
 � � � 


as��xs��

�j���X
k��

�Z
Ak

P �x���dx�

��

� �u�
u�
Z �

�
P ��x���dx��

Proof� The similar fact with integration instead of summation over AI was stated in

Ingster ������ and we present here only a sketch of the proof for our situation�

We begin by reducing the case of arbitrary u� and u� to the case when u� � u� � � �

De�ne a measure �� on ��� �� by d��
d��x� � u���j�
��Ak� if x � Ak � Due to �������

d��
d� � � and obviously ���Ak� � u���j� � Next� similarly d�
d�� � u��� �j���Ak� �
u��� u� � Now

�j���X
k��

�Z
Ak

P �x���dx�

��

�
�j���X
k��

�Z
Ak

P �x����dx�

��

�

Z �

�
P ��x����dx� � u��� u�

Z �

�
P ��x���dx��

Therefore� it su�ces to show that

�j���X
k��

�Z
Ak

P �x����dx�

��

� �
Z �

�
P ��x����dx��

or� equivalently to consider the original problem with ��Ak� � ��j� for all k � �� � � � � �j��
� �

Let a � �a�� � � � � as��� be the vector of coe�cients of P � Then obviouslyZ �

�
P ��x���dx� � Ckak�

where kak� � a�� 
 � � �
a�s�� � Introduce a matrix M with elements �k�l �
R
Ak

xl��dx� �

k � �� � � � � �j� � �� l � �� � � � � s� �� � Then Ma is a vector in the space R�j� and

�j���X
k��

�Z
Ak

P �x���dx�

��

� kMak��

Now we use that kMak� � aTMTMa � kak�
k�MTM���k � It remains to note that the

conditions s 	 �j��� and ��Ak� � ��j� yield that k�MTM���k � C for some constant

C depending on s only�

Summing up the results of Lemma ��� through ��� we see that the inequality kfkn �
r�s�j�
C

p
�j��nv��j�u��j�
u��j� for su�ciently large C contradicts to constraints �����

and the theorem is proved�
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���� Proof of Theorem ���

We proceed in the same line as in the proof of Theorem ���� The dierence is only in

evaluating the norm k"�j�fkn � see Lemmas ��� and ���� Similarly to Lemma ��� we can

show that

k"�j 
 ��fkn � k"�j�fkn 
 k��jk�

Next� in view of the constraints from ����� and Lemma ���� one has

k��jk� �
X
I�Ij

j��I j� �
X
I�Ij

j��I j���j��I j � tj� � r�j� tj�

where tj � ��n
p
v��j� � Using this bound for j between j� and j� and the bound

from Lemma ��� for j 	 j� � we estimate

k"�j��fkn � ���j���nv��j�� 


j�X
j�j�

r�j� tj��

This allows to complete the proof by the same arguments as for Theorem ����

���� Proof of Lemma ���

By de�nition of j�n� it holds n�� � ��j�n��� � dn�� � Next� it is easy to see that "m�n

is the projection of the function fm on the space of piecewise constant functions with

the piece length ��j�n��� � Let A be one from these intervals and let for m � d � NA�m

denote the number of design points Xi with Xi�m � A � The condition of the lemma on

the marginals �m�n of the empirical measure imlies that NA�m � C���j�n���n � Denote

also by fm�A the arithmetic mean of the values fm�Xi� over all Xi with Xi�m � A �

Then "m�nfm�Xi� � fm�A and the Lipschitz condition on the component functions fm

yields jfm�Xi�m�� fm�Aj � C��
�j�n��� for Xi�m � A and henceX

i 
Xi�m�A
jfm�Xi�� fm�Aj� � NA�m

���C��
�j�n���

���� � C�C
�
�n���j�n����

We have �j�n��� such intervals and therefore

kfm �"m�nfmk�n � C�C
�
�n���j�n��� � C�C

�
�d

�n��

as required�
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