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Implied Volatility String Dynamics

Abstract

A primary goal in modelling the dynamics of implied volatility surfaces (IVS) aims

at reducing complexity. For this purpose one fits the IVS each day and applies a prin-

cipal component analysis using a functional norm. This approach, however, neglects

the degenerated string structure of the implied volatility data and may result in a

severe modelling bias. We propose a dynamic semiparametric factor model, which ap-

proximates the IVS in a finite dimensional function space. The key feature is that we

only fit in the local neighborhood of the design points. Our approach is a combination

of methods from functional principal component analysis and backfitting techniques

for additive models. The model is found to have an approximate 10% better perfor-

mance than the typical näıve trader models. The model can be a backbone in risk

management serving for value at risk computations and scenario analysis.

JEL classification codes: C14, G12

Keywords: Implied Volatility Surface, Smile, Generalized Additive Models, Backfitting,

Functional Principal Component Analysis
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1 Introduction

Successful trading, hedging and risk managing of option portfolios crucially depends on the

accuracy of the underlying pricing models. Departing from the pioneering foundations of op-

tion theory laid by Black and Scholes (1973), Merton (1973) and Harrison and Kreps (1979),

new valuation approaches are continuously developed and existing models are refined. How-

ever, despite these pervasive developments, the model of Black and Scholes (1973) remains

the pivot in modern financial theory and the benchmark for sophisticated models, be it from

a theoretical or practical point of view.

The popularity of the Black and Scholes (BS) model is likely due to its clear and easy-to-

communicate set of assumptions. Based on the geometric Brownian motion for the under-

lying asset price dynamics, and continuous trading in a complete and frictionless market,

simple closed form solutions for plain vanilla calls and puts are derived: given the current

underlying price St at time t, the option’s strike price K, its expiry date T the prevailing

riskless interest rate rt, and an estimate of the (expected) market volatility σ, option prices

are straightforward to compute.

The crucial parameter in option valuation by BS is the market volatility σ. Since it is

unknown, one studies implied volatility σ̂. Implied volatility is derived by inverting the BS

formula for a cross section of options with different strikes and maturities traded at the

same point in time. As is visible in the left panel of Figure 1 for May 2, 2000 (i.e. 20000502,

a notation we will use from now on), implied volatilities display a remarkable curvature

across the rescaled strike dimension moneyness κ , which is also called ‘smile’ or ‘smirk’, and

– albeit to a lesser degree – a term structure across time to maturity τ , which fluctuates

through time t. This dependence, captured by the function σ̂t : (κ, τ) → σ̂t(κ, τ), is called
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implied volatility surface (IVS). Apparently, it is in contrast with the BS framework in which

volatility is assumed to be a constant across strikes, time to maturity and time.

There is a considerable amount of literature which aims at reconciling this empirical antag-

onism with financial theory. Generally, this may be achieved by including another degree of

freedom into option pricing models. Well known examples are stochastic volatility models,

(Hull and White; 1987; Stein and Stein; 1991; Heston; 1993), models with jump diffusions,

Bates (1996), or models building on general Lévy processes, e.g. based on the inverse Gaus-

sian, Barndorff-Nielsen (1997), and generalized hyperbolic distribution, Eberlein and Prause

(2002). These approaches capture the smile and term structure phenomena and the com-

plexity of its dynamics to some extent, Tompkins (2001). For the case of deterministic local

volatility models Dumas et al. (1998) documented in an extensive study time inconsistency

for a number of parametric volatility functions.

[Figure 1 about here.]

[Figure 2 about here.]

A new interpretation of the inaccuracy of the advanced models asserts that option markets

due to their depth and liquidity behave more and more self-governed: apart from the under-

lying asset price dynamics, they are additionally driven by demand and supply conditions

acting in options markets. In a comprehensive study Bakshi et al. (2000) show that a sig-

nificant proportion of changes in option prices can neither be attributed to classical option

pricing theory nor to market micro structure frictions. From this point of view, one inter-

prets the IVS as a ‘state variable’, i.e. as an additional financial indicator, ruling in option

markets, that reflects in an instantaneous and forward-looking manner the current state of
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the market and the dynamics of its evolution. Thus, refined statistical model building of the

IVS determines vitally the accuracy of applications in trading and risk-management.

In modelling the IVS one faces two main challenges. First, the data design is degenerated:

due to trading conventions, observations of the IVS occur only for a small number of ma-

turities such as 1, 2, 3, 6, 9, 12, 18, and 24 months to expiry on issuance. Consequently,

implied volatilities appear in a row like pearls strung on a necklace, Figure 1, or, in short:

as ‘strings’. This pattern is also visible in the right panel of Figure 1, which plots the data

design as seen from top. Options belonging to the same string have a common time to

maturity. As time passes, the strings move through the maturity axis towards expiry while

changing levels and shape in a random fashion. Second, also in the moneyness dimension,

the observation grid does not cover the desired estimation grid at any point in time with the

same density. Thus, even when the data sets are huge, for a large number of cases implied

volatility observations are missing for certain sub-regions of the desired estimation grid. This

is particularly virulent when transaction based data is used.

For the semi- or nonparametric approximations to the IVS that recently have been pro-

moted by Aı̈t-Sahalia and Lo (1998); Rosenberg (2000); Aı̈t-Sahalia et al. (2001b); Cont and

da Fonseca (2002); Fengler et al. (2003); Fengler and Wang (2003), this design may pose

difficulties. For illustration, consider in Figure 2 (left panel) the fit of a standard Nadaraya-

Watson estimator. Bandwidths are h1 = 0.03 for the moneyness and h2 = 0.04 for the time

to maturity dimension (measured in years). The fit appears very rough, and there are huge

holes in the surface, since the bandwidths are too small to ‘bridge’ the gaps between the

maturity strings. In order to remedy this deficiency one would need to strongly increase

bandwidths which may induce a large bias. Moreover, since the design is time-varying,

bandwidths would also need to be adjusted anew for each trading day, which complicates
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daily applications. Parametric models, e.g. as in Shimko (1993), Ané and Geman (1999),

and Tompkins (1999) among others, are less affected by these data limitations, but seem to

offer too little functional flexibility to capture the salient features of IVS patterns. Thus,

parametric estimates may as well be biased.

In this paper we provide a new principal component approach for modelling the IVS: the

complex dynamic structure of the IVS is captured by a low dimensional semiparametric factor

model with time-varying coefficients. The IVS is approximated by unknown basis functions

moving in a finite dimensional function space. The dynamics can be understood by using

vector autoregression (VAR) techniques on the time-varying coefficients. Contrary to earlier

studies, we will use only finite dimensional fits to implied volatilities which are obtained in

the local neighborhood of strikes and maturities, for which implied volatilities are recorded at

the specific day. Also, surface estimation and dimension reduction is achieved in one single

step, not in two as is currently standard. Our technology can be seen as a combination of

functional principal component analysis, nonparametric curve estimation and backfitting for

additive models.

Let us denote the (ln)-implied volatility by Yi,j, where the index i is the number of the day

(i = 1, ..., I), and j = 1, ..., Ji is an intra-day numbering of the option traded on day i. The

observations Yi,j are regressed on two dimensional covariables Xi,j that contain moneyness

κi,j and maturity τi,j. Moneyness is defined as κi,j = Ki,j/Ft,i,j, i.e. strike Ki,j divided by

the underlying futures price Ft,i,j at time ti,j. We also considered the one-dimensional case

in which Xi,j = κi,j. However, since modelling the entire surface is more interesting, we will

present results for this case only. The semi-parametric dynamic factor model is:
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m0(Xi,j) +
L∑

l=1

βi,lml(Xi,j) , (1)

where ml are smooth basis functions (l = 0, . . . , L). The IVS is approximated by a weighted

sum of smooth functions ml with weights βi,l depending on time i. The factor loading βi
def
=

(βi,1, . . . βi,L)> forms an unobserved multivariate time series. By fitting model (1), to the

implied volatility strings we obtain approximations β̂i. We argue that VAR estimation based

on β̂i is asymptotically equivalent to estimation based on the unobserved βi. A justification

for this is given in Fengler et al. (2004) where the relations to Kalman filtering are discussed.

Lower dimensional approximations of the IVS based on principal components analysis (PCA)

have been used in Avellaneda and Zhu (1997) and Fengler et al. (2002) in an application to

the term structure of implied volatilities, and in Skiadopoulos et al. (1999) and Alexander

(2001) in studies across strikes. Fengler et al. (2003) use a common principal components

approach to study several maturity groups across the IVS simultaneously, while Cont and

da Fonseca (2002) propose a functional PCA perspective for the IVS. All these approaches

treat the IVS as a stationary process, and do not take particular care for the degenerated

string structure which is apparent in Figure 1.

Our modelling approach is also different in the following respect: for instance, in Cont and

da Fonseca (2002) the IVS is fitted on a grid for each day. Afterwards a PCA using a

functional norm is applied to the surfaces. This treatment follows the usual functional PCA

approach as described in Ramsay and Silverman (1997). In our approach the IVS is fitted

each day at the observed design points Xi,j. This leads to a minimization with respect to

functional norms that depend on time i. We loose a nice feature of usual functional PCA

though: when fitting the data for L and L∗ = L+1, the linear space spanned by m̂0, . . . , m̂L
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may not be contained in the one spanned by m̂∗
0, . . . , m̂

∗
L∗ . On the other hand we only make

use of values of the implied volatilities at regions where they are observed. This avoids bias

effects caused by global daily fits used in standard functional PCA’s.

The model can be employed in several respects: given the estimated functions m̂l and the

time series β̂, scenario simulations of potential IVS scenarios are straightforward. They can

help to give a more accurate assessment of market risk than previous approaches. Worst

case scenarios can be identified, which provide additional supervision tools to risk managers.

For trading, the model may be used as a tool of short range IVS prediction. Even when it

is difficult to predict the levels of the IVS due to the behavior of the level dynamics likely

close to a unit root, certain specific distortions of the IVS may be predictable. To traders

the model offers a unified tool for volatility hedging of complex option positions.

Since this model delivers a dynamic description of the IVS and certain IVS strings it may

also serve as a way to model state price density (SPD) dynamics: according to Breeden and

Litzenberger (1978) the SPD can be derived as the second derivative of the price function of

plain vanilla options. Since the data is sparse in strikes, an approach due to Shimko (1993)

converts option prices into implied volatilities, fits the smile on a dense grid, and computes

the option prices via BS. The derivative, numerically much more stable than before, is

computed with respect to the price function now obtained. Thus, IVS dynamics can be

converted into SPD dynamics, and exploited for pricing and trading such as in Aı̈t-Sahalia

et al. (2001b) and Blaskowitz et al. (2003).

The paper is organized as follows: in the following section implied volatilities are described

and the semiparametric factor model is introduced. In Section 3 the model is applied to

DAX option implied volatilities for the sample period 1998 to May 2001. Further model
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extensions and modifications are discussed in the conclusion.

2 Time-dependent implied volatility modelling

2.1 The semi-parametric factor model

Implied volatilities are derived from the BS option pricing formula for European calls and

puts, Black and Scholes (1973). European style calls and puts are contingent claims on

an asset St (paying no dividends for simplicity, here), which yield for strike K the pay-off

max(St −K, 0) and max(K − St, 0), respectively, at a given expiry day T . The asset price

process St in the BS model is given by a geometric Brownian motion. The BS option pricing

formula for calls is given by:

CBS
t (St, K, τ, r, σ) = StΦ(d1)−Ke−rτΦ(d2) , (2)

where d1 =
ln(St/K)+(r+ 1

2
σ2)τ

σ
√

τ
and d2 = d1 − σ

√
τ . Φ(u) denotes the cumulative distribution

function of the standard normal distribution, τ = T − t time to maturity of the option, r

the riskless interest rate over the option’s life time, and σ the diffusion coefficient of the

Brownian motion. Put prices Pt are obtained via the put-call-parity Ct − Pt = St − e−τrK.

The only unknown parameter in (2) is volatility σ. Given observed market prices C̃t, implied

volatility σ̂ is defined by:

CBS
t (St, K, τ, r, σ̂)− C̃t = 0 . (3)

Due to monotonicity of the BS price in the volatility parameter σ there exists a unique

solution σ̂ > 0. Define the moneyness metric κt = K/Ft, where Ft denotes the future price

time t.
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In the dynamic factor model, we regress Yi,j
def
= ln{σ̂i,j(κ, τ)} on Xi,j = (κi,j, τi,j) via non-

parametric methods. We work with log-implied volatility data, since the data appears less

skewed and potential outliers are scaled down after taking logs. This is common practice

in the IVS literature, see e.g. Avellaneda and Zhu (1997); Cont and da Fonseca (2002). In

order to estimate the nonparametric components ml and the state variables βi,l in (1), we

borrow ideas from fitting additive models as in Stone (1986); Hastie and Tibshirani (1990);

Horowitz et al. (2002). Our research is related to functional coefficient models such as Cai et

al. (2000). Other semi- and nonparametric factor models include Connor and Linton (2000);

Gouriéroux and Jasiak (2001); Fan et al. (2003); Linton et al. (2003b). Nonparametric tech-

niques are now broadly used in option pricing, e.g. Broadie et al. (2000); Aı̈t-Sahalia et al.

(2001a); Aı̈t-Sahalia and Duarte (2003), and interest rate modelling, e.g. Aı̈t-Sahalia (1996);

Ghysels and Ng (1989); Linton et al. (2003a).

Estimates m̂l, (l = 0, . . . , L) and β̂i,l (i = 1, . . . , I; l = 1, . . . , L) are defined as minimizers

of the following least squares criterion (β̂i,0
def
= 1):

I∑
i=1

Ji∑
j=1

∫ {
Yi,j −

L∑
l=0

β̂i,lm̂l(u)

}2

Kh(u−Xi,j) du. (4)

Here, Kh denotes a two-dimensional product kernel, Kh(u) = kh1(u1)×kh2(u2), h = (h1, h2)

based on a one-dimensional kernel kh(v) = h−1k(h−1v).

In (4) the minimization runs over all functions m̂l : R2 → R and all values β̂i,l ∈ R. For

illustration let us consider the case L = 0 : implied volatilities Yi,j are approximated by a

surface m̂0 that does not depend on time i. In this degenerated case, m̂0(u) =
∑

i,j Kh(u−

Xi,j)Yi,j/
∑

i,j Kh(u − Xi,j), which is the Nadaraya-Watson estimate based on the pooled

sample of all days. Note that in the algorithmic implementation of (4) the integral is replaced

by Riemann sums on a fine grid.
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Using (4) the implied volatility surfaces are approximated by surfaces moving in an L-

dimensional affine function space {m̂0 +
∑L

l=1 αlm̂l : α1, . . . , αL ∈ R}. The estimates m̂l are

not uniquely defined: they can be replaced by functions that span the same affine space. In

order to respond to this problem, we select m̂l such that they are orthogonal.

Replacing in (4) m̂l by m̂l +δg with arbitrary functions g and taking derivatives with respect

to δ yields for 0 ≤ l′ ≤ L

I∑
i=1

Ji∑
j=1

{
Yi,j −

L∑
l=0

β̂i,lm̂l(u)

}
β̂i,l′Kh(u−Xi,j) = 0. (5)

Furthermore, by replacing β̂i,l by β̂i,l + δ in (4) and again taking derivatives with respect

to δ, we get for 1 ≤ l′ ≤ L and 1 ≤ i ≤ I

Ji∑
j=1

∫ {
Yi,j −

L∑
l=0

β̂i,lm̂l(u)

}
m̂l′(u)Kh(u−Xi,j) du = 0. (6)

Introducing the following notation for 1 ≤ i ≤ I

p̂i(u) =
1

Ji

Ji∑
j=1

Kh(u−Xi,j), (7)

q̂i(u) =
1

Ji

Ji∑
j=1

Kh(u−Xi,j)Yi,j, (8)

we obtain from (5)-(6) for 1 ≤ l′ ≤ L, 1 ≤ i ≤ I:

I∑
i=1

Jiβ̂i,l′ q̂i(u) =
I∑

i=1

Ji

L∑
l=0

β̂i,l′ β̂i,lp̂i(u)m̂l(u), (9)

∫
q̂i(u)m̂l′(u) du =

L∑
l=0

β̂i,l

∫
p̂i(u)m̂l′(u)m̂l(u) du. (10)

We calculate the estimates by iterative use of (9) and (10). We start by initial values β̂
(0)
i,l

for β̂i,l. A possible choice of the initial β̂ could correspond to fits of IVS’s that are piecewise
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constant on time intervals I1, . . . , IL. This means for l = 1, .., L put β̂
(0)
i,l = 1 (for i ∈ Il),

and β̂
(0)
i,l = 0 (for i /∈ Il). Here I1, ..., IL are pairwise disjoint subsets of {1, ..., I} and

L⋃
l=1

Il

is a strict subset of {1, ..., I}. For r ≥ 0 we put β̂
(r)
i,0 = 1. Define the matrix B(r)(u) by its

elements: (
B(r)(u)

)
l,l′

def
=

I∑
i=1

Jiβ̂
(r−1)
i,l′ β̂

(r−1)
i,l p̂i(u) , 0 ≤ l, l′ ≤ L , (11)

and introduce a vector Q(r)(u) with elements

Q(r)(u)l
def
=

I∑
i=1

Jiβ̂
(r−1)
i,l q̂i(u) , 0 ≤ l ≤ L . (12)

In the r-th iteration the estimate m̂ = (m̂0, ..., m̂L)> is given by

m̂(r)(u) = B(r)(u)−1Q(r)(u). (13)

This update step is motivated by (9). The values of β̂ are updated in the r-th cycle as

follows: define the matrix M (r)(i)

(
M (r)(i)

)
l,l′

def
=

∫
p̂i(u)m̂

(r)
l′ (u)m̂

(r)
l (u) du , 1 ≤ l, l′ ≤ L , (14)

and define a vector S(r)(i)

S(r)(i)l
def
=

∫
q̂i(u)m̂l(u) du−

∫
p̂i(u)m̂

(r)
0 (u)m̂

(r)
l (u) du , 1 ≤ l ≤ L . (15)

Motivated by (10), put (
β̂

(r)
i,1 , ..., β̂

(r)
i,L

)>
= M (r)(i)−1S(r)(i). (16)

The algorithm is run until only minor changes occur. In the implementation, we choose a

grid of points and calculate m̂l at these points. In the calculation of M (r)(i) and S(r)(i), we

replace the integral by a Riemann integral approximation using the values of the integrated

functions at the grid points.
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As discussed above, m̂l and β̂i,l are not uniquely defined. Therefore, we orthogonolize

m̂0, . . . , m̂L in L2(p̂), where p̂(u) = I−1
∑I

i=1 p̂i(u), such that
∑I

i=1 β̂2
i,1 is maximal, and

given β̂i,1, m̂0, m̂1,
∑I

i=1 β̂2
i,2 is maximal, and so forth. These aims can be achieved by the

following two steps: first replace

m̂0 by m̂new
0 = m̂0 − γ>Γ−1m̂,

m̂ by m̂new = Γ−1/2m̂,


β̂i,1

...

β̂i,L

 by


β̂new

i,1

...

β̂new
i,L

 = Γ1/2




β̂i,1

...

β̂i,L

 + Γ−1γ

 ,

(17)

where m̂ = (m̂1, . . . , m̂L)> and the (L × L) matrix Γ =
∫

m̂(u)m̂(u)>p̂(u) du, or for clar-

ity, Γ = (Γl,l′), with Γl,l′ =
∫

m̂l(u) m̂l′(u)p̂(u)du. Finally, we have γ = (γl), with γl =∫
m̂0(u)m̂l(u)p̂(u)du.

Note that by applying (17), m̂0 is replaced by a function that minimizes
∫

m̂2
0(u)p̂(u)du.

This is evident because m̂0 is orthogonal to the linear space spanned by m̂1, . . . m̂L. By the

second equation of (17), m̂1, . . . , m̂L are replaced by orthonormal functions in L2(p̂).

In a second step, we proceed as in PCA and define a matrix B with Bl,l′ =
∑I

i=1 β̂i,lβ̂i,l′ and

calculate the eigenvalues of B, λ1 > . . . > λL, and the corresponding eigenvectors z1, . . . zL.

Put Z = (z1, . . . , zL). Replace

m̂ by m̂new = Z>m̂, (18)
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(i.e. m̂new
l = z>l m̂), and

β̂i,1

...

β̂i,L

 by


β̂new

i,1

...

β̂new
i,L

 = Z>


β̂i,1

...

β̂i,L

 . (19)

After application of (18) and (19) the orthonormal basis m̂1, . . . , m̂L is chosen such that∑I
i=1 β̂2

i,1 is maximal, and– given β̂i,1, m̂0, m̂1 – the quantity
∑I

i=1 β̂2
i,2 is maximal, . . ., i.e.

m̂1 is chosen such that as much as possible is explained by β̂i,1 m̂1. Next m̂2 is chosen to

achieve maximum explanation by β̂i,1 m̂1 + β̂i,2 m̂2, and so forth.

The functions m̂l are not eigenfunctions of an operator as in usual functional PCA. This is

because we use a different norm, namely
∫

f 2(u)p̂i(u)du, for each day. Through the norming

procedure the functions are chosen as eigenfunctions in an L-dimensional approximating lin-

ear space. The L-dimensional approximating spaces are not necessarily nested for increasing

L. For this reason the estimates cannot be calculated by an iterative procedure that starts

by fitting a model with one component, and that uses the old L − 1 components in the

iteration step from L− 1 to L to fit the next component. The calculation of m̂0, . . . , m̂L has

to be fully redone for different choices of L.

2.2 Choice of L, h, and speed of convergence

For the choice of L, we consider the residual sum of squares for different L:

RV (L)
def
=

∑I
i

∑Ji

j

{
Yi,j −

∑L
l=0 β̂i,l m̂l(Xi,j)

}2

∑I
i

∑Ji

j (Yi,j − Ȳ )2
, (20)

where Ȳ denotes the overall mean of the observations. The quantity 1−RV (L) is the portion

of variance explained in the approximation, and L can be increased until a sufficiently high

14



level of fitting accuracy is achieved. This is a common selection method also in ordinary

PCA.

For a data-driven choice of bandwidths, we propose an approach based on a weighted Akaike

Information Criterion (AIC). We argue for using a weighted criterion, since the distribution

of observations is very unequal, as was seen from Figure 5. To our experience, this leads to

nonconvexity in the criterion and typically to inacceptably small bandwidths, see Fengler et

al. (2003) for a first description of this problem. Given the unequal distribution of observa-

tions, it is natural to punish the criterion in areas where the distribution is sparse. For a

given weight function w, consider:

∆(m0, . . . ,mL)
def
= E

1

N

∑
i,j

{Yi,j −
L∑

l=0

βi,lml(Xi,j)}2 w(Xi,j) , (21)

for functions m0, . . . ,mL. The expectation operator is denoted by E. We choose bandwidths

such that ∆(m̂0, . . . , m̂L) is minimal. According to the AIC this is asymptotically equivalent

to minimizing:

ΞAIC1

def
=

1

N

∑
i,j

{Yi,j −
L∑

l=0

β̂i,lm̂l(Xi,j)}2 w(Xi,j) exp

{
2

L

N
Kh(0)

∫
w(u)du

}
. (22)

Alternatively, one may consider the computationally more easy criterion:

ΞAIC2

def
=

1

N

∑
i,j

{Yi,j −
L∑

l=0

β̂i,lm̂l(Xi,j)}2 exp

{
2

L

N
Kh(0)

∫
w(u) du∫

w(u)p(u) du

}
. (23)

Putting w(u)
def
= 1, delivers the common AIC. This, however, does not take into account the

quality of the estimation at the boundary regions or in regions where data is sparse, since

in these regions p(u) is small. We propose to choose

w(u)
def
=

1

p(u)
, (24)
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which gives equal weight everywhere as can be seen by the following considerations:

∆(m0, . . . ,mL) = E
1

N

∑
i,j

ε2 w(Xi,j)

+ E
1

N

∑
i,j

[
L∑

l=0

βi,l{ml(Xi,j)− m̂l(Xi,j)}

]2

w(Xi,j)

≈ σ2

∫
w(u)p(u) du

+
1

N

∑
i,j

∫ [
L∑

l=0

βi,l{ml(u)− m̂l(u)}

]2

w(u)p(u) du .

(25)

The two criteria become:

ΞAIC1

def
=

1

N

∑
i,j

{Yi,j −
L∑

l=0

β̂i,lm̂l(Xi,j)}2 p̂(Xi,j) exp

{
2

L

N
Kh(0)

∫
1

p̂(u)
du

}
, (26)

and

ΞAIC2

def
=

1

N

∑
i,j

{Yi,j −
L∑

l=0

β̂i,lm̂l(Xi,j)}2 exp

{
2

L

N
Kh(0) µ−1

λ

∫
1

p̂(u)
du

}
, (27)

where µλ denotes the Lebesgue measure of the design set.

Under some regularity conditions, the AIC is an asymptotically unbiased estimate of the

mean averaged square error (MASE). In our setting it would be consistent if the density of

Xi,j did not depend on day i. Due to the irregular design, this is an unrealistic assumption.

For this reason, ΞAIC1 and ΞAIC2 estimate a weighted versions of MASE.

In our AIC the penalty term does not punish for the number parameters β̂i,l that are em-

ployed to model the time series. This can be neglected because we will use a finite dimensional

model for the dynamics of βi,l. The corresponding penalty term is negligible compared to

the smoothing penalty term. A corrected penalty term that takes care of the parametric

model of β̂i,j will be considered in Section 3.3 where the prediction performance is assessed.
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Clearly the choice of h and L are not independent. From this point of view, one may think

about minimizing (26) or (27) over both parameters. However, our practical experience

shows that for a given L, changes in the criteria from variation in h is small, compared to

variation in L for a given h. To reduce the computational burden, we use (20) to determine

model size L, and then (26) and (27) to optimize h for a given L.

Convergence of the iterations is measured by

Qk(r)
def
=

I∑
i=1

∫ ∣∣∣∣∣
L∑

l=0

β̂
(r)
i m̂

(r)
l (u)− β̂

(r−1)
i m̂

(r−1)
l (u)

∣∣∣∣∣
k

du . (28)

As above (r) denotes the result from the rth cycle of the estimation. Here, we approximate

the integral by a simple sum over the estimation grid. Putting k = 1, 2, we have an L1 and

an L2 measure of convergence. Iterations are stopped when Qk(r) ≤ εk for some small ε > 0.

3 Applications

3.1 Data description and preparation

The data set under consideration contains tick statistics on the DAX future and DAX index

options and was provided by the German-Swiss Futures Exchange EUREX for the period

from January 1998 to May 2001. Both future and option data are contract based data,

i.e. each single contract is registered together with its price, contract size, and time of

settlement up to a hundredth second. Interest rate data in daily frequency, i.e. 1, 3, 6,

12 months FIBOR rates for the years 1998–1999 and EURIBOR rates for the period 2000–

2001, were obtained from Thomson Financial Datastream. Interest rate data was linearly

interpolated to approximate a ‘riskless’ interest rate for the option specific time to maturity.
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In order to avoid German tax bias, option raw data has undergone a preparation scheme

which is due to Hafner and Wallmeier (2001) and described in the following. The entire data

set is stored in the Financial Database MD*base,www.mdtech.de, maintained at CASE –

Center for Applied Statistics and Economics, Berlin.

In a first step, we recover the DAX index values. To this end, we group to each option

price observation Ht the future price Ft of the nearest available future contract, which was

traded within a one minute interval around the observed option. The future price observation

was taken from the most heavily traded futures contract on the particular day, usually the

3 months contract. The no-arbitrage price of the underlying index in a frictionless market

without dividends is given by St = Fte
−rTF ,t(TF−t), where St and Ft denote the index and

the future price respectively, TF the future’s maturity date, and rT,t the interest rate with

maturity T − t.

The DAX index is a capital weighted performance index (Deutsche Börse; 2002), i.e. divi-

dends less corporate tax are reinvested into the index. Therefore, at a first glance, dividend

payments should have no or almost little impact on index options. However, when only the

interest rate discounted future is used to recover implied volatilities from an inversion of the

BS formula, implied volatilities of calls and puts can differ significantly. This discrepancy is

especially large during spring when most of the 30 companies listed in the DAX distribute

dividends. The point is best visible in Figure 3 from 20000404: implied volatilities of calls

(crosses) and puts (circles) fall apart, thus violating the put-call-parity and general market

efficiency considerations.

[Figure 3 about here.]
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[Figure 4 about here.]

Hafner and Wallmeier (2001) argue that the marginal investor’s individual tax scheme is

different from the one actually assumed to compute the DAX index. Consequently, the net

dividend for this investor can be higher or lower than the one used for the index computation.

This discrepancy, which the authors call ‘difference dividend’, has the same impact as a

dividend payment for an unprotected option, i.e. it drives a wedge into the option prices

and hence into implied volatilities. Denote by ∆Dt,T the time T value of this difference

dividend incurred between t and T . Consider the dividend adjusted futures pricing formula:

Ft = Ste
rF (TF−t) −∆Dt,TF

, (29)

and the dividend adjusted put-call parity:

Ct − Pt = St −∆Dt,TH
e−rH(TH−t) −Ke−rH(TH−t) (30)

with TH denoting the call’s Ct and the put’s Pt maturity date. Inserting equation (29) into

(30) yields

Ct − Pt = Fte
−rF (TF−t) + ∆Dt,TH ,TF

−Ke−rH(TH−t), (31)

where ∆Dt,TH ,TF

def
= ∆Dt,TF

e−rF (TF−t) −∆Dt,TH
e−rH(TH−t) is the desired difference dividend.

The ‘adjusted’ index level

S̃t = Fte
−rF (TF−t) + ∆Dt,TH ,TF

(32)

is that index level, which ties put and call implied volatilities exactly to the same levels when

used in the inversion of the BS formula.

For an estimate of ∆D̂t,TH ,TF
, pairs of puts and calls of the strikes and same maturity

are identified provided they were traded within a five minutes interval. For each pair the
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∆Dt,TH ,TF
is derived from equation (31). To ensure robustness ∆D̂t,TH ,TF

is estimated by the

median of all ∆Dt,TH ,TF
of the pairs for a given maturity at day t. Implied volatilities are

recovered by inverting the BS formula using the corrected index value S̃t = Fte
−rF (TF−t) +

∆D̂t,TH ,TF
. Note that ∆Dt,TH ,TF

= 0, when TH = TF . Indeed, when calculated also in this

case, ∆D̂t,TH ,TF
proved to be very small (compared with the index value), which supports

the validity of this approach. The described procedure is applied on a daily basis throughout

the entire data set from 199801 to 200105.

In Figure 4, also from 20000404, we present the data after correcting the discounted future

price with an implied difference dividend ∆D̂t = (10.3, 5.0, 1.9)>, where the first entry refers

to 16 days, the second to 45 days and the third to 73 days to maturity. Implied volatilities

of puts and calls converge two one single string, while the concavity of the put volatility

smile is remedied, too. Note that the overall level of implied volatility string is not altered

through that procedure.

Since the data is transaction based and may contain potential misprints or outliers, a filter is

applied: observations with implied volatility less than 4% and bigger than 80% are dropped.

Furthermore, we disregard all observations having a maturity τ ≤ 10 days. After this

filtering, the entire number of observations is more than 4.48 million contracts, i.e. is around

5 200 observations per day. All computations have been made with XploRe, www.i-xplore.de.

Table 1 gives a short summary of our IVS data. Most heavy trading occurs in short term

contracts, as is seen from the difference between median and mean of the term structure

distribution of observations as well as from its skewness. Median time to maturity is 30

days (0.083 years). Across moneyness the distribution is slightly negatively skewed. Mean

implied volatility over the sample period is 27.9%.
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[Table 1 about here.]

3.2 Implied Volatility Surface Modelling

Implied volatilities are observed only at particular strings, but it is common practice to think

about them as being the observed structures of an entire surface, the IVS. This becomes

evident, when one likes to price and hedge options with intermediate maturities. We model

ln-implied volatility on Xi,j = (κi,j, τi,j)
>. The grid covers in moneyness κ ∈ [0.80, 1.20] and

in time to maturity τ ∈ [0.05, 0.5] measured in years.

In this model, we employ L = 3 basis functions, which capture around 96.0% of the variations

in the IVS. We believe this to be of sufficiently high accuracy. Bandwidths used are h1 = 0.03

for moneyness and h2 = 0.04 for time to maturity. This choice is justified by Table 4

which presents estimates for the two AIC criteria. Both criterion functions become very flat

near the minimum, especially ΞAIC1 . However, ΞAIC2 assumes its global minimum in the

neighborhood of h∗ = (0.03, 0.04)>, which is why we opt for these bandwidths. In Table 4

we also display a measure of how factor loadings and basis functions change relative to the

optimal bandwidth h∗. We compute:

Vβ̂(hk) =

√√√√ L∑
l=0

var{|β̂i,l(hk)− β̂i,l(h∗)|} , (33)

and Vm̂(hk) =

√√√√ L∑
l=0

var{|m̂l(u; hk)− m̂l(u; h∗)|} , (34)

where hk runs over the values given in Table 4, and var(x) denotes the variance of x. It

is seen that changes in m̂ are 10 to 100 times higher in magnitude than those for β̂. This

corroborates the approximation in (25) that treats the factor loadings as known.
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[Table 2 about here.]

In being able to choose such small bandwidths, the strength of our modelling approach is

demonstrated: the bandwidth in the time to maturity dimension is so small that in the fit

of a particular day, data from contracts with two adjacent time to maturities do not enter

together p̂i(u) in (7) and q̂i(u) in (8). In fact, for given u′, the quantities p̂i(u
′) and q̂i(u

′)

are zero most of the time, and only assume positive values for dates i when observations are

in the local neighborhood of u′. The same applies to the moneyness dimension. Of course,

during the entire observation period I, it is mandatory that observations for each u for some

dates i are made.

[Figure 5 about here.]

In Figure 5 we display the L1 and L2 measures of convergence. Convergence is achieved

quickly. The iterations were stopped after 25 cycles, when the L2 was less than 10−5.

Figures 6 to 8 display the functions m̂1 to m̂4 together with contour plots. We do not

display the invariant function m̂0, since it essentially is the zero function of the affine space

fitted by the data: both mean and median are zero up to 10−2 in magnitude. We believe

this to be estimation error. The remaining functions exhibit a more interesting patterns:

m̂1 in Figure 6 is positive throughout, and mildly concave. There is little variability across

the term structure. Since this function belongs to the weights with highest variance, we

interpret it as the time dependent mean of the (log)-IVS, i.e. a shift effect.

[Figure 6 about here.]

[Figure 7 about here.]
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[Figure 8 about here.]

Function m̂2, depicted in Figure 7, changes sign around the at-the-money region, which

implies that the smile deformation of the IVS is exacerbated or mitigated by this eigenfunc-

tion. Hence we consider this function as a moneyness slope effect of the IVS. Finally, m̂3 is

positive for the very short term contracts, and negative for contracts with maturity longer

than 0.1 years, Figure 8. Thus, a positive weight in β̂3 lowers short term implied volatilities

and increases long term implied volatilities: m̂3 generates the term structure dynamics of

the IVS, it provides a term structure slope effect.

To appreciate the power of the semiparametric dynamic factor model, we inspect again the

situation of 20000502. In Figure 9 we compare a Nadaraya-Watson estimator (left panel)

with the semi-parametric factor model (right panel). In the first case, the bandwidths are

increased to h = (0.06, 0.25)> in order to remove all holes and excessive variation in the fit,

while for the latter the bandwidths are kept at h = (0.03, 0.04)>. While both fits look quite

similar at a first glance, the differences are best visible when both cases are contrasted for

each time to maturity string separately, Figures 10 to 13. Generally, the standard Nadaraya-

Watson fit exhibits a strong directional bias, especially in the wings of the IVS. For instance,

for the short maturity contracts, Figure 10, the estimated IVS is too low both in the OTM

put and the OTM call region. At the same time, levels are too high for the 45 days to expiry

contracts, Figure 11. For the 80 days to expiry case, Figure 12, the fit exhibits an S-formed

shape, although the data lie almost on a linear line. Also the semi-parametric factor model

is not entirely free of a directional bias, but clearly the fit is superior.

[Figure 9 about here.]
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[Figure 10 about here.]

[Figure 11 about here.]

[Figure 12 about here.]

[Figure 13 about here.]

[Figure 14 about here.]

[Table 3 about here.]

[Table 4 about here.]

Figure 14 shows the entire time series of β̂1 to β̂3, summary statistics are given in Table 3

and contemporaneous correlation in Table 4. The correlograms given in the lower panel of

Figure 14 display rich autoregressive dynamics of the factor loadings. The ADF tests at the

5% level, Table 5, indicate a unit root for β̂1 and β̂2. Thus, one may model first differences of

the first two loading series together with the levels of β̂3 in a parsimonious VAR framework.

Alternatively, since the results are only marginally significant, one may estimate the levels

of the loading series in a rich VAR model. We opt for the latter choice and use a VAR(2)

model, Table 6. The estimation also includes a constant and two dummy variables, assuming

the value one right at those days and one day after, when the corresponding IV observations

of the minimum time to maturity string (10 days to expiry) were to be excluded from the

estimation of the semiparametric factor model, confer Section 3.1. This is to capture possible

seasonality effects introduced from the data filter.

24



Estimation results are displayed in Table 6. In the equations of β̂1 and β̂2 the constants

and dummies are weakly significant. However, for sake of clarity, estimation results on the

constant and the dummy variables are not shown. As is seen all factor loadings follow AR(2)

processes. There is also a number of remarkable cross dynamics: first order lags in the level

dynamics, β̂1, have a positive impact on the term structure, β̂3. Second order lags in the

term structure dynamics themselves influence positively the moneyness slope effect, β̂2, and

negatively the shift variable β̂1: thus shocks in the the term structure may decrease the

level of the smile and aggravate the skew. Similar interpretations can be revealed from other

significant coefficients in Table 6.

In earlier specifications of the model, we also included contemporaneous and lagged DAX

returns into the regression equation. The results revealed a leverage interpretation of the first

loading series, Black (1976): shocks in the underlying are negatively correlated with level

changes in (implied) volatility, possibly due to a change in the debt-equity ratio. However,

since for our horse-race in Section 3.3, we use a simple VAR without exogenous variables

due to fairness, we do not show these results.

[Table 5 about here.]

[Table 6 about here.]

3.3 Prediction Performance

We now study the prediction performance of our model compared with a benchmark model.

Model comparisons that have been conducted, for instance by Bakshi et al. (1997); Dumas et
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al. (1998); Bates (2000); Jackwerth and Rubinstein (2001), often show that so called ‘näıve

trader models’ perform best or only little worse than more sophisticated models. These

models used by professionals simply assert that today’s implied volatility is tomorrow’s

implied volatility. There are two versions: the sticky strike assumption pretends that implied

volatility is constant at fixed strikes. The sticky delta or sticky moneyness version claims

this for implied volatilities observed at a fixed moneyness or option delta, Derman (1999).

We use the sticky moneyness model as our benchmark. There are two reasons for this

choice: first, from a methodological point of view, as has been shown by Balland (2002)

and Daglish et al. (2003), the sticky strike rule as an assumption on the stochastic process

governing implied volatilities, is not consistent with the existence of a smile. The sticky

moneyness rule, however, can be. Second, practically, since we estimate our model in terms

of moneyness, sticky moneyness rule is most natural.

Our methodology in comparing prediction performance is as follows: as presented in Sec-

tion 3.2, the resulting times series of latent factors β̂i,l is replaced by a times series model

with fitted values β̃i,l(θ̂) based on β̂i′,l with i′ ≤ i − 1 , 1 ≤ l ≤ L, where θ̂ is a vector of

estimated coefficients seen in Table 6. Similarly to Section 2, we employ a AIC based on

these fitted values as an asymptotically unbiased estimate of mean square prediction error.

For the model comparison we use criterion ΞAIC1 with w(u)
def
= 1. Additionally we penalize

the dimension of the fitted time series model β̃(θ):

Ξ̃AIC
def
= N−1

I∑
i

Ji∑
j

{
Yi,j −

L∑
l=0

β̃i,l(θ̂) m̂l(Xi,j)

}2

× exp

{
2

L

N
Kh(0) µλ +

2 dim(θ)

N

}
. (35)

In our case dim(θ) = 27, since we have for three equations six VAR-coefficients plus constant
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and two dummy variables.

Criterion (35) is compared with the squared one-day prediction error of the sticky moneyness

(StM) model:

ΞStM
def
= N−1

I∑
i

Ji∑
j

(Yi,j − Yi−1,j′)
2 . (36)

In practice, since one hardly observes Yi,j at the same moneyness as in i − 1, Yi−1,j′ is

obtained via a localized interpolation of the previous day’s smile. Time to maturity effects

are neglected, and observations, the previous values of which are lost due to expiry, are

deleted from the sample.

Running the model comparison shows:

ΞStM = 0.00476

Ξ̃AIC = 0.00439

Thus, the model comparison reveals that the semi-parametric factor model is approximate

10% better than the näıve trader model. This is a substantial improvement given the high

variance in implied volatility and financial data in general. An alternative approach would

investigate the hedging performance of our model compared with other models, e.g. in

following Engle and Rosenberg (2000). This is left for further research.

4 Conclusion and model extensions

In this study we present a modelling approach to the implied volatility surface (IVS) that

takes care of the particular discrete string structure of implied volatility data. The technique
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comes from functional PCA and backfitting in additive models. Unlike other studies, our

ansatz is tailored to the degenerated design of implied volatility data by fitting basis functions

in the local neighborhood of the design points only. We thus avoid bias effects.

Using transactions based DAX index implied volatility data from 1998 to May 2001, we

recover a number of basis functions generating the dynamics of a single implied volatility

string and surface. The functions may be intuitively interpreted as level, term structure and

moneyness slope effects, and a term structure twist effect, known from earlier literature. We

study the time series properties of parameters weights and complete the modelling approach

by fitting vector autoregressive models. A three-dimensional VAR(2) describes IVS dynamics

best.

Our modelling approach allows for a number of extensions that can be discussed. A first

topic is efficiency. After the calculation of m̂0, ..., m̂L and β̂i,1, ...,β̂i,L the estimates of βi,l

may be replaced by the minimizers β̃i,1, ...,β̃i,L of

I∑
i=1

Ji∑
j=1

{
Yi,j −

L∑
l=0

β̃i,lm̂l(Xi,j)

}2

.

Discussions of other semiparametric models suggest that this estimate is more efficient than

the estimate above. However, this approach has the disadvantage that it requires calculation

of the components at all design points Xi,j.

Another extension would be to introduce into equation (4) weights wi,j. For instance, in

applications other than ours, the weights could correct for unequal values of Ji or could take

care of heteroscedastic errors, e.g. variances depending on maturity. Alternatively weights

may be derived from economic variables such the underlying trading volume associated with

a particular implied volatility observation.
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A third modelling approach would be to replace (4) by

I∑
i=1

Ji∑
j=1

I∑
k=1

∫ {
Yi,j − m̂0(u)−

L∑
l=1

β̂i,lm̂l,k(u)

}2

Kh(u−Xi,j) G(k − i) du,

where G is a smooth function. In this case a system of principal components is fitted to the

data that smoothly develops in time. In trading applications a model must be continuously

updated and recalibrated. Thus in the trading context, this third model extension may be

a fruitful starting point for even better exploiting the transaction based tick data.

Finally, as mentioned earlier, the semi-parametric model has a natural relation with Kalman

filtering. Kalman filtering is a way to recursively find solutions to discrete-data linear filtering

problems, Kalman (1960). For, writing our model more compactly as:

Θ(L)βi = ui (37)

Yi,j = m0(Xi,j) +
L∑

l=1

βi,lml(Xi,j) + εi,j , (38)

where Θ(L)
def
= 1−θ1L−θ2L

2 . . .−θpL
p denotes a polynomial of order p in the lag operator L,

we receive the typical state-space representation, where ui and εi,j is noise. Equation (38)

is called the state equation depending on a parameter vector θ. It relates the (unobservable)

state i of the system to the previous step i− 1. The measurement equation (38) relates the

state to the measurement, the IVS in our case. The difference to our work is that the time

series modelling of βi is done after recovering it. For the integrated approach see Fengler et

al. (2004).
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Min. Max. Mean Median Stdd. Skewn. Kurt.

All Time to maturity 0.028 2.014 0.131 0.083 0.148 3.723 23.373

Moneyness 0.325 1.856 0.985 0.993 0.098 -0.256 5.884

Implied volatility 0.041 0.799 0.279 0.256 0.090 1.542 6.000

1998 Time to maturity 0.028 2.014 0.134 0.081 0.148 3.548 22.957

Moneyness 0.386 1.856 0.984 0.992 0.108 -0.030 5.344

Implied volatility 0.041 0.799 0.335 0.306 0.114 0.970 3.471

1999 Time to maturity 0.028 1.994 0.126 0.083 0.139 4.331 32.578

Moneyness 0.371 1.516 0.979 0.992 0.099 -0.595 5.563

Implied volatility 0.047 0.798 0.273 0.259 0.076 0.942 4.075

2000 Time to maturity 0.028 1.994 0.130 0.083 0.151 3.858 23.393

Moneyness 0.325 1.611 0.985 0.992 0.092 -0.337 6.197

Implied volatility 0.041 0.798 0.254 0.242 0.060 1.463 7.313

2001 Time to maturity 0.028 0.978 0.142 0.083 0.159 2.699 10.443

Moneyness 0.583 1.811 1.001 1.001 0.085 0.519 6.762

Implied volatility 0.043 0.789 0.230 0.221 0.049 1.558 7.733

Table 1: Summary statistics on the data base from 199801 to 200105 for the IVS application

in Section 3.2, entirely and on an annual basis. 2001 is from 200101 to 200105, only.
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h1 h2 ΞAIC1 ΞAIC2 Vβ̂ Vm̂

0.01 0.02 0.000737 0.00151 0.015 0.938

0.01 0.04 0.000741 0.00150 0.003 0.579

0.01 0.06 0.000739 0.00152 0.005 0.416

0.01 0.08 0.000736 0.00163 0.011 0.434

0.02 0.02 0.001895 0.00237 0.104 3.098

0.02 0.04 0.000738 0.00150 0.001 0.181

0.02 0.06 0.000741 0.00151 0.004 0.196

0.02 0.08 0.000742 0.00156 0.008 0.279

0.02 0.10 0.000744 0.00162 0.011 0.339

0.03 0.02 0.002139 0.00256 0.111 3.050

0.03 0.04 0.000739 0.00149 − −
0.03 0.06 0.000743 0.00152 0.004 0.180

0.03 0.08 0.000743 0.00156 0.008 0.273

0.03 0.10 0.000744 0.00162 0.011 0.337

0.04 0.02 0.002955 0.00323 0.138 3.017

0.04 0.04 0.000743 0.00151 0.001 0.088

0.04 0.06 0.000746 0.00154 0.005 0.211

0.04 0.08 0.000745 0.00157 0.008 0.293

0.04 0.10 0.000746 0.00163 0.012 0.353

0.05 0.02 0.003117 0.00341 0.142 2.962

0.05 0.04 0.000748 0.00155 0.001 0.148

0.05 0.06 0.000749 0.00157 0.005 0.241

0.05 0.08 0.000748 0.00160 0.008 0.312

0.05 0.10 0.000749 0.00167 0.012 0.368

0.06 0.02 0.003054 0.00343 0.139 2.923

0.06 0.04 0.000755 0.00160 0.002 0.193

0.06 0.06 0.000756 0.00163 0.005 0.268

0.06 0.08 0.000754 0.00166 0.009 0.330

0.06 0.10 0.000754 0.00172 0.012 0.383

Table 2: Bandwidth selection via AIC as given in (26) and (27) for different choices of h:

h1 refers to moneyness and h2 to time to maturity measured in years; the bandwidth chosen

is highlighted in bold. In all cases L = 3. Vβ̂ and Vm̂ measure the change in β̂ and m̂ as

functions of h relative the optimal bandwidth h∗ = (0.03, 0.04)>, compare (33) and (34).



Min. Max. Mean Median Stdd. Skewn. Kurt.

β̂1 -1.541 -0.462 -1.221 -1.260 0.206 1.101 4.082

β̂2 -0.075 0.106 0.001 0.002 0.034 0.046 2.717

β̂3 -0.144 0.116 0.002 -0.001 0.025 0.108 5.175

Table 3: Summary statistics on (β̂1, β̂2, β̂3)
> from Section 3.2.
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β̂1 β̂2 β̂3

β̂1 1 0.241 0.368

β̂2 1 −0.003

β̂3 1

Table 4: Contemporaneous correlation matrix of β̂l, l = 1, . . . , 3.
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Coefficient Test Statistic # of lags

β̂1 -2.68 3

β̂2 -3.20 1

β̂3 -6.11 2

Table 5: ADF tests on β̂1 to β̂3 for the full IVS model, intercept included in each case. Third

column gives the number of lags included in the ADF regression. For the choice of lag length,

we started with four lags, and subsequently deleted lag terms, until the last lag term became

significant at least at a 5% level. MacKinnon critical values for rejecting the hypothesis of a

unit root are -2.87 at 5% significance level, and -3.44 at 1% significance level.
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Equation

Dependent variable β̂1,i β̂2,i β̂3,i

β̂1,i−1 0.978 -0.009 0.047

[24.40] [-1.21] [ 3.70]

β̂1,i−2 0.004 0.012 -0.047

[ 0.08] [ 1.63] [-3.68]

β̂2,i−1 0.182 0.861 0.134

[ 0.92] [ 23.88] [ 2.13]

β̂2,i−2 -0.129 0.109 -0.126

[-0.65] [ 3.03] [-2.01]

β̂3,i−1 0.115 -0.019 0.614

[ 0.97] [-0.89] [ 16.16]

β̂3,i−2 -0.231 0.030 0.248

[-1.96] [ 1.40] [ 6.60]

R̄2 0.957 0.948 0.705

F -statistic 2405.273 1945.451 258.165

Table 6: Estimation results of an VAR(2) of the factor loadings β̂i. t-statistics given in

brackets, R̄2 denotes the adjusted coefficient of determination. The estimation includes an

intercept and two dummy variables (both not shown), which assume the value one right

at those days and one day after, when the corresponding IV observations of the minimum

time to maturity string (10 days to expiry) were to be excluded from the estimation of the

semiparametric factor model.
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Figure 1: Left panel: call and put implied volatilities observed on 2nd May, 2000. Right

panel: data design on 2nd May, 2000, ODAX.
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Figure 2: Nadaraya-Watson estimator and semi-parametric factor model fit for 20000502.

Bandwidths for both estimates h1 = 0.03 for the moneyness and h2 = 0.04 for the time to

maturity dimension.
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Figure 3: IVS ticks on April 4, 2000, derived from future prices that are interest rate dis-

counted only. Put implied volatility are circles, call implied volatility crosses.
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Figure 4: IVS ticks on April 4, 2000, derived from future prices that are interest rate dis-

counted and corrected with the implied difference dividend. Put implied volatility are circles,

call implied volatility crosses.
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Figure 5: Left panel: convergence in the IVS models. Solid line shows the L1, the dotted

line the L2 measure of convergence. Total number of iterations is 25. Right panel: average

density p̂(u) = I−1
∑I

i=1 p̂i(u). Bandwidths are h1 = 0.03 for moneyness and h2 = 0.04 for

time to maturity.
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Figure 6: Factor m̂1 in the left panel (moneyness lower left axis). Right panel shows contour

plots of this function (moneyness left axis). Lines are thick for positive level values, thin for

negative ones. The gray scale becomes increasingly lighter the higher the level in absolute

value. Stepwidth between contour lines is 0.028, estimated from ODAX data 199801-200105.
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Figure 7: Factor m̂2 in the left panel (moneyness lower left axis). Right panel shows contour

plots of this function (moneyness left axis). Lines are thick for positive level values, thin for

negative ones. The gray scale becomes increasingly lighter the higher the level in absolute

value. Stepwidth between contour lines is 0.225, estimated from ODAX data 199801-200105.
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Figure 8: Factor m̂3 in the left panel (moneyness lower left axis). Right panel shows contour

plots of this function (moneyness left axis). Lines are thick for positive level values, thin for

negative ones. The gray scale becomes increasingly lighter the higher the level in absolute

value. Stepwidth between contour lines is 0.240, estimated from ODAX data 199801-200105.
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Semiparametric factor model fit 20000502
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Figure 9: Nadaraya-Watson estimator with h = (0.06, 0.25)> and semi-parametric factor

model with h = (0.03, 0.04)> for 20000502.

52



Traditional string fit 20000502,  17 days to exp.
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Figure 10: Bias comparison of the Nadaraya-Watson estimator with h = (0.06, 0.25)> (left

panel) and the semi-parametric factor model with h = (0.03, 0.04)> (right panel) for the 17

days to expiry data (black bullets) on 20000502.
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Traditional string fit 20000502,  45 days to exp.
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Individual string fit 20000502,  45 days to exp.
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Figure 11: Bias comparison of the Nadaraya-Watson estimator with h = (0.06, 0.25)> (left

panel) and the semi-parametric factor model with h = (0.03, 0.04)> (right panel) for the 45

days to expiry data (black bullets) on 20000502.
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Traditional string fit 20000502,  80 days to exp.
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Individual string fit 20000502,  80 days to exp.
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Figure 12: Bias comparison of the Nadaraya-Watson estimator with h = (0.06, 0.25)> (left

panel) and the semi-parametric factor model with h = (0.03, 0.04)> (right panel) for the 80

days to expiry data (black bullets) on 20000502.
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Traditional string fit 20000502,  136 days to exp.
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Individual string fit 20000502,  136 days to exp.
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Figure 13: Bias comparison of the Nadaraya-Watson estimator with h = (0.06, 0.25)> (left

panel) and the semi-parametric factor model with h = (0.03, 0.04)> (right panel) for the 136

days to expiry data (black bullets) on 20000502.
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Figure 14: Upper panel: time series of weights (β̂1, β̂2, β̂3)
>. Lower panel: autocorrelation

functions.
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