
Carroll, Raymond J.; Ruppert, David; Welsh, A. H.

Working Paper

Nonparametric estimation via local estimating equations,
with applications to nutrition calibration

SFB 373 Discussion Paper, No. 1997,17

Provided in Cooperation with:
Collaborative Research Center 373: Quantification and Simulation of Economic Processes,
Humboldt University Berlin

Suggested Citation: Carroll, Raymond J.; Ruppert, David; Welsh, A. H. (1997) : Nonparametric
estimation via local estimating equations, with applications to nutrition calibration, SFB 373
Discussion Paper, No. 1997,17, Humboldt University of Berlin, Interdisciplinary Research Project
373: Quantification and Simulation of Economic Processes, Berlin,
https://nbn-resolving.de/urn:nbn:de:kobv:11-10064041

This Version is available at:
https://hdl.handle.net/10419/66273

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://nbn-resolving.de/urn:nbn:de:kobv:11-10064041%0A
https://hdl.handle.net/10419/66273
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


NONPARAMETRIC ESTIMATION VIA LOCAL

ESTIMATING EQUATIONS� WITH

APPLICATIONS TO NUTRITION CALIBRATION

R� J� Carroll� David Ruppert� and A� H� Welsh �

January ��� ����

Abstract

Estimating equations have found wide popularity recently in parametric problems� yielding

consistent estimators with asymptotically valid inferences obtained via the sandwich formula�

Motivated by a problem in nutritional epidemiology� we use estimating equations to derive

nonparametric estimators of a �parameter� depending on a predictor� The nonparametric com�

ponent is estimated via local polynomials with loess or kernel weighting� asymptotic theory is

derived for the latter� In keeping with the estimating equation paradigm� variances of the non�

parametric function estimate are estimated using the sandwich method� in an automatic fashion�

without the need typical in the literature to derive asymptotic formulae and plug�in an estimate

of a density function� The same philosophy is used in estimating the bias of the nonparametric

function� i�e�� we use an empirical method without deriving asymptotic theory on a case�by�case

basis� The methods are applied to a series of examples� The application to nutrition is called

�nonparametric calibration� after the term used for studies in that �eld� Other applications

include local polynomial regression for generalized linear models� robust local regression� and

local transformations in a latent variable model� Extensions to partially parametric models are

discussed�
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Logistic Regression� Measurement Error� Missing Data� Nonlinear Regression� Partial Linear Mod�
els� Sandwich Estimation�

Short title� Local estimating equations�
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� INTRODUCTION

A general methodology which has found wide popularity recently� especially in biostatistics� is to

estimate parameters via estimating equations� Maximum likelihood estimates� robust regression

estimates �Huber� ��	�
� variance function estimates �Carroll and Ruppert� ��		
� generalized

estimating equation estimates �Diggle� Zeger and Liang� ����
� marginal methods for nonlinear

mixed e�ects models �Breslow and Clayton� ���

 and indeed most of the estimators used in non�

Bayesian parametric statistics are all based on the same technology� If the data are independent

observations
�eY�� eY�� � � � eYn�� with the eY �s possibly vector valued� then a parameter � is estimated

by solving the estimating equation

� �
nX
i��

�� eYi� b�
� ��


We allow � to be vector�valued and � must have the same dimension as �� For example� maximum

likelihood estimates are versions of ��
 when ���
 is the derivative of the loglikelihood function�

One of the reasons that estimating equation methodology has become so popular is that for

most estimating equations� the covariance matrix of the parameter estimate can be consistently

and nonparametrically estimated using the so�called �sandwich formula� �Huber� ����
 described

in detail in section 
���

The combination of estimating equations and sandwich covariance matrix estimates thus form

together a powerful general methodology� In this article� we pose the following simple question� how

does one proceed if � depends in an unknown way on an observable variable Z� so that � � ��Z
�

The question arises naturally in the context of calibration studies in nutritional epidemiology� see

section � for a detailed discussion�

Our aim is to provide methods with the same generality as parametric estimating equations

and the sandwich method� Starting only from the parametric estimating equation ��
� we propose

to develop estimates of ��Z
 and use the sandwich method to form consistent and nonparametric

estimates of the covariance matrix�

The method we propose� called local estimating equations� essentially involves estimating ��Z


by local polynomials with local weighting of the estimating equation� The speci�c application

in nutrition is called nonparametric calibration because of its roots in nutritional epidemiology

calibration studies� A by�product of the work is a considerable generalization of nonparametric

regression methodology� This paper is primarily concerned with the case that Z is scalar� although

in section ��� we describe extensions to the multivariate case� and present a numerical example�

�



In practice� it is often the case that ��z
 is a q�dimensional vector� while we are often interested

in a scalar function of it� say ��z
 � T f��z
g� For example� in the nutrition example motivating

this research� ��z
 is a q � � dimensional vector of conditional moments of eY given Z � z� while

��z
 is the correlation between a component of eY and another� unobservable� random variable�

Our basic method for estimating ���
 involves local polynomials� With superscript �j
 denoting

a jth derivative with respect to z and with bj � ��j��z�
�j�� the local polynomial of order p in a

neighborhood of z� is ��z
 �
Pp

j�� bj�z� z�

j � The local weight for a value of z near z� is denoted

by w�z� z�
� We then propose to solve in �b�� � � � � bp
 the q � �p� �
 equations

� �
nX
i��

w�Zi� z�
�

���eYi�
pX

j��

bj �Zi � z�

j

���Gt
p �Zi � z�
 � ��


where Gt
p�v
 �

	
�� v� v�� � � � � vp



� The �nal estimates are b��z�
 � bb� and b��z�
 � �fbb�g�

Equations such as ��
 are already in common use when ��z
 is scalar� although not at the level

of generality given here �not being derived from estimating functions
� Here are a few examples�

�a
 Ordinary Nadaraya�Watson kernel regression has p � �� �� eY � v
 � eY �v and w�z� z�
 chosen
to be a kernel weight�

�b
 Local linear regression has p � �� �� eY � v
 � eY � v� and if w�z� z�
 is a nearest neighbor

weight the result is the LOESS procedure in Splus �Chambers and Hastie� ����
�

�c
 When the mean and variance of a univariate response eY are related through E� eY jZ
 �

� f��Z
g and Var� eY jZ
 � 	�V f��Z
g for known functions � and V � local quasilikelihood

regression is based on

�� eY � x
 � f eY � ��x
g�����x
�V �x
� �



With kernel weights� this is the method of Weisberg and Welsh �����
 when p � � and of

Fan� Heckman and Wand �����
 when p � ��

This paper is organized as follows� In section �� we describe in detail a problem from nutrition

which motivated this work� This problem is easily analyzed in our general local estimating equation

framework�

Section 
 indicates that local polynomial methods usually have tuning constants which must

be set or estimated� If they are to be estimated� then the typical approach is to minimize mean

squared error� which in turn requires estimation of bias and variance functions� It is possible to

derive asymptotic� theoretical expressions for these functions �indeed� we do so for kernel regression

in the appendix
 and then do a �plug�in� operation to obtain an estimate� However� following

�



this approach in practice requires density estimation� estimation of higher order derivatives� etc��

and these complications would limit the range of applications� Instead� we estimate the bias and

variance functions empirically� without explicit use of the asymptotic formulae� Bias estimation

uses a modi�cation of Ruppert�s �����
 empirical bias method� while variance estimation can be

done by adapting the sandwich formula of Huber �����
 to this context� That the sandwich formula

provides consistent variance estimates in this context is not obvious� but in the appendix we prove

this to be the case�

Section � deals with a series of examples involving the analysis of nutrient intake data� transfor�

mations to additive models� extensions to missing data and partially parametric models� Section �

discusses modi�cations of the algorithm ��
� Section � has some concluding remarks� All theoretical

details are collected into an appendix�

Local estimation of parameters for likelihood problems have been previously considered in im�

portant work by such authors as Tibshirani and Hastie ���	�
� Staniswallis ���	�
 and Hastie and

Tibshirani �����
� and these techniques are implemented in Splus for GLIMs� Our methods and

this paper di�er from the local likelihood literature in several important ways�

� We do not require a likelihood� but only an unbiased estimating function� Given the popularity

of estimating functions in recent statistical work� such work would appear to be of some

consequence� Estimating functions allow us to use such techniques as method of moments�

robust mean and variance function estimation� Horvitz�Thompson adjustments for missing

data� GEE�type mean and variance function modeling� etc� A number of our examples� both

numerical and theoretical� illustrate the use of non�likelihood estimating functions�

� Our estimates of variance are exceedingly straightforward� being nothing more than based

on the sandwich method from parametric problems� In particular� one need not compute

asymptotic variances in each problem and then estimate the terms in the resulting �often

complex
 expressions� The use of the parametric sandwich method in general nonparametric

regression contexts has not to the best of our knowledge been previously advocated� nor has it

been shown theoretically to give consistent estimates of variances� We prove such consistency�

and derive expressions for bias and variance for kernel weighting�

� Our methods allow for estimation of tuning constants such as the span in loess or local

bandwidths in kernel weighting� The methods apply at least in principle to all local estimat�

ing function based estimates� and hence can be applied in new problems without the need

for asymptotic theory to derive a bias expression� additional nonparametric regressions to






estimate this expression� or the need to develop case�by�case tricks to get started�

� MOTIVATING EXAMPLE

The purpose of this section is to demonstrate an important problem where ��z
 is a vector and

���
 arises from an estimating function framework�

The assessment and quanti�cation of an individual�s usual diet is a di�cult exercise� but one

that is fundamental to discovering relationships between diet and cancer and to monitoring dietary

behavior among individuals and populations� Various dietary assessment instruments have been

devised� of which three main types are most commonly used in contemporary nutritional research�

The instrument of choice in large nutritional epidemiology studies is the Food Frequency Question�

naire �FFQ
� For proper interpretation of epidemiologic studies that use FFQ�s as the basic dietary

instrument� one needs to know the relationship between reported intakes from the FFQ and true

usual intake� de�ned operationally below� Such a relationship is ascertained through a substudy�

commonly called a calibration study�

The primary aim of a calibration study may not be exactly the same in each case� Here we focus

on the estimation of the correlation between FFQ intake and usual intake� This correlation can

be of crucial interest if the FFQ has been modi�ed extensively from previous versions or is to be

used in a new population from which little previous data have been obtained� Very low correlations

might persuade the investigators to postpone the main study� pending improvements in the design

of the FFQ or in the way it is presented to study participants�

FFQ�s are thought to often involve a systematic bias �i�e�� under� or over�reporting at the level

of the individual
� The other two instruments that are commonly used are the ���hour food recall

and the multiple�day food record �FR
� Each of these FR�s is more work�intensive and more costly�

but is thought to involve considerably less bias than a FFQ� At the end of section ���� we comment

on this and other issues in nutrition data�

The usual model �Freedman� Carroll and Wax� ����
 relating intake of some nutrient �e�g�� �

calories from fat
 reported on a FFQ �denoted by Q
 and intake reported on m FR�s �denoted by

F 
 to long�term usual intake �denoted by T 
 is a standard linear errors�in�variables model

Qi � 
� � 
�Ti � �i� ��


Fij � Ti � Uij � j � �� � � � � m� ��


In model ��
� 
� represents the systematic bias of FFQ�s� while the Uij are the within individual

�



variation in FR�s� All random errors� i�e�� ��s and U �s� are uncorrelated for purposes of this paper�

see the end of section ��� for more details and further comments�

Two studies which we will analyze later �t exactly into this design� The Nurses� Health Study

�Rosner� Willett and Spiegelman� ��	�
� hereafter denoted by NHS� has a calibration study of size

n � ��	 women all of whom completed a single FFQ and four multiple�day food diaries� The

Women�s Interview Survey of Health� hereafter denoted by WISH� has a calibration study with

n � ��� participants who completed a FFQ and six ���hour recalls on randomly selected days at

least two weeks apart� While di�erent FFQ�s are used in the two studies� the major di�erence

between them is that the diaries have considerably smaller within person variability than the ���

hour recalls� For instance� using � Calories from Fat� a simple components of variance analysis

suggests that the measurement error in the mean of the four diaries in the NHS has variance 
��


and the variance of usual intake is 	�t � ����� the numbers for the six ���hour recalls in WISH are

���� and ���	� respectively� One can expect then that the NHS data will provide considerably more

power for estimating e�ects than will WISH�

For an initial analysis� we computed �QT for each subpopulation formed by the quintiles of age�

The �ve correlations were� roughly� ���� ���� ���� ���� and ��	� see Figure � The �ve estimates are

statistically signi�cantly di�erent �p 
 ���
 using a weighted test for equality of means� Note that

the highest quintile of age has the highest value of �QT � The standard errors of the estimates are

approximately ���
� except for the highest quintile for which it is approximately �����

Such strati�ed analysis �in this case the strata have been de�ned by age quintiles
 can be

looked at through the viewpoint of nonparametric regression� In each stratum� we are estimating

a parameter � �often multidimensional
 and through it a crucial parametric function such as �QT �

Since these both depend on the stratum� they are more properly labeled as ��Z�
 and �QT�Z�
�

where Z� is the stratum level for Z� Looked at as a function of Z� this method suggests that �QT�Z


is a discontinuous function of Z� To avoid the arbitrariness of the categorization� we propose to

estimate �QT �Z
 as a smooth function of Z� Our analysis suggests that at least for the NHS� the

correlation between the FFQ and usual intake increases with age in a nonlinear fashion�

� TUNING CONSTANTS

To implement ��
� we need a choice of the weight function w�z� z�
� Usually� this weight function

will depend on a tuning constant h� and we will write it as w�z� z�� h
� For example� in global

bandwidth local regression� h is the bandwidth and w�z� z�� h
 � h��Kf�z � z�
�hg� where K��


�



is the kernel �density
 function� For nearest�neighbor local regression such as LOESS �Chambers

and Hastie� ����� pp 
���
��
� h is the span �the percentage of the data which are to be counted

as neighbors of z�
� and w�z� z�� h
 � Kfjz� z�j�a�h
d�z�
g� where d�z�
 is the maximum distance

from z� to the observations in the neighborhood of z� governed by the span� and a�h
 � � if h 
 �

and a�h
 � h otherwise�

In practice� one has two choices for the tuning constant� �a
 �xed apriori or determined randomly

as a function of the data� and �b
 global �independent of z�
 or local� If the tuning constant is

global� then one also has the choice of whether it is the bandwidth or the span� for local tuning

constants� there is often no essential di�erence between using a bandwidth and a span� For example�

in LOESS the span h is typically �xed and global� In kernel and local polynomial regression� there

is a substantial literature for estimating a global bandwidth h� and some work on estimating local

bandwidths�

For purposes of speci�city we consider here local estimation of the tuning constant� If we could

determine the bias and variance functions of b��z�
� say bias�z�� h� �
 and var�z�� h� �
� then we

might reasonably choose h � h�z�
 to minimize the mean squared error function mse�z�� h� �
 �

var�z�� h� �
� bias��z�� h� �
� To implement this idea� one needs estimates of the bias and variance

functions�

The kernel regression literature abounds with ways of estimating these functions� usually based

on asymptotic expansions� We digress here brie y to discuss this issue� the appendix contains

details of the algebraic arguments� In our general context� the bias and variance of b��z
 using
kernel regression are qualitatively the same as for ordinary local polynomial regression� There

are functions Gb fz�K���z
� pg and Gv fz�K���z
� pg with the property that in the interior of the

support of Z�

bias
nb��z
o � hp��Gbfz�K���z
� pg if p is odd�

� hp��Gbfz�K���z
� pg if p is even�

covfb��z
g � fnhfZ�z
g
�� Gv fz�K���z
� pg �

The function Gv does not depend on the design density� The same is true of Gb if p is odd� but not

if p is even� see Ruppert and Wand �����
 for the case of local polynomial regression and ���
 in

the appendix�

The actual formulae are given in the appendix� Results similar to what is known to happen at

the boundary in ordinary local polynomial regression can be derived in our context as well�

�



For example� if eY and hence � are scalar� p � � and ��ey� v
 � ey � v �ordinary local linear

regression
� then

Gbfz�K���z
� �g � ����
�����z


Z
s�K�s
ds�

Gv fz�K���z
� �g �

�Z
K��s
ds

�
fB�z
g�� C�z


n
Bt�z


o��
�

where

B�z
 � E
n
����v
�

�eY � v� jZ � z
o
�

C�z
 � E
n
�
�eY � v��t

�eY � v� jZ � z
o
�

with both B�z
 and C�z
 evaluated at v � ��z
� In this speci�c example� B�z
 � �� and C�z
 �

var�Y jz
�

We now return to tuning constant estimation� For local regression� one could in principle use

the asymptotic expansions to derive bias and variance formulae for b��z�
� This is complicated by

the facts that �a
 the bias depends on higher order derivatives of ��z�
� �b
 if p is even then the

bias depends on the design density� and �c
 the variance depends on the density of the Z�s� Instead

of carrying through this line of argument� we propose instead methods which avoid direct use of

asymptotic formulae and which are applicable as well to methods other than local regression�

��� Empirical Bias Estimation

Ruppert �����
 suggested a method of bias estimation which avoids direct estimation of higher

order derivatives arising in asymptotic bias formulae� the method is called EBBS� for Empirical

Bias Bandwidth Selection�

The basic idea is as follows� Fix h� and z�� and use as a model for the bias a function f�h� ��


known except for the parameter ��� e�g�� f�h� ��
 � ��h
p�� for local pth degree polynomial kernel

regression� For any h�� form a neighborhood of tuning constants H�� On a suitable grid of tuning

constants h in H�� compute the local polynomial estimator b��z�� h
� which should be well�described

as a function of h by b��z�� h
 � �� � f�h� ��
� the value �� � ��z�
 in the limit� Appealing to

asymptotic theory� and if H� is small enough� the bias should be well�estimated at h� by f�h�� b��
�
In practice� the algorithm is de�ned as follows� For any �xed z�� set a range !ha� hb" for possible

local tuning constants� For example� ha and hb could be d�z�
 corresponding to spans of ��� and

���� respectively� Our experience is that the optimal local bandwidth is generally in this range�

Then form an equally spaced� or perhaps geometrically spaced� grid of M points

�



H� � fhj � j � �� ����M�h� � ha� hM � hbg�

Fix constants �J�� J�
� For any j � ��J�� ����M�J�� apply the procedure de�ned in the previous

paragraph with h� � hj and H� � fhk � k � j � J�� ���� j� J�g� This de�nes dbias fb��z�� hj
g� For

tuning constants not on the grid H�� interpolation via a cubic spline is used�

Note that we have to set the limits of interesting tuning constants !ha� hb" and the three tuning

constants �M�J�� J�
� Ruppert �����
 �nds that J� � �� J� � �� and M between �� and �� give

good numerical behavior in the examples he studied using local polynomial kernel regression�

��� Empirical Variance Estimation� The Sandwich Method

It is useful to remember that q is the dimension of �� p is the degree of the local polynomial�

and Gp is de�ned just after ��
�

At this level of generality� the sandwich formula can be used to derive an estimate of the

covariance matrix of �bb�� ���bbp
� In parametric problems� the solution b� to ��
 has sandwich �often

called �robust�
 covariance matrix estimate B��
n Cn�Bt

n

��� where

Cn �
nX
i��

�� eYi� b�
�t� eYi� b�
�
Bn �

nX
i��

�
����t

�
�� eYi� b�
�

The analogous formulae for the solution to ��
 are de�ned as follows� In what follows� if A is �� q

and B is r� s� then A�B is the Kronecker product de�ned as the �r� qs matrix which is formed

by multiplying individual elements of A by B� e�g�� if A is a �� � matrix�

A �B �



a�� a��
a�� a��

�
�B �



a��B a��B
a��B a��B

�
�

Let ��ey� v
 � ����vt
��ey� v
� Then the asymptotic covariance matrix of �bb�� ���bbp
 is estimated by

fBn�z�
g
��Cn�z�
fB

t
n�z�
g

��� where

Cn�z�
 �
nX
i��

w��Zi� z�

hn
Gp�Zi � z�
G

t
p�Zi � z�


o
� � b�i b�t

i

i
� ��


Bn�z�
 �
nX
i��

w�Zi� z�

hn
Gp�Zi � z�
G

t
p�Zi � z�


o
� b�ii � ��


where b�i � �f eYi�Pp
j��

bbj�Zi�z�
jg and analogously for b�i� An argument justifying these formulae

is sketched in the appendix� In practice� we multiply the sandwich covariance matrix estimate by

n�fn� �p� �
qg� an empirical adjustment for loss of degrees of freedom� In a variety of problems

we have investigated� this little�known empirical adjustment improves coverage probabilities of

	



sandwich�based con�dence intervals� when combined with t�percentiles with n� �p��
q degrees of

freedom�

In some problems� the sandwich term Cn�z�
 can be improved upon because the covariance

matrix of ���
 is known partially or fully� For example� if ���
 is given by �

� then E���t
 �

	�f����g��V � and one would replace � b�i b�t
 in ��
 by b	�fb����i g�� bVi� In addition� using score�type

arguments one bases work on ���
 � �f������
g��V � and one would replace b�i in ��
 by �fb����i g�� bVi�
We suggest using such additional information when it is available� because the sandwich estimator

can be considerably more variable than model�based alternatives� For example� in simple linear

regression� sandwich�based estimates of precision are typically at least three times more variable

than the usual precision estimates�

The sandwich method in parametric problems does not work in all circumstances� even asymp�

totically� the most notable exception being the estimate of the median� In this case� if eY is scalar�

�� eY � x
 � I� eY 	 x
����� where I is the indicator function� This choice of ���
 has zero derivative�

and thus ��
 equals zero� Alternatives to the sandwich estimators do exist� however� although their

implementation and indeed the theory needs further investigation� A sandwich�type method was

described by Welsh� Carroll and Ruppert �����
� who use a type of weighted di�erencing� Alterna�

tively� one can use the so�called �m out of n� resampling method as de�ned by Politis and Romano

�����
� although the application of this latter technique requires that one know the rate of conver�

gence of the nonparametric estimator� this being theoretically �nh
��� for local linear regression�

How to choose the level of subsampling m remains an open question�

� EXAMPLES

��� Nutrition Calibration� NHS and WISH

We used the NHS and WISH data described in section � to understand whether the correlation

between a FFQ and usual intake� �QT depends on age� based on the nutrient � Calories from

Fat� Nutrition data with repeated measurements typically have the feature of time trends in total

amounts and sometimes in percentages� so that for example one might expect reported caloric

intake �energy
 to decline over time� To take this into account� we ratio adjusted all measurements

so that the mean of each FR equals the �rst� For an example of ratio adjustment� see Nusser�

Carriquiry� Dodd and Fuller �����
�

The unknown parameters in the problem are conveniently characterized as � � ���� ���� ��
�

�



where �� � E�Q
� �� � E�F 
 � E�T 
� �	 � var�Q
� �
 � cov�Q�F 
 � cov�Q� T 
� �� � var�U
 and

�� � cov�F�� F�
 � var�T 
� Letting eYi � �Qi� Fi�� ���� Fim
 be the observed data �m � � in WISH�

m � � in NHS
� the usual method of moments estimating function is

�� eYi��
 �
���������

Qi

F i

�Qi � ��

�

�Qi � ��
�F i � ��

�m� �
��

Pm
j���Fij � F i


�

fm�m� �
g��
Pm

j��

Pm
k ��j�Fij � ��
�Fik � ��


���������
� �� �	


Numerically� the solution to ��
 is easily obtained� Local estimates of ���z
 and ���z
 use nothing

more than direct local regression of Qi and F i on Zi and once they are plugged into the third�sixth

components of �� f�	�z
� ���� ���z
g can also be computed by local least squares� e�g�� by regressing

�Qi � b��
� on Zi to obtain b�	� The main parameter of interest is the correlation between Q and T �

�QT �z�
 � �
�z�
f�	�z�
���z�
g
�����

In this example� we used nearest�neighbor weights and the tricubed kernel function� which is

proportional to �� � jvj	
	 for jvj 	 � and equals zero elsewhere� For a �xed value of the span�

we assessed standard errors by two means� First� an estimated covariance matrix for b��z�
 was
obtained using the sandwich formula� and then the delta�method was used to obtain an estimated

variance for �QT �z�
� 
��z�
� etc� The second standard error estimates are based on the nonpara�

metric bootstrap� with the pairs � eY � Z
 resampled from the data with replacement� we used ���

bootstrap samples� For a range of spans and for a variety of data sets and nutrient variables� the

sandwich�delta and the bootstrap standard errors were very nearly the same� This is not unex�

pected� given that the spans used are fairly large� As a theoretical justi�cation� note that if the span

is bounded away from zero� then the estimator b��z
 converges at parametric rates �although to a

biased estimate
� and the bootstrap and sandwich covariance matrix estimates are asymptotically

estimating the same quantity�

Figure � shows the value of �QT �age
 for the NHS � Calories from Fat for various spans in the

range ��� to ��� using local quadratic regression� To understand the age distribution in this study�

we have also displayed the ��th� ��th� ��th� ��th and ��th sample percentiles of age� While there

is some variation between the curves for the di�erent values of the span� the essential feature is

remarkably consistent� namely that those under the age of �� have signi�cantly �in the practical

sense
 lower correlations than do those aged greater than ��� There are a variety of ways to assess

the statistical signi�cance of this �nding� The simplest is to split the data into two populations on

the basis of age groups and simply compute b�QT for each population� the estimates are statistically

��



signi�cantly di�erent at a signi�cance level less that �����

A second test is slightly more involved� We computed the estimate of �QT�age
 for �� equally�

spaced points on the range from 
� to ��� along with the bootstrap covariance matrix of these ��

estimates� We then tested whether the the estimates were the same using Hotelling�s T� test� and

tests for linear and quadratic trend using weighted least squares� As expected after inspection of

Figure �� the linear and quadratic tests had signi�cance levels below ���� for spans equal to ����

��	 and ����

We also estimated the span� in the following manner� For computational purposes in estimating

the span we used eight values of age� and using the methods of section 
 we computed an estimate

of the mean squared error using empirical bias estimation �J� � J� � �� M � ��� ha � ����

hb � ���
 and the sandwich method� the estimated span was chosen to minimize the sum over the

eight ages of the estimated mean squared error� The estimated span for local linear regression was

���	� while it was ���� for local quadratic regression� We then bootstrapped this process� including

the estimation of the span� and found that while the signi�cance level was slightly greater than for

a �xed span� but it was still below �����

Because the empirical bias estimate has the tuning constants �M�J�� J�
� there is still some art

to estimating the span� We studied the sensitivity of the estimated span and the estimated average

means squared error to these tuning constants� and found that the results did not depend too heavily

on them as long as J� and J� were increased with increasing values ofM � For example� the estimated

average mean squared errors for local linear regression in three cases� �M�J�� J�
 � ���� �� �
�

����� �
� �

 and ����� ��� ��
 were calculated� and the was little di�erence between the three MSEs�

However� �xing J� and J� while increasing M resulted in quite variable bias estimates�

We repeated the estimation process for WISH� There is no evidence of an age e�ect on �QT in

WISH� This may be due to the di�erent population or the di�erent FFQ� but may just as well be

due to the much larger measurement error in the FR�s in WISH than in NHS�

Finally� we investigated local average� linear� quadratic and cubic regression� with a span of

��	� see Figure � where we also display the �ve estimates of �QT based on the quintiles of the age

distribution� Given the variability in the estimates� the main di�erence in the methods occurs for

higher ages� where the local average regression is noticeably di�erent from the others and from the

quintile analysis� Our belief is that this di�erence arises from the well�known bias of local averages

at end points�

We redid this analysis using kernel instead of loess weights with locally estimated bandwidths�

��



The results of the two analyses were similar and are not displayed here�

Finally� we comment on issues speci�c to nutrition�

� We have assumed that the errors �i are independent of Uij � This appears to be roughly the

case in these two data sets� although it is not true in other data sets we have studied� e�g�� the

Women�s Health Trial data studied by Freedman� et al� �����
� The model and estimating

equation are easily modi�ed in general to account for such correlation when it occurs� Simi�

larly� the model and estimating equation can be modi�ed to take into account a parametric

model for correlation among the U �
ijs� e�g�� an AR��
 model� While such correlations exist

in these data sets� they are relatively small and should not have a signi�cant impact on the

results�

� The method of moments �	
 is convenient and easy to compute� In various asymptotic

calculations and numerical examples� we have found that it is e�ectively equivalent to normal�

theory maximum likelihood�

� There is emerging evidence from biomarker studies that food records such as used in NHS are

biased for total caloric intake� with those having high body mass index �BMI
 underreporting

total caloric intake by as much as ���� see for example Martin� Su� Jones� Lockwood� Tritchler

and Boyd �����
� The bias is less crucial for log�total calories
 and presumably even less for

the variable used in our analysis� � Calories from Fat� although no biomarker data exist to

verify our conjecture� Despite our belief that this variable is not much subject to large biases

explainable by BMI� we have performed various sensitivity analyses which allow for bias� For

example� we changed the FFQ and food record data for those with �� 	 BMI 	 �	 by adding

on average � to their � Calories from Fat �a ��� change
� while for those with BMI � �	

we added on average � to their � Calories from Fat �a ��� increase
� The adjustments were

proportional to FFQ�s and food records� and the same adjustment was added to all food

records within an individual� These adjustment in e�ect simulate adjustments to the data

which would be made if a strong bias were found in � Calories from Fat for food records�

The analysis of the modi�ed data gave correlations which were very similar to those shown

in our graphs� i�e�� the e�ect of bias on the correlation estimates was small�

� If one had replicated FFQ�s� there are many modi�cations to the basic model which can be

made� One might conjecture an entirely di�erent error structure� e�g��

Qij � 
� � 
�Ti � ri � �ij �

��



Fij � Ti � si � Uij �

	�s � 	�r �

This model is only identi�able if corr�r� s
 is known� We have �t such models using local

method of moments to a large �n � ���
 data set with repeated FFQ�s and using ���hour

recalls for various choices of corr�r� s
 	 ��� The net e�ect was that such analyses are very

di�erent from those based on model ��
���
� �QT increased by a considerable amount� while

the local estimates of var�T 
 as a function of age became much smaller� Of course� the point

is that analyses of such complex models are relatively easy using our local estimating function

approach�

��� Multivariate Z� Lung Cancer Mortality Rates

The methods of this paper can be extended to the multivariate Z case� Suppose that Zi �

�Zi�� ���� Zim

t� where the Zij are scalar� Then� as in Ruppert and Wand �����
� local linear func�

tions are ��z
 � b��b��z�zo
� where b� is a p�� vector and b� is a p�m matrix� The generalization

of ��
 is to solve

� �
nX
i��

w�Zi� z�
�
neYi� b�� b��Zi � z�


o
Gp�m�Zi � z�
� ��


where Gt
p�m�v
 � ��� vt
� When Z is multivariate and using kernel weights� the kernel K is multi�

variate and the bandwidth h is replaced by a positive de�nite symmetric matrix H � The simplest

choice is to restrict H to equal hI for h � � and I the identity matrix� and in this situation

the methods we have discussed for empirical bias and variance estimation apply immediately to

the estimates b��z�
 � bb�� The application of empirical bias modeling to more general bandwidth

matrices is under current investigation�

Extensions to higher order local polynomials require more care� Completely nonparametric

functional versions are easy in principle� but the notation is horrendous and practical implementa�

tion di�cult� see Ruppert and Wand �����
� their section �� It is much easier to �t additive models�

so that if z � �z�� ���� zm
t and z� � �z��� ���� z�m
t� then ��z
 � b� �
Pm

k��

Pp
j�� bkj�zk � z�k
j � this

is identical to ��
 when p � �� the extension of ��
 to p � � is immediate�

For an example of ��
� we consider a problem in which eY � ��� log!�m����
������m����
"�

wherem is the mortality rate per ��� males for males dying of lung cancer� as a function of Z � �age

class� year
� We will call eY the �adjusted� logit because of the ��� o�set� The data come from the

Australian Institute of Health and are publically available� The age classes are represented by their

�




midpoints which are ��� �� ��� ��� ��� ��� 
�� 
�� ��� ��� ��� ��� ��� ��� ��� 	�� 	�
 and the years run

from ��������� inclusive� For each age class and year subpopulation� we can treat the number of

deaths per ��� males as being �d�N
���� where d� the total number of deaths in the subpopulation

due to lung cancer� is Binomial �N� �
 with � the probability of death for an individual� Here� N

is the size of the relevant subpopulation� The values of the N �s are known and will be used later�

Since p is small� d is approximately Poisson�Np
 and var�m
 � �����N
E�m
� In this case� the

logit and the log transformation are similar� we use the former to maintain comparability with

other work currently being done on these data� We could model the variance of eY as a function

of its mean and N � Alternatively� we could model the variance of eY as a function of Z� We will

start with the second possibility� If � � ���� ��

t� the estimating function for mean and variance

estimation is just �� eY ��
 � f eY � ��� � eY � ��
� � ��g
t� However� there are two good reasons for

considering a robust analysis� Firstly� there may be concern over the potential for outliers in the

response� and secondly� a robust analysis may be numerically more stable� We treat � � log���
 as

the spread parameter �to ensure non�negativity
 and use the estimating equation

�� eY ��
 �
�� g

n�eY � ��
�
� exp��


o
g�
n�eY � ��

�
� exp��


o
�
R
g��v
��v
dv

�� �
where g�v
 � g��v
 � v if � 	 v 	 c and � c if v � c� ��v
 is the standard normal density function

and c is a tuning constant controlling the amount of robustness desired� c � ��
�� is standard� In

the robustness literature� the parametric estimator is known as �Proposal �� �Huber� ��	�
� The

spread estimating function can be rewritten as

g�
n
exp

�
log j eY � ��j � �

�o
�

Z
g��v
��v
dv

which expresses the spread equation in the form of a location equation� Consideration of the

function g� fexp�x
g �
R
g��v
��v
dv suggests that we simplify the procedure further by replacing

it by the much simpler function g with c � � to increase the e�ciency of spread estimation� This

is in accordance with the procedure developed by Welsh �����
�

The response and spread surfaces� i�e�� b���z
 and b���z
� for the lung cancer mortality data

have the following behavior� After some experimentation� the bandwidth matrix was restricted to

be of the form h diag��� �
� and then h was chosen empirically as in Section 
� with a back�tting

modi�cation to the basic algorithm ��
 described in section �� However� the results reported

below are stable over a range of bandwidth matrices� the main e�ect of substantial increases in

bandwidths being to reduce the ripple and peak in the response and spread surfaces at high ages

��



and early years� Local linear �tting was used� although local quadratic estimates are similar but

with somewhat higher peaks in the spread surface� It is clear that the logit of mortality increases

non�linearly with age class and that there is at best a very weak year e�ect which shows increased

mortality in recent years in the highest age classes� The spread surface shows a ridge of high

variability in age classes ����� with generally lower variability at both extremes� A delta�method

analysis shows that this ridge is due to the logit transformation �with the ��� o�set
 and the near

Poisson variability of m� see the discussion in the �nal paragraph of this subsection� There is also

high variability in the highest age classes for the earlier years� This is also the only evidence of a

year e�ect on the variability� The roughness of the spread surface is mostly due to variation in the

values of N �

We also tried modeling the variance of eY as a function of N and the mean of eY � Let N� be

the value of N for a given age class and year divided by the mean of all the N �s� Let e� be the

�population size adjusted residual� de�ned as the residual for that age class and year times �N�
����

As mentioned earlier� if we assume that

var�m
 � �����N
E�m
 ���


then this ridge can be explained by a delta�method calculation showing that

std dev� eY 
 � ��� � �

�E�m
 � ��
�����E�m
 � ��


n
���E�m
�N

o
� ���


We checked ���
 by dividing the residuals by the right hand side of ���
� squaring� and then

smoothing these squared �standardized residuals� against the �tted values and N � The resulting

surface� not included here to save space� was nearly constantly equal to �� supporting ���
�

��� Binary Regression� Bladder Cancer

In this example� Yi is the indicator of bladder cancer� Zi is the value of a univariate risk factor

�the investigators have not given permission to name the variable
� and the objective is to model

P �Yi � �jZi � z
� While the problem of local logistic regression has been mainly solved� we include

this example to show that the methods we propose give reasonable estimates in familiar problems�

In Figure � we see the linear and quadratic logistic regression �ts� the solid and dashed curves�

respectively� The two curves di�er substantially� indicating that the linear logistic model may not

�t well� but the nonmonotonic behavior of the quadratic logistic �t seems odd�

A nonparametric �t can be achieved by local linear logistic regression� Let H�u
 � f� �

exp��u
g�� be the logistic function� Then ��y��
 is the score function when Y is Bernoulli with

��



mean H��
� i�e��

��y��
 �
�

��
log

h
Hy��
 f��H��
g��y

i
� y �H��
�

which is �

 with � � H and V � H���H
 � H �� If ��z�
 � P �Y � �jZ � z�
� then b��z�
 � H�bb�

where

� �
nX
i��

w�Zi� z�


��Yi �H

���
pX

j��

bbj�Zi � z�


���
��Gt�Zi � z�
�

Fan� Heckman� and Wand �����
 propose a �rough and ready� bandwidth� but consider further

development of bandwidth selectors to be a �worthwhile future project�� Here we apply the band�

width methodology developed in Section 
�

The local linear logistic regression �t is given by the dotted line in Figure �� It di�ers noticeably

from the parametric �ts and appears to be the best summary of the data� The nonparametric �t

rises quickly� but then levels o� around Z � ���� The sharp increase near the right boundary� say

where Z � ���� is due to the three largest Z values being cancer cases and may be merely a chance

phenomenon� The  attening for ��� 
 Z 
 ��� is supported by a larger amount of data and is

likely to be real� The local bandwidth given in the bottom graph of Figure � is nearly constant

with some increase near the boundaries where the variance of the smooth is higher� This is typical

of examples where the function being estimated has no regions of high curvature�

��� Nutrition Calibration With Missing Data

In many problems� a component of eY may be missing� with the probability of missingness depending

on Z and the observable components of eY � For example� in some calibration studies� a FFQ is

observed for every individual but the FR�s can be observed only for a subset� chosen on the basis of

the initial FFQ� e�g�� to overrepresent those with very high or very low fat in their diet� Let eR be

the observable components determining missingness� while # and �� eR
 are the indicator and the

probability that all components of � eY � Z
 are observed� respectively� If ���
 is known� the Horvitz
and Thompson �����
 modi�cation of ��
 is to reweight the estimating equation and solve

� �
nX
i��

#i

�� eRi

w�Zi� z�
�

���eYi�
pX

j��

bj �Zi � z�

j

���Gt
p �Zi � z�
 �

The probability function ���
 may be unknown in practice� but it can often be estimated at ordinary

parametric rates using a  exible parametric model� thus not a�ecting the asymptotic properties of

estimates of ��z
�

��



��� Variance�Stabilizing Transformations

In measurement error models� one wishes to relate a response to a predictor X � but because of

measurement error and other sources of variability� one cannot observe X � Instead� one can observe

only a variable W related to X � The measurement error model literature was recently surveyed by

Carroll� Ruppert and Stefanski �����
�

In order to correct for the biases caused by measurement error� essentially all methods are

based on the assumption that� perhaps after a transformation� W di�ers from X only by additive

error� Assuming the possibility of replicates� this means in symbols that the replicates �Wij
 for

j � �� ���� m are related to Xi by Wij � Xi � Uij � where E�UijjXi
 � � and E�U�
ijjXi
 � 	�

where 	� does not depend on Xi� If this model holds� then the within�person sample means and

sample variances of the W �s are uncorrelated� In this case� it is common to say that the errors are

�additive�� though �homoscedastic� is perhaps a better choice of adjective�

A simple fully parametric method for transforming to additivity is to consider the parametric

family of transformation h�W��
� we work with the power family� so that h�v� �
 � �v� � �
�� if

� 
� � and � log�v
 otherwise� The idea is to choose � so that after transformation the sample

means and some function of the sample variances� e�g�� the sample standard deviations or the log

variances� have correlation zero �Ruppert and Aldershof� ��	�
� With the power transformation

family� our numerical experience is that on the usual interval �� 	 � 	 �� there is a unique value

of � for which the sample correlation equals zero�

This approach can be placed into the framework of estimating functions� Let W ��
 and s��


be the sample mean and standard deviation of the transformed data� respectively� and let eY be the

replicates of W � The �ve unknown parameters � � ��w� �s� 	�w� 	
�
s � �
 can be obtained as solutions

to ��
 when ���
 is de�ned by

�� eY ��
 �
��������

W ��
� �w
s��
� �sn

W ��
� �w
o�
� 	�w

fs��
� �sg
� � 	�sn

W ��
� �w
o
fs��
� 	sg

�������� � ���


In practice� we compute the correlation between W ��
 and s��
� and use the method of bisection to

�nd � that is the zero of this correlation �extensive numerical experience has shown that bisection

works well with data
�

We applied this estimating function locally using ��
� both for the WISH data using W �

� Calories from Fat �m � � replicates
 and Z � Body Mass Index� and also for W � Cholesterol

��



and W � log�Systolic Blood Pressure � ��
 in the Framingham Heart Study data set �m � ��

Kannel� et al�� ��	�
 with Z � Age� Previous experience with these data have suggested that

� Calories from Fat does not need much if any transformation� while the log transformation for

Systolic Blood Pressure perhaps slightly overtransforms the data� although not in any practically

signi�cant way� We have previously had no experience with Cholesterol�

The results of the analysis with local linear regression and LOESS weights with a span � ��� are

given in Figure �� Since � � � corresponds to no transformation� here we see that transformation

of � Calories from Fat is basically unnecessary and is independent of body mass index� Some

transformation of log Systolic Blood Pressure appears necessary� as expected� but there is no

evidence that it depends on Age� Cholesterol appears to need transformation� but somewhat

unexpectedly the transformation depends on Age� While this �nding is somewhat interesting� in

the data at hand any measurement error analysis will not depend particularly on the transformation

used� since the correlation between the mean transformed response for any two values of � �

!����� ���" is quite high �above ���	
� and the same holds for di�erences�

��	 Variance Functions and Overdispersion

Problems involving count and assay data are often concerned with overdispersion� For example� ifeY � �Y�X
� the mean of Y might be modeled as ��B� X
 and its variance might have the form

var�Y jX
 � exp !�� � �� logf��B� X
g" � ��



Here we assume that the mean function is properly determined so that B� � �
�� 
�� 
�
 is to be

estimated parametrically� If �� � � and �� � � then we have overdispersion relative to the Poisson

model� while �� 
� � means a departure from the gamma model� In general� we are asking how

the variance function depends on the logarithm of the mean� For given ��� B� is usually estimated

by generalized least squares �quasilikelihood
� Consistent estimates of B� can be obtained using

quasilikelihood assuming �� is a �xed value� even if it is not� This well�known fact is often referred

to operationally by saying that ��

 with �xed �� is a �working� variance model �Diggle� Liang and

Zeger� ����
�

The problem then is one of variance function estimation� where if ��B� X
 � logf��B� X
g� we

believe that the variances are of the form exp!�f��B� X
g" for some function ���
� In a population�

the variance is exp��
 which is estimated using the estimating function

�� eY ��� bB
 � fY � �� bB� X
g� exp���
� �� ���


�	



Estimating � as a function of Z � �� bB� X
 is accomplished by using ��
 in the obvious manner�

namely

� �
nX
i��

w�Zi� z�
�

���eYi�
pX

j��

bj �Zi � z�

j � bB

���Gt
p

�
Zi � z�� bB� � ���


Because bB estimates B� at parametric rates� asymptotically there is no e�ect due to estimating B�

on the estimate of ��z
�

We applied this analysis to three data sets� the esterase assay and hormone assay data sets

described in Carroll $ Ruppert ���		� Chapter �
� and a simulated data set with �f��B� X
g �

���� sinef��B� X
g� using the same X �s and estimates of B as in the esterase assay� The model for

the mean in all three cases is linear� Previous analyses suggested that the esterase assay data were

reasonably well described by a gamma model� with the hormone assay less well described as such

since �� � ���� We used �� � � as our working variance model to obtain bB to these three data sets�

We �t local linear models weighted using loess with the span allowed to take on values between ���

and ��� and estimated by the techniques of this paper� We compared the �tted variance functions

divided by the gamma model variance function and rescaled on the horizontal axis to �t on the

same plot� Through the range of the data� the deviation from the gamma function is only a factor of

about 
�� for the esterase assay� indicating a good �t for this model� The hormone assay deviates

from the gamma model somewhat more� with variances ranging over factors of two� Both have

estimated spans greater than ���� indicating that the linear model is a reasonable �t� the hormone

data simply have a value �� 
 �� The simulated data show the sine�type behavior from which they

were generated� and a much smaller estimated span�

��
 Transformation in Nonlinear Regression� Kinetic Modeling

In �tting a response Y to a predictor Z using a nonlinear regression equation the usual models all

assume implicitly that for some known function f�Z�B


median�Y jZ
 � f�Z�B�
�

Here %Y � �Y� Z
� A important example is �tting the Michaelis�Menten model�

median�Y jZ
 � �
� � 
��Z

��� ���


that is used in kinetic studies� some types of bioassay� and in stock�recruitment analysis of �sheries

where it is called the Beverton�Holt model� see Ruppert� Cressie� and Carroll ���	�
� For concrete�

ness� we will restrict attention to kinetic modeling� though the theory we discuss holds for general

��



models� A variety of �tting methods are used to estimate the parameters B� � �
�� 
�
 in this

model� One method is nonlinear least squares estimation of Y on Z� Alternatively� since

median�Y ��jZ
 � 
� � 
��Z� ���


many researchers regress Y �� on Z�� using ordinary least squares� There is a third alternative�

not discussed here� in which Z�Y is regressed on Z�

One should choose between ���
 and ���
 by using the model where the errors in the regression

relationship are most nearly additive� Of course� there is no guarantee that the errors will be nearly

additive for either model� and a more  exible approach proceeds as follows� If we de�ne the usual

power transformation h�x��
 � �x� � �
�� for � 
� � and � log�x
 for � � �� then ���
 and ���


are special cases of the model

h�Y��
 � h�
� � 
��Z��
� �� ��	


for � � � and � � ��� respectively� where � is a symmetric �often normal
 random variable inde�

pendent of Z� The transformation parameter can be estimated by maximum likelihood assuming

that � is normally distributed �Ruppert� Cressie and Carroll� ��	�
� or to minimize tests for skew�

ness or heteroscedasticity �Ruppert and Aldershof� ��	�
� For given B�� any of the methods can

be recast as solving an equation such as ���
� so that �� rather than being �xed� depends on Z�

The preliminary estimate of B� can again be obtained by via a �working� transformation using any

of the methods described above� followed by a least absolute values regression in the �working�

transformed scale� Least absolute values regression is used because it consistently estimates B even

when ��z
 is misspeci�ed� see Carroll and Ruppert ���	�
�

��� Partially Parametric Models

The overdispersion �section ���
 and kinetic modeling �section ���
 examples both contained a

parametric part B� and a nonparametric part ���
� The �working� estimation methods used for

the parametric parts were carefully chosen so that bB was consistent and asymptotically normally

distributed with variance of order n�� even if ���
 was completely misspeci�ed�

The kinetic modeling problem is a good example of what happens when an estimation method

for B� is chosen whose validity depends on correctly specifying or consistently estimating ���
� An

alternative estimator for B� given a version b���
 is to perform nonlinear least squares regression of

h�Y� b�
 on hn�
� � 
��Z
� b�o� The resulting estimate of B� is consistent only if b���
 is consistent
��



�and vice�versa�
� The estimate solves in B an estimating equation of the form

� �
nX
i��

�
neYi�B� b���
o �

where in this instance ���
 is the nonlinear least squares normal equation in the transformed scaleb���
� The natural approach to use then is to solve the following equations

� �
nX
i��

�
neYi�B� b���
o � ���


� �
nX
i��

w�Zi� z�
�
neYi�B����
oGt

p �Zi � z�
 � ���


for z� � Z�� ���� Zn� where ��z�
 �
Pp

j�� bj�Zi � z�

j �

As we have described it� solving ���
����
 simultaneously is a form of back�tting� One �xes

the current estimate of B� and obtains an updated estimate of ���
� reverses the process� and then

iterates� Asymptotically valid inferences for ��z
 are obtained using only ���
 and assuming that bB
is �xed at its estimated value� Asymptotically valid estimates of the covariance matrix of bB remain

an open problem� although in some cases they can be derived using the methods of Carroll� Fan�

Gijbels and Wand �����
�

The back�tting algorithm has a well�known feature� We con�ne our remarks to local regression�

but they hold for other types of �tting methods as well �Hastie and Tibshirani� ����� pp �������
�

Speci�cally� in local linear regression� if the bandwidth is h� then n���� bB�B�
 has variance of order
� but has bias of the order �nh

���� so that to get an asymptotic normal limit distribution with

zero bias requires that nh
 � �� Unfortunately� �optimal� kernel bandwidth selectors for given

B are typically of the order h � n����� in which case nh
 � 
 and the bias in the asymptotic

distribution of bB does not disappear� If one is even going to worry about this problem �we know

of no commercial program which does� nor of any practical examples in which the bias problem is

of real concern
� the usual solution is to undersmooth in some way� For example� one might use a

standard bandwidth but set p � � in ��
 and ���
�

Some problems allow for a somewhat more elegant solution to the bias problem� speci�cally when

���
����
 are formed as the derivatives of a single optimization criterion� None of the estimators we

have described in this paper have this form except the kinetic modeling example when all parameters

are estimated by maximum likelihood under the assumption that the errors are normally distributed

�section ���
� Optimization of a single criterion basically means a likelihood speci�cation� When

it occurs� nonparametric likelihood as described by Severini and Wong �����
 can be applied to

make the bias problem disappear� at least in principle� as follows� Let the data likelihood be

��



�fB����
g� For �xed B� let b����B
 be the local estimator derived by maximizing the likelihood in

� with B �xed� Nonparametric likelihood maximizes �fB� b����B
g as a function of B� In contrast�

back�tting �xes the current b����B
 and updates the estimate of B by maximizing �f�� b����B
g in
�� Nonparametric likelihood can be more di�cult to implement than back�tting� especially in our

context when ���
 is multivariate� It is however easy to implement if � is scalar� eY � �Y�X� Z
�

and Y follows a GLIM with mean ff��Z
 � X tBg� see Severini and Staniswalis �����
 for the

ordinary kernel regression case�

� MODIFICATIONS OF THE ALGORITHM

The method suggested in ��
 requires that all components of ��z�
 be estimated simultaneously�

This may be undesirable in some contexts� For example� when estimating as variance function

nonparametrically� one would often �rst estimate the mean function� say ���z
� form squared

residuals f eY � b���Zi
g
�� and then regress these squared residuals on Z nonparametrically to obtainb���z�
� the variance estimate at a given z�� In this context� strict application of ��
 is di�erent�

since it is based on squared pseudo�residuals f eY �
Pp

j��
b��j��z�
�Zi � z�


j�j�g�� In addition� one

would often use di�erent tuning constants at each step� but ��
 assumes use of the same tuning

constant�

The previous example� as well as the nonparametric calibration problem� is an example of a

multistage process� where components of ���
 are estimated �rst and then plugged into the esti�

mating equation for further components� Such problems are easily handled by a slight modi�cation

of our approach�

We illustrate the idea in a two�stage context� so that � � ������
� By the two�stage process�

we mean that the �rst component can be estimated without reference to the �rst� with weight

function w� and estimating function ��� so that we solve

� �
nX
i��

w��Zi� z�
��

���eYi�
pX

j��

bj�� �Zi � z�

j

���Gt
p �Zi � z�
 � ���


The estimate is b���z�
 � bb����z�
�
At the second stage there is a second weight function w� and a second estimating function ���

and we solve

� �
nX
i��

w��Zi� z�
��

���eYi� b���Zi
�
pX

j��

bj�� �Zi � z�

j

���Gt
p �Zi � z�
 � ���


The estimate is b���z�
 � bb����z�
�
��



The asymptotic covariance matrix of fb���z�
� b���z�
g de�ned by ���
����
 is estimated by

applying the sandwich method to the estimating equation

� �
nX
i��

�� w��Zi� z�
��
neYi�Pp

j�� bj�� �Zi � z�

j
o

w��Zi� z�
��
neYi�Pp

j�� bj�� �Zi � z�

j �
Pp

j�� bj�� �Zi � z�

j
o��Gt

p �Zi � z�
 � ��



If cp�i � Gp�Zi � z�
G
t
p�Zi � z�
� the sandwich formulae are

Bn�z�
 �
nX
i��

�
w��Zi� z�
cp�i � b�i�� �
w��Zi� z�
cp�i � b�i�� w��Zi� z�
cp�i � b�i��

�

Cn�z�
 �
nX
i��

�
w�
��Zi� z�
cp�i � b�i� b�t

i� w��Zi� z�
w��Zi� z�
cp�i � b�i� b�t
i�

w��Zi� z�
w��Zi� z�
cp�i � b�i� b�t
i� w�

��Zi� z�
cp�i � b�i� b�t
i�

�
�

where �i is made up of the elements �ijk for j� k � �� �� In practice� one might replace
Pp

j��
bbj�k�Zi�

z�
j by b�k�Zi
�

Tuning constant estimation in multistage problems may also need to be adjusted� For example�

using kernels with bandwidth hk at stage k� for odd�powered polynomials the bias at stage � is of

course of the order hp��� � while at stage � it is c��z�
h
p��
� � c��z�
h

p��
� � Standard EBBS can be

used to estimate h� at stage �� while in general estimating h� requires a two�dimensional EBBS�

However� in both the variance function problem as well as nonparametric calibration� the e�ect

on �� due to estimating �� is nil asymptotically� and standard EBBS can be used at each stage

without modi�cation�

In general problems� via back�tting one can use di�erent weights functions and tuning constants

to estimate each component of ��z
� For example� one might iterate between solving the two

equations �with estimated tuning constants


� �
nX
i��

w��Zi� z�
��

���eYi�
pX

j��

bj�� �Zi � z�

j � b���Zi


���Gt
p �Zi � z�
 �

� �
nX
i��

w��Zi� z�
��

���eYi� b���Zi
�
pX

j��

bj�� �Zi � z�

j

���Gt
p �Zi � z�
 �

For example� this is the procedure we used in the lung cancer mortality example�

We conjecture that the asymptotic variance of these back�tted estimates can be estimated

consistently by applying the sandwich formula to the equations

� �
nX
i��

w��Zi� z�
��

���eYi�
pX

j��

bj�� �Zi � z�

j �

pX
j��

bj�� �Zi � z�

j

���Gt
p �Zi � z�
 �

� �
nX
i��

w��Zi� z�
��

���eYi�
pX

j��

bj�� �Zi � z�

j �

pX
j��

bj�� �Zi � z�

j

���Gt
p �Zi � z�
 �

�




This idea can be shown to work in the case of robust estimation of a mean and variance function�

as in the lung cancer mortality example�

� DISCUSSION

We have extended estimating equation theory to cases where the parameter vector � is not constant

but rather depends on a covariate Z� The basic idea is to solve the estimating equation locally

at each value of z using weights that for the ith case decrease with the distance between z and

the observed Zi� The weights depend on a tuning parameter� e�g�� a bandwidth h� A suitable

value of h can be found by minimizing an estimate of the mean square error� The latter is found by

estimating variance using the �sandwich formula� �or more e�cient modi�cations described earlier


and estimating bias empirically as in Ruppert �����
�

We have applied this methodology to nonparametric calibration in nutritional studies� binary

regression with the indicator of bladder cancer as the response� variance�stabilizing transforma�

tions� and robust modeling of lung cancer mortality rates� Other possible application� e�g�� to

overdispersion and to transformation in nonlinear regression� have been discussed�

We have focused on local weighted polynomials� Regression splines could also be used in this

context� and appear to have considerable promise� Given a set of knots ���� ���� �p
� a regression

cubic spline has the form

��z� b�� ���� bp�	
 � b� � b�z � b�z
� � b	z

	 �
pX

j��

bj�	�z � �j

	
��

where v� � v if v � � and equals zero otherwise� If regression splines are used� then ��
 becomes

� �
nX
i��

�
neYi���Zi� b�� ���� bp�	


o
Gp�s�Zi
�

where Gt
p�s�z
 � ��� z� z�� z	� �z � ��


	
�� ���� �z� �p


	
�
� The interesting issue here is the selection of

the knots� a problem of considerable interest in the broad context and one we are currently working

on for estimating functions� The regression splines outlined above may have an advantage since

the knots can be chosen on a component�wise basis�
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� APPENDIX


�� Bias and Variance for Local Polynomial Estimation

Here we give a brief derivation of bias and variance formulae for local polynomial estimation

of order p in the interior of the support of Z� The methods use to derive the calculations roughly

parallel those of Ruppert and Wand �����
 and Fan� Heckman and Wand �����
�

A useful simpli�cation is to let the unknown parameters be aj � hj��j��z�
�j�� see the appendix

of Fan et al� �����
�

For any p� q matrix C � �c�� � � � � c�

t� where cj is a q � � vector� de�ne vec�C
 �

	
ct�� � � � � c

t
�


t
�

De�ne �K�r
 �
R
zrK�z
dz and �K�r
 �

R
zrK��z
dz� Assume that K is symmetric about � so

that �K�r
 � �K�r
 � � if r is odd�

��



Let C�z�
 � E
h
�
neY ���z�
o�t

neY ���z�
ojZ � z�
i
and B�z�
 � E

h
�
neY ���z�
o jZ � z�

i
�

where �� eY � v
 � ����vt
�� eY � v
� De�ne
Ln�a�� � � � � ap
 � n��

nX
i��

Kh�Zi � z�
 vec

��Gp�h�Zi � z�
� �t

���eYi�
pX

j��

aj �Zi � z�

j �hj

���
�� �

where Gp�h�v
 �
	
�� v�h� v��h�� � � � � vp�hp


t
� We are solving � � Ln �ba�� � � � � bap
� with baj �

hj b��j��z�
�j�

By a Taylor series expansion� we �nd that the estimates are asymptotically equivalent to�B� ba� � a�
���bap � ap

�CA � �fB��z�
g
��Ln�a�� � � � � ap
� ���


where

B��z�
 �
�

��at�� � � � � a
t
p

Ln�a�� � � � � ap
�

It is helpful to keep in mind the following aspect�

Ln�a�� � � � � ap
 � n��
nX
i��

Kh�Zi � z�


�������
�
neYi�Pp

j�� aj�Zi � z�

j�hj

o
f�Zi � z�
�hg�

neYi�Pp
j�� aj�Zi � z�


j�hj
o

���
f�Zi � z�
�hg

p �
neYi�Pp

j�� aj�Zi � z�

j�hj

o

������� �

Also note that the a�s are vectors� of the same length as � and as �� The calculations are easier

to follow if this expanded form is used�

It is easily seen that

B��z�

p
�� fZ�z�
 fDp��
�B�z�
g �

where Dp��
 is the �p� �
� �p� �
 matrix with �j� k
th element �K�j � k � �
�

It is also easily shown that

cov fLn�a�� � � �ap
g � �nh
��fZ�z�
 fDp��
� C�z�
g �

where Dp��
 is the �p� �
� �p� �
 matrix with �j� k
th element �K�j � k � �
�

Finally� note that since E!�f eY ���Z
gjZ" � ��

ELn�a�� � � � � ap


� �

Z
Kh�z � z�
fY jZ�eyjz
fZ�z


�vec

��Gp�h�z � z�
�

��� fey���z
g � �

���ey�
pX

j��

aj�z � z�

j�hj

���
��t�A deydz

� �

Z
Kh�z � z�
fY jZ�eyjz
fZ�z


�vec

��Gp�h�z � z�
�

��� fey���z
g
�����z
�

pX
j��

�z � z�

j��j��z�
�j�

���
��t�A deydz�

��



But ��z
�
Pp

j���z�z�

j��j��z�
�j� � �z�z�


p����p����z�
��p��
� ��z�z�

p����p����z�
��p��
�

�O
�
�z � z�


p�	
�
� Hence� to terms of order f� �O�h
g�

ELn�a�� � � � � ap
 � A�h � A�h�

where

Akh � �
hp�k

�p� k
�

Z
K�x
fY jZ�eyjz� � xh
fZ�z� � xh


vec

�
Gp���x
�

h
� fey���z� � xh
g��p�k��z�
x

p�k
it�

deydx
� �

hp�k

�p� k
�

Z
K�x
fZ�z� � xh
 vec



Gp���x
�

n
B �z� � hx
 ��p�k��z�
x

p�k
ot�

dx�

Clearly�

A�h �
�hp��fZ�z�


�p� �
�
vec



D��p� �
�

n
B�z�
�

�p����z�

ot�

�

where D��L
 � f�K�L
� �K�L� �
� � � � � �K�L� p
gt� If we de�ne Q�z
 � fZ�z
B�z
 with �rst

derivative Q����z
� it also follows that

A�h �
�hp��

�p� �
�

Z
K�x
 vec



xp��Gp���x
�

n
Q�z� � hx
��p����z�


ot�
dx

� �
hp��fZ�z�


�p� �
�
vec



D��p� �
�

n
B�z�
�

�p����z�

ot�

�
hp��

�p� �
�

Z
K�x
 vec



xp��Gp���x
�

n
Q����z�
�

�p����z�

ot�

dx

� �
hp��

�p� �
�
vec



D��p� �
�

n
fZ�z�
B�z�
�
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We have thus shown that asymptotically�

bias
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The variance is
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The only thing left to show is that if p is even� then the bias is of order O�hp��
� i�e�� the �rst

element in

fD��p
� B�z�
g
�� vec



D��p� �
�

n
B�z�
�

�p����z�

ot�

equals zero� which is clearly the case since �K�r
 � � if r is odd�

For z� on the boundary of the support of Z� the terms of order hp�� dominate� and the bias is

of that order�

Remark� In the application of parametric estimating equations� unless the equations are linear

in the parameter there is typically a bias of order n�� which� however� is negligible compared to

the standard deviation� Similarly� there will be a bias of order �nh
�� here which stems from

terms ignored in the linearizing approximation ���
� Since h is chosen so that the squared bias

from smoothing is of order �nh
��� bias terms of order �nh
�� will be ignored here� However� see

Ruppert� Wand� Holst� and H'ossjer �����
 for a method of correcting the order �nh
�� bias due to

estimation of the mean when a variance function is estimated�


�� The Sandwich Formula

Here we sketch a justi�cation for the sandwich formula ��
���
� using the notation established

previously in this appendix� We continue to work with the parameterization �a�� ���� ap
� Noting

that B��z�
 in ���
 equals n��Bn�z�
 in ��
� it su�ces to show that n��Cn�z�
 de�ned in ��


has limiting covariance matrix �nh
��fZ�z�
fDp��
 � C�z�
g� which is easily established� This

completes the argument�

��
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Figure �� Bladder cancer� 	a
 Linear logistic 	solid
� quadratic logistic 	dashed
� and local linear
logistic 	dotted
 �ts� 	b
 Local bandwidth for local logistic �t� The scale of the y�axis overemphasizes
changes in the bandwidth� which� in e�ect� is nearly constant�
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