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Abstract

The impact of the choice of the lag length on tests for the number of cointegration relations

in a vector autoregressive �VAR� process is investigated� It is shown that the asymptotic

distribution of likelihood ratio �LR� tests for the cointegrating rank remains unchanged if

the true data generation process �DGP� is of 	nite order and a consistent model selection

criterion is used for choosing the lag length� A similar result also holds if the true DGP is

an in	nite order VAR� In a simulation study we 	nd that small sample power and size of

LR cointegration tests strongly depend on the choice of the lag order�
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� Introduction

Following the invention of cointegration by Granger ���
�� ��
�� and Engle � Granger

���
��� time series econometrics has changed considerably� In multiple time series analy

sis investigating the cointegration properties at an early stage of the analysis has become

standard practice by now� For this purpose� Johansen�s ���

� ����� ����� likelihood ratio

�LR� tests are used frequently �see also Reinsel � Ahn �������� In that approach a vector

autoregressive �VAR� process or error correction model �ECM� of some 	nite order is usually

	tted to the data and the tests are then performed conditionally on the order being the true

one� In some studies it was found� however� that the choice of the lag order or truncation

lag can have an important impact on the outcome of unit root and cointegration tests �see�

e�g�� Schwert ���
��� Ng � Perron ������� Agiagloglou � Newbold ������ for unit root tests

in univariate time series and Reimers ������ and Haug ������ for cointegration tests in vec

tor processes�� Therefore it is of interest to investigate the relation between the choice of

trancation lag and the properties of the resulting cointegration tests based on a model with

a prespeci	ed order�

In practice� the VAR or ECM order is ususally chosen by some criterion based on the

available data� In particular� the order is chosen so that the residuals appear to be white

noise under some data dependent criterion� The cointegration tests are then performed

conditionally on the order obtained in this way� Therefore� a proper overall assessment of

the properties of cointegration tests has to take into account the data dependent choice of the

order or truncation lag of the underlying model� Also assuming that the true data generation

process �DGP� is in fact of 	nite order may be too limited for capturing all situations of

relevance for applied work� This has been acknowledged in the univariate case for unit root

tests by Hall ������� Said � Dickey ���
�� and Ng � Perron ������ who investigate the

asymptotic properties of augmented DickeyFuller unit root tests for a number of di�erent

rules for choosing the truncation lag� They 	nd that the tests maintain their asymptotic

properties for quite general DGPs if the truncation lag is chosen by a suitable deterministic

rule or by one of the standard lag order selection criteria� For a deterministic rule a similar

result was obtained by Saikkonen � Luukkonen ������ �henceforth SL� for LR cointegration

tests�

In this study we will extend these results to data dependent rules for choosing the trun
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cation lag in multivariate models� In particular� it will be shown that if the DGP is in fact

a 	nite order VAR process then any one of the consistent model selection criteria may be

used prior to testing for cointegration� The asymptotic properties of the LR tests for the

cointegrating rank will in that case be the same as if the true order were known� Further

more� if the true DGP is an in	nite order process similar results are shown to hold� We also

report some simulation results to illustrate the small sample problems related to choosing

the truncation lag prior to testing for cointegration�

The structure of this study is as follows� In the next section the standard LR approach

for testing for the cointegrating rank is presented formally� The model assumptions used for

our purposes are presented in Section �� In Section � results for choosing the VAR order

in some deterministic fashion are summarized and in Section � the consequences of a data

dependent order choice are explored� In Sections �  � we operate under the unrealistic

assumption that the DGP has no deterministic terms� This is done for convenience in order

to simplify the exposition� In Section � the extension to the case where the DGP has a

nonzero mean term is discussed� Simulation results are reported in Section � and Section 


concludes� Most proofs of our theoretical results are given in the Appendix�

The following notation is used throughout� The vector yt � �y�t� � � � � ynt�� denotes an

observable ndimensional set of time series variables� The sample size is signi	ed by T � the

symbolK is reserved for the lag order or truncation lag of an ECM and N � T�K�� is the

e�ective sample size used for estimation and testing� The di�erencing operator is denoted by

�� that is� �yt � yt� yt��� The symbol I�d� is used to denote a process which is integrated

of order d� that is� it is stationary �or asymptotically stationary� after di�erencing d times

while it is still nonstationary after di�erencing just d � � times� The symbol
p
� signi	es

convergence in probability and O���� o���� Op��� and op��� are the usual symbols for the order

of convergence and convergence in probability� respectively� of a sequence� We abbreviate

�independently� identically distributed� in the usual way by i�i�d�� The normal distribution

with mean �vector� � and variance �covariance matrix� � is denoted by N������ Moreover�

In denotes the �n � n� identity matrix� If A is an �n �m� matrix we let A� stand for its

orthogonal complement� As a general convention� a sum is de	ned to be zero if the lower

bound of the summation index exceeds the upper bound�

�



� Cointegration Tests

Given a system of n variables yt � �y�t� � � � � ynt��� the number of linearly independent coin

tegrating relations among them is usually determined by considering the rank of the matrix

� in the error correction form

�yt � �yt�� �
KX
j��

�j�yt�j � et� �����

This is usually done by testing either one of the following two pairs of hypotheses�

H��r�� � rk��� � r� vs� H��r�� � rk��� � r� �����

or

H��r�� � rk��� � r� vs� �H��r�� � rk��� � r� � �� �����

Assuming that the error term et in ����� is Gaussian white noise� the corresponding likelihood

ratio statistics as derived by Johansen ���

� may be obtained as follows� For a sample

y�� � � � � yT � de	ne z�t � ��y
�
t��� � � � ��y

�
t�K� and� using N � T �K � ��

MT � N��

�
� TX
t�K��

yt��y
�
t�� �

TX
t�K��

yt��z
�
t

�
TX

t�K��

ztz
�
t

��� TX
t�K��

zty
�
t��

�
� � �����

Denoting the least squares �LS� residuals from model ����� by �et� de	ne

�� � N��

TX
t�K��

�et�e
�
t� �����

Moreover� let �� be the LS estimator of � from ������ Denoting by ��� � � � � � ��n the ordered

generalized eigenvalues obtained as solutions of

det���MT
��� � ���� � �� �����

Johansen�s trace statistic for testing the pair of hypotheses ����� is given by

LRtrace�r�� � N

nX
j�r���

log�� � ��j� �����

and the socalled maximum eigenvalue statistic for testing ����� is given by

LRmax�r�� � N log�� � ��r����� ���
�
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The null distributions of these two test statistics are nonstandard and critical values have

been tabulated� e�g�� in Johansen ���

� ������

In practice it is usually assumed that the maximum lag K in the ECM ����� is chosen

appropriately which means that it has to be chosen in such a way that the test statistics

have the correct asymptotic null distributions� Usually some datadriven procedure is used

for choosing K� In the following we will show that under quite general assumptions� the

usual model selection criteria may be used for that purpose without a�ecting the asymptotic

properties of the test statistics� In the next section we will spell out the precise assumptions

for the data generation process �DGP� which are used in the theoretical analysis� It will be

seen that K does not have to be the �true� lag length or order� In fact� the DGP may have

an in	nite order VAR representation�

As mentioned in the introduction� in practice there will often be deterministic terms in

the ECM ����� such as an intercept� seasonal dummies or a linear trend term� To simplify

the theoretical analysis we will begin by assuming that no such terms are present� In Section

� we will comment on the consequences of a nonzero mean term� It will be argued that our

results can be extended in a straightforward manner to that case�

� Model Assumptions

We use the general framework of Saikkonen ������ and Saikkonen � L�utkepohl ������ and

partition yt as

yt �

�
� y�t

y�t

�
� � t � �� � � � � T� �����

where yit is �ni� ��� i � �� �� and n�� n� � n� We assume that the DGP is of the following

form�

y�t � Ay�t � u�t� ����a�

�y�t � u�t� ����b�

Here ut � �u��t� u
�
�t�
� is a strictly stationary process with E�ut� � �� positive de	nite covariance

matrix �u � E�utu�t� and continuous spectral density matrix which is positive de	nite at

zero frequency� These assumptions imply that y�t is I��� and not cointegrated while y�t and
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y�t are cointegrated� Without a�ecting the subsequent results the initial vector y� is assumed

to be any random vector with a 	xed probability distribution�

It is wellknown that the model ����a������b� may be written in triangular error correction

form

�yt � J �yt�� � vt� �����

where J � � ��In� � ���  
� � �In� � �A�� and vt � �v

�
�t� v

�
�t�
� is a nonsingular linear transforma

tion of ut given by

vt �

�
� In� A

� In�

�
�ut

�see� e�g�� Phillips ������ and Saikkonen �������� The process vt �and hence ut� is assumed

to have an in	nite order VAR representation

�X
j��

Gjvt�j � �t� G� � In� �����

where �t is a sequence of continuous i�i�d������ random vectors with � being positive de	nite�

It is also assumed that the �t have 	nite fourth moments and that the �n � n� coe!cient

matrices Gj satisfy the summability condition

�X
j��

jakGjk �� for some a � �� �����

This condition restricts the temporal dependence of the process vt� It is satis	ed for all a � �

in the important special case where vt is a vector autoregressive moving average �VARMA�

process� Condition ����� also implies that the process vt and� hence� yt can be approximated

by a 	nite order autoregression� Speci	cally� using ����� and ����� it can be shown that

�yt � �yt�� �
KX
j��

�j�yt�j � et� t � K � ��K � �� � � � �����

where

et � �t �

�X
j�K��

Gjvt�j�

Thus� the model can be brought in the form of our starting model ������ Now the error term

is not white noise� though� if some of the Gj are nonzero for j � K� Note� however� that

our assumptions do not rule out 	nite order models�
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Due to the cointegration assumption� the coe!cient matrix � has reduced rank and�

hence� the structure

� � " � � �

KX
j��

GjJ 
� �����

where the second equality de	nes the �n�n�� matrix " which is of full column rank �at least

for K large enough�� Details of the derivation of ����� and ����� can be found in Saikkonen

������ and Saikkonen � L�utkepohl ������ and are not repeated here� We note� however�

that the coe!cient matrices �j �j � �� � � � �K� are functions of  � Gj �j � �� �� � � �� and K

and they form an absolutely summable sequence�

In Section � we have argued that the �approximate� ECM ����� forms a basis for coin

tegration testing procedures� It may be worth noting that the cointegration tests do not

require knowledge on which components of yt belong to y�t and y�t� In fact� for them it is

su!cient to know that the components of yt can in principle be devided into the two groups�

possibly after a suitable linear transformation� The application of the tests does require a

suitable choice of the truncation lag or order of truncation� K� however� It is intuitively

clear that K should be so large that Gj � �� j � K� because then we approximately have

et � �t� In particular� to be able to prove useful asymptotic results� one has to assume that

the order of truncation increases with the sample size at a suitable rate� Since it is clear

that consistent estimators and tests cannot be obtained if the order of truncation increases

too fast compared with the sample size the following technical assumption is commonly used

in the literature which considers approximating an in	nite order model by a 	nite order

VAR or ECM �e�g�� LS� Lewis � Reinsel ���
��� L�utkepohl � Poskitt ������� Saikkonen �

L�utkepohl ������ ����� and L�utkepohl � Saikkonen ��������

Assumption �� K is chosen as a function of T such thatK �� andK��T � � as T ���

Assumption � speci	es an upper bound for the rate at which the value of K is allowed

to tend to in	nity with the sample size� In most of the aforementioned related literature

a lower bound for the lag order is also imposed� Recently Ng � Perron ������ showed�

however� that the limiting distribution of the univariate unit root tests of Said � Dickey

���
�� may be obtained under Assumption � without imposing a lower bound condition for

the lag length� Ng � Perron ������ also showed that choosing the order of truncation on the
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basis of conventional model selection criteria� like AIC or SC �see L�utkepohl ������ Chapters

� and ����� yields K � Op�logT �� a choice which is consistent with Assumption �� In the

next sections results similar to those of Ng � Perron ������ are obtained for the multivariate

case�

� Results with Deterministic Choice of the Trunca�

tion Lag

SL show that the LR tests for the cointegrating rank of a system remain valid for processes

without deterministic trend if the lag order is chosen according to Assumption �� We will

summarize their result here because it is the basis for studying the consequences of using

data dependent rules for the lag order� It is assumed that the tests of the cointegrating rank

are based on the estimated version of ������

�yt � ��yt�� � ��zt � ��t� t � K � �� � � � � T� �����

where zt � ��y�t��� � � � ��y
�
t�K�

�� as in ������ and �� and �� � ���� � � � � � ��K� are the ordinary

least squares �OLS� estimators of the coe!cient matrices � and � � ��� � � � � � �K �� respec

tively� Moreover� the ��t are the OLS residuals� The following theorem states that the LR

tests for the cointegrating rank maintain their usual asymptotic properties if the truncation

lag is chosen according to some rule which satis	es Assumption ��

THEOREM ���� If the truncation lag is chosen as prescribed in Assumption � then LRtrace

and LRmax have the same limiting distribution under the null hypothesis as in the case where

the true VAR order is known and 	nite�

A detailed proof of this result for the test statistic LRtrace may be found in SL� The

arguments used there may be adapted to prove the theorem also for LRmax�






� Results with Data�Dependent Choice of the VAR

Order

In this section we shall study the datadependent selection of the order of truncation in the

unrestricted approximate ECM ������ It is assumed that the order of truncation is chosen

by minimizing the criterion

log j��Kj� �K � ��CT�T� K � KT � o�T ����� CT � n�� CT�T � �� �����

where ��K equals our previous ��� The sequences KT and CT have to be prescribed� The

former provides an upper bound for the considered values of K� Unless otherwise stated it

will be assumed that KT �� so that KT satis	es the upper bound condition in Assumption

�� This assumption is needed for the results to be proved in the following� The sequence

CT determines the considered criterion� If CT � �n� then ����� yields the familiar Akaike

information criterion� AIC� choosing CT � �n� log log T gives the HannanQuinn criterion�

HQ� and if CT � n�logT then another popular criterion� often referred to as SC is obtained

�see� e�g�� L�utkepohl ������ Ch� ���� We write �K for the value that minimizes ������

We now wish to derive the asymptotic properties of the LR tests based on a model with

lag order �K� For this purpose we 	rst consider the infeasible least squares regression

�yt � #"u��t�� � #�zt � #�Kt� t � K � �� � � � � T� �����

and de	ne the associated residual covariance matrix by

#�K � N��

TX
t�K��

#�Kt#�
�
Kt�

The following lemma shows that in ����� the covariance matrix estimator ��K can be replaced

by #�K without a�ecting the asymptotic behaviour of the criterion� A proof is given in the

appendix�

LEMMA ���� Suppose that yt �t � �� � � � � T � is generated by ����� and ����� and that

condition ����� holds for some a � �� Suppose further that KT in ����� satis	es Assumption

�� Then� uniformly in K � KT � ��K � #�K � op�KT�T ��

Lemma ��� is a multivariate extension of Lemma ��� of Ng � Perron ������ where the

error term is op�T����� instead of op�KT�T �� This di�erence of error terms is actually of
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importance because the penalty term �K � ��CT�T in the criterion ����� is typically of a

lower order of magnitude than o�T������ This implies that the error term can be at most of

order op�KTCT�T � if one wishes to conclude that replacing the estimator ��K by #�K has no

e�ect on the asymptotic behaviour of the criterion�

It is easy to see that equation ����� can be reparameterized as a regression of �yt on

ut��� � � � � ut�K� u��t�K�� �see �A��� in the Appendix�� As far as the minimization of �����

is concerned� one can here also replace the regressand by ut because �y�t � Au�t � �u�t

and �y�t � u�t� Thus� Lemma ��� implies that asymptotic properties of a minimizer of

����� can be studied by using the stationary process ut �or vt�� In the stationary case

these properties have been studied extensively� as the monograph of Hannan � Deistler

���

� shows� Although the results in Hannan � Deistler ���

� are formulated without

the regressor u��t�K�� it is clear that this has no e�ect on the main conclusions� Thus� from

Lemma ��� and Theorem ������b� of Hannan � Deistler ���

� we can� for instance� conclude

that� if the order of truncation is chosen by minimizing the AIC or SC criterion we have

�K � Op�logT � if ut �or vt� has a 	nite order VARMA representation which satis	es suitable

conditions� For the details of this result see the discussion on p� ��� of Hannan � Deistler

���

��

We shall not provide a detailed discussion of the asymptotic behaviour of a minimizer of

����� but only prove the following theorem in the appendix�

THEOREM ���� Under the conditions of Lemma ��� the following results hold�

�i� If ����� is not a 	nite order autoregression then �K �� in probability�

�ii� If ����� is an autoregression of a 	nite order K� � KT and CT �� then �K
p
� K��

The 	rst result of Theorem ��� shows that choosing the value of K by conventional model

selection criteria is consistent with the upper bound condition in Assumption �� The fol

lowing theorem shows that choosing the VAR order by a criterion of the form ����� leaves

the asymptotic null distributions of the test statistics for the cointegrating rank unchanged�

Again� a proof is provided in the appendix�
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THEOREM ���� If the assumptions of Lemma ��� are satis	ed� then LRtrace and LRmax�

computed on the basis of a model with lag order �K� have the same limiting distribution

under the null hypothesis as in the case where the true VAR order is known and 	nite�

� Models with an Intercept

The results of the previous sections can be extended to models with intercept terms in the

cointegrating relations� In this case ����a� becomes

y�t � ��Ay�t � u�t ����a��

while ����b� remains as before� This implies that instead of ����� we have

�yt � � ��yt�� �

KX
j��

�j�yt�j � e�t � t � K � ��K � �� � � � ������

where � � �"� and � has the structure ������ Of course� we now have to add intercept terms

to the least squares regressions� However� in the same way as in Saikkonen ������ all the

results proved in Sections � and � still hold provided appropriate modi	cations are made in

their presentation� Details of these modi	cations are discussed in Saikkonen ������ Section

�� and are not repeated here� Modi	cations required in the proofs are brie$y discussed in

the appendix� In the next section some small sample results are obtained by simulations�

� Simulation Results

For unit root tests in the context of univariate time series Ng � Perron ������ and Agia

gloglou � Newbold ������ found that the ADF tests lose power if the lag length is over

speci	ed� Also some size distortion was observed if the lag length is underspeci	ed� Since

LR cointegration tests are the corresponding tests in the multivariate case one may expect

that they have similar small sample properties� Because in practice the cointegrating rank

is usually determined by testing H��� � rk��� � �� H��� � rk��� � �� etc� sequentially until

the null hypothesis is rejected for the 	rst time� one would expect that too few cointegration

relations are found if a large lag length is chosen� Previous simulation studies which have

also considered this aspect of testing for cointegration are Reimers ������� Cheung � Lai

������� Yap � Reinsel ������� Haug ������ and SL among others� In all these studies it was
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con	rmed that the lag order choice has a substantial impact on the outcome of cointegration

tests in samples of the size commonly used in macroeconometric studies�

In particular� Reimers found that choosing an unnecessarily large lag order results in

size distortions and power reductions� In his simulation study the empirical size does not

necessarily decline with increasing lag length� In contrast� the rejection rate in some cases

exceeded the nominal one substantially when the lag order was overspeci	ed� In his experi

ment the SC criterion worked best for choosing the VAR order prior to using LR tests for the

cointegrating rank� This may be a consequence of the speci	c processes used� In particular�

he considered only VAR processes of orders � and � �ECMs of order K � � and ��� Clearly�

for low order processes parsimonious criteria such as SC may have an advantage over more

lavish criteria such as AIC�

Cheung � Lai ������ investigated the impact of the lag length on the size of LR cointe

gration tests in a bivariate setting and found that underspecifying the true lag length can

lead to massive size distortions while overspecifying the lag order may be less problematic�

Severe size problems were also found for in	nite order processes� Similar conclusions were

also reached by Haug ������ for bivariate processes and Yap � Reinsel ������ and SL for

threedimensional processes� In fact� Haug ������ p ���� concludes that %the study of Ng

and Perron should be extended to cointegration tests because the experiments with various

lag lengths ��� indicate that additional lags decrease size distortions dramatically� however�

the loss in power may also be large�& Following this proposal we have performed a Monte

Carlo experiment which focusses on the speci	c impact of the lag length on size and power

of LR tests for the cointegrating rank�

In most of the aforementioned studies the properties of the tests for speci	c null hy

potheses are investigated whereas in practice the aforementioned sequential procedure is

commonly used� We will therefore investigate the properties of the sequential procedure

which tests H��� � rk��� � �� H��� � rk��� � �� etc� and terminates when the null hy

pothesis is rejected for the 	rst time� We will use the DGPs from SL and focus our study

on the following questions� What is the impact of the lag order on the distribution of the

cointegrating ranks determined by the LR tests' If the lag length is chosen by some model

selection criterion� what is the impact of the model selection criterion on the properties of

the LR tests' In the previous sections we have seen that asymptotically the choice of the
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lag length has no impact on the LR tests for the cointegrating rank provided the simple

condition for the upper bound of the lag order in Assumption � is observed� Of course� the

situation may be quite di�erent in small samples�

Although our DGPs have zero mean� we will only present results for tests which allow

for a nonzero mean term� The reason is that assuming a zero mean is rather unusual in

practice� For simplicity we focus on LRtrace� Critical values are taken from Johansen �

Juselius ������ Table A����

As mentioned earlier� our simulations are based on the DGPs used in SL� The 	rst one

is a VAR��� process which has an EC representation of order K� � ��

�yt � P��

�
BBB�
�
����
�� � �

� �� �

� � ��

�
			� � I�
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with �t � i�i�d� N������ Here

P �
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����� ���
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The second DGP is a mixed VARMA process which was also used by Yap � Reinsel �������
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where P and �t are as in ����� and

P� �

�
����
���
�� ������ ���
��

������ ����
� �����

����

 ����� �����

�
			� �

Yap � Reinsel ������ also considered a process very similar to ����� in their Monte Carlo

experiment� Using the two processes ����� and ����� allows us to obtain results for 	nite order

as well as in	nite order VAR processes� We have chosen threedimensional processes because�

given the empirical studies reported in the literature� this dimension may be regarded as

moderate� In any case� it turned out to be large enough to study important features related
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to variations in the cointegrating rank� The values of the �i� i � �� �� �� determine the

cointegration properties of the processes� More precisely� the number of �i with absolute

value less than one is just the cointegrating rank of the system� The precise values used in

the simulations will be given later when we discuss the results� The size of �� determines to

some extent how well the mixed VARMA process can be approximated by a low order pure

VAR model� A �� close to zero ensures that a low order VAR provides a good approximation

because the other eigenvalues of the MA coe!cient matrix are also small ������ and ��������

A large �� value� on the other hand� requires a larger VAR order for a good approximation�

To ensure invertibility of the MA part� j��j has to be less than one� We have chosen �� � �

and �� � 	��� in the simulations and report some of the results in the following�

The number of replications is ���� and we have used sample sizes of T � ��� and

T � ���� The e�ective sample size used in a speci	c situation depends on the VAR order�

of course� as in the theoretical derivations of the previous sections� The maximal orders KT

are chosen to be K��� � � and K��� � �� that is� KT is the largest integer which is smaller

than T ���� In ����� KT is required to be of smaller order than T ���� This� however� is only

an asymptotic condition� In principle this does not mean that the order cannot be greater

than T ��� for any given 	nite T � The maximal lag lengths used here turn out to be su!cient

to study the implications of a relatively large and potentially overspeci	ed lag order�

In Table � some of the results for samples of size T � ��� obtained for the pure VAR

process ����� are given� It is obvious from the table that the choice of the lag order has

an impact on both the size and the power of the cointegration tests� For the DGP with

cointegrating rank r � �� the impact of the lag order on the size of the test is seen most

easily� In this case the empirical size is grossly distorted if the test is based on a zero order

ECM and hence� the order is underspeci	ed� Instead of the nominal �( the actual rejection

rate of H��� � rk��� � � is almost 	ve times as large� On the other hand� the rejection rate

also tends to increase with the lag order if the latter is overspeci	ed� For an increasing lag

order the sampling uncertainty increases which a�ects the performance of the LR test for the

cointegrating rank� Note� however� that even for the true lag orderK � � the actual rejection

rate of the true null hypothesis rk��� � � exceeds the nominal �( considerably in this case�

When r � �� the power of the LR test is much better for an underspeci	ed lag length than

for an overspeci	ed order� Of course� the former result is a re$ection of the massive size
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distortion for an underspeci	ed lag order� The power deteriorates with increasing lag order

K� In other words� too small a rank is chosen with an increasing probability if K increases�

Generally the choice of the cointegrating rank is more diverse if the lag order is increased

and the true rank is greater than one�

For the present process� using order selection criteria such as AIC� HQ or SC amounts

to choosing an order around the true lag order of K� � � with a high probability and

consequently� selecting the lag length with any one of these criteria overall results in a

better performance of the LR tests for the cointegrating rank than for a deterministically

chosen order of about T ���� Although the choice of the selection criterion has some impact

on the outcome of the cointegration tests� none of the criteria is generally superior to its

competitors� In particular� none of the model selection criteria leads to generally superior

performance of the cointegration tests� Note� however� that the tests appear to have very

little power and do not 	nd the correct rank with much certainty if the rank is greater than

one� say� With a sample size of T � ���� which is the order of magnitude often encountered

in macroeconometric studies with quarterly data� it is obviously di!cult for the LR test to

	nd the correct rank if that is greater than one� even under the present arti	cial conditions�

Still it may be worth investing some e�ort in choosing a reasonable lag order�

We have repeated this experiment with samples of size T � ��� and also for other �i

values� The results are not shown because they are qualitatively similar to those for T � ���

although the reliability of the tests in 	nding the true cointegrating rank improves if T � ���

and a small VAR order is used� For instance� if model selection criteria are employed� a

true rank of one is found in more than ��( of the replications� However� even with ���

observations a true rank of � or � is not found with a satisfactory frequency� Generally

the performance of the LR tests in terms of power and size deteriorates for increasing VAR

order�

In Table � some results for VARMA processes are given� The sample size underlying

the table is T � ���� Because the characteristics of the MA part now determine which

lag order is necessary for a good approximation of the DGP it is not surprising that the

frequency distributions of the cointegrating ranks selected now also depends on the MA

characteristics� Using a very small lag order may result in a quite poor performance of the

LR tests both in terms of size and power� In addition� the performance of the LR tests again
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deteriorates eventually for increasing lag length� Using the proportion of correct choices of

the cointegrating rank as a criterion� it is clearly helpful to apply order selection criteria�

However� even with this device a choice of a correct rank r � � is not very likely�

As can be seen in Table �� the situation improves slightly for samples of size T � ����

Even then the success rate is not impressive� though� Note also that the model selection

criteria do not necessarily 	nd the optimal lag order for the purposes of testing for the

cointegrating rank� For instance� in Table � for a DGP with r � � and �� � �� � ��

�� � ���� �� � ����� the correct rank is found by the testing procedure in ����( of the

replications if K � �� whereas less than ��( correct decisions on the cointegrating rank

are made if any of the order selection criteria is used� In most cases� however� using model

selection criteria results in correct decisions with a probability close to the best one obtained

with any one 	xed order� Hence� on the basis of this limited evidence using model selection

criteria seems to be a good idea� In most cases AIC and HQ have a slight advantage over

the very parsimonious SC criterion� This is in line with simulation results by Agiagloglou �

Newbold ������ for univariate unit root tests but contrasts with 	ndings by Reimers �������

Of course� it is not clear that the proportion of correct choices of the cointegrating rank is

necessarily the best performance criterion here� Therefore the full frequency distributions of

the selected ranks are given in the tables� Obviously the frequency distributions tend to be

more concentrated on small ranks if the lag order increases�

As mentioned earlier� we have also used other Monte Carlo designs� They led to qual

itatively similar results and are therefore not shown in order to save space� The general

conclusion from the simulations is that the choice of the lag order has a massive impact on

the cointegrating rank determined in the usual squential manner on the basis of LR tests�

Choosing too small an order as well as overspecifying the order both lead to size distortions

and loss in power� Unfortunately� it turns out that even for the simple processes considered

in our simulation experiment a correct cointegrating rank greater than one is not found very

often for samples of the size typically available in macroeconometric studies�

� Conclusions

In this study we have investigated the impact of the choice of the lag order on tests for

the number of cointegrating relations in a VAR or ECM framework� It is found that the
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asymptotic distribution of LR tests for the cointegrating rank remains unchanged if the true

DGP is of 	nite order and a consistent model selection criterion is used for choosing the lag

order� In fact� the asymptotic distribution of the LR tests remains even valid if the true VAR

order is in	nite as� for instance� in VARMA processes� In other words� from an asymptotic

point of view� the common practice of choosing the lag order with one of the model selection

criteria is justi	ed�

Using simulations we found� however� that the small sample properties of the cointegra

tion tests are strongly dependent on the choice of the lag length� Choosing a very small lag

length which results in a poor approximation of the true DGP may equally well result in

major size distortions and reduced power of the tests as a large lag length which introduces

substantial sampling uncertainty into the estimated model� Generally� increasing the lag

length eventually results in size and power erosions� Therefore� choosing the lag length with

order selection criteria which tend to 	nd a balance between a good approximation of the

DGP and an e!cient use of the sample information seems to be a good strategy for applied

work�

Our simulation results are exclusively based on threedimensional processes which may

be viewed as restrictive� However� from other studies with a di�erent focus it appears that

small variations in the dimension are likely to result in qualitatively similar 	ndings� That

is� for processes with dimension two� for example� we expect to also 	nd size and power

distortions for increasing lag length� Of course� in such processes there are fewer possibilities

to underestimate the cointegrating rank if the process is stationary� say�

In this study we have exclusively focussed on processes without deterministic trend terms�

Given the importance of processes with deterministic linear trends in applied work� an ex

tension of the present results to this case is desirable� We have not considered it here because

it appears to be nontrivial at least as far as the asymptotic theory is concerned� Similar

remarks are true for other deviations from the simple standard case considered here� For

instance� investigating processes with structural shifts or heavy tailed� ARCH type residuals

may be of interest from a practical point of view�

Unfortunately� even without such complications the performance of the LR tests is overall

not satisfactory if the true cointegrating rank is greater than one� This result suggests that

it may be worthwhile to consider alternative tests such as those proposed by SL�
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Appendix	 Proofs

A�� Preliminaries and Intermediate Results

Following Saikkonen ������ and Saikkonen � L�utkepohl ������ we shall 	rst reparameterize

equation ����� as

�yt �
KX
j��

�jut�j � �K����u��t�K�� ���y��t�� � et� t � K � �� � � � � T� �A���

where �� � � and �j �
�
�j� � �j�

�
with ��� � " � ���� �j� � �j� � �j����� j � �� � � � �K�

�K���� � ��K� � � and �j� � �j�A� �j�� j � �� � � � �K� De	ne

q�t �
�
u�t��� � � � � u

�
t�K� u

�
��t�K��

�
� p�t �

�
q�t � y

�
��t��

�
and

) �
�
�� � � � � � �K � �K����

�
� * � �) � ��� �

With these de	nitions we can write �A��� as

�yt � *pt � et� t � K � �� � � � � T� �A���

Let �* � ��) � ���� be the least squares estimator of * obtained from �A���� Then it follows

from the de	nitions that

��*� *�D��
T �

TX
t�K��

etp
�
tDT


DT

TX
t�K��

ptp
�
tDT

���
�A���

where DT � diag�N����InK�n� � N
��In� �� As in Saikkonen ������ we have to study the

asymptotic properties of the right hand side of �A���� For this purpose it is convenient to

introduce the matrix norm kCk� � supfkCxk � kxk � �g where the symbol k � k signi	es the

Euclidean norm� The useful inequality

kC�C�k � kC�kkC�k� �A���

is known to hold for any conformable matrices �see� e�g�� L�utkepohl ������ Chapter 
�� and

will be frequently used without explicit reference� Next de	ne

#R � DT

TX
t�K��

ptp
�
tDT and R � diag


�qq � N

��

TX
t�K��

y��t��y
�
��t��

�
�

�




where �qq � E�qtq�t�� For the inverses of these matrices we have

k #R�� �R��k� � Op�K�N
����� �A���

This result follows directly from Lemmas A�  A� of Saikkonen ������ by observing that the

proofs of these lemmas are based on moment calculations which require only Assumption ��

This fact will also be used in subsequent derivations without mentioning the di�erence in

assumptions� We partition

#R�� � � #Rij�i�j����

conformably with the partition of R and prove the following auxiliary result�

LEMMA A��� Suppose that yt is generated by ����� and ����� and that condition �����

holds� Then� as T ��� uniformly in K � KT � o�T �����

�i� k #R��k� � Op���

�ii� k #R�� � ���q k� � Op�KT�N
����

�iii� k #R�� � �N��
PT

t�K��
y��t��y

�
��t���

��k� � Op�KT�N�

�iv� k #R��k� � Op��KT�N�����

Proof� We shall 	rst give a proof for any chosen K � KT � From the inversion formula of

a partitioned matrix one obtains

� #R������ N��
PT

t�K��
qtq

�
t

� N����
PT

t�K��
qty

�
��t���N

��
PT

t�K��
y��t��y

�
��t���

��N����
PT

t�K��
y��t��q

�
t�

The inverse on the r�h�s� is of order Op��� by wellknown properties of integrated processes

whereas

kN����

TX
t�K��

y��t��q
�
tk � Op��KT�N�

���� �A���

by arguments used to prove LemmaA� of Saikkonen ������ and by the assumption K � KT �

Hence� since k � k� � k � k� we have

k� #R����� �N��

TX
t�K��

qtq
�
tk� � Op�KT�N�� �A���
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From Lemmas A� and A� of Saikkonen ������ we 	nd that the k � k� norm of the inverse of

the latter matrix on the l�h�s� is of order Op��� and this holds even uniformly in K � KT �

Thus� from Lemma A� of Saikkonen � L�utkepohl ������ it follows that �A��� also holds for

the corresponding inverses and� furthermore� that k #R��k� � Op��� for any K � KT � The

same arguments and Lemma A� of Saikkonen ������ yield the second assertion and� after

changing the roles of qt and y��t��� also the third one� for any K � KT � Finally� since

#R�� � �

�
N��

TX
t�K��

qtq
�
t

����
N����

TX
t�K��

qty
�
��t��

�
#R��

one can similarly show that the fourth result of the lemma holds for any K � KT �

To complete the proof� we have to establish uniformity in K � KT � This� however�

only requires straightforward modi	cations to the above arguments� First note that� since

KT � o�T ����� it is easy to show that changing the range of summation from t � K��� � � � � T

to t � KT � �� � � � � T does not change the above conclusions and this holds uniformly in

K � KT � This means that we have to establish the desired uniformity with respect to the

dimension of qt� This� however� follows because the above proof applies with K � KT and

because the norm of a matrix does not decrease when its dimension is increased� Thus�

the l�h�s� of �A��� for example� is dominated by the corresponding quantity with K � KT

plus a term which is of order Op��K�N����� uniformly in K � KT � Hence� Lemma A�� is

established� �

In the following it is convenient to de	ne

e�t � �

�X
j�K��

Gjvt�j

so that et � �t � e�t� For e�t we have� uniformly in t�

Eke�tk
� � c

�
�X

j�K��

kGjk

��

� o�K���� �A�
�

where the 	rst relation is given in �A��� of Saikkonen ������ and the second one is an im

mediate consequence of condition ������ Here as well as below the symbol c signi	es a 	nite

positive constant �not necessarily the same throughout�� We shall next prove the following

lemma�

LEMMA A��� Under the conditions of Lemma A���
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�i� N��
PT

t�K��
e�ty

�
��t�� � op�K���

�ii� kN��
PT

t�K��
e�tq

�
tk � op�K

� �

� �

Proof� Denote the typical components of the vectors y�t and e�t by y�it and e�jt� respectively�

and notice that

EkN��
PT

t�K��
e�ty

�
��t��k

� � N��
PT

t�K��

PT
s�K��

E�y���t��y��s��e
�
�se�t�

� N��
Pn�

i��

Pn
j��

PT
t�K��

PT
s�K��

E�y�i�t��y�i�s��e�jse�jt��

�A���

In what follows we shall make the initial value assumption y�� � � which is easily seen to

have no e�ect on asymptotic results� With this assumption we have the wellknown identity

E�y�i�t��y�i�s��e�jse�jt� � E�y�i�t��y�i�s���E�e�jse�jt� � E�y�i�t��e�jt�E�y�i�s��e�js�

�E�y�i�t��e�js�E�y�i�s��e�jt� � cum�y�i�t��� y�i�s��� e�jt� e�js�

�A����

where cum��� �� �� �� denotes the fourth order cumulant of the indicated random variables �see

Stuart � Ord ���
�� p� ������ Wellknown properties of integrated processes imply that

jE�y�i�t��y�i�s���j � cminf�t � �� s � ��g which in conjunction with �A�
� shows that the

contribution of the 	rst term on the r�h�s� of �A���� to �A��� is of order o�K���� Next note

that� since the covariance function of the process vt is absolutely summable� we have

kE�e�sy���t���k � kE
�P�

i�K��
Givs�i

Pt��
j�� v

�
�j

�
k

�
P�

i�K��
kGik

Pt��
j�� kE�vs�iv

�
�j�k

� c
P�

i�K��
kGik�

By �A�
� the last quantity is of order o�K��� and it follows that the contribution of the

second and third terms on the r�h�s� of �A���� to �A��� is of order o�K���� Finally� since

cumulants are linear in each of their arguments and the fourth order cumulant function of

the process vt is absolutely summable� one readily 	nds that� uniformly in t and s�

jcum�y�i�t��� y�i�s��� e�jt� e�js�j � o�K����

Hence� the contribution of the fourth term on the r�h�s� of �A���� to �A��� is also of order

o�K���� Altogether we have thus shown that �A��� is of order o�K��� so that the 	rst

assertion of the lemma follows from Markov�s inequality�
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As for the second assertion� we can use the argument in ����� of Lewis � Reinsel ���
��

p� ���� and conclude that

E

�����N��

TX
t�K��

e�tq
�
t

����� � cK
�

�

�X
j�K��

kGjk�

The r�h�s� is of order o�K� �

� � which yields the desired result� �

We also need some intermediate results for estimators using the restriction �� � � in

�A���� Therefore we write �A��� as

�yt � )�K�qt � �Kt� t � K � �� � � � � T� �A����

where

)�K� � E��ytq
�
t�E�qtq

�
t�
�� def
� ��yq�

��
qq

and �Kt is de	ned to make the identity hold� In other words� �Kt is the onestep ahead

prediction error of the best linear predictor of �yt based on ut��� � � � � ut�K� u��t�K��� By

stationarity� )�K� is independent of t and� by the de	nitions� E�qt��Kt� � �� Let #)�K� be

the least squares estimator of )�K� obtained from �A����� Since this least squares regression

is a reparameterized form of ����� we have #�Kt � �yt � #)�K�qt� Furthermore�

#)�K�� )�K� �

�
N��

TX
t�K��

�Ktq
�
t

��
N��

TX
t�K��

qtq
�
t

���

� �A����

Since �� � � we can augment �A���� to

pt � *�K�qt � �Kt� t � K � �� � � � � T� �A����

where *�K� � �)�K� � ���� Viewing �) as an estimator of )�K� we thus have

�)� )�K� �

�
N��

TX
t�K��

�Ktq
�
t

�
#R�� �

�
N����

TX
t�K��

�Kty
�
��t��

�
#R��� �A����

where #R�� and #R�� are as in Lemma A��� In order to study the di�erence between �) and

#)�K� and further to prove Lemma ��� we need the following results�

LEMMA A��� Suppose that the assumptions of Lemma ��� hold� Then�

�i� kN��
PT

t�K��
�Ktq

�
tk � Op�KT�N

���� uniformly in K � KT � op�T ���� and
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�ii� N��
PT

t�K��
�Kty

�
��t�� �N��

PT
t�K��

�ty
�
��t�� � Op���

P�

j�K��
jakGjk� op�K

��
T �

where the terms Op��� and op�K
��
T � are uniform in K � KT �

Proof� By the de	nitions� �Kt � �yt � )�K�qt and hence

kN��
PT

t�K��
�Ktq

�
tk � kN��

PT
t�K��

�ytq�t � )�K�N
��
PT

t�K��
qtq

�
tk

� kN��
PT

t�K��
�ytq�t � )�K��qqk� k)�K��N

��
PT

t�K��
qtq

�
t � �qq�k

� kN��
PT

t�K��
�ytq�t � ��yqk� k)�K�kkN��

PT
t�K��

qtq
�
t � �qqk��

The 	rst norm in the last expression is of order Op��KT�T ����� for all K � KT � because

each element of the involved matrix has mean square of order O�N��� uniformly in the row

and column index �see the proof of Lemma A� of Saikkonen �������� Further� arguments

used in the proof of Lemma A���ii� show that that the k � k� norm in the last expression is

of order Op�KT�N
���� for all K � KT � Thus to prove the 	rst result� it su!ces to show that

k)�K�k � O��� uniformly in K � KT � To see this� notice that k)�K�k � k��yqkk���qq k�

where the latter norm on the r�h�s� is of order O��� uniformly in K � KT �see� e�g�� the

proof of Lemma A� of Saikkonen �������� The former norm also has the same property

because �y�t � Au�t � �u�t and �y�t � u�t and the covariance function of ut is absolutely

summable�

To prove the second assertion� observe that

�Kt � �t � e�t � �)�K�� )�qt� �A����

Thus� we can prove the result in two parts and 	rst consider

�N��

TX
t�K��

e�ty
�
��t�� � N��

TX
t�K��

KT��X
j�K��

Gjvt�jy
�
��t�� �N��

TX
t�K��

�X
j�KT��

Gjvt�jy
�
��t���

Using �A�
� it is straightforward to check that changing the range of summation from t �

K � �� � � � � T to t � KT � � � � � T has an e�ect which is at most of order op�K
��
T �� Thus� from

Lemma A���i� it follows that the latter quantity on the r�h�s� is of order op�K
��
T � uniformly

in K � KT and for the 	rst one we can consider

kN��
PT

t�KT��

PKT��

j�K��
Gjvt�jy

�
��t��k

�
PKT��

j�K��
jakGjkkj�aN��
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vt�jy
�
��t��k

� max��j�KT�� kj
�aN��
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t�KT��

vt�jy
�
��t��k

P�

i�K��
iakGik�

��



We have to show that the 	rst factor in the last expression is of order Op���� For M � �

consider

P
n
max��j�KT�� kj

�aN��
PT

t�KT��
vt�jy

�
��t��k � M

o
�
PKT��

j�� P
n
kN��

PT
t�KT��

vt�jy
�
��t��k � jaM

o
�M��

PKT��

j�� j��aEkN��
PT

t�KT��
vt�jy

�
��t��k

��

where the last relation follows from Markov�s inequality and the expectation therein is of

order O��� uniformly in j �see the proof of Lemma A� of Saikkonen �������� Thus� the last

expression above can be bounded by cM�� and� since this holds for any � � M � �� the

desired result follows�

To complete the proof of �ii� in Lemma A�� we still have to consider the second part

related to the latter quantity on the r�h�s� of �A����� This means that we have to 	nd an

appropriate bound for������)�K�� )�N��

TX
t�K��

qty
�
��t��

����� � k�)�K�� )�k

�����N��

TX
t�K��

qty
�
��t��

����� � �A����

Consider the 	rst norm on the r�h�s� and� analogously to the de	nition of )� write )�K� �

����K� � � � � � �K�K� � �K�����K��� Then�

k)�K�� )k �
PK

j�� k�j�K�� �jk� k�K�����K� � �K����k

� c
P�

j�K��
kGjk�

�A����

Here the 	rst inequality follows because the Euclidean norm is dominated by the L�norm�

To justify the second inequality� notice that� since �y�t � Au�t ��u�t and �y�t � u�t� the

coe!cient matrices involved in )�K� and ) are simple tranformations of analogous coe!cient

matrices obtained from the in	nite order autoregressive representation of ut� Thus� since

ut is a linear transformation of vt� it follows that we need to justify the last inequality for

corresponding coe!cient matrices obtained from Gj � the coe!cient matrices of the in	nite

order autoregressive representation of vt� After noticing this� the required result follows from

Theorem ������ of Hannan � Deistler ���

� see also p� ��� after the theorem��

Thus� �A���� and condition ����� imply that an appropriate upper bound for the r�h�s�

of �A���� is obtained by showing that

K�akN��

TX
t�K��

qty
�
��t��k � Op��� �A��
�

��



uniformly in K � KT � In the same way as in the proof of the 	rst part of the lemma it is

again straightforward to check that K in the summation can be replaced by KT and that�

for any M � ��

P

�
max

��K�KT

K�akN��

TX
t�KT��

qty
�
��t��k � M

�
�M��

KTX
K��

K��aEkN��

TX
t�KT��

qty
�
��t��k

�

where the expectation is of order O�K� �see the proof of Lemma A� of Saikkonen ��������

Thus� we can conclude that the last expression is bounded by cM��� This implies �A����

and completes the proof of Lemma A��� �

Lemma A�� is used to prove the following result�

LEMMA A��� Suppose the assumptions of Lemma ��� hold� Then� uniformly in K � KT �

�i� ��� � Op�N���

�ii� k�)� #)�K�k � op�KT�N�

�iii� k#)�K�� )�K�k � Op�KT�N
�����

Proof� Viewing ��� as an estimator of �� in �A���� yields

N ��� � N� �

�

TX
t�K��

�Ktq
�
t
#R�� �N��

TX
t�K��

�Kty
�
��t��

#R��� �A����

Here the 	rst term on the r�h�s� is of order Op�KT �Op��KT�N����� � op��� uniformly in

K � KT by Lemmas A���iv� and A���i�� That the second one is of order Op��� uniformly in

K � KT can be seen from Lemmas A���iii� and A���ii� and the fact that changing the range

of summation from t � K � �� � � � � T to t � KT � �� � � � � T does not change the conclusion�

To prove �ii�� notice that from �A���� and �A���� it follows that

k�)� #)�K�k � kN��
PT

t�K��
�Ktq

�
tkk

�
N��

PT
t�K��

qtq
�
t

���
� #R��k�

�kN����
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t�K��
�Kty

�
��t��kk #R

��k�

� Op�KT�N
����Op�KT�N� �Op�N�����Op��KT�N�����

� op�KT�N�

uniformly in K � KT � Here the 	rst equality can be justi	ed by using �A��� and Lemmas

A���iv� and A��� Finally� �iii� is an immediate consequence of �A����� Lemma A���i� and the

��



fact mentioned after �A���� �

Now we are able to prove Lemma ����

A�� Proof of Lemma ���

First note that

��t � #�Kt � �#)�K�� �)�qt � ���y��t���

Thus� since #�Kt and qt are orthogonal�

��K � #�K �
�
#)�K�� �)
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It is not di!cult to see that k�qqk� � O��� uniformly in K � KT � so that� using arguments

similar to those in the proof of Lemma A���i�� it can be shown that the k � k�norm of the

matrix in the middle of the 	rst term on the r�h�s� is of order Op��� uniformly in K � KT �

After dividing by N � a similar result clearly holds for the matrix in the middle of the second

term on the r�h�s�� Using these facts� �A��� and Lemma A�� it can be seen that the 	rst four

terms on the r�h�s� are at most of order op�KT�N� uniformly in K � KT � To show that this

is also the case for the last two terms� notice that

N��
PT

t�K��
#�Kty
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The desired result readily follows from this� Lemma A���ii�� Lemma A�� and �A���� �

A�� Proof of Theorem ���

For the 	rst assertion we have to show that Pf �K � Kg tends to unity for every 	xed K�

Observe that �K � K is implied by

log j��K j � log j��K�kj � kCT�T � �

for some positive integer k� Denote E��Kt�
�
Kt� by �K � Using the result of Lemma ��� and

arguments similar to those in its proof one can readily check that the l�h�s� of the above

��



inequality converges in probability to log j�Kj � log j�K�kj� When ����� is not a 	nite order

autoregression this di�erence is strictly positive for some k � � and the required result

follows�

To prove the second assertion� we 	rst note that the above proof implies that we must

have �K � K� in probability� Thus� it su!ces to show that here strict inequality is not

possible� First observe that now T ���
P�

j�K��
kGjk � � as K �� and T ��� Thus� we

have ��*�*�D��
T � Op�K���� for anyK� � K � KT �see Saikkonen ������ p� ����� Standard

arguments used to derive the limiting distribution of LR tests in VAR models readily show

that T �log j��K j � log j��K�
j� � Op�K�� The desired result follows from this fact and the

assumption CT ���

A�� Proof of Theorem ���

We shall 	rst prove an auxiliary result about the estimators ���� �" and �� based on the

estimated VAR order �K� Notice that here �" � ��� is obtained from �� � ���� � ����� Since

the theoretical counterpart of �" depends on the VAR order �see ������ it is convenient to

consider the limiting version

"� � �

�X
j��

GjJ�

Now we can prove the following result�

LEMMA A��� Suppose the assumptions of Theorem ��� hold and that the estimators ����

�" and �� are based on the lag order �K selected by minimizing ������ Then�

�i� N ��� � N��
PT

t�KT��
�ty
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��t���N

��
PT

t�KT��
y��t��y

�
��t���

�� � op���

�ii� �" � "� � op���

�iii� �� � � � op���

Proof� To prove �i�� note 	rst that we again have �A���� but with K on the r�h�s� replaced

by �K� Since we noticed below �A���� that the 	rst term on the r�h�s� is of order op���

uniformly in K � KT the same order result is also obtained when K is replaced by �K � From
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this fact and Lemma A���iii� we 	nd that
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By Lemma A���ii� and Theorem ��� we here have
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Thus� we have the equation stated in �i� except that the summation is started at �K�� instead

of KT � �� However� the stated result follows because� in the same way as in previous

similar cases� it can be shown that changing the range of summation from K � �� � � � � T

to KT � �� � � � � T with a nonstochastic choice of K has an asymptotically negligible e�ect

uniformly in K � KT �

To prove �ii� 	rst observe that

�"� "� � �"� " �
�X

j� �K��

GjJ � �" � " � op����

where the latter equality follows from Theorem ���� Here " depends on �K and� by the

de	nitions�

�" � " �

�K��X
j��

���j� � �j�� � ��)� )�J �K�

where JK � ��J � � � � � � �J � � In� �
� is a ��Kn� n��� n�� matrix and kJKk� � �K � ��

�

� � To

prove the assertion� write
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#)� �K�� )� �K��J �Kk� k�)�

�K�� )�J �Kk

� op�KT�N�Op�K
���
T � �Op�KT�N

����Op�K
���
T � � c �K���
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Here the third relation is based on Lemma A�� and �A���� and the fourth one on Theorem

��� and the assumption KT � o�T �����

As for �iii�� conclude 	rst from Lemma ��� that it su!ces to show that #� �K � �� op����

where #� �K is obtained from the residuals #� �Kt � � �Kt��
#)� �K��)� �K��qt� Using Lemmas A���i�

and A���ii� in conjunction with �A��� and the fact that the k�k�norm of the matrix of second

�




sample moments of qt is of order Op��� �cf� the proof of Lemma ���� it is straightforward to

conclude from this fact that
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From this and �A���� it follows that
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From Theorem ���� �A���� �A���� and the above mentioned fact about the matrix of second

sample moments of qt it follows that the 	rst term on the r�h�s� is of order op���� Since

the second sample moments between the components of �t and qt are readily seen to be

of order Op�N��� uniformly in the dimension of qt �when the dimension is supposed to be

nonstochastic� it similarly follows that the second and third terms on the r�h�s� of �A����

are of order op����

The remaining terms� which involve e�t� are somewhat more complicated to deal with�

Consider the last one of these and� for simplicity� denote its Euclidean norm by ZT �K� when

�K is replaced by K� Let 	 be arbitrary and K� an integer to be determined below� Then

note that

P
�
supK�K�
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�
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P�
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� 	��c
P�

K�K�
K���

�A����

Here the second inequality follows from the de	nition of ZT �K� and the third one from

Markov�s inequality and �A�
�� For any 	 � � the last quantity can be made arbitrarily

small by taking K� large enough� Next note that

P
n
ZT � �K� � 	

o
� P

n
ZT � �K� � 	+ �K � K�

o
� P

n
ZT � �K� � 	+ �K � K�

o
� P

�
supK�K�

ZT �K� � 	
�
� P

n
�K � K�

o
�

From �A���� and Theorem ��� it can be seen that the last expression can be made arbitrarily

small by taking K� large enough� Hence� ZT � �K� � op��� or� in other words� the term preced

ing op��� on the r�h�s� of �A���� is of order op���� Combining this result with those obtained

��



earlier in the proof and using �A��� and the CauchySchwarz inequality it is straightforward

to show that the remaining terms on the r�h�s� of �A���� are of order op���� Thus the last

assertion follows because �t��t obeys a �weak� law of large numbers� �

Now we can prove Theorem ���� No detailed proof will be given because a proof can

be obtained by following the proof of Theorem ��� of SL with appropriate modi	cations�

Since SL assumed a deterministic order selection rule they were able to employ improved

versions of Lemma A���ii� and �iii�� where orders of consistency were also given� However�

since these orders of consistency were actually not needed in the proof of SL� the results of

Lemma A���ii� and �iii� are su!cient in this respect�

As in SL we 	rst note that ��� � � � � � ��n are identical to the eigenvalues of the matrix

M
� T
��
����� ��� where M

� T � A
�
MTA

�
� and �� � ��A

�
�� with A

�
� � � J���� Notice that �� �

��" � ���� and let M� T � �M� ij�T �i�j���� be a conformable partition of M� T � The next step in the

proof of SL was to obtain some results� �A����  �A���� in their paper� about the asymptotic

behaviour of the matrices M
� ij�T � The proofs of these results were based on asymptotic

properties of second sample moments of y��t�� and qt with the dimension of qt depending on

a deterministically chosen orderK � o�T ����� Since the results of LemmaA�� and arguments

used in their proofs hold uniformly in K � KT it is straightforward to check that �A����

 �A���� of SL also hold in the present context� provided the order K is replaced by the

maximum order KT � After this the previous proof can be repeated in an obvious way to

show that the n� r� smallest eigenvalues ��r��� � � � � � ��n are asymptotically equivalent to

the solutions of the generalized eigenvalue problem

N�

�
��������� ��� � ��

�

�
�����"��"� ���� �"����"����� ��� � �

TX
t� �K��

y��t��y
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A � ��

From Lemma A�� and the arguments used in its proof it can be seen that in this eigenvalue

problem the data dependent order �K can be replaced by the maximum order without chang

ing asymptotic results� This means that the eigenvalues ��r��� � � � � � ��n are asymptotically

equivalent to those in SL so that the desired result follows�

��



A�� Models with an Intercept

When an intercept is included in the least squares regression ����� the estimator �* obtained

from the least squares regression of �A��� is de	ned by using mean corrected observations�

This means that we still have �A��� but with pt measured as a deviation from its sample

mean �p � ��q� � �y���
� with obvious notation� As pointed out in Saikkonen ������ p� ��� we

have k�qk � Op��K�N����� and �y� � Op�N���� implying kDT �pk � Op�N������ �Note that in

Saikkonen ������ p� ��� this order is erroneously Op�K����N� but fortunately this has no

e�ect on the subsequent conclusions of that paper�� Using these properties of sample means

it is not di!cult to check that the results of Lemmas A��  A�� hold even when qt and y��t��

are replaced by their mean corrected versions� In the same way one can also readily show

that the mean correction has no e�ect on the other conclusions made above� Details are

straightforward but somewhat tedious and will be omitted�
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