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Abstract

For the stochastic di�erential equation

dX�t� � faX�t� � bX�t� ��g dt� dW �t�� t � ��

the local asymptotic properties of the likelihood function are studied	 They very
depend on the true value of the parameter � � �a� b�� ��	 Eleven di�erent cases
are possible if � runs through R�	 Let 
�T be the maximum likelihood estimator
of � based on �X�t�� t � T �	 Applications to the asymptotic behaviour of 
�T as
T � � are given	

Keywords� LAMN� LAN� LAQ� likelihood function� limit theorems for mar�
tingales� local asymptotic properties maximum likelihood estimator� stochastic
di�erential equations� time delay

� Introduction

Assume �W �t�� t � �� is a real�valued standard Wiener process� a and b are real
numbers and �X�t�� t � ��� is a solution of

dX�t� � aX�t� dt 	 bX�t� �� dt 	 dW �t�� t � �� ��
��

� This is a revised version of the Discussion Paper ����� �SFB ���	 
Asymptotic properties of
maximum likelihood estimators for a class of linear stochastic di�erential equations with time delay�
The paper was printed using funds made available by the Deutsche Forschungsgemeinschaft

�� � denotes the transpose of the corresponding vector or matrix
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with some �xed initial condition X�t� � X��t�� t � ���� �� where X���� is a continuous
stochastic process independent of W ���
 The solution �X�t�� t � ��� of ��
�� exists� is
pathwise uniquely determined and can be represented as

X�t� � x��t�X���� 	 b
Z �

��
x��t� s� ��X��s� ds	

Z t

�
x��t� s�dW �s�� t � �� ��
��

Obviously� it has continuous paths for t � � with probability one
 Here �x��t�� t � ���
denotes the so�called fundamental solution of the deterministic equation

�x�t� � ax�t� 	 bx�t� ��� t � ��
x�t� � �� t � ��
x�t� � �� t � ���� ���

��
��

Equation ��
�� is a very special case of linear stochastic di�erential equations of the
type

dX�t� �
Z �

��
X�t 	 s�a�ds� dt 	 dM�t�� t � �� ��
��

where a��� is an arbitrary function of �nite variation on ���� � and �M�t�� t � �� is�
e
g
� a semimartingale� see Mohammed and Scheutzow ������

Assume� the solution �X�t�� t � ���� T � of ��
�� for some �nite T � � has been
observed� the parameters �a� b� are unknown and have to be estimated
 Then we
have a parametric problem� which generalizes the statistical problem of estimating the
parameter in Langevin�s equation

dX�t� � aX�t� dt 	 dW �t�� t � � ��
��

�see� e
g
� Basawa and Prakasa Rao �����
 Estimation problems for stochastic di�eren�
tial equations with time delay have been considered in few papers up to now� see Dietz
������ and K�uchler and Kutoyants ������ and the references therein
 The model we
consider seems to be of interest by the following reasons
 First� it is a relatively simple
example exhibiting a variety of qualitatively di�erent local asymptotic properties for
di�erent values of the parameter
 Second� the model already shows some typical ef�
fects appearing in estimation problems for equations with time�delayed terms
 Third�
in contrast to more general delay models� we are able to compute explicitly the rates of
convergence and the limit distributions of estimators for every value of the parameter

The solutions of ��
�� form an exponential family of continuous stochastic processes in
the sense of K�uchler and S�rensen ������
 Thus the maximum likelihood estimator ��T
of � � �a� b�� can be expressed explicitly by

��T � �I�T �
��
V �
T �

where V �
T denotes the vector

V �
T �

�Z T

�
X�t� dX�t��

Z T

�
X�t� �� dX�t�

��

�



and I�T is the observed Fisher information matrix given by

I�T �

�BB�
Z T

�
X��t� dt

Z T

�
X�t�X�t� �� dtZ T

�
X�t�X�t� �� dt

Z T

�
X��t� �� dt

�CCA �

The estimator ��T is calculated from the log�likelihood function

log
dP �

T

dP
�����
T

�X� � ��V �
T �

�

�
��I�T�� � � R�

�see e
g
 Liptser and Shiryayev �����
 Here P �a�b�
T is the measure on C ����� T � generated

by the solution �X�t�� t � ���� T � of ��
��

The main purpose of this paper is to study local asymptotic properties of the family
�P �

T � � � R�� and then to draw conclusions for properties of the estimator ��T when
T ��

Since the log�likelihoods are quadratic in � for each T � �� it is not surprising that the
family �P �

T �� T � �� is locally asymptotically quadratic �LAQ� at every �� � R�� see
Section � �for the notion of LAQ see Le Cam and Yang� ����� or Jeganathan �����

Namely� choose �� � �a� b�� � R� arbitrary but �xed and introduce � � �� 	 �T��
where � � ��� 	�� � R�� �T � �T ���� is a normalizing regular � � � matrix with
�T � � as T ��
 Then we get

log
dP �

T

dP ��
T

�X� � ��VT � �

�
��IT�� ��
��

where

V �
T �

�Z T

�
X�t� dW �t��

Z T

�
X�t� �� dW �t�

�
�T ��
��

and
IT � ��TI

�
T�T � ��
��

In view of ��
��� to prove LAQ at �� one has to choose the matrices �T ���� in such a
way that �a� the vectors �VT � IT � are bounded in probability as T ��� �b� if �VTn � ITn�
converges in distribution to a limit �V�� I�� for a subsequence fTng � �� then

E exp���V� � �

�
��I��� � �

for every � � R�� �c� if ITn converges in distribution to a limit I� for a subsequence
fTng � �� then I� is almost surely positive de�nite
 Recall also that the important
special cases of LAQ are the local asymptotic mixed normality �LAMN� and the local
asymptotic normality �LAN�
 LAMN at �� means that �VT � IT � converges in distribu�
tion to �I���� Z� I�� as T � �� where the matrix I� is almost surely positive de�nite
and Z is a standard Gaussian vector independent of I�
 If� moreover� I� is nonran�
dom� then we have LAN at ��

Note that condition �c� is important since otherwise we are not in a position even to
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establish asymptotic properties of ��T �cf
 Dietz �����
 In general� �c� cannot be reached
with matrices �T being diagonal
 We construct �T as the product of two quadratic

matrices ����
T and �

���
T � �T � �

���
T �

���
T � where �

���
T converges to a nonsingular limit as

T �� �the dependence on T cannot be avoided in general� and �
���
T is diagonal with

elements tending to zero� in most case with di�erent rates

It is obvious from ��
��� ��
�� and ��
�� that the properties of the fundamental solu�
tion x��t� for t � � very in�uence the limit properties of �VT � IT �
 Recall that for
Langevin�s equation �b � ��� it holds x��t� � eat� the solution �X�t�� t � �� is the
Ornstein�Uhlenbeck process and there are exactly three relevant cases in considering
local asymptotic properties �a 
 �� a � �� a � ��
 In our case the picture turns out to
be much more rich
 To specify �T and to study the limit behaviour of �VT � IT � we have
to distinguish eleven di�erent cases for ��
 These cases will be introduced as follows

The behaviour of x���� is connected with the set � of �complex� solutions of the char�
acteristic equation

� � a� be�� � �� ��
��

It is easy to see that the set � of solutions of ��
�� is countable in�nite �if b �� ��
and that for every c � R� the set �c  � f� � � j Re � � c g is �nite
 In particular�
v�  � maxfRe � j � � � g 
 �
 De�ne v�  � max fRe � j � � �� Re � 
 v� g
�max	 � ���
 One veri�es easily that if � � � then !� � � and no other � � � with
Re � � Re � exists
 The equation ��
�� has at most two real solutions
 If there exists
a real solution v then the real part of every nonreal solution is strictly less than v

Consequently� the only possible real solutions are v� �if there is exactly one� or v� and
v� �if there are two�

We have v� � � if and only if

b � v�a�  � �ea��� ��
���

otherwise there exists a unique �� in � with Re �� � v� and ��  � Im �� � �
 Further�
more in this case it holds �� 
 
 Moreover� a second real solution exists� i
e
 v� � ��
if and only if v�a� 
 b 
 �

For every � in � denote by m��� the multiplicity of � as a solution of ��
��
 We have
m��� � � for all � � � except � � a � �� which belongs to � if and only if b � v�a�
and which has multiplicity two� if b � v�a�

Additional information about the solutions of the equation ��
�� can be found in Hayes
������

The following lemma is crucial for this note
 It is based on the inverse Laplace trans�
form and Cauchy�s residual theorem and it can be found in a slightly other form in
Myschkis ������� see also Hale and Verduyn Lunel ������
 The proof will be sketched
in the appendix


Lemma ��� For all c 
 v� the fundamental solution x���� of ��
�� can be represented

in the form

x��t� � ���t�e
v�t 	

X
�k��c

Re�k�v�

cke
�kt 	 o�e�t� for t��� ��
���

�



where � 
 c and ck are some constants� Here ���t� equals

���t� �

����������	���������


�

v� � a 	 �
if v� � �� m�v�� � ��

�t 	
�

�
if v� � �� m�v�� � ��

A� cos���t� 	 B� sin���t� if v� �� ��

A� �
��v� � a 	 ��

�v� � a 	 ��� 	 ���
� B� �

���
�v� � a	 ��� 	 ���

�

Remarks�

�� Note that the three cases for �� correspond to b � v�a�� b � v�a� and b 
 v�a��
respectively


�� Recall that for Langevin�s equation� i
e
 b � �� we have b � v�a� for every a � R�

In this case it holds � � fag and therefore v� � a and x��t� � eat


�� If v� � �� m�v�� � � �and b �� � to avoid the case from the previous remark��
then for our purposes it is necessary to separate a further term from the sum in
��
���
 We get

x��t� �
�

v� � a 	 �
ev�t 	 ���t�e

v�t 	 o�e�t� for t��� ��
���

where � 
 v��

���t� �

����	���

�

v� � a	 �
if v� � ��

A� cos���t� 	 A� sin���t� if v� �� ��

A� �
��v� � a 	 ��

�v� � a 	 ��� 	 ���
� B� �

���
�v� � a	 ��� 	 ���

�

Here �� denotes the uniquely determined positive number such that �� � v�	i�� �
�
 �We note that �� � �� �� in this case
�

The proof follows the line of the proof of Lemma �
� �see the Appendix� in an obvious
way


As it was mentioned above� the limit properties of �VT � IT � are di�erent in eleven cases

Table � represents these cases
 The �rst column describes these cases in terms of
v� and v�� and the relations ��
��� and ��
��� make clear a connection between our
classi�cation and asymptotic properties of x����
 The second column characterizes the
cases in terms of a and b
 The third column is just a notation for these cases which
will be used in the rest of the paper
 The functions u�a�� a 
 �� and w�a�� a � R��

�



are de�ned as follows introduce a parametric curve �a���� b����� � � �� � �� � �� � � � �
in R� by

a��� � � cot �� b��� � ��� sin ��

then b � u�a� and b � w�a� are the branches of this curve corresponding to � � ��� �
and � � �� �� respectively� see also Figure �


v� � � a � � u�a� � b � �a N

m�v�� � � a � � b � �a Q�
v� � �

v� � �
m�v�� � � a � � b � �a Q�

v� �� � a � � b � u�a� Q�

v� � � �a � b � w�a� M�
v� � � a � � b � �a Q�

m�v�� � �
v� � �

v� �� � b � w�a� Q�
v� � �

v� � �
v� � � a � � v�a� � b � �a M�

v� � �
v� �� � b � w�a� P�

m�v�� � � a � � b � v�a� M�
v� �� � a � � b � u�a� or a � � b � v�a� P�

Table � The eleven cases in terms of �v�� v�� and �a� b�

In the following we want to give a �rst impression what happens in the eleven cases

The �rst subdivision on the left�hand side of Table � follows the Ornstein�Uhlenbeck
case �where v� � a� v� 
 �� v� � � and v� � �

The �rst case v� 
 � holds if and only if there exists a stationary solution of ��
��

This solution is Gaussian and uniquely determined �see K�uchler and Mensch �����
 In
this case the statistical properties of our model are classical the LAN property holds

The form of ����� does not in�uence the asymptotic properties of VT and IT if v� 
 �

But it does if v� � � or v� � �

If v� � �� the underlying experiment is only LAQ �as if a � � in the Ornstein�Uhlenbeck
case� in all three cases Q��Q�
 But the normalizing matrix �T and the corresponding
limit experiment now principally depend on the form of ������ represented by three
di�erent expressions in Lemma �
�

Now let us consider the case v� � �
 The form of ����� is essential again for our
purposes
 If v� �� �� then we get a periodic behaviour of �VT � IT � in a certain sense

We call it the periodically locally asymptotically mixed normal �PLAMN� property to
emphasize that the cluster points of �VT � IT � have the same structure as in the LAMN
case but �VT � IT � converges in distribution if T runs to in�nity through a grid with a
�xed step
 If v� � � and m�v�� � �� then the model is locally asymptotically mixed

normal
 This is the only case where the matrix �
���
T has to be chosen dependent on T 


If v� � � and m�v�� � �� we have to take into consideration also the second term on
the right�hand side of ��
��� and obtain �ve di�erent cases
 Indeed� the limit behaviour
depends on the sign of v� �i
e
 v� 
 �� v� � � or v� � �� and� if v� � �� on the fact if
v� � � or not


�



If v� 
 �� or v� � � and v� � �� the underlying experiment is locally asymptotically
mixed normal
 But if v� � � and v� �� �� a periodic behaviour of �VT � IT � occurs again
and we have PLAMN

If v� � �� the model is locally asymptotically quadratic� whether v� � � or not
 Both
cases have similar limit experiments

Finally� we note that LAMN �or PLAMN� fails only if �� belongs to the lines b � �a�
b � u�a�� or b � w�a�


-1.5 -1 -0.5 0.5 1 1.5 2
a

-2

2

4

b

-Pi/2

-1

(1,-1)

M1

M2

M3

N 

P1

P2

Q1

Q2

Q3

Q4

Q5

b=-a

b=v(a)b=u(a)

b=w(a)

Figure � The di�erent cases for �� � �a� b��

� Local asymptotic properties

In the preceding section we have introduced a series of cases for which the fundamental
solution x���� and �VT � IT � have di�erent asymptotic properties
 Here we shall study
the asymptotic properties of �VT � IT � as T �� in more detail
 The proofs are given

�



in Section �

In the sequel the symbols

P�� and
d�� denote convergence in probability and in dis�

tribution respectively
 We shall use the symbol
L�� to denote the convergence in

distribution in the space C
d���� �� of continuous functions on ��� � with values in Rd


Sometimes we shall use the abbreviated notation
R �
�
fW� dfW� instead of

R �
�
fW��t� dfW��t�

or
R �
� XY dt instead of

R �
� X�t�Y �t� dt etc
 The concrete meaning will be clear from the

context

Some details are represented in the next table
 In the �rst column all the eleven cases
are listed in the order in which they will be considered
 The next three columns describe
the choice of �T 
 Recall that

�T � �
���
T �

���
T and �

���
T �

�
����T � �

� ����T �

�
� ��
��

It turns out that we can choose �
���
T so that it does not depend on T in all the cases

except M�� moreover� ����
T equals

either I�  �

�
� �
� �

�
or J�  �

�
� �
� �ev�

�

�of course� the value of v� depends on ���

It will be proved in Propositions �
�� �
���
�� �
���
�� that in Cases N� M��M�� Q��

Q�� under this choice of �T � we have �VT � IT �
d�� �V�� I��
 It is implicitly assumed

that

E exp���V� � �

�
��I��� � �

for every � � R� and I� is a non�singular matrix� the proof is either trivial or routine

In the �fth column of Table � we describe the matrix I� and the type of convergence
of IT to I� in a symbolic manner
 Namely� the elements of the matrix in this column
have the following meaning
 The symbol "�� means that the corresponding element of
I� is �
 The symbol "c� means that the corresponding element of I� is a �nonzero�
constant
 In both cases� the corresponding element of IT converges to this constant in
probability
 The symbol "p� means that the corresponding element of I� is random but
there is still the convergence in probability of the corresponding element of IT to that
of I�
 Finally� the symbol "d� means that we have only the convergence in distribution
of the corresponding element of IT to that of I� but not the convergence in probability

In Cases P� and P� studied in Propositions �
� and �
�� we have a periodic behaviour
of �VT � IT � in a certain sense
 We use there the symbol "p�� to indicate that we have
the convergence in probability of the corresponding elements of IT to a random limit
but only when T runs to in�nity through certain grids

The last column of the table indicates the number of the proposition in which the
corresponding case is considered


�



Case �
���
T ����T � ����T � I� Prop	

N I� T���� T����
�
c

c

c

c

�
�	�

M� J� e�v�T T����
�
p

�

�

c

�
�	�

M� J� e�v�T e�v�T
�
p

p

p

p

�
�	�

M�

�
�

�

�

��� � T���ev�

�
T��e�v�T Te�v�T

�
p

p

p

p

�
�	�

P� J� e�v�T e�v�T
�
p

p�
p�

p�

�
�	�

P� I� e�v�T e�v�T
�
p�

p�
p�

p�

�
�	�

Q� J� T�� T����
�
d

�

�

c

�
�	�

Q� J� T�� T��
�
d

d

d

d

�
�	�

Q� I� T�� T��
�
d

d

d

d

�
�	�

Q� J� e�v�T T��
�
p

�

�

d

�
�	��

Q� J� e�v�T T��
�
p

�

�

d

�
�	��

Table � The choice of �T and a description of convergence to I�

In the following we shall treat every case mentioned above in a separate proposition

Recall that VT and IT are given by ��
�� and ��
��
 The process X��� is de�ned by
��
�� for some �xed a and b and the matrices �T are constructed in ��
��
 For every
proposition below the parameter �� � �a� b�� is assumed to belong to the set described

by Table � in accordance with the case under consideration
 The de�nitions of �
���
T �

����T � and ����T � have to be taken from Table �
 Unless otherwise speci�ed� all limits
are taken as T ��

Let us start with the most simple case v� 
 �
 This is the only case where

R�
� x���t� dt 


� and a stationary solution of ��
�� exists


Proposition ��� In Case N the family �P �� � � R�� is locally asymptotically normal

at every �� 

�VT � IT �
d�� �V�� I���

where

I� �

�B�
Z �

�
x���t� dt

Z �

�
x��t�x��t 	 �� dtZ �

�
x��t�x��t	 �� dt

Z �

�
x���t� dt

�CA
and V� 
 N ��� I���

�



Now let us treat Cases M��M�


Proposition ��� In Case M� the family �P �� � � R�� is locally asymptotically mixed

normal at every �� 

�VT � IT �
d�� �V�� I���

where �V�� I��
d
� �I���� Z� I�� and Z is an independent of I� and N ���I���distributed

vector� The matrix I� is given by

I� �

�BBBBB�
U�
�

�v��v� � a 	 ���
�

�
Z �

�
�x��t�� ev�x��t� ���� dt

�CCCCCA �

where

U� � X���� 	 b
Z �

��
e�v��s���X��s� ds 	

Z �

�
e�v�s dW �s��

Proposition ��� In Case M� the family �P �� � � R�� is locally asymptotically mixed

normal at every �� 

�VT � IT �
d�� �V�� I���

where �V�� I��
d
� �I���� Z� I�� and Z is an independent of I� and N ���I���distributed

vector� The matrix I� is given by

I� �

�BBBBBB�
U�
�

�v��v� � a 	 ���
U�U��ev��v� � ��

�v� 	 v���v� � a 	 ���a� v� � ��

U�U��ev��v� � ��

�v� 	 v���v� � a 	 ���a� v� � ��

U�
� �ev��v� � ���

�v��a� v� � ���

�CCCCCCA �

where U� is de�ned in Proposition �
� and

U� � X���� 	 b
Z �
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e�v��s���X��s� ds 	

Z �

�
e�v�s dW �s��

Proposition ��� In Case M� the family �P �� � � R�� is locally asymptotically mixed

normal at �� 

�VT � IT �
d�� �V�� I���

where �V�� I��
d
� �I���� Z� I�� and Z is an independent of I� and N ���I���distributed

vector� The matrix I� is given by

I� �

�BBBBBB�
�U�

�

v�

U��
�
	U� 	 �U��

v�
	
U�
�

v��

U��
�
	
U� 	 �U��

v�
	
U�
�

v��

��
	
U� 	 �U���

�v�
	
U��

�
	
U� 	 �U��

v��
	
U�
�

v	�

�CCCCCCA �

where U� is de�ned in Proposition �
� and

U� � b
Z �

��
�s 	 ��e�v��s���X��s� ds 	

Z �

�
se�v�s dW �s��

��



The next two propositions treat Cases P� and P�
 Let us recall that if vi �� �� then �i
denotes the positive imaginary part of � � � with Re � � vi� i � �� �


Proposition ��� In Case P� the family �P �� � � R�� is #periodically locally asymp�

totically mixed normal$ at every �� in the following sense for Tn � u 	 n%� where
u � ���%� is �xed� % � ����� n � ��

�VTn� ITn�
d�� �V��u�� I��u��� n���

where �V��u�� I��u��
d
� �I���� �u�Z� I��u�� and Z is an independent of I��u� and

N ���I���distributed random vector� The matrix I��u� is given by

I��u� �

�BBBBB�
U�
�

�v��v� � a 	 ���
U�

v� � a 	 �

Z �

�
e��v��v��tU�u� t� dt

U�

v� � a 	 �

Z �

�
e��v��v��tU�u� t� dt

Z �

�
e��v�tU��u� t� dt

�CCCCCA �

Here U� is de�ned in Proposition �
��

U�t� � X������t� 	 b
Z �

��
��t� s� ��e�v��s���X��s� ds 	

Z �

�
��t� s�e�v�s dW �s��

��t� � A cos���t� 	 B sin���t�

and �
A
B

�
�

�
A�

B�

�
� ev��v�

�
cos �� � sin ��
sin �� cos ��

��
A�

B�

�
�

where

A� �
��v� � a 	 ��

�v� � a 	 ��� 	 ���
� B� �

���
�v� � a	 ��� 	 ���

�

Proposition ��	 In Case P� the family �P �� � � R�� is #periodically locally asymp�

totically mixed normal$ at every �� in the following sense for Tn � u 	 n%� where
u � ���%� is �xed� % � ���� n � ��

�VTn� ITn�
d�� �V��u�� I��u��� n���

where �V��u�� I��u��
d
� �I���� �u�Z� I��u�� and Z is an independent of I��u� and

N ���I���distributed random vector� The matrix I��u� is given by

I��u� �

�BBBB�
Z �

�
e��v�tU�

� �u� t� dt
Z �

�
e��v�tU��u� t�U��u� t� dt

Z �

�
e��v�tU��u� t�U��u� t� dt

Z �

�
e��v�tU�

� �u� t� dt

�CCCCA �

where

Ui�t� � X�����i�t� 	 b
Z �

��
�i�t� s� ��e�v��s���X��s� ds 	

Z �

�
�i�t� s�e�v�s dW �s��

��



�i�t� � Ai cos���t� 	 Bi sin���t�� i � �� ��

A� �
��v� � a 	 ��

�v� � a 	 ��� 	 ���
� B� �

���
�v� � a	 ��� 	 ���

�

�
A�

B�

�
� e�v�

�
cos �� � sin ��
sin �� cos ��

��
A�

B�

�
�

So far we have treated all the cases for which LAN� LAMN or PLAMN holds
 There
remain �ve cases� where LAQ is valid


Proposition ��
 In Case Q� the family �P �� � � R�� is locally asymptotically quad�

ratic at every �� 

�VT � IT �
d�� �V�� I���

where �V�� I�� is given by

V� �
�

�

� � a

Z �

�

fW �t� dfW �t�� Z
�

and

I� �

�BBB�
�

��� a��

Z �

�

fW ��t� dt �

� ��

�CCCA �

Here �� �
R�
� �x��t� � x��t � ���� dt� �fW �t�� t � ��� �� denotes a standard Wiener

process and Z is a N ��� ����distributed random variable independent of fW ����

Proposition ��� In Case Q� the family �P �� � � R�� is locally asymptotically quad�

ratic at �� � ������� 

�VT � IT �
d�� �V�� I���

where �V�� I�� is given by

V� � �
�Z �

�

fX�t� dfW �t��
Z �

�

fW �t� dfW �t�
�
�

I� � �

�BBBB�
Z �

�

fX��t� dt
Z �

�

fX�t�fW �t� dt

Z �

�

fX�t�fW �t� dt
Z �

�

fW ��t� dt

�CCCCA �

Here �fW �t�� t � ��� �� is a standard Wiener process and fX�t� �
R t
�
fW �s� ds�

Proposition ��� In Case Q� the family �P �� � � R�� is locally asymptotically quad�

ratic at every �� 

�VT � IT �
d�� �V�� I���

��



where

V� �
�

�

�BBBB�
A�

Z �

�

fW� dfW� 	 A�

Z �

�

fW� dfW� 	 B�

Z �

�

fW� dfW� �B�

Z �

�

fW� dfW�

A�

Z �

�

fW� dfW� 	 A�

Z �

�

fW� dfW� 	 B�

Z �

�

fW� dfW� �B�

Z �

�

fW� dfW�

�CCCCA
and

I� �
A�
� 	 B�

�

�

�
� cos ��

cos �� �

�Z �

�
�fW �

� 	 fW �
� � dt�

Here �fWi�t�� t � ��� ��� i � �� �� are two independent standard Wiener processes and

A� �
��� � a�

��� a�� 	 ���
� B� �

���
�� � a�� 	 ���

�

�
A�

B�

�
�

�
cos �� � sin ��
sin �� cos ��

��
A�

B�

�
�

Proposition ��� In Case Q� the family �P �� � � R�� is locally asymptotically quad�

ratic at every �� 

�VT � IT �
d�� �V�� I���

where �V�� I�� is given by

V� �

�
U�Zp

�v��v� � a 	 ��
�
ev� � �

a� �

Z �

�

fW �t� dfW �t�

��

and

I� �

�BBBBBB�
U�
�

�v��v� � a 	 ���
�

�
�ev� � ���

�a� ���

Z �

�

fW ��t� dt

�CCCCCCA �

Here U� is the same as in Proposition �
� above� Z and �fW �t�� t � ��� �� are a standard
normal distributed random variable and a standard Wiener process respectively� and U��
Z and fW ��� are independent�
Proposition ���� In Case Q� the family �P �� � � R�� is locally asymptotically quad�

ratic at �� 

�VT � IT �
d�� �V�� I���

where �V�� I�� is given by

V� �

�BBBBB�
U�Zp

�v��v� � a	 ��

�

�

�
A
Z �

�

fW� dfW� 	 A
Z �

�

fW� dfW� 	 B
Z �

�

fW� dfW� �B
Z �

�

fW� dfW�

�
�CCCCCA

��



and

I� �

�BBBBB�
U�
�

�v��v� � a 	 ���
�

�
�

�
�A� 	 B��

Z �

�
�fW �

� 	 fW �
� � dt

�CCCCCA �

Here U� is the same as in Proposition �
� above� Z and �fWi�t�� t � ��� ��� i � �� �� are
a standard normal distributed random variable and standard Wiener processes respec�

tively� and U�� Z� fW����� fW���� are independent��
A
B

�
�

�
A�

B�

�
� ev�

�
cos �� � sin ��
sin �� cos ��

��
A�

B�

�
�

where

A� �
��� � a�

��� a�� 	 ���
� B� �

���
�� � a�� 	 ���

�

� Asymptotic Properties of the ML�Estimator

Assume we observe �X�t�� t � T � continuously� where X�t� is a solution ��
�� and the
parameters a and b are unknown
 The maximum likelihood estimator ��T of the true
parameter �� � �a�� b��� is given by

��T � arg max
��R�

��T ��� � �I�T �
��
V �
T �

where

��T ��� � ��V �
T �

�

�
��I�T�� � � R��

V �
T �

�Z T

�
X�t� dX�t��

Z T

�
X�t� �� dX�t�

��
and

I�T �

�BB�
Z T

�
X��t� dt

Z T

�
X�t�X�t� �� dtZ T

�
X�t�X�t� �� dt

Z T

�
X��t� �� dt

�CCA �

Choose an arbitrary nonsingular �� ��matrix �T and introduce a new parameter � �
��� 	�� � R� by

� � �� 	 �T��

Then
��T � �� 	 �T ��T �

where ��T is de�ned by
��T � arg max

��R�

�T ��� � I��T VT

with

�T ��� � ��VT � �

�
��IT��

��



VT � ��T

�Z T

�
X�t� dW �t��

Z T

�
X�t� �� dW �t�

��
and

IT � ��TI
�
T�T �

From Section � we know that under appropriate choice of �T we have ��

�VT � IT �
d�� �V�� I�� ��
��

or
�Vu�n
� Iu�n
�

d�� �V��u�� I��u�� ��
��

with det I� �� � and det I��u� �� � for every u � ���%� respectively
 Consequently we
get

���T ���T � ��� � ��T
d�� I��� V�

or
���u�n
���u�n
 � ��� � ��u�n


d�� I��� �u�V��u�

for every u � ���%� respectively

Thus we can draw conclusions concerning the asymptotic behaviour of ��T for T ��

But some more properties follow from ��
�� and ��
�� by standard arguments
 Indeed� if
the LAMN property holds �e
g
 in Cases N� M��M�� then we have the local asymptotic
minimax bound for an arbitrary estimator &�T

lim
r��

lim inf
T��

sup
k	��T ������k�r

E�wf���T �&�T � ��g � Ewf�I����V�g

� Ewf�I������Zg� ��
��

where Z is a N ���I���vector independent of I� and w  R� � ����� is a bowl shape
loss function
 The maximum likelihood estimator ��T attains this bound� at least for
bounded w
 Moreover� the estimator ��T is asymptotically e'cient in the convolution
theorem sense
 �See e
g
 Le Cam and Yang ����� Jeganathan ����
�
In other cases� e
g
 if only the LAQ property holds� it follows that there exists a lower
asymptotic minimax bound but may be of di�erent form �see Shiryaev and Spokoiny
����� Greenwood and Wefelmeyer �����
 This bound need not be attainable
 It is
known that the maximum likelihood estimator is asymptotically generalized Bayesian
with respect to the uniform distribution on R� �Shiryaev and Spokoiny �����

For some class of estimators &�T satisfying certain conditions of regularity� e
g
 that the
limit distribution of the randomly normed deviation

IT�
��
T �&�T � ���

exists and is unbiased� the covariance matrix of this limit distribution is bounded from
below by the corresponding covariance matrix for the maximum likelihood estimator
��T which is equal to EI�� see Gushchin ������


�� For the notation see Section � above

��



We have seen that the maximum likelihood estimator after a certain matrix�normaliza�
tion� converges in distribution to some limit
 In Cases N� P� and Q� we have that �T

is equal ����T �I�� and thus the normalization by the number ����� �T � yields the same
limit distribution

In all other cases �

���
T is an upper triangular matrix and ����T � � o�����T ��
 This

re�ects some singularities in the local structure of our model� which have not been
mentioned so far

So we shall assume in the rest of this section that the true value �� � �a� b�� of the
parameter corresponds to one of Cases M��M�� P�� Q�� Q�� Q�� or Q�
 First� we
note that the normalization of ��T � �� by the scalar ����� �T � leads to a nontrivial limit
distribution which is concentrated on a straight line 	�
 Indeed� we get

����� �T ����T � ��� � ����� �T ��T ��T � ����� �T ��
���
T �

���
T ��T

� �
���
T

�
����� �T �����T � �

� �

�
��T

d��
�

� �
� �ev�

��
� �
� �

�
I��� V�

�

�
� �
� �ev�

�
I��� V�� ��
��

In particular� the rate of convergence of ��T to �� is ����� �T � �as in Cases N� P�� and Q���
and the distance between ��T and the straight line (�  � f �a�� b��  �a��a�	e�v��b��b� �
� g is of smaller order than ����T �

In this connection it is of some interest to see what happens if one of the parameters
or a linear combination of them is known
 Here we shall concentrate on the maximum
likelihood estimators
 The corresponding arguments concerning local asymptotic prop�
erties are similar and omitted

Assume the parameter � belongs to a straight line (� which meets ��
 The limit
behaviour of the maximum likelihood estimator

���T � arg max
����

��T ���

is essentially di�erent in the following two cases


Case � (� �� (�

Case � (� � (�


Denote by MT the image of (� by the map

�� ���T ��� ���

and by ���T the maximum likelihood estimator

���T � arg max
��MT

�T ����

�� This remark and the subsequent ones have to be modi�ed in an obvious way in the periodic
Case P�

��



Then
���T � �� 	 �T ���T �

Case � It is easy to see that MT is a straight line through ��� �� with a slope tending

to zero if T ��
 So we obtain with the notation � � ��� 	��

���T
d�� arg max


��� ��R�

���V� � �

�
��I���� ��
��

This means that the limit distribution of ���T is the distribution of the vector )��� ����
where ) � V����I���� �V��i are the elements of V� and I��ii are the diagonal elements
of I�� i � �� ��
 Since ����� �T ���� e�v����T �� ��� ���� we get

����� �T ���� e�v�������T � ���
d�� )�

hence
����� �T �����T � ���

d�� )�� 	 c��ev�c��
for some real c
 Note that here the rate of convergence of ���T to �� equals ����� �T �


Case � Let us assume additionally that we are not in Case M�
 Then MT � f ��� 	�  
� � � g and we obtain

���T
d�� arg max

���� 
�R�

���V� � �

�
��I����

Thus the limit distribution of ���T is the distribution of the vector *��� ���� where
* � V����I����
 Now it is easy to see that

����� �T �����T � ���
d�� *����ev��� ��
��

Therefore� the rate of convergence of ���T to �� is ����� �T �
 Moreover� if I� is diagonal
�this happens in Cases M�� Q�� Q�� and Q�� then

����� �T ����T � ���T �
P�� � ��
��

�compare ��
�� and ��
���
 Furthermore� I���� is nonrandom in Cases M� and Q�

Hence the submodel �P�� � � (�� has the LAN property in these two cases
 Applying
the asymptotic minimax theorem to this submodel and taking into account ��
��� we
obtain the following local asymptotic minimax bound for an arbitrary estimator &�T  

lim
r��

lim inf
T��

sup
T ���k����k�r

E�wfT ���k&�T � �kg � Ewfj�j���� 	 e�v�����Zg�

where Z is a standard normal variable� �� �
R�
� �x��t�� ev�x��t� ���� dt� w  R� �

����� is a bowl shape loss function� here �� satis�es a 
 �� �a � b 
 w�a� or a � ��
�a 
 b 
 w�a� �this corresponds to Cases M� and Q��
 Note that a similar estimate
can be obtained from ��
�� also in Case N
 The maximum likelihood estimator ��T
attains this bound� at least for bounded w

Finally� let us consider Case M�
 Here we have ����T � � T��e�v�T and ����T � �
Te�v�T 
 Thus MT is the straight line through ��� �� with the slope ��T 
 ���T has the
limit distribution as in ��
�� above
 This implies

ev�T ����T � ���
d�� )����ev����

So here the rate of convergence of ���T to �� is intermediate between ����� �T � and ����� �T �


��



� Proofs

The main goal of this section is to prove Propositions �
���
��� i
e
 to prove the weak
convergence of �VT � IT � to the corresponding limit
 Unless otherwise speci�ed� all limits
are taken as T ��

Let us start with some general remarks
 With the exception of Case M�� we have

VT �

�
����T �

Z T

�
X�t� dW �t�� ����T �

Z T

�
Y �t� dW �t�

��
��
��

and

IT �

�BBBB�
��
���T �

Z T

�
X��t� dt ����T �����T �

Z T

�
X�t�Y �t� dt

����T �����T �
Z T

�
X�t�Y �t� dt ��

���T �
Z T

�
Y ��t� dt

�CCCCA � ��
��

where

Y �t� �

��	�

X�t� �� in Cases N� P�� Q��

X�t�� ev�X�t� �� otherwise

��
��

Note that the process Y �t� de�ned in this way has a representation similar to ��
���
where the function x��t� is replaced by the corresponding to ��
�� linear combination
of x��t� and x��t� ��� this representation holds for t � �

More generally� let us say that a continuous process �Y �t�� t � �� has the representation
��
�� below with a function y��� if

Y �t� � y�t�X���� 	 b
Z �

��
y�t� s� ��X��s� ds 	

Z t

�
y�t� s� dW �s�� t � t�� ��
��

where t� � � and y � �y�t�� t � �� is a deterministic continuous function
 Before
proving Propositions �
���
��� we shall study some properties of processes having the
representation ��
��

Our �rst lemma summarizes in an appropriate form some simple facts being used over
and over throughout this section
 The proof is trivial and therefore omitted


Lemma ��� Assume Y��t�� Y��t� and Z�t�� t � �� are adapted continuous processes�
Y �t� � Y��t�	Y��t�� t � �� and �W �t�� t � �� is a standard Wiener process� Moreover

let ��T � and ��T � be normalizing functions such that

���T �
Z T

�
Y �
� �t� dt� T � �� and ���T �

Z T

�
Z��t� dt� T � ��

are bounded in probability and

���T �
Z T

�
Y �
� �t� dt

P�� ��

��



Then

��T �

Z T

�
Y �t� dW �t��

Z T

�
Y��t� dW �t�

�
P�� ��

���T �

Z T

�
Y ��t� dt�

Z T

�
Y �
� �t� dt

�
P�� ��

��T ���T �

Z T

�
Y �t�Z�t� dt�

Z T

�
Y��t�Z�t� dt

�
P�� ��

Let �Y �t�� t � �� be a process having the representation ��
��
 Sometimes the �rst
term in the right�hand side of ��
�� is small in the sense of Lemma �
�� i
e
 it can be
chosen as Y��t�
 The next lemma shows that then the second term in the right�hand
side of ��
�� is also small in the same sense


Lemma ��� Put

z�t� �
Z �

��
y�t� s� ��X��s� ds� t � t��

Then Z T

t�
z��t� dt �

Z �

��
X�

� �s� ds
Z T

�
y��t� dt�

For the proof use Fubini�s theorem and the Cauchy�Schwartz inequality

In Lemmas �
�� �
�� �
�� �
� and Corollary �
� we assume that Y ���� Y����� Y���� are
continuous processes having the representation ��
�� with functions y���� y����� y����
respectively


Lemma ��� Assume that y � �y�t�� t � �� is a square integrable function� Then

T��
Z T

�
Y �t� dt

P�� ��

T��
Z T

�
Y ��t� dt

P�� ��  �
Z �

�
y��t� dt�

Proof� According to Lemmas �
� and �
�� it is su'cient to prove the assertion for
X��s� � �
 We introduce the stationary process Z�t� �

R t
�� y�t � s� dW �s�� t � ��

where W ��� is independently of �W �s�� s � �� extended to ���� �� as a Wiener
process

Obviously� we have

T��E
Z T

t�
�Z�t�� Y �t��� dt � T��

Z T

t�

Z �

t
y��s� ds dt� �� ��
��

Applying the law of large numbers to the Gaussian stationary process Z���� which is
ergodic� we get

T��
Z T

�
Z�t� dt

P�� EZ��� � �� T��
Z T

�
Z��t� dt

P�� EZ���� � ���

Now the claim follows from ��
��


��



Corollary ��� If
R�
� y�i �t� dt 
�� i � �� �� then

T��
Z T

�
Y��t�Y��t� dt

P��
Z �

�
y��t�y��t� dt�

Lemma ��� Suppose that y�t� � t�ewt for some � � �� �� �� � � � and w � �� Then with

probability one

lim
t��

t��e�wtY �t� � U�

where

U � X���� 	 b
Z �

��
e�w�s���X��s� ds 	

Z �

�
e�ws dW �s��

Proof� Using the representation ��
�� of Y ��� the appearance of the �rst two terms of
U is quite obvious
 Furthermore�

t��e�wt
Z t

�
y�t� s� dW �s� �

Z t

�

�
�� s

t

��
e�ws dW �s�

�
Z t

�
e�ws dW �s�

	
�X

k��

����k
�
�

k

�
t�k

Z t

�
ske�ws dW �s��

It remains to note that with probability one

lim
t��

Z t

�
e�ws dW �s� �

Z �

�
e�ws dW �s�

by L+evy�s theorem and

lim
t��

t�k
Z t

�
ske�ws dW �s� � �

by the strong law of large numbers for martingales� see e
g
 Liptser and Shiryaev
������ Chapter �� x �� Theorem ���


Lemma ��	 Let Z���� and Z���� be two continuous processes such that with probability

one

lim
t��

t��ie�witZi�t� � Ui�

for some �i � R� wi � �� and some random variables Ui being �nite almost surely�

i � �� �� Then

T������e��w��w��T
Z T

�
Z��t�Z��t� dt

P�� U�U�

w� 	 w�

and

T�������e�w�T
Z T

�
jZ��t�j dt P�� ��

Remark� In fact� we have the almost sure convergence in the assertions of Lemma


For the proof apply the L�Hospital rule


��



Lemma ��
 Suppose that a continuous process Y ��� has the representation ��
�� with
a bounded y���� If Z��� is a continuous process such that with probability one

lim
t��

e�wtZ�t� � U

for some w � � and some random variable U being �nite almost surely� then

T��e�wT
Z T

�
Y �t�Z�t� dt

P�� ��

If� moreover� y��� is square integrable on ����� then this convergence holds for T����

instead of T���

Proof� According to Lemmas �
� and �
� we can assume that X���� � �
 Applying
these lemmas again we can substitute Z�t� by ewtU 
 Thus it remains to prove that

T��e�wT
Z T

�
ewtY �t� dt

P�� ��

�or T���� instead of T�� if
R�
� y��t� dt 
��


Now observe that

E

�����
Z T

�
ewtY �t� dt

����� �
Z T

�
ewtEjY �t�j dt

�
Z T

�
ewt�EjY �t�j����� dt

and that

EjY �t�j� �
Z t

�
y��s� ds� t � t��

which implies the assertion


Lemma ��� Assume that y�t� � ��t�ewt� where ��t� � cos��t� or ��t� � sin��t� and

w � �� Then with probability one

lim
t��

n
e�wtY �t�� U�t�

o
� ��

where

U�t� � X������t� 	 b
Z �

��
��t� s� ��e�w�s���X��s� ds 	

Z �

�
��t� s�e�ws dW �s�

is a continuous periodic process�

Proof� Note that

e�wtY �t�� U�t� � �
Z �

t
��t� s�e�ws dW �s�� t � t��

If ��t� � cos��t� thenZ �

t
��t�s�e�ws dW �s� � cos��t�

Z �

t
cos��s�e�ws dW �s�	sin��t�

Z �

t
sin��s�e�ws dW �s��

which obviously tends almost surely to zero
 The case ��t� � sin��t� can be treated
similarly


��



Lemma ��� Let Z��� be a continuous process such that with probability one

lim
t��

n
e�wtZ�t�� U�t�

o
� ��

where U��� is a continuous periodic process on R and w � �� Then

e��wT
Z T

�
Z��t� dt�

Z �

�
e��wtU��T � t� dt

P�� ��

Proof� Applying Lemma �
� we can replace Z�t� by ewtU�t� and observe that

e��wT
Z T

�
e�wtU��t� dt �

Z T

�
e��wtU��T � t� dt

and Z �

T
e��wtU��T � t� dt

P�� ��

Lemma ��� Let Z���� and Z���� be two continuous processes such that with probability
one

lim
t��

e�w�tZ��t� � U�

and

lim
t��

n
e�w�tZ��t�� U��t�

o
� ��

where w�� w� � �� U� is a �nite random variable� U���� is a continuous periodic process

on R� Then

e��w��w��T
Z T

�
Z��t�Z��t� dt� U�

Z �

�
e��w��w��tU��T � t� dt

P�� ��

Proof� The proof is analogous to that of Lemma �
�


Now we are in a position to prove Propositions �
���
�


Proof of Proposition ���� According to ��
�����
���

VT �

�
T����

Z T

�
X�t� dW �t�� T����

Z T

�
X�t� �� dW �t�

��

and

IT �

�BBBB�
T��

Z T

�
X��t� dt T��

Z T

�
X�t�X�t� �� dt

T��
Z T

�
X�t�X�t� �� dt T��

Z T

�
X��t� �� dt

�CCCCA �

The process �X�t�� t � �� has the representation ��
�� with y�t� � x��t�� t � �� and
�X�t� ��� t � �� has this representation with y�t� � x��t� ��� t � �

By assumption� v� 
 �� i
e


R�
� x���t� dt 
 � holds
 Thus we can apply Lemma �
�

and Corollary �
� to obtain IT
P�� I�
 Now the claim follows from the central limit

theorem for martingales


��



Proof of Proposition ���� According to ��
�����
���

VT �

�
e�v�T

Z T

�
X�t� dW �t�� T����

Z T

�
Y �t� dW �t�

��

and

IT �

�BBBB�
e��v�T

Z T

�
X��t� dt T����e�v�T

Z T

�
X�t�Y �t� dt

T����e�v�T
Z T

�
X�t�Y �t� dt T��

Z T

�
Y ��t� dt

�CCCCA �

where
Y �t� � X�t�� ev�X�t� ��� t � �� ��
��

Note that Y ��� has the representation ��
�� with y�t� � x��t� � ev�x��t � ��
 In the
considered case v� � � and v� 
 �
 It follows from Lemma �
� that

x��t� �
�

v� � a 	 �
ev�t 	 o�e�t� ��
��

for some � 
 �� and this implies y�t� � o�e�t� and therefore
R�
� y��t� dt 
�


Now Lemmas �
�� �
� and �
� imply

e��v�T
Z T

�
X��t� dt

P�� U�
�

�v��v� � a	 ���
�

it follows from Lemmas �
�� �
� and �
� that

T����e�v�T
Z T

�
X�t�Y �t� dt

P�� ��

and Lemma �
� implies

T��
Z T

�
Y ��t� dt

P��
Z �

�
y��t� dt�

Summarizing these results we get the convergence in probability of IT to I�
 The joint
convergence of �VT � IT � to �V�� I�� follows from the stable limit theorem for martin�
gales� see Jacod and Shiryaev ������ Theorem VIII
�
��� or Touati ������ Theorem ��


Proof of Proposition ���� According to ��
�����
���

VT �

�
e�v�T

Z T

�
X�t� dW �t�� e�v�T

Z T

�
Y �t� dW �t�

��

and

IT �

�BBBB�
e��v�T

Z T

�
X��t� dt e��v��v��T

Z T

�
X�t�Y �t� dt

e��v��v��T
Z T

�
X�t�Y �t� dt e��v�T

Z T

�
Y ��t� dt

�CCCCA �

��



where Y �t� is de�ned as in ��
�� above and has the representation ��
�� with y�t� �
x��t� � ev�x��t � ��
 As in the previous proposition� it is su'cient to check that

IT
P�� I�


Since v� � v� � �� v� � � and v� � � in the considered case� it follows from Lemma �
�
and ��
��� that ��
�� holds for some � 
 v� and

y�t� �
ev��v� � �

a� v� � �
ev�t 	 o�e��t�

for some �� 
 v�

Using Lemmas �
�� �
� and �
�� we get

e��v�T
Z T

�
X��t� dt

P�� U�
�

�v��v� � a	 ���
�

e��v��v��T
Z T

�
X�t�Y �t� dt

P�� U�U��ev��v� � ��

�v� 	 v���v� � a	 ���a� v� � ��

and

e��v�T
Z T

�
Y ��t� dt

P�� U�
� �ev��v� � ���

�v��a� v� � ���
�

which yields the desired convergence


Proof of Proposition ���� By the choice of �T � we have

VT �

�
T��e�v�T

Z T

�
X�t� dW �t�� T e�v�T

Z T

�
�Y �t�� T��Z�t�� dW �t�

��

and

IT �

�BBBB�
T��e��v�T

Z T

�
X��t� dt e��v�T

Z T

�
X�t��Y �t�� T��Z�t�� dt

e��v�T
Z T

�
X�t��Y �t�� T��Z�t�� dt T �e��v�T

Z T

�
�Y �t�� T��Z�t��� dt

�CCCCA �

where Z�t� � ev�X�t� �� and Y �t� is de�ned as in ��
�� above

Obviously Z��� has the representation ��
�� with z�t� � ev�x�t� ��

It follows from ��
��� that

x��t� � ��t 	
�

�
�ev�t 	 o�e�t��

y�t� � �ev�t 	 o�e�t��

z�t� � ��t� �

�
�ev�t 	 o�e�t�

for some � 
 � 
 v�

Put by�t� � �ev�t� bz�t� � ��t� �

�
�ev�t�

��



and let bY �t� and bZ�t� be continuous processes having the representation ��
�� with the
functions by�t� and bz�t� respectively� cX�t� � bY �t� 	 bZ�t�
 It can be easily checked that

e���T
Z T

�
�X�t�� cX�t��� dt

P�� � ��
��

e���T
Z T

�
�Y �t�� bY �t��� dt

P�� � ��
��

and

e���T
Z T

�
t���Z�t�� bZ�t��� dt

P�� �� ��
���

Lemma �
� implies that with probability one

lim
t��

t��e�v�tcX�t� � �U� ��
���

and
lim
t��

t��e�v�t bZ�t� � �U�� ��
���

the same proof as in Lemma �
� shows that

lim
t��

te�v�t� bY �t�� t�� bZ�t�� �
�

�
U� 	 �U�� ��
���

By Lemma �
� we obtain

T��e��v�T
Z T

�

cX��t� dt
P�� �U�

�

v�
� ��
���

e��v�T
Z T

�

cX�t�� bY �t�� t�� bZ�t�� dt
P�� U��

�
	U� 	 �U��

v�
� ��
���

and

T �e��v�T
Z T

�
� bY �t�� t�� bZ�t��� dt

P�� ��	U� 	 �U���

�v�
� ��
���

It follows from ��
������
��� by the L�Hospital rule that

e��v�T
Z T

�

cX�t� bZ�t��t�� � T��� dt
P�� U�

�

v��
� ��
���

T �e��v�T
Z T

�

bZ��t��t�� � T���� dt
P�� U�

�

v	�
� ��
���

T �e��v�T
Z T

�
� bY �t�� t�� bZ�t�� bZ�t��t�� � T��� dt

P�� U��
�
	U� 	 �U��

�v��
� ��
���

It follows from ��
�����
��� that we can replace cX�t�� bY �t�� and bZ�t� by X�t�� Y �t�� and

Z�t� respectively in relations ��
������
���
 This implies the convergence IT
P�� I�


Now the claim follows from the stable limit theorem for martingales as in Propositions
�
� and �
�


��



Proof of Proposition ���� According to ��
�����
���

VT �

�
e�v�T

Z T

�
X�t� dW �t�� e�v�T

Z T

�
Y �t� dW �t�

��

and

IT �

�BBBB�
e��v�T

Z T

�
X��t� dt e��v��v��T

Z T

�
X�t�Y �t� dt

e��v��v��T
Z T

�
X�t�Y �t� dt e��v�T

Z T

�
Y ��t� dt

�CCCCA �

where
Y �t� � X�t�� ev�X�t� ��� t � ��

Note that Y ��� has the representation ��
�� with y�t� � x��t�� ev�x��t� ��
 It follows
from ��
��� that

x��t� �
�

v� 	 �� a
ev�t 	 fA� cos���t� 	 B� sin���t�gev�t 	 o�e�t�

for some � 
 v� and� hence�

y�t� � ��t�ev�t 	 o�e�t��

Applying Lemmas �
�� �
�� �
�� �
�� �
�� and �
�� we get

IT � I��T �
P�� ��

Now we complete the proof similarly to the previous case
 The matrix�valued process
I��T � is periodic with period % � ����� and the claim follows from the stable limit
theorem for martingales as in previous propositions


Proof of Proposition ��	� According to ��
�����
���

VT �

�
e�v�T

Z T

�
X�t� dW �t�� e�v�T

Z T

�
X�t� ��dW �t�

��

and

IT �

�BBBB�
e��v�T

Z T

�
X��t� dt e��v�T

Z T

�
X�t�X�t� �� dt

e��v�T
Z T

�
X�t�X�t� �� dt e��v�T

Z T

�
X��t� �� dt

�CCCCA �

The process �X�t�� t � �� has the representation ��
�� with y�t� � x��t�� t � �� and
�X�t� ��� t � �� has this representation with y�t� � x��t� ��� t � �

It follows from ��
��� that

x��t� � ���t�e
v�t 	 o�e�t�

��



for some � 
 v� because of �� � �� by de�nition
 Hence�

x��t� �� � ���t�e
v�t 	 o�e�t��

From Lemmas �
�� �
� and �
� now we have

IT � I��T �
P�� ��

Obviously� the matrix�valued process I��T � is periodic with period % � ���� and we
complete the proof similarly to the previous proposition

Proof of Proposition ��
� According to ��
�����
���

VT �

�
T��

Z T

�
X�t� dW �t�� T����

Z T

�
Y �t� dW �t�

��

and

IT �

�BBBB�
T��

Z T

�
X��t� dt T�	��

Z T

�
X�t�Y �t� dt

T�	��
Z T

�
X�t�Y �t� dt T��

Z T

�
Y ��t� dt

�CCCCA �

where
Y �t� � X�t��X�t� ��� t � ��

Note that here we have

x��t� �
�

�� a
	 o�e�t�

for some � 
 � and X��� and Y ��� have the representation ��
�� with the functions
x��t� and y�t� � x��t�� x��t� �� respectively
 Obviously it holds y�t� � o�e�t�

Consider the processes

W T �s� � T����W �Ts��

XT �s� � ��� a���T��
Z Ts

�
W �t� dW �t� � �� � a���

Z s

�
W T �t� dW T �t��

Y T �s� � T����
Z Ts

�
Y �t� dW �t� �

Z s

�
Y �Tt� dW T �t�� s � ��� ��

These processes are square integrable continuous martingales
 SinceZ s

�
Y ��Tt� dt � T��

Z Ts

�
Y ��t� dt

P�� ��s�

Z s

�
Y �Tt� dt � T��

Z Ts

�
Y �t� dt

P�� �

by Lemma �
�� the functional central limit theorem for martingales implies that

�W T � Y T �
L�� �fW��fW���

��



where �fW��t�� t � ��� �� is a standard Wiener process independent of fW ���
 Since

XT �s� �
�
�W T �s��� � s

�
���� � a� by It�o�s formula� we also have

�XT � Y T �
L�� �fX��fW��� ��
���

where fX�s� � ��� a���
Z s

�

fW �t� dfW �t��

Moreover� the convergence ��
��� implies the joint functional convergence of �XT � Y T �
together with their quadratic �co��variations� see Jacod and Shiryaev ������ Theo�

rem VI
�
��
 In particular� � bVT � bIT �
d�� �V�� I��� where

bVT � �XT ���� Y T ����� �

�
�� � a���T��

Z T

�
W �t� dW �t�� T����

Z T

�
Y �t� dW �t�

��
and

bIT �

�BBBB�
�� � a���T��

Z T

�
W ��t� dt ��� a���T�	��

Z T

�
W �t�Y �t� dt

�� � a���T�	��
Z T

�
W �t�Y �t� dt T��

Z T

�
Y ��t� dt

�CCCCA �

But� evidently� VT � bVT P�� � and IT � bIT P�� � by Lemmas �
� and �
�


Proof of Proposition ���� According to ��
�����
���

V �
T �

�
T��

Z T

�
X�t� dW �t�� T��

Z T

�
Y �t� dW �t�

�
��
���

and

IT �

�BBBB�
T��

Z T

�
X��t� dt T�	

Z T

�
X�t�Y �t� dt

T�	
Z T

�
X�t�Y �t� dt T��

Z T

�
Y ��t� dt

�CCCCA � ��
���

where
Y �t� � X�t��X�t� ��� t � ��

Here we have

x��t� � ��t 	
�

�
� 	 o�e�t�

for some � 
 � and X��� and Y ��� have the representation ��
�� with the functions
x��t� and y�t� � x��t�� x��t� ��
 Obviously it holds y�t� � � 	 o�e�t�

Let bVT and bIT be de�ned by the expressions ��
��� and ��
��� respectively after replac�

ing X�t� by cX�t� � �
R t
��t� s� dW �s� and Y �t� by �W �t�
 We have VT � bVT P�� � and

IT� bIT P�� � by Lemmas �
� and �
�
 Now it remains to note that cX�t� � �
R t
� W �s� ds

by It�o�s formula and

� bVT � bIT �
d
� �V�� I�� for all T � �

��



in view of the self�similarity of the Wiener process


To prove the remaining propositions we need an additional result
 In the next lemma
and corollary for each integer n we consider a d�dimensional process Mn � �Mn

t �t�����
on a stochastic basis �,�F � �Fn

t �t������ P �� whose components Mn�i are continuous local
martingales� Mn

� � �
 We also consider a d�dimensional process M � �Mt�t����� with
the same properties� on a stochastic basis �,�F � �Ft�t������ P �
 We denote by Nn the
Rd  Rd�valued process whose components Nn�ij are de�ned as stochastic integrals
Nn�ij

t �
R t
� M

n�i
s dMn�j

s � t � ��� �� and we associate the process N with M similarly

For the notion of stable convergence we refer to Jacod and Shiryaev ������ Chap�
ter VIII� x �c�


Lemma ���� Assume that

�i� Mn L��M �

�ii� for every �nite subdivision � � f� � t� 
 t� 
 � � � 
 tm � �g of ��� �� the vectors
��n�Mn

t�
� � � � �Mn

tm
� converge G�stably to the vector ���Mt� � � � � �Mtm�� where G is

a sub���algebra of F � �n and � are random variables�

Then� for every �nite subdivision � of ��� �� the vectors ��n�Mn
t�
� � � � �Mn

tm
� Nn

t�
� � � � � Nn

tm
�

converge G�stably to the vector ���Mt� � � � � �Mtm� Nt�� � � � � Ntm��

Proof� The proof is an easy consequence of the following fact
 Let � � f� � u� 

u� 
 � � � 
 uk � �g be a subdivision of ��� �
 Put

Sn�ij
t ��� �

k��X
p��

Mn�i
up �Mn�j

t�up�� �Mn�j
t�up��

Then� for any � � �� there exists a � � � such that for all subdivisions � of ��� �
satisfying j�j � sup��p�k�up � up��� � �� we have

sup
n
P
�

sup
t�����

jSn
t ����Nn

t j � �
�
� ��

This can be shown from �i� following the lines of the proof of Lemma VI
�
�� in Jacod
and Shiryaev ������� moreover� the proof is much simpler in our case since Mn�j are
assumed to be continuous local martingales


Corollary ���� Let the assumptions of Lemma �
�� be ful�lled� Denote by �Nn� Nn
the �Rd Rd� �Rd Rd��valued process whose components are the quadratic covari�

ations �Nn�ij� Nn�kl� �N�N  is de�ned similarly� Then the vectors ��n� Nn
� � �N

n� Nn��
converge G�stably to the vector ���N�� �N�N ���

Proof� Note that �Nn�ij � Nn�klt � Nn�ij
t Nn�kl

t � R t� Nn�ij
s dNn�kl

s � R t� Nn�kl
s dNn�ij

s by It�o�s
formula� so the claim follows from Lemma �
�� applied to the processes Nn


Remark� If �n � � and G � f	�,g� the assertions of Lemma �
�� and Corollary �
��
are very special cases of theorems on convergence of stochastic integrals� see Jakubowski

��



et al� ������ and Kurtz and Protter ������� cf
 also Jacod and Shiryaev ������ Theo�
rem VI
�
��


Proof of Proposition ���� According to ��
�����
���

VT �

�
T��

Z T

�
X�t� dW �t�� T��

Z T

�
X�t� �� dW �t�

��

and

IT �

�BBBB�
T��

Z T

�
X��t� dt T��

Z T

�
X�t�X�t� �� dt

T��
Z T

�
X�t�X�t� �� dt T��

Z T

�
X��t� �� dt

�CCCCA �

Because of ��
�� the process �X�t�� t � �� has the representation ��
�� with the function
x��t�� t � �� and �X�t � ��� t � �� has this representation with the function y�t� �
x��t� ��� t � �

By Lemma �
� we have

x��t� � A� cos���t� 	 B� sin���t� 	 o�e�t� ��
���

and
x��t� �� � A� cos���t� 	 B� sin���t� 	 o�e�t�

for some � 
 �
 We introduce �X��t�� t � �� and �X��t�� t � �� by

X��t� �
Z t

�
cos���s� dW �s� and X��t� �

Z t

�
sin���s� dW �s��

The solution �X�t�� t � �� has the representation

X�t� �
Z t

�
x��t� s�dW �s� 	x��t�X����	 b

Z �

��
x��t� s���X��s� ds� t � �� ��
���

Inserting ��
��� into the �rst term we get

X�t� � A� cos���t�X��t�	A� sin���t�X��t�	B� sin���t�X��t��B� cos���t�X��t�	X�t��

where X�t� is the sum of the last two terms in ��
��� and the contribution arising from

the remainder term in ��
���� T��
R T
� X

�
�t� dt

P�� � by Lemmas �
� and �
�

Similarly� we get

X�t����A� cos���t�X��t�	A� sin���t�X��t�	B� sin���t�X��t��B� cos���t�X��t�	Y �t��

where T��
R T
� Y

�
�t� dt

P�� �

Consider the following processes on the interval ��� � 

W T �s� � T����W �Ts��

XT
� �s� � T����X��Ts� �

Z s

�
cos���Tt� dW

T �t��

��



XT
� �s� � T����X��Ts� �

Z s

�
sin���Tt� dW

T �t��

XT �s� � A� cos���Ts�X
T
� �s� 	 A� sin���Ts�X

T
� �s�

	 B� sin���Ts�X
T
� �s��B� cos���Ts�X

T
� �s��

Y T �s� � A� cos���Ts�X
T
� �s� 	 A� sin���Ts�X

T
� �s�

	 B� sin���Ts�X
T
� �s��B� cos���Ts�X

T
� �s��

Then

X�t� � T ���XT �t�T � 	 X�t�� X�t� �� � T ���Y T �t�T � 	 Y �t��

and by Lemma �
� it is enough to check that

� bVT � bIT �
d�� �V�� I��� ��
���

where bVT �
�Z �

�
XT �t� dW T �t��

Z �

�
Y T �t� dW T �t�

��
and

bIT �

�BBBB�
Z �

�
fXT �t�g� dt

Z �

�
XT �t�Y T �t� dt

Z �

�
XT �t�Y T �t� dt

Z T

�
fY T �t�g� dt

�CCCCA �

ButZ �

�
XT dW T � A�

Z �

�
XT

� dX
T
� 	 A�

Z �

�
XT

� dX
T
� 	 B�

Z �

�
XT

� dX
T
� �B�

Z �

�
XT

� dX
T
�

andZ �

�
Y T dW T � A�

Z �

�
XT

� dX
T
� 	 A�

Z �

�
XT

� dX
T
� 	 B�

Z �

�
XT

� dX
T
� �B�

Z �

�
XT

� dX
T
�

are represented as linear combinations of the stochastic integrals
R
XT

i dX
T
j � i� j � �� �


Since

�XT
� �X

T
� �

L�� �p
�

�fW�� fW��

by the functional central limit theorem� the claim follows from Corollary �
��


Proof of Proposition ���� According to ��
�����
���

VT �

�
e�v�T

Z T

�
X�t� dW �t�� T��

Z T

�
Y �t� dW �t�

��

��



and

IT �

�BBBB�
e��v�T

Z T

�
X��t� dt T��e�v�T

Z T

�
X�t�Y �t� dt

T��e�v�T
Z T

�
X�t�Y �t� dt T��

Z T

�
Y ��t� dt

�CCCCA �

where
Y �t� � X�t�� ev�X�t� ��� t � ��

and Y ��� has the representation ��
�� with y�t� � x��t�� ev�x��t� ��
 It follows from
��
��� that

x��t� �
�

v� � a 	 �
ev�t � �

a� �
	 o�e�t�

and

y�t� �
ev� � �

a� �
	 o�e�t�

for some � 
 �

Due to Lemmas �
�� �
�� �
� and �
�� this implies

e��v�T
Z T

�
X��t� dt

P�� U�
�

�v��v� � a	 ���
� ��
���

T����e�v�T
Z T

�
jX�t�j dt P�� �� ��
���

and

T��e�v�T
Z T

�
X�t�Y �t� dt

P�� �� ��
���

Introduce the following processes on the interval ��� � 

W T �s� � T����W �Ts��

XT �s� � e�v�T
Z Ts

�
X�t� dW �t� � T ���e�v�T

Z s

�
X�Tt� dW T �t��

Y T �s� � T��
Z Ts

�
W �t� dW �t� �

Z s

�
W T �t� dW T �t��

which are continuous local martingales with respect to the �ltration FT
s � �fX��t�� t �

���� �� W �t�� t � ��� T s g

Let � � f� � t� 
 t� 
 � � � 
 tm � �g be a subdivision of ��� �
 It follows from ��
���
and ��
��� that

Te��v�T
Z �

�
X��Tt� dt

P�� U�
�

�v��v� � a 	 ���

and
T ���e�v�T

Z s

�
X�Tt� dt

P�� �� s � ��� ��

therefore� we can apply the stable limit theorem for martingales �Jacod and Shiryaev
����� Theorem VIII
�
��� or Touati ����� Theorem �� to the process XT ��� and to
the stopped processes W T �t� � ��� � � � � W T �tm � ��� which yields that the vectors

��



�XT ����W T �t��� � � � �W T �tm�� converge F �stably �where F � �fX��t�� t � ���� ��
W �t�� t � � g� to the vector�

U�Zp
�v��v� � a 	 ��

� fW �t��� � � � � fW �tm�

�

as T � �
 Clearly� W T L�� fW 
 Applying Corollary �
��� we obtain the F �stable
convergence of the vector�

e�v�T
Z T

�
X�t� dW �t�� T��

Z T

�
W �t� dW �t�� T��

Z T

�
W ��t� dt

�

to the vector �
U�Zp

�v��v� � a	 ��
�
Z �

�

fW �t� dfW �t��
Z �

�

fW ��t� dt

�
�

By Lemmas �
� and �
�� we have the F �stable convergence of the vector�
e�v�T

Z T

�
X�t� dW �t�� T��

Z T

�
Y �t� dW �t�� T��

Z T

�
Y ��t� dt

�

to the vector�
U�Zp

�v��v� � a 	 ��
�
ev� � �

a� �

Z �

�

fW �t� dfW �t��
�ev� � ���

�a� ���

Z �

�

fW ��t� dt

�
�

Now the convergence �VT � IT�
d�� �V�� I�� follows from the properties of the stable

convergence and relations ��
��� and ��
���


Proof of Proposition ����� The proof follows the same lines as the proof of Propo�
sition �
��
 Here we have

x��t� �
�

v� � a 	 �
ev�t 	 A� cos���t� 	 B� sin���t� 	 o�e�t�

and
y�t� � A cos���t� 	 B sin���t� 	 o�e�t�

for some � 
 �� in particular� ��
���� ��
��� and ��
��� are still true

Introduce the processes W T �s� and XT �s�� s � ��� �� as in the proof of Proposition �
��
and the processes

XT
� �s� �

Z s

�
cos���Tt� dW

T �t�� XT
� �t� �

Z s

�
sin���Tt� dW

T �t��

Y T �s��A cos���Ts�X
T
� �s�	A sin���Ts�X

T
� �s�	B sin���Ts�X

T
� �s��B cos���Ts�X

T
� �s��

Note thatZ �

�
Y T dW T � A

Z �

�
XT

� dXT
� 	A

Z �

�
XT

� dX
T
� 	B

Z �

�
XT

� dXT
� �B

Z �

�
XT

� dX
T
� ��
���

��



and

�XT
� �X

T
� �

L�� �p
�

�fW�� fW��� ��
���

In view of ��
��� and ��
���� we have

Te��v�T
Z �

�
X��Tt� dt

P�� U�
�

�v��v� � a 	 ���
�

T ���e�v�T
Z s

�
X�Tt� cos���Tt� dt

P�� ��

T ���e�v�T
Z s

�
X�Tt� sin���Tt� dt

P�� ��

where s � ��� �
 Let us again apply the stable limit theorem for martingales but now to
the process XT ��� and to the stopped processes XT

� �t� � ��� � � � � XT
� �tm � ��� XT

� �t� � ���
� � � � XT

� �tm � ��� where � � f� � t� 
 t� 
 � � � 
 tm � �g is a subdivision of ��� ��
which yields the F �stable convergence of the vectors

�XT ���� XT
� �t��� � � � � X

T
� �tm�� XT

� �t��� � � � � X
T
� �tm��

to the vector�
U�Zp

�v��v� � a 	 ��
�

�p
�
fW��t��� � � � �

�p
�
fW��tm��

�p
�
fW��t��� � � � �

�p
�
fW��tm�

�
�

In view of ��
��� and ��
���� applying Corollary �
��� we obtain the F �stable conver�
gence of the vector �

XT ����
Z �

�
Y T �t� dW T �t��

Z �

�
fY T �t�g� dt

�
to the vector�

U�Zp
�v��v� � a 	 ��

�
�

�

�
A
Z �

�

fW� dfW�	A
Z �

�

fW� dfW�	B
Z �

�

fW� dfW��B
Z �

�

fW� dfW�

�
�

�

�
�A� 	 B��

Z �

�
�fW �

� 	 fW �
� � dt

�
�

But XT ��� � e�v�T
R T
� X�t� dW �t� by the de�nition of XT � Y �t� � T ���Y T �t�T �	Y �t��

where T��
R T
� Y

�
�t� dt

P�� � as in the proof of Proposition �
�� hence

T��
Z T

�
Y �t� dW �t��

Z �

�
Y T �t� dW T �t� � T��

Z T

�
Y �t� dW �t�

P�� �

and� similarly�

T��
Z T

�
Y ��t� dt�

Z �

�
fY T �t�g� dt P�� ��

So we have the F �stable convergence of the vector�
e�v�T

Z T

�
X�t� dW �t�� T��

Z T

�
Y �t� dW �t�� T��

Z T

�
Y ��t� dt

�

��



to the vector�
U�Zp

�v��v� � a 	 ��
�

�

�

�
A
Z �

�

fW� dfW�	A
Z �

�

fW� dfW�	B
Z �

�

fW� dfW��B
Z �

�

fW� dfW�

�
�

�

�
�A� 	 B��

Z �

�
�fW �

� 	 fW �
� � dt

�
�

and we �nish the proof as in the previous proposition


� Appendix

In this section we present the proof of Lemma �
�
 We took the idea from Myschkis
������� see also Hale and Verduyn Lunel ������


Proof of Lemma ���� The equation ��
�� is equivalent to

x��t� � � 	 a
Z t

�
x��s� ds 	 b

Z t

�
x��s� �� ds� t � ��

Thus we have the inequality

jx��t�j � � 	 �jaj	 jbj�
Z t

�
jx��s�j ds� t � ��

From a Gronwall type lemma �Liptser and Shiryayev ����� Lemma �
��� it follows that

jx��t�j � ect� t � ��

with c � jaj	 jbj

Thus the Laplace transform

�x���� �
Z �

�
e��tx��t� dt

exists at least for all � with Re � � c and can be calculated from ��
�� as

�x���� � h������ Re � � c� where h��� � �� a� be��� ��
��

The inversion formula yields for every v � c

x��t� � lim
w��

�

�i

Z v�iw

v�iw
e�t�x���� d�� t � ��

If � � �� then j�j � jaj	 jbje�Re �
 This implies jv�j � jaj	 jbje�v� and� consequently�
v� � jaj	 jbj � c
 Now choose a real u 
 v� and �x a u� 
 u such that Re � �� �u�� u�
for every � � �
 Then by using Cauchy�s residual theorem we get

x��t� �
X

����Re �	u

Res �t��� 	 lim
w��

�

�i

Z u��iw

u��iw
�t��� d�� t � �� ��
��

where �t��� � e�th������ t � �� � �� �
 Here we have used� that j�t���j tends to zero
uniformly on � � �u� 	 iw� v 	 iw and on � � �u� � iw� v � iw if jwj � �

Now observe that either v� � � �if b � v�a�� or �� � v� 	 i�� � � for some �� � � �if
b 
 v�a��
 The explicit calculation of the residuals in v� in the �rst case and in �� and
�� in the second case yields the form ����� given in Lemma �
�
 The limit in ��
�� can
be estimated by Keu�t for some K � �� thus it is o�e�t� for some � 
 u 
 v�


��
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